搜档网
当前位置:搜档网 › Pspice简明教程

Pspice简明教程

Pspice简明教程
Pspice简明教程

PSPICE简明教程

宾西法尼亚大学电气与系统工程系

University of Pennsylvania

Department of Electrical and Systems Engineering

编译:陈拓

2009年8月4日

原文作者:

Jan Van der Spiegel, ?2006 jan_at_https://www.sodocs.net/doc/9c12026902.html,

Updated March 19, 2006

目录

1. 介绍

2. 带OrCAD Capture的Pspice用法

2.1 第一步:在Capture 中创建电路

2.2 第二步:指定分析和仿真类型

偏置或直流分析(BIAS or DC analysis)

直流扫描仿真(DC Sweep simulation)

2.3 第三步:显示仿真结果

2.4 其他分析类型:

2.4.1瞬态分析(Transient Analysis)

2.4.2 交流扫描分析(AC Sweep Analysis)

3. 附加的使用Pspice电路的例子

3.1变压器电路

3.2 使用理想运算放大器的滤波器交流扫描(滤波器电路)

3.3 使用实际运算放大器的滤波器交流扫描(滤波器电路)

3.4 整流电路(峰值检波器)和参量扫描的使用

3.4.1 峰值检波器仿真(Peak Detector simulation)

3.4.2 参量扫描(Parametric Sweep)

3.5 AM 调制信号

3.6 中心抽头变压器

4. 添加和创建库:模型和元件符号文件

4.1 使用和添加厂商库

4.2 从一个已经存在的Pspice模型文件创建Pspice符号

4.3 创建你自己的Pspice模型文件和符号元件

参考书目

1. 介绍

是一种强大的通用模拟混合模式电路仿真器,可以用于验证电路设计并且预知 SPICE

电路的行为,这对于集成电路特别重要,1975年SPICE最初在加州大学伯克利分校被开发时也是基于这个原因,正如同它的名字所暗示的那样:

S imulation P rogram for I ntegrated C ircuits E mphasis.

PSpice 是一个PC版的SPICE(Personal-SPICE),可以从属于Cadence设计系统公司的OrCAD公司获得。学生版(功能受限)随教科书奉送。OrCAD的学生版称为PSpice AD Lite。有关PSpice AD Lite的信息可以从OrCAD的网站获得:https://www.sodocs.net/doc/9c12026902.html,/pspicead.aspx

Pspice的学生版有下面的限制:电路最多有64个节点,10个晶体管和2个运算放大器。 SPICE可以进行各种类型的电路分析。最重要的有:

z非线性直流分析:计算直流传递曲线。

z非线性瞬态和傅里叶分析:在大信号时计算作为时间函数的电压和电流;傅里叶分析给出频谱。

z线性交流分析:计算作为频率函数的输出,并产生波特图。

z噪声分析

z参量分析

z蒙特卡洛分析

另外,Pspice有标准元件的模拟和数字电路库(例如:NAND,NOR,触发器,多选器,FPGA,PLDs和许多数字元件)。这使得它成为一种广泛用于模拟和数字应用的有用工具。

所有分析都可以在不同温度下进行。默认的温度是300K。

电路可以包含下面的元件:

z Independent and dependent voltage and current sources独立和非独立的电压、电流源z Resistors电阻

z Capacitors电容

z Inductors电感

z Mutual inductors互感器

z Transmission lines传输线

z Operational amplifiers运算放大器

z Switches开关

z Diodes二极管

z Bipolar transistors双极型晶体管

z MOS transistors金属氧化物场效应晶体管

z JFET结型场效应晶体管

z MESFET金属半导体场效应晶体管

z Digital gates数字门

z其他元件(见用户手册)。

2. 带OrCAD Capture 的PSpice(9.2 学生发行版)

在开始仿真电路之前,你需要指定电路配置,这可以用多种方法进行。方法之一是按照元件、连接、元件的模型和分析的以文本文件输入电路描述。该文件被称为SPICE输入文

件或源文件(可参考:https://www.sodocs.net/doc/9c12026902.html,/%7Ejan/spice/spice.overview.html )。

另一种方法是使用原理图输入程序,例如OrCAD CAPTURE 。OrCAD Capture 与PSpice Lite AD 在随教科书提供的同一张光盘上。

OrCAD Capture CIS 版集成了具有器件信息系统(Component Information System ,简称CIS)的OrCAD Capture 原理图设计应用功能。该软件的设计着重考虑了降低花在查询现有重复采用的器件上面的时间,以及减少手工登记元器件的信息内容和元器件数据库的维护。对元器件的查询是基于它们所拥有的电性能参数,通过采用OrCAD Capture CIS 软件可以自动地检索相关联的器件情况。

Capture 是一个用法友好的程序,它允许你获取电路的原理图并且指定仿真的类型。Capture 不但可以产生输入文件而且可以用于PCB 布局设计程序。

下面的图概要说明了有关用Capture 和PSpice 仿真一个电路的不同步骤。我们将通过几个例子简要地描述这些步骤的每一步。

图1:用Pspice 仿真电路的步骤

元件的值可以用下面的度量因子指定(大小写均可):

T or Tera (= 1E12) U or Micro (= E-6)

G or Giga (= E9) N or Nano (= E-9)

MEG or Mega (= E6) P or Pico (= E-12)

K or Kilo (= E3) F of Femto (= E-15)

M or Milli (= E-3)

在Pspice 和Hspice 中都允许大写和小写字母。例如,可以下面的方法指定一个225pF 的电容:225P ,225p ,225pF ;225pFarad ;225E-12;0.225N 。

注意:兆被写为MEG ,例如一个15兆欧姆的电阻可以被指定为15MEG ,15MEGohm , 15meg 或15E6。小心M 与Mega !如果你写15Mohm 或15M ,Spice 将会把它们读为15 milliOhm !

作为例子,我们将对下面的电路进行不同类型的仿真。

第一步:用Capture 创建电路

z 创建一个新的模拟,混合AD 项目

z 放置电路元件

z 连接元件

z 指定值和名字

第二步:指定仿真类型 z 创建一个仿真模板 z 选择分析类型: 偏置,DC 扫描,晶体管,AC 扫描 z 运行

PSpice 第三步:观察结果

z 添加曲线到探测窗口

z 用光标分析波形描

z 运行 Pspice

z 保存或打印结果

图2:要被仿真的电路(OrCAD Capture的屏幕快照)

2.1第一步:在Capture 中创建电路

2.1.1 创建新项目

1.打开OrCAD Capture CIS Lite Edition。

2.创建一个新项目:File > New > Project。

3.输入项目的名字,例如Bias and DC Sweep。项目文件的扩展名为.opj,双击项目文

件可以打开项目。

4.选择Analog or Mixed-AD模拟或混合-AD。

5.在Location框中输入项目路径。点击OK。

6.在Create PSpice Project对话框打开时,选择“Create Blank Project”。

一个新的页将在Project Design Manager中打开,如下所示。

图3:OrCAD Capture界面

2.1.2. 放置元件并连接它们

1. 在Capture中点击原理图窗口。

2. 用Place > Part命令放置元件或点击Place Part图标,打开如图4的对话框。

图4:放置元件窗口Place Part

3.选择包含所需元件的库。在Part 文本框中输入元件名字的开始部分,如图中的R,

元件列表将卷动到其名字包含输入字母的元件处。第一次使用Capture时如果没有库可用,你必须点击Add Library添加库按钮,打开Add Library窗口将,选择需要的库。Spice库在路径Capture\Library\Pspice下。常用的Library有下面几个:

Analog:包含无源元件(R、L、C),互感器,传输线,以及电压和电流非独立的源(电压控制的调用源E、电流控制的电流源F、电压控制的电流源G和电流控制的电压源H)。

Source:给出不同类型的独立电压和电流源,例如:Vdc(直流电压),Idc(直流电流),Vac(交流电压),Iac(交流电流),Vsin(正弦电压),Vexp(指数电压),脉冲,分段线性,等。先浏览一下库,看那些元件可用。

Eval:提供二极管(D…),双极型晶体管(Q…),MOS晶体管,结型场效应晶体管(J…),真实运算放大器;如u741,开关(SW_tClose, SW_tOpen),各种数字门和元件。

Abm:包含一个可以应用于信号的数学运算符选择,例如:乘法(MULT),求和(SUM),平方根(SWRT),拉普拉斯(LAPLACE),反正切(ARCTAN),等。

Special:包含多种其他元件,像参数、节点组,等。

4.从库中选择电阻、电容和直流电压以及电流源。你可以用鼠标左键放置元件,用鼠

标右键点击旋转元件。如果要放置相同元件的另一个实例,可以再次点击鼠标左键。

对某个元件完成特定的操作后按ESC键, 或右击并选择End Mode。可以给电容器添加初始化条件;双击该元件将打开看起来像电子表格的Property属性窗口,在IC 列的下面输入初始化条件的值,例如,2V。对于我们的例子我们假定IC是0V(这

是默认值)。移动元件时Snap to grid工具控制元件是否吸附到网格上。

5.在放置好所有的元件后,你需要点击GND图标放置Ground地端子(在右边的工

具栏中,见图3)。当放置地窗口打开时,选择GND/CAPSYM 并且给它命名为0。

不要忘记改变其名字为0,否则PSpice 将给出一个错误或“Floating Node”。原因是SPICE 需要一个地端子作为参考节点,其名字或节点号必须是0。

图5:放置低端子对话框;地端子的名字应该是0

6.现在用从菜单用Place > Wire命令或点击Place Wire图标连接元件。

7.你可以用PLACE > NET ALIAS菜单命令为网络或节点指定别名。我们将输出和输

入节点命名为Out 和In,见图2。

快捷键:

I: 放大 O:缩小

C: 以光标所指为新的窗口显示中心

W: 画线On/Off

P: 快速放置元件

R: 元件旋转90°

N: 放置网络标号

J : 放置节点On/Off

F: 放置电源

H: 元件标号左右翻转

V: 元件标号上下翻转

G: 放置地

B: 放置总线On/Off

E: 放置总线端口

Y: 画多边形

T: 放置TEXT

PageUp : 上移一个窗口 Ctrl+ PageUp : 左移一个窗口

PageDn : 下移一个窗口 Ctrl+ PageDn : 右移一个窗口

Ctrl+F: 查找元件 Ctrl+E: 编辑元件属性

Ctrl+C: 复制 Ctrl+V: 粘贴

Ctrl+Z: 撤消操作

2.1.

3. 为元件指定值和名字

1.双击电阻旁边的数字改变电阻值。你也可以改变电阻的名字。对于电容、电压和电

流源的操作是一样的。

2.为节点指定名字(例如:Out和In节点)。

3.保存项目。

2.1.4. 生成网表

网表用简单的格式给出所有元件的列表:

R_name node1 node2 value

C_name nodex nodey value, etc.

1.用PSpice > Create Netlist菜单命令产生网表。

2.在项目Project Manager管理窗口(在文件窗口的左边)中双击Outputs/https://www.sodocs.net/doc/9c12026902.html,文

件可以查看网表,如下表。

关于元件中电流方向的注释:

在元件中,例如在电阻中,正电流方向是从节点1到节点2的。对于水平方向的元件节点1是左边的引脚,对于垂直方向的元件节点1是上面的引脚。将元件旋转180度可以交换引脚号。为了验证节点号你可以查看网表,例如:

R_R2 node1 node2 10k

R_R2 0 OUT 10k

因为我们兴趣在从OUT输出节点到地的电流方向,我们需要旋转电阻R2两次以使节点名相互交换,重新生成网表,查看变化:

R_R2 OUT 0 10k

2.2 第二步:指定分析和仿真的类型

如在介绍中所提及的那样,Spice允许你做直流偏置,直流扫描,傅里叶瞬态分析,交流分析,蒙特卡洛/最差情况扫描,参量扫描和温度扫描。我们将首先解释怎样在图2的电路上做直流偏置和直流扫描。

2.2.1 偏置或直流分析

1.打开原理图,在PSpice菜单上选择New Simulation Profile。

2.在文本框Name中输入一个描述性的名字,例如Bias。

3.从Inherit From列表中选择none并点击Create。

4.当Simulation Setting仿真设置窗口打开时,对于Analyis Type分析类型,选择Bias

Point偏置点并点击OK。

5.现在你已经准备好运行仿真了:PSpice> Run。

6.一个状态窗口将打开,让你知道是否仿真成功,如果有错,可查看仿真输出文件,

或Session Log窗口(该窗口不能关闭)。

7.为了看到直流偏置点的仿真结果,你可以打开仿真输出文件或返回原理图并点击V

图标(偏置电压显示)和I图标(偏置电流显示)显示电压和电流,见图6。

为了检查电流方向,你必须查看网表:电流的正方向是从节点1流到节点2(见上面有关电流方向的注释)。

图6:显示在原理图上的偏置分析结果

2.2.2 直流扫描仿真

使用相同的电路进行0和20V之间的电压源扫描的误差估计。保持电流源恒定在1mA。

1.从Pspice菜单创建一个新的New Simulation Profile仿真配置文件;我们将称它为

DC Sweep,Inherit From还是none。

2.为了分析DC Sweep;输入将被扫描的电压源的名字:V1,分别指定开始值、结束

值和步距:0,20和0.1V,(见图7)。

图7:设置DC Sweep仿真

3.运行仿真Pspice > Run。PSpice将产生一个包含电路中所有电压和电流值的输出文

件。

2.3 第三步:显示仿真结果

Pspice有一个用户友好的界面于显示仿真结果,一旦仿真结束,如图8所示的Probe探针窗口将打开。你可以用下面两种方法添加踪迹以显示仿真结果。

图8:探针窗口

1.从TRACE菜单选择ADD TRACE并且选择你想要显示的电压和电流。在我们的例

子中,我们将添加V(out)和V(in),点击OK。

图9:Add Traces添加踪迹窗口

2.你也可以在原理图中用V oltage Markers电压标记添加踪迹。从PSpice菜单选择

Markers > V oltage Level。在Out和In节点上放置标记。做完后,右击并选择End Mode。

图10:用Voltage Markers电压标记V(out)和V(in)显示仿真结果

3.返回探针窗口,波形出现了。

4.你可以添加第二个Y轴并用它显示电阻R2上的电流,就像下面图11显示的那样。

从探针窗口菜单选择Plot > Add Y Axis,下一步,为I(R2)添加踪迹。

5.你也可以在曲线图上用光标取V out和Vin踪迹上某些点的实际值。从探针窗口菜单

选择Trace > Cursor > Display。

6.光标将与第一个踪迹相关联,作为指示,在窗口底部V(OUT)的图例被很小的虚线

矩形所围。左击第一条踪迹,X和Y轴的值被显示在Probe Cursor探针光标窗口

中。在Probe Cursor窗口中,左击踪迹时A1的值变化,右击踪迹可以改变A2的值,dif给出A1和A2的差。点击左、右键时拖动光标可以观察A1或A2值的连续变化。

图越大光标定位的精度越高。在图例上先点右击再选左键切换所关注的踪迹。

7.为了将光标与第二个踪迹(用于V(IN))相关联,右击窗口底部V(IN)的图例。你

将看到围绕在V(IN)周围的轮廓,当你右击第二个踪迹时光标会吸到它上面。第一

个和第二个光标的值以及它们之间的差值将显示在Probe探针窗口。

8.双击X和Y轴可以改变它们的刻度等属性。

9.在添加踪迹时你可以在踪迹上进行数学计算,如图9,在Add Trace窗口的右边所

示。

图11:直流扫描的结果,显示Vout,Vin和通过电阻R2的电流。光标被用于V(out)和V(in) 右击一条踪迹的图例,可以改变其颜色等属性。

选择一条踪迹的图例,按Delete键,可以删除该踪迹。

2.4 其他的分析类型

2.4.1 瞬态分析(时域分析)

我们将使用同样的电路做瞬态分析,但在电路中添加了一个开关来控制施加在C1上的电压和电流源,如图12所示。

图12:用于瞬态分析的电路

1.如上图所示从EV AL库插入Sw_tCLOSE开关。双击开关TCLOSE的值,输入Value

为5m,使得TCLOSE = 5 ms。

2.设置瞬态分析:从菜单选择PSpice > New Simulation Profile命令。命名为Transient。

3.当仿真设置窗口打开时,选择Time Domain (Transient)时域瞬态分析。输入运行时

间,我们设它为200 ms。对于Maximum Step 最大步长的大小,你可以让它空着或

输入10us,如果空着波形不光滑,越小波形越光滑。

4.运行Pspice。一个探针窗口将打开。

5.你现在可以添加踪迹以显示结果。我们在探针窗口中用Plot > Add Plot to Windew

命令添加一个图表,在窗口的上面的图表中绘制通过电容C1的电流,其方向可以

通过旋转电容并重新创建网表来改变;在窗口的下面的图表中绘制电容上的电压。

用光标找指数曲线的时间常数(找0.632 x 14.994V(out)max = 9.48V。光标给出相对

应时间约为30ms,该处的时间常数30-5=25ms(计算式R1||R2·C1),因为开关在

5ms 处被关闭,所以要减去5ms)。

图13:图12的瞬态仿真结果

6.我们可以用一个改变结束时间的电压源代替开关。如图14,我们使用SOURCE库

中的 VPULSE和IPULSE源。输入电平(V1和V2),延时(TD),上升(TR)和下降(TF)时间,脉冲宽度(PW)和周期(PER),这些值都在下面的图中。关于这些参数的详情和其他Spice元件的描述可以从用户指南或Spice教程中找到https://www.sodocs.net/doc/9c12026902.html,/~jan/spice/。

图14:使用脉冲电流和电压源的电路

7.在做过瞬态仿真之后,其结果可以像前面我们做过的那样被显示出来。

8.瞬态分析最后的例子是用一个正弦信号VSIN。电路示于图15。我们设正弦的幅度

为10V,频率为10 Hz。

图15:具有正弦输入的电路

9.为瞬态分析创建一个仿真配置文件Simulation Profiler,并且运行Pspice。

10.对于V out和Vin仿真的结果见图16。

图16:正弦输入的瞬态仿真

2.4.2 交流扫描分析(频域分析)

交流分析将使用一个正弦电压,其频率在一个指定的范围内扫描。仿真计算频率所对应

的电压和电流的幅度以及相位。当输入幅度被设置为1V时,输出电压基本上是传递函数。对比正弦瞬态分析,交流分析不是时域仿真而是电路的正弦稳态仿真。当电路包含像二极管和晶体管这样的非线性元件时,这些元件将用它们的小信号模型代替,小信号模型的参数值根据相应的偏置点计算。

在第一个例子中,我们我们将展示一个简单的RC滤波器,相应的电路图见图17。

图17:用于交流扫描仿真的电路

1.创建一个新的项目并构造电路。

2.从Sources 库选择V AC作为电压源。

3.设置输入源的振幅为1V。

4.创建仿真配置文件,命名为AC Sweep。在Simulation Settings仿真设置窗口中,选

择AC Sweep/Noise。

5.输入开始和结束频率和十进制刻度的点数。对于我们的例子,它们分别设置为

0.1Hz,10 kHz和11。

6.运行仿真。

7.在探针窗口中为输入电压添加踪迹。除了显示输出电压的大小,我们添加第二个窗

口以显示相位。在Add Trace添加踪迹窗口中,电压可以用指定Vdb(out)的方法用

dB显示(在Trace Expression 框中直接输入VDB(OUT) 。对于相位输入VP(OUT))。

8.另一个以dB为单位显示电压和相位的可选方法是在原理图上使用标记:用PSpice >

Markers > Advanced > dBMagnitude of V oltage和Phase of V oltage菜单命令,在感兴

趣的节点上放置标记。

9.我们在图18中使用光标找3dB的点。与时间常数25 ms (R1||R2·C1)处相应的频率

是6.37 Hz(f3db=1/(2πRC)),幅度约为-9dB。在0.1Hz处的V out衰减约为-6dB或因

数2(20logX=6dB,X=2),A1和A2之差约为3dB。相应的输出电压振幅值已在

图16的瞬态分析期间获得。

图18:交流扫描分析结果

3. 随Pspice的附加电路例子

3.1变压器电路

SPICE没有理想变压器模型,理想变压器可以用互感器仿真,这时变压比N1/N2 = sqrt(L1/L2)=n。在PSpice中该元件被称为XFRM_LINEAR(在模拟库中)。设置耦合系数K 接近或等于1(例如K=1),并且这样选择L,让wL >> 被感应器看到的等效电阻(当理想变压器次级端接一个电阻R时,初级的等效输入电阻为n2R。R ab=10+n2×500)。

图3.1.1:理想变压器电路

对于我们的例子,让wL2 >> 500 Ohm或L2> 500/(60*2pi);让L2至少大10倍,例如L2=20H。然后L1可以从匝数比L1/L2 = (N1/N2) 2得到。对于匝数比10,L1=L2x100=2000H。在PSpice Capture 中该电路作为入门,见图3.1.2,结果见图3.1.3。

下面的电路需要直流接地连接。这可以用添加一个到地的大电阻或给初级和次级电路一个公共点来实现。下面的例子说明怎样仿真一个变压器。

图3.1.2:在PSpice Capture中作为入门的理想变压器电路 创建仿真配置文件,命名为XFRM_LINEAR。在Simulation Settings仿真设置窗口中,选择Time Domain (Transient) ,Run to设置为60ms,Maximum step设置为10us。运行仿真。

图3.1.3:图3.1.2电路的瞬态仿真结果

3.2 使用理想运算放大器的滤波器交流扫描(滤波器电路)

我们用Pspice仿真下面电路。

图3.2.1:使用理想运算放大器的有源滤波器电路

我们已经对于输入和输出使用了off-page电路端口连接器(>>)(从右边的工具栏点击Place off-page connector图标)。双击off-page连接器的名字可以改变它。如果有两个连接器(或节点)有相同的名字,这两个节点将被连接在一起(不需要画导线)。从SOURCE库中选择V AC作为电压源,设置其振幅为1V,所以输出电压将与滤波器的放大特性(或传递函数)相应。

创建仿真配置文件,命名为Ideal Op-amp Filter。在Simulation Settings仿真设置窗口中,选择交流扫描,并输入开始、结束频率和每十分刻度的点数分别为0.01Hz,10 kHz和11。

下图给出了结果。左边的Y轴给出了大小,右边的Y轴给出了相位。光标用来找带通滤波器的3db点,相应的低高截止频率分别为0.63 Hz和32 Hz。这些数字相对应的时间常数值在图3.2.1中给出。这些点所在的相位为-135和-224度。

图3.2.2:有源滤波器的交流扫描结果

3.3 使用实际运算放大器的滤波器交流扫描(滤波器电路)

真实运算放大器电路如下图所示。我们选择U741运算放大器构造滤波器。仿真结果在图3.3.2中,在该频率范围内我们期望真实和理想运算放大器之间的差别最小。

图3.3.1:使用U741的有源滤波器电路

图3.3.2:使用真实运算放大器U741的有源滤波器电路的交流扫描结果

3.4 整流器电路(峰值检波器)和参量扫描的使用

3.4.1: 峰值检波器的仿真

图3.4.1:使用D1N4148二极管的整流器电路,负载电阻为500 Ohm 创建仿真配置文件,命名为Rectifier Circuit。在Simulation Settings仿真设置窗口中,选择Time Domain (Transient),并输入开始、结束时间分别为0s,100ms,Maximum Step 最大步长输入10us。

仿真结果在图3.4.2中给出。如光标所指示,波纹的峰峰值为777mV。最大输出电压是13.997V,小于15V的输入电压峰值。

图3.4.2:整流器电路的仿真结果

3.4.2 参量扫描

看负载电阻的变化对输出电压和输出波纹电压的影响可以用PARAM参量元件实现。

图3.4.3:负载电阻的参量扫描电路

添加参量元件

a.

1)双击负载地址R1的值(500 Ohms)改为{Rlval},使用花括号。Pspice解释,

波形括号之间的文本作为求值的表达式。完成后点击OK。

2)添加PARAM元件到电路中,在SPECIAL库中可以找到该元件。

3)双击PARAM元件,打开Property Editor属性编辑窗口。你需要添加一个新的

列到该参数表中。点击New Column按钮并输入Property Name属性名称Rlval

(不带花括号)。

4)你将注意到新列Rlval 已经被创建了。在Rlval的下面输入电阻的初始值:让

它为500,如图3.4.4。

图3.4.4:PARAM 元件的Property Editor窗口,显示新创建的Rlval列

5)当你在单元各中输入值500后,再点击DISPLAY按钮,指定要显示的东西,

选择Name and Value。点击OK。

6)在关闭Property Editor窗口之前,点击APPLY按钮。

7)保存设计。

为参量分析创建仿真配置文件

b.

1)选择PSice > New Simulation Profile。

2)键入配置文件的名字,例如Parametric。

3)在Simulation Setting仿真设置窗口中,选择Analysis标签。

4)对于Analysis type分析类型选择Transient瞬态(或你想要做的分析类型;在本

例中我们将做瞬态分析)。并输入开始、结束时间分别为0s,100ms,Maximum

Step 最大步长输入10us。

5)在Options选项下面,选择Parametric Sweep参量扫描,见图3.4.5。

6)对于扫描变量,选择全局参数并输入Parameter name参数名:Rlval。在Sweep

type扫描类型的下面给出Start value起始值、End value结束值和Increment增

量,对于这些参数我们分别用250、1kOhm和250。(见图3.4.5)。

7)点击OK。

图3.4.5:参量扫描的仿真设置窗口

运行PSpice并显示波形

c.

1)运行PSpice。

2)当仿真结束时,Probe探针窗口被打开并且弹出Available Sections窗口,选择全

部并点击OK。

3)添加V(OUT)为显示踪迹,多踪迹将显示,如图3.4.6。

4)可以用光标确定踪迹上的指定值;还可以通过双击Y和X轴来调节数轴。

5)结果显示电阻越大纹波越小。

图3.4.6:负载电阻的参量扫描结果,从250到1000 Ohm变化,步长为250 Ohm。 3.5 AM调制信号(AM调制)

幅度调制(AM)信号的表达式为:

其中一个正弦高频载波cos(2πf c t)被一个频率为f m的正弦调制。调制频率可以是任意信号。对于本例我们假定它是一个正弦波。M是调制指数。

为了在Pspice中产生AM信号,我们可以使用MULT乘法函数,它可以从ABM库中找到。图3.51显示了能够在电阻R1上产生AM信号的电路图。

图3.5.1:产生AM信号的电路图

瞬态仿真的结果示于下图。如果还想查看仿真输出信号的傅里叶频谱。在探针窗口中点击位于顶部工具栏中的FFT图标,或使用PSPICE > FOURIER菜单命令。被显示踪迹的傅里叶频谱将被显示。可以双击X轴来改变它X轴的刻度。图3.5.3给出了与位于5kHz的主峰和两个分别位于4.5 和5.5 kHz处的边峰相对应的傅里叶频谱,这表示调制频率是500Hz。你可以用光标得到精确的值。

图3.5.2:上面电路的仿真波形(瞬态分析),A=1V,f=500 Hz,f =5kHz,m=0.5

图3.5.3:图3.5.2波形的傅里叶频谱

3.6. 中间抽头变压器

在Pspice中没有直接用于中间抽头的变压器模型。然而,我们可以用互相偶联的电感来模拟一个中间抽头的变压器。图3.6.1显示了电路的原理图。我们使用一个初级电感Lp 和两个次级电感Ls1和Ls2串联。另外我们添加一个K-Linear元件(在ANALOG库中)。

图3.6.1:比率为10:1的中间抽头变压器

在原理图上放置好元件后给每个元件设定其值。输入电压为100V、60Hz的正弦曲线。注意我们添加了一个小电阻R1与电压源和电感串联,该电阻用来防止直流短路(没有该电阻Spice会给出一个错误),我们设置该电阻小于等于1 Ohm。假定我们想要一个对每个次级输出的比率为10:1的降压变压器,电感的比率Ls1/Lp和Ls2/Lp必须为1/102(或=sqrt(Ls1/Lp)=0.1)。我们让Lp=1000、Ls1、Ls2=10H。

双击K-Linear元件并且在列标题L1、L2、L3下面输入值Lp、Ls1、Ls2。完成后点击Apply按钮并关闭属性窗口。

图3.6.2:设置L1、L2、L3

Pspice简明教程

Pspice 教程 Pspice 教程课程内容: 补充说明(1 网表输出)(2 如何下载和使用新元件模型) 1.直流分析 2.交流分析 3.参数分析 4.瞬态分析 5.蒙特卡洛分析 6.温度分析 7.噪声分析 8.傅利叶分析 9.静态直流工作点分析 附录A: 关于Simulation Setting 的简介 附录B:关于测量函数的简介 附录C:关于信号源的简介 使用软件的说明:CADENCE仿真可以在Capture或者HDL界面下, 1Capture 的优点是界面简洁,容易学习,使用广泛。 HDL 的界面比较复杂,而且各种规则约束较多, 2 他们在使用的原理图库不同,Capture的原理图以*.olb的形式存放在 TOOL-capture -library中,而HDL的原理图、封装形式、以及物理信息都集成在share-library下的各自元件中; 3两者的仿真模型库相同,都在TOOL-pspice中。所以从仿真效果来看,两者没有区别。 4 HDL的好处是当完成原理图仿真后,可以直接输出网表,到APD版图中,供自动布局用。

一.直流分析 直流分析:PSpice 可对大信号非线性电子电路进行直流分析。它是针对电路中各直流偏压值因某一参数(电源、元件参数等等)改变所作的分析,直流分析也是交流分析时确定小信号线性模型参数和瞬态分析确定初始值所需的分析。模拟计算后,可以利用Probe 功能绘出Vo-Vi 曲线,或任意输出变量相对任一元件参数的传输特性曲线。首先我们开启DesignCapture / Capture CIS. 打开如下图所示的界面( Fig.1) 。 ( Fig 1) 我们来建立一个新的工程 ( Fig.2) ( Fig.2) 我们来选取一个新建的工程文件! 我们可以看到以下的提示窗口。(Fig.3)

NI_Multisim教程

从PSPICE过渡至NI Multisim:教程 作者:美国国家仪器有限公司(NI)时间:2010-02-22 关键词:NI Multisim PSPICE 概览 SPICE (针对集成电路的仿真程序)是加利福尼亚大学伯克莱分校开发的模拟电路仿真器,是作为CANCER (除射频电路外的非线性电路计算分析)程序的一部分进行开发的。 过去的50年中,众多公司开发了大量不同的SPICE变体(包括HSPICE和PSPICE)。 SPICE以网表形式定义电路并使用参数仿真电路特性。网表描述电路中的部件及其连接方式。SPICE可以仿真DC工作点、AC响应、瞬态响应以及其它有用的仿真项目。 目录 1. 为何采用本教程作为PSPICE到Multisim间的过渡? 2. 1.0 PSPICE过渡至Multisim教程:放置电阻和电容 3. 2.0 PSPICE过渡至Multisim教程:增加电源部件 4. 3.0 PSPICE过渡至Multisim教程:接线部件 5. 4.0 PSPICE过渡至Multisim教程:设置仿真 6. 5.0 PSPICE过渡至Multisim教程:运行仿真 7. 6.0 PSPICE过渡至Multisim教程:结语 为何采用本教程作为PSPICE到Multisim间的过渡?

本教程的目标受众为那些使用过PSPICE的Multisim用户,我们的目标是为这些正在积极寻找如何在Multisim中创建和仿真电路的用户提供进阶指南。本教程除了讲述如何在PSPICE中完成任务,同时亦为您提供使用Multisim的简单设置步骤。无论您是否有过操作其它仿真工具的经验,本教程均可帮助您迅速上手Multisim。这一评价来自于我们在斯坦福大学创建的优秀教程,见此处 (https://www.sodocs.net/doc/9c12026902.html,/class/ee122/Spice_Decks/pspicedemo.pdf)。 Multisim 如果您是首次使用Multisim,您可能会很快发现仿真环境和原理图捕获环境非常相似,只是传统的多级步骤和复杂过程已被简化,仿真变得更加简单。如果您仍需通过下载Multisim环境来完成本教程,请点击此处 (https://https://www.sodocs.net/doc/9c12026902.html,/nicif/zhs/evalmultisim/content.xhtml)。 1.0 PSPICE过渡至Multisim教程:放置电阻和电容 1.1 打开软件 在PSPICE中,仿真设计开始前,用户通常需要通过下列步骤(程序>>PSPICE学生版>>原理图),打开“原理图”程序。 必须通过开始>> 所有程序>> National Instruments >>电路设计套件11.0 >> Multisim 11.0这一步骤打开Multisim 1.2 放置Op-Amp 在PSPICE中,用户需要打开“获取新部件”窗口,然后在描述框中搜索“opamp”。搜索到合适的型号后,将其连接到对应的设备符号上,然后单击“放置并关闭”。此时需要正确定向部件。双击Op-Amp,用户就可以设置相应的仿真参数。 在Multisim中放置部件: 1. 选择放置>> 部件。

PSpice 8.0仿真教程

PSpice仿真电路的应用技巧 应网友之约将Pspice8.0的一些基本使用方法提供给大家,我们共同探讨;希望对大家有所帮助,由于本人水平有限还望谅解,只当抛砖引玉吧,不妥之处请予以指出。 一、先了解Pspice8.0的使用基本程序项 1、Schematics: 绘制、修改电路原理图生成*。CIR文件,或打开已有的*。CIR文件;调用电路分析程序进行分析,并可调用图形后处理程序(Probe)查看分析结果。

2、Pspice A/D: 打开已有的文本文件(*。CIR)进行文本规定的分析,分析结果存入*。DAT 文件中。Schematicscs程序项的菜单中有运行Psoice程序的命令。 3、Parts: 元件编辑程序,新建或修改元件的特性,模型。 4、Probe: 图象后处理,可观察分析结果的图形。Schematicscs程序项的菜单中有运行Prode程序的命令 5、Stmed(Stimlus Editor) 用于建立独立信号激励源和修改已建立的激励源波形。 6、Optimizer: Psoice优化设置程序 7、Texte dit: 文本编辑器。

8、PCB: 上面8项是Psoice的基本程序,他们之间是相互关联的,最主要的是Schematicscs项,使用绘图程序项Schematicscs绘制好电路原理图,设置好相关模拟运行参数就可以对所画电路原理图进行模拟仿真了。 二、绘制电路原理图 绘制电路原理图是运行Pspice程序的第一项作业,使用绘图工具能很方便的进行原理图的绘制。 1、打开Schematicscs项 Schematicscs项是pspice应用程序的主窗口,可调用其它5个基本程序项。 下面是Schematicscs窗口的界面,主要工具用途已标明在案图上。

PSpice直流仿真(一)

PSpice直流仿真实践(1) 使用PSpice软件最终目的就是对各种电路进行仿真分析。本章列举了各种模拟电路PSpice仿真实践的例子,读者通过这些例子,可以进一步体会PSpice 的应用特点和强大的电路分析能力。 PSpice可以对以下类型的电路进行仿真分析:直流电路、交流电路、电路的暂态、模拟电子电路、模拟电路、数模混合电路。 一、直流工作点分析语句 此语句规定计算并打印出电路的直流工作点(又称直流偏置点)。这时电路中的电感按短路、电容按开路处理。设置了该语句,输出文件可打印所有节点电压、所有电压源的电流及电路的直流功耗、所有晶体管各极的电流和电压、非线性受控源的小信号(线性化)参数。 注意: 无论输入文件中有无.OP语句,程序在进行直流、交流和暂态分析时,都要自动进行直流偏置点分析。只是没有.OP语句时,输出文件只打印所有节点电压和所有电压源的电流及电路的直流功耗三项内容。 二、直流扫描分析语句 直流分析语句用于对电路作直流分析。语句在执行过程中,对指定的变量在指定的范围内进行扫描,每给一个变量的扫描点,就对电路进行一次直流分析计算,计算内容是节点电压和支路电流。直流分析语句可对如下变量进行扫描: ●电源:任何独立电压源和独立电流源的电流、电压值均可设为扫描变量。 ●模型参数:在.MODEL语句中描述的模型参数均可设为扫描变量。 ●温度:设置TEMP作为扫描变量时,对每个扫描变量值,电路元器件的 模型参数都要更新为当时温度下的值,所以执行该分析程序就是分析了 扫描温度下的电路的直流特性。 ●全程参数:扫描变量使用关键字PARAM,后跟参数名。按照.PARAM 的定义,该扫描变量就为全程参数。 说明:对哪个变量扫描,该变量就是自变量,即Probe输出图形的横坐标。 直流分析语句格式: 分析语句对变量扫描时有四种扫描方式,它们是: LIN:线性扫描,每一个扫描点和它前后扫描点之间的距离是相等的。每两个相邻扫描点间的距离为扫描增量。

PSPICE仿真

目录 介绍: (2) 新建PSpice仿真 (3) 新建项目 (3) 放置元器件并连接 (3) 生成网表 (5) 指定分析和仿真类型 (5) Simulation Profile设置: (6) 开始仿真 (7) 参量扫描 (9) Pspice模型相关 (11) PSpice模型选择 (11) 查看PSpice模型 (11) PSpice模型的建立 (12)

介绍: PSpice是一种强大的通用模拟混合模式电路仿真器,可以用于验证电路设计并且预知电路行为,这对于集成电路特别重要。 PSpice可以进行各种类型的电路分析。最重要的有: ●非线性直流分析:计算直流传递曲线。 ●非线性瞬态和傅里叶分析:在打信号时计算作为时间函数的电压和电流;傅里叶分 析给出频谱。 ●线性交流分析:计算作为频率函数的输出,并产生波特图。 ●噪声分析 ●参量分析 ●蒙特卡洛分析 PSpice有标准元件的模拟和数字电路库(例如:NAND,NOR,触发器,多选器,FPGA,PLDs和许多数字元件) 分析都可以在不同温度下进行。默认温度为300K 电路可以包含下面的元件: ●Independent and dependent voltage and current sources 独立和非独立的电压、电流 源 ●Resistors 电阻 ●Capacitors 电容 ●Inductors 电感 ●Mutual inductors 互感器 ●Transmission lines 传输线 ●Operational amplifiers 运算放大器 ●Switches 开关 ●Diodes 二极管 ●Bipolar transistors 双极型晶体管 ●MOS transistors 金属氧化物场效应晶体管 ●JFET 结型场效应晶体管 ●MESFET 金属半导体场效应晶体管 ●Digital gates 数字门 ●其他元件(见用户手册)。

OrCAD_PSpice简明教程(免费下载.xiaoy)

xiaoylly PSPICE简明教程 宾西法尼亚大学电气与系统工程系 University of Pennsylvania Department of Electrical and Systems Engineering 编译:陈拓 2009年8月4日 原文作者: Jan Van der Spiegel, ?2006 jan_at_https://www.sodocs.net/doc/9c12026902.html, Updated March 19, 2006 目录 1. 介绍 2. 带OrCAD Capture的Pspice用法 2.1 第一步:在Capture 中创建电路 2.2 第二步:指定分析和仿真类型 偏置或直流分析(BIAS or DC analysis) 直流扫描仿真(DC Sweep simulation) 2.3 第三步:显示仿真结果 2.4 其他分析类型: 2.4.1瞬态分析(Transient Analysis) 2.4.2 交流扫描分析(AC Sweep Analysis) 3. 附加的使用Pspice电路的例子 3.1变压器电路 3.2 使用理想运算放大器的滤波器交流扫描(滤波器电路) 3.3 使用实际运算放大器的滤波器交流扫描(滤波器电路) 3.4 整流电路(峰值检波器)和参量扫描的使用 3.4.1 峰值检波器仿真(Peak Detector simulation) 3.4.2 参量扫描(Parametric Sweep) 3.5 AM 调制信号 3.6 中心抽头变压器 4. 添加和创建库:模型和元件符号文件 4.1 使用和添加厂商库 4.2 从一个已经存在的Pspice模型文件创建Pspice符号 4.3 创建你自己的Pspice模型文件和符号元件 参考书目

PSPICE仿真流程

PSPICE仿真流程 (2013-03-18 23:32:19) 采用HSPICE 软件可以在直流到高于100MHz 的微波频率范围内对电路作精确的仿真、分析和优化。 在实际应用中,HSPICE能提供关键性的电路模拟和设计方案,并且应用HSPICE进行电路模拟时, 其电路规模仅取决于用户计算机的实际存储器容量。 二、新建设计工程 在对应的界面下打开新建工程: 2)在出现的页面中要注意对应的选择 3)在进行对应的选择后进入仿真电路的设计:将生成的对应的库放置在CADENCE常用的目录

中,在仿真电路的工程中放置对应的库文件。 这个地方要注意放置的.olb库应该是PSPICE文件夹下面对应的文件,在该文件的上层中library 中 的.olb中的文件是不能进行仿真的,因为这些元件只有.olb,而无网表.lib。 4)放置对应的元件: 对于项目设计中用到的有源器件,需要按照上面的操作方式放置对应的器件,对于电容, 电阻电感等分离器件,可以在libraries中选中所有的库,然后在滤波器中键入对应的元件 就可以选中对应的器件,点击后进行放置。 对分离元件的修改直接在对应的元件上面进行修改:电阻的单位分别为:k m; 电容的单位分别为:P n u ;电感的单位分别为:n 及上面的单位只写量级不写单位。 5)放置对应的激励源: 在LIBRARIES中选中所有的库,然后键入S就可以选中以S开头的库。然后在对应的 库中选中需要的激励源。 激励源有两种一种是自己进行编辑、手工绘制的这个对应在库中选择: 另外一种是不需要自己进行编辑:

该参数的修改可以直接的在需要修改的数值上面就行修改,也可以选定电源然后点击右键后进行对应的修改。 6)放置地符号: 地符号就是在对应的source里面选择0的对应的标号。 7)直流电源的放置: 电源的选择里面应该注意到选择source 然后再选定VDC或者是其它的对应的参考。 8)放置探头: 点击对应的探头放置在感兴趣的位置处。

OrCAD PSpice简明教程

PSPICE简明教程 宾西法尼亚大学电气与系统工程系 University of Pennsylvania Department of Electrical and Systems Engineering 编译:陈拓 2009年8月4日 原文作者: Jan Van der Spiegel, ?2006 jan_at_https://www.sodocs.net/doc/9c12026902.html, Updated March 19, 2006 目录 1. 介绍 2. 带OrCAD Capture的Pspice用法 2.1 第一步:在Capture 中创建电路 2.2 第二步:指定分析和仿真类型 偏置或直流分析(BIAS or DC analysis) 直流扫描仿真(DC Sweep simulation) 2.3 第三步:显示仿真结果 2.4 其他分析类型: 2.4.1瞬态分析(Transient Analysis) 2.4.2 交流扫描分析(AC Sweep Analysis) 3. 附加的使用Pspice电路的例子 3.1变压器电路 3.2 使用理想运算放大器的滤波器交流扫描(滤波器电路) 3.3 使用实际运算放大器的滤波器交流扫描(滤波器电路) 3.4 整流电路(峰值检波器)和参量扫描的使用 3.4.1 峰值检波器仿真(Peak Detector simulation) 3.4.2 参量扫描(Parametric Sweep) 3.5 AM 调制信号 3.6 中心抽头变压器 4. 添加和创建库:模型和元件符号文件 4.1 使用和添加厂商库 4.2 从一个已经存在的Pspice模型文件创建Pspice符号 4.3 创建你自己的Pspice模型文件和符号元件 参考书目

Pspice教程

Pspice教程(基础篇) Pspice教程课程内容: 在这个教程中,我们没有提到关于网络表中的Pspice的网络表文件输出,有关内容将会在后面提到!而且我想对大家提个建议:就是我们不要只看波形好不好,而是要学会分析,分析不是分析的波形,而是学会分析数据,找出自己设计中出现的问题!有时候大家可能会看到,其实电路并没有错,只是有时候我们的仿真设置出了问题,需要修改。有时候是电路的参数设计的不合理,也可能导致一些莫明的错误! 我觉得大家做一个分析后自己看看OutFile文件!点

一.直流分析 直流分析:PSpice可对大信号非线性电子电路进行直流分析。它是针对电路中 各直流偏压值因某一参数(电源、元件参数等等)改变所作的分析,直流分析也是交流分析时确定小信号线性模型参数和瞬态分析确定初始值所需的分析。模拟计算后,可以利用Probe功能绘出V o- Vi曲线,或任意输出变量相对任一元件参数的传输特性曲线。 首先我们开启Capture / Capture CIS.打开如下图所示的界面( Fig.1)。 ( Fig 1) 我们来建立一个新的一程,如下方法打开! ( Fig.2) ( Fig.2)

我们来选取一个新建的工程文件! 我们可以看到以下的提示窗口。(Fig.3) (Fig.3) 我们可以给这个工程取个名字,因为我们要做Pspice仿真,所以我们要勾选第一个选项,在标签栏中选中!其它的选项是什么意思呢? Analog or Mixed A/D 数模混合仿真 PC Board Wizard 系统级原理图设计 Programmable Logic Wizard CPLD或FPGA设计 Schematic 原理图设计 接下来我们看到了Pspice工程窗口,即我们的原理图窗口属性的选择。(Fig.4) (Fig.4)

PSpice教程12-有源滤波器的蒙特卡罗分析

题目:有源滤波器的蒙特卡罗分析 有源滤波器(带通)的中心频率为10kHz,带宽为4.7kHz, 电阻的独立容差为1%,电容的独立容差为5%。 分析100套有源滤波器的带宽和中心频率的分布情况, 性能指标为:输出的带宽4.7kH z±10%,中心频率10kHz±5%。 计算该批产品的合格率。 若将电容的独立容差改为2%,该批产品的合格率为多少? 1.绘制电路原理图如上所示,其中R1、R2、R3、R4、Rf和C1、C2均取自Breakout.slb 符号库中。 它们的标称值分别为:R1=64k、R2=31.6k、R3= R4= 15.8k、Rf= 97k和C1=C2= 1000p 2.设置电阻、电容的容差大小。(电阻的独立容差的设置如下图所示:)

(电容的独立容差的设置如下图所示:) 3. 设置分析类型: (1)AC Sweep参数设置如下:(由于要分析100套有源滤波器的带宽和中心频率,所以需要与蒙特卡洛分析联合使用的分析类型是AC Sweep) (2)蒙特卡洛分析的参数设置如下。

4.对电路进行仿真得到如下仿真结果:(下图为电路运行100次所得到的100条曲线。) 5. 绘制直方图(直方图的功能是显示电路元器件在分散变化规律下,电路某一性能的分布情况) (1)绘制带宽的直方图(当电路中电阻、电容在容差范围内随机取值的时候,观察100套滤波器的带宽分布情况) 第一步:在Probe下,点击Tools—> Options ,弹出如下对话框,设置Number of Histogram Divisions(分区数或直方图中显示的长方形个数)为45。

第二步:在Probe下,点击Trace —> Performance Analysis,弹出如下对话框: 点击ok,将Probe画面转换成目标函数性能设计,如下所示: 第三步:点击Trace —>Add,添加性能函数,弹出如下对话框,

PSpice教程4---求解放大电路的幅频特性和相频特性

题目:求解共射极放大电路电压增益的幅频响应和相频响应 电路如图所示,BJT为NPN型硅管,型号为2N3904,放大倍数为50,电路其他元件参数如图所示。求解该放大电路电压增益的幅频响应和相频响应。 步骤如下: 1、绘制原理图如上图所示。 2、修改三极管的放大倍数Bf。选中三极管→单击Edit→Model→Edit Instance Model,在Model Ediror中修改放大倍数Bf=50。 3、由于要计算电路的幅频响应和相频响应,需设置交流扫描分析,所以电路中需要有交流源。 双击交流源v1设置其属性为:ACMAG=15mv,ACPHASE=0。 4、设置分析类型: 选择Analysis→set up→AC Sweep,参数设置如下: 5、Analysis→Simulate,调用Pspice A/D对电路进行仿真计算。

6、Trace→ Add(添加输出波形),,弹出Add Trace对话框,在左边的列表框中选中v(out),单击右边列表框中的符号“/”,再选择左边列表框中的v(in),单击ok按钮。 仿真结果如下: 上面的曲线为电压增益的幅频响应。要想得到电压增益的相频响应步骤如下: 在probe下,选择Plot→ Add Plot(在屏幕上再添加一个图形)。如下图所示:

单击Trace Add (添加输出波形),弹出Add Trace 对话框,单击右边列表框中的符号“P ”,在左边的列表框中选中v(out),单击右边列表框中的符号“-”,再单击右边列表框中的符号“P ”,再选择左边列表框中的v(in),单击ok 按钮。函数P ()用来求相位。 上面的曲线为电压增益的幅频响应和相频响应。 思考: (1)下线截止频率L f 和上限截止频率H f 分别是多少?如何测得? (2)什么是电路的幅频响应和相频响应? (3)得到电路的幅频响应和相频响应,需设置哪种分析类型?电路中需要用哪种信号源?需要设置该信号源的哪些属性?

PSpice_AD基本仿真

PSpice A/D数模混合仿真 孙海峰OrCAD中的PSpice A/D可以对电路进行各种数模混合仿真,以验证电路的各个性能指标是否符合设计要求。PSpice A/D主要功能是将Capture CIS产生的电路或文本文件(*.cir)进行处理和仿真,同时附属波形观察程序Probe对仿真结果进行观察和分析。 PSpice A/D数模仿真技术主要包括以下几类仿真: 1、直流扫描分析(DC Sweep):电路的某一个参数在一定范围内变化时,电路直流输出特性的分析和计算。 2、交流扫描分析(AC Sweep):计算电路的交流小信号线性频率响应特性,包括幅频特性和相频特性,以及输入输出阻抗。 3、噪声分析(Noise):在设定频率上,计算电路指定输出端的等效输出噪声和指定输入端的等效输入噪声电平。 4、直流偏置点分析(Bias Point):当电路中电感短路,电容断路时,电路静态工作点的计算。进行交流小信号和瞬态分析之前,系统会自动计算直流偏置点,以确定瞬态分析的初始条件和交流小信号条件下的非线性器件的线性化模型参数。 5、时域/瞬态分析(Transient):在给定激励下,电路输出的瞬态时域响应的计算,其初始状态可由用户自定义,也可是直流偏置点。 6、蒙特卡洛分析(Monte-Carlo):根据实际情况确定元件参数分布规律,然后多次重复进行指定电路特性的分析,每次分析时的元件参数都采用随机抽样方式,完成多次分析后进行统计分析,就可以得到电路特性的分散变化规律。 7、最坏情况分析(Worst):电路中元件处于极限情况时,电路输入输出特性分析,是蒙特卡洛的极限情况。

8、参数扫描分析(Parametric Sweep )电路中指定元件参数暗规律变化时,电路特性的分析计算。 9、温度分析(Temperature ):在指定温度条件下,分析电路特性。 10灵敏度分析(Sensitivity ):计算电路中元件参数变化对电路性能的影响。 以上就是PSpice A/D 所能进行的电路数模混合仿真的内容,下面就介绍具体如何使用PSpice A/D 来对电路进行数模仿真。 运用PSpice 仿真的基本流程如下图: 一、绘制仿真原理图 调用软件自带的仿真模型库(Tools/Capture/Library/PSpice )中的元件,这里的元件模型都是具有电气特征的,可以直接进行PSpice A/D 仿真。原理图绘制方法和Capture 中一样,不再赘述,绘制以下RC 单通道放大器原理图如下: 绘制仿真原理图 仿真 观察分析仿真结果 调整电路 调整仿真参数 设置仿真参数

PsPice仿真技巧及收敛性问题

开关电源PsPice仿真技巧及收敛性问题_大 不了的空间_百度空间 作者:时间:2010-6-5 11:38:19 摘要:本文主要讲述了开关电源的pspice仿真中,速度与精度的权衡,收敛性问题的常规解决方法。 收敛性问题快速解决办法 目前最最快速的办法,就是用16.0以上的版本,有自动收敛功能,能解决至少95%以上的收敛性问题。但对于原理,还是要需要了解下面一些知识。 在做开关电源仿真时,经常会遇到收敛性的问题。我也在其中遇到各种各样的收敛性问题,根据我的经验和前辈的传授,下面我对这个问题进行一个说明。 如果在仿真时遇到收敛性问题,快速解决办法如下:设置.option设置里的一些选项。 _ abstol = 0.01μ (default=1p) _ vntol = 10μ (default=1μ) _ gmin = 0.1n (default=1p) _ reltol = 0.05 (default=0.001) _ itl4 = 500 (default=10) 这些设置可以解决大多收敛性问题,当然如果电路中的错误,它是解决不了的。如果模型不够精确,上面的设置需要实时调整才能得到想要的结果。 开关仿真中速度与精度的权衡 开关仿真就是仿真时有很多重复的周期性的上升下降信号的仿真,比如开关电源的仿真。在这种仿真中,需要丢弃一些仿真时间点,不然仿真将会非常慢。而尽管如此,开关电源的仿真还是非常慢。这种仿真中,pspice的时间步长会在一个很大的步长范围内波动。这个波动范围主要由一些设置限定,比如reltol,abstol,vntol等。因为它是线性迭代算法,为了在信号的上升沿和下降沿得到限定精度范围内的值,在沿处理时,它需要提高步长细度,否则难以得到限定的仿真精度。因为一般可信的仿真精度是不可能有太大的误差的。为解决这种问题,通常可以通过设置trtol=25(default 7),和tmax,将时间步长限定在开关周期的1/10到1/100之间。这样做基本可以提高一倍的仿真速度。当然精度应该在可接受范围内。

PSPICE仿真流程教材

PSPICE仿真流程教材 PSPICE仿真流程 (2013-03-18 23:32:19) 采用HSPICE 软件可以在直流到高于100MHz 的微波频率范围内对电路作精确的仿真、分析和优化。在实际应用中,HSPICE能提供关键性的电路模拟和设计方案,并且应用HSPICE进行电路模拟时,其电路规模仅取决于用户计算机的实际存储器容量。 二、新建设计工程 在对应的界面下打开新建工程:

2)在出现的页面中要注意对应的选择 3)在进行对应的选择后进入仿真电路的设计:将生成的对应的库放置在CADENCE常用的目录中,在仿真电路的工程中放置对应的库文件。 这个地方要注意放置的.olb库应该是PSPICE文件夹下面对应的文件,在该文件的上层中library中的.olb中的文件是不能进行仿真的,因为这些元件只有.olb,而无网表.lib。 4)放置对应的元件: 对于项目设计中用到的有源器件,需要按照上面的操作方式放置对应的器件,对于电容, 电阻电感等分离器件,可以在libraries中选中所有的库,然后在滤波器中键入对应的元件

就可以选中对应的器件,点击后进行放置。 对分离元件的修改直接在对应的元件上面进行修改:电阻的单位分别为:k m; 电容的单位分别为:P n u ;电感的单位分别为:n 及上面的单位只写量级不写单位。 5)放置对应的激励源: 在LIBRARIES中选中所有的库,然后键入S就可以选中以S开头的库。然后在对应的 库中选中需要的激励源。 激励源有两种一种是自己进行编辑、手工绘制的这个对应在库中选择: 另外一种是不需要自己进行编辑: 该参数的修改可以直接的在需要修改的数值上面就行修改,也可以选定电源然后点击右键后进行对应的修改。 6)放置地符号: 地符号就是在对应的source里面选择0的对应的标号。

PSpice AD基本仿真

PSpice A/D数模混合仿真 孙海峰Cadence的PSpice A/D可以对电路进行各种数模混合仿真,以验证电路的各个性能指标是否符合设计要求。PSpice A/D主要功能是将Capture CIS产生的电路或文本文件(*.cir)进行处理和仿真,同时附属波形观察程序Probe对仿真结果进行观察和分析。 PSpice A/D数模仿真技术主要包括以下几类仿真: 1、直流扫描分析(DC Sweep):电路的某一个参数在一定范围内变化时,电路直流输出特性的分析和计算。 2、交流扫描分析(AC Sweep):计算电路的交流小信号线性频率响应特性,包括幅频特性和相频特性,以及输入输出阻抗。 3、噪声分析(Noise):在设定频率上,计算电路指定输出端的等效输出噪声和指定输入端的等效输入噪声电平。 4、直流偏置点分析(Bias Point):当电路中电感短路,电容断路时,电路静态工作点的计算。进行交流小信号和瞬态分析之前,系统会自动计算直流偏置点,以确定瞬态分析的初始条件和交流小信号条件下的非线性器件的线性化模型参数。 5、时域/瞬态分析(Transient):在给定激励下,电路输出的瞬态时域响应的计算,其初始状态可由用户自定义,也可是直流偏置点。 6、蒙特卡洛分析(Monte-Carlo):根据实际情况确定元件参数分布规律,然后多次重复进行指定电路特性的分析,每次分析时的元件参数都采用随机抽样方式,完成多次分析后进行统计分析,就可以得到电路特性的分散变化规律。 7、最坏情况分析(Worst):电路中元件处于极限情况时,电路输入输出特性分析,是蒙特卡洛的极限情况。

8、参数扫描分析(Parametric Sweep )电路中指定元件参数暗规律变化时,电路特性的分析计算。 9、温度分析(Temperature ):在指定温度条件下,分析电路特性。 10灵敏度分析(Sensitivity ):计算电路中元件参数变化对电路性能的影响。 以上就是PSpice A/D 所能进行的电路数模混合仿真的内容,下面就介绍具体如何使用PSpice A/D 来对电路进行数模仿真。 运用PSpice 仿真的基本流程如下图: 一、绘制仿真原理图 调用软件自带的仿真模型库(Tools/Capture/Library/PSpice )中的元件,这里的元件模型都是具有电气特征的,可以直接进行PSpice A/D 仿真。原理图绘制方法和Capture 中一样,不再赘述,绘制以下RC 单通道放大器原理图如下: 绘制仿真原理图 仿真 观察分析仿真结果 调整电路 调整仿真参数 设置仿真参数

【教程】PSpice的4种基本仿真分析详解

【教程】PSpice的4种基本仿真分析详解 PSpice A/D将直流工作点分析、直流扫描分析、交流扫描分析和瞬态TRAN分析作为4种基本分析类型,每一种电路的模拟分析只能包括上述4种基本分析类型中的一种,但可以同时包括参数分析、蒙特卡罗分析、及温度特性分析等其他类型的分析,现对4种基本分析类型简介如下。 1. 直流扫描分析(DC Sweep) 直流扫描分析的适用范围:当电路中某一参数(可定义为自变量)在一定范围内变化时,对应自变量的每一个取值,计算出电路中的各直流偏压值(可定义为输出变量),并可以应用Probe功能观察输出变量的特性曲线。 例对图1所示电路作直流扫描分析 图1 (1)绘图 应用OrCAD/Capture软件绘制好的电路图如图2所示。 图2 (2)确定分析类型及设置分析参数 a) Simulation Setting(分析类型及参数设置对话框)的进入 ?执行菜单命令PSpice/New Simulation Profile,或点击工具按钮,屏幕上弹出New Simulation (新的仿真项目设置对话框)。如图3所示。

图3 ?在Name文本框中键入该仿真项目的名字,点击Create按钮,即可进入Simulation Settings(分析类型及参数设置对话框),如图4所示。 图4 b)仿真分析类型分析参数的设置 图2所示直流分压电路的仿真类型及参数设置如下(见图4): ?Analysis type下拉菜单选中“DC Sweep”; ?Options下拉菜单选中“Primary Sweep”; ?Sweep variable项选中“V oltage source”,并在Name栏键入“V1”;

模电PSPICE仿真实验报告

实验一 晶体三极管共射放大电路 一、 实验目的 1、 学习共射放大电路的参数选取方法。 2、 学习放大电路静态工作点的测量与调整,了解静态工作点对放大电路性能的影响。 3、 学习放大电路的电压放大倍数和最大不失真输出电压的分析方法 4、 学习放大电路数输入、输出电阻的测试方法以及频率特性的分析方法。 一、实验内容 确定并调整放大电路的静态工作点。 为了稳定静态工作点,必须满足的两个条件: 条件一:I 1>>I BQ I 1=(5~10)I B 条件二:V B >>V BE V B =3~5V 由 B BE B E EQ CQ V V V R I I -= =计算出Re 再选定I 1,由 21(5~10)B B b BQ V V R I I = = 计算出R b2 再由 11(5~10)B CC B b BQ Vc c V V V R I I --= =计算出R b1 FREQ = 3.5k VAMPL = 4m VOFF = 0 设置的参数如图所示,输出波形为:

Time 0s 50us 100us 150us 200us 250us 300us 350us 400us 450us 500us V(C2:2) V(C1:1) -400mV -200mV 0V 200mV 从输出波形可以看出没有出现失真,故静态工作点设置的合适。 改变电路参数: FREQ = 3.5k VAMPL = 40m VOFF = 0 此时得到波形为:

Time 0s 50us 100us 150us 200us 250us 300us 350us 400us 450us 500us V(C2:2) V(C1:1) -4.0V -2.0V 0V 此时出现饱和失真。 当RL 开路时(设RL=1MEG Ω)时: FREQ = 3.5k VAMPL = 40m VOFF = 0 输出波形为:

OrCAD图文教程:分裂元件

OrCAD图文教程:分裂元件 时间:2009-03-18 19:29来源:于博士信号完整性研究作者:于博士点击:333 次 首先看建立元件时的属性对话框,见下图 注意这个图中左下角选项框中的两个选项,homogeneous和heterogeneous。什么意思?本文就此进行详细说明。 首先要搞清楚物理封装元件和逻辑元件的关系。 任何一种芯片及电阻电容等元件都有其自己特殊的封装形式,比如DIP8、PQF100,BGA686等就是几种封装形式。不论芯片由多少管脚,都在一个封装上体现出来,我们在画PCB图的时候,把它作为一个元件放在版图中,这是和他的实际物理封装形式、尺寸等一一对应的,因此必须以单个元件的形式建立图形,不能分成几个部分。但是在原理图中放置的元件只是一种逻辑上的表示,原理图中重视的是有多少个管脚,各个管脚的属性如输入输出特性、电源还是地、是否是时钟等,至于是以一个元件的方式画出来,还是分成多个画,以及各个部分画成什么形状并不重要,只要各个管脚的电气特性正确就可以。最终原理图给出的只是一个网表,包括管脚属性、互连关系。你甚至不需要画原理图,手工编辑网表也可以,用原理图的形式不过为了更清楚,更容易管理罢了。所以,在画原理图的时候,每个元件怎么画,画成什么形状,随你的便,重要的是管脚编号,数量和电气特性。 知道了上面的东西,就能明白分裂元件的意义了。有些芯片管脚数非常多,像XILINX virtex4系列的FPGA有一千多个管脚,没办法在一个图中画出来。所以这时都会把它分成很多个部分分别画出来,把属于同一个功能模块的管脚分离出来,单独画在一个元件图形里。

上图中的parts per Pkg意思就是同一个封装(对应一个芯片),在原理图中用几个部分表示。如果你选择8,并把一个芯片的所有管脚分8个部分画出来,那么软件就知道这8个元件实际上是同一个芯片的不同部分。 理解了元件的分裂,再看homogeneous和heterogeneous是什么意思。有些元件内部包含了两个或更多的功能完全一致的模块,唯一的区别就是,管脚的名字编号不一样,这时如果你把它分成两个元件画出,那这两个元件几乎是一样的,这种元件就是homogeneous的。另一方面,比如画一个DSP芯片,它包含VCC GND等电源属性的一组管脚,还有通用IO口、缓冲串行口,EMIF数据端口等,如果分别画在不同的元件图中,这些分裂的元件包括功能、管脚数量、电气属性都不一样,那么此时这些分裂的元件就是heterogeneous的。 知道这些,就可以在原理图中使用分裂元件了,分开处理,画起图来那是相当的方便。

PSpice模型制作

PSpice模型创建 PSpice模型是对电路元器件的数学描述,是进行电路仿真分析的前提条件,它的精度和速度直接影响电路分析结果的精确度和仿真速度。因此,在进行PSpice仿真之前,需要有相应元器件的适当PSpice模型,如合适的直流模型、交流小信号模型、瞬态分析模型、噪声模型、温度模型等等。 在电路设计的过程中,如果直接调用软件自带模型库中的元件模型参数,不一定能够满足各种不同的实际设计需要,这时就需要修改元件模型参数。此外,对于新创建的元件,则需要用户自己设置适当的PSpice模型参数。 一、PSpice模型参数的修改 PSpice模型修改比较简单:可以直接选择元件,然后右击选择Edit PSpice model,即可打开PSpice模型编辑器,编辑所需修改的参数,存盘即可。 其中:Models List栏用以显示模型名称;Simulation Parameters栏用以修改设置模型参数;Model Text栏用以显示模型描述语言,当然这里只能读取,不可以在此进行编辑。 二、PSpice模型的创建 为了满足具体设计需要,设计者往往需要创建自己的元件库,要进行PSpice

仿真,就必须对新建元件进行模型设置,新建模型,有两种主要方式: 1、Model Editor模型编辑 (1)执行Cadence/Release 16.3/PSpice Accessories/Model Editor命令,进入模型编辑器界面,执行File/New命令,如下图: (2)点击符号,弹出新建模型的New Model对话框,如下图: 在该对话框中选择设置,Model Name填写模型名称;选择Use Device Characteristic Curves表示用硬件的典型曲线来描述模型;选择Use Templates 表示用软件自带样本进行参数的修改设置;From Model用以选择模型类型。选择Use Device Characteristic Curves,再确定模型,点击OK即可进入模型编辑器窗口,其中可以设置元件的所有相关仿真参数设定,编辑器会以曲线形式将参数设定后的模型特性实时显示出来。

OrCAD-PSpice简明教程

可以联系本人免费索要 PSPICE简明教程 宾西法尼亚大学电气与系统工程系 University of Pennsylvania Department of Electrical and Systems Engineering 编译:陈拓 2009年8月4日 原文作者: Jan Van der Spiegel, ?2006 jan_at_https://www.sodocs.net/doc/9c12026902.html, Updated March 19, 2006 目录 1.介绍 2.带OrCAD Capture的Pspice用法 2.1 第一步:在Capture 中创建电路 2.2 第二步:指定分析和仿真类型 偏置或直流分析(BIAS or DC analysis) 直流扫描仿真(DC Sweep simulation) 2.3 第三步:显示仿真结果 2.4 其他分析类型: 2.4.1瞬态分析(Transient Analysis) 2.4.2 交流扫描分析(AC Sweep Analysis) 3.附加的使用Pspice电路的例子 3.1变压器电路 3.2 使用理想运算放大器的滤波器交流扫描(滤波器电路) 3.3 使用实际运算放大器的滤波器交流扫描(滤波器电路) 3.4 整流电路(峰值检波器)和参量扫描的使用 3.4.1 峰值检波器仿真(Peak Detector simulation) 3.4.2 参量扫描(Parametric Sweep) 3.5 AM 调制信号 3.6 中心抽头变压器 4.添加和创建库:模型和元件符号文件 4.1 使用和添加厂商库 4.2 从一个已经存在的Pspice模型文件创建Pspice符号 4.3 创建你自己的Pspice模型文件和符号元件 参考书目

LTspice-一-简介(中文教程)

免费电路图仿真软件LTspice 一简介(中文教程) 欢迎转载,转载请说明出处-DPJ 关键字:PSpice 仿真,电路图,LTspice仿真,pspice模型,spice,电路仿真,功放电路图仿真,信号放大仿真 1. LTspice 电路仿真软件简介 LTspice 电路图仿真软件简介(支持PSpice和Spice库的导入) LTspiceIV 是一款高性能Spice III 仿真器、电路图捕获和波形观测器,并为简化开关稳压器的仿真提供了改进和模型。我们对Spice 所做的改进使得开关稳压器的仿真速度极快,较之标准的Spice 仿真器有了大幅度的提高,从而令用户只需区区几分钟便可完成大多数开关稳压器的波形观测。这里可下载的内容包括用于80% 的凌力尔特开关稳压器的Spice 和Macro Model,200 多种运算放大器模型以及电阻器、晶体管和MOSFET 模型。 在电路图仿真过程中,其自带的模型往往不能满足需求,而大的芯片供应商都会提供免费的SPICE模型或者PSpice模型供下载,LTspice可以把这些模型导入LTSPICE中进行仿真。甚至一些厂商已经开始提供LTspice模型,直接支持LTspice的仿真。这是其免费SPICE 电路仿真软件LTspice/SwitcherCADIII所做的一次重大更新。这也是LTspice 电路图仿真软件在欧洲,美国和澳大利亚,中国广为流传的根本原因。 LTspice IV 具有专为提升现有多内核处理器的利用率而设计的多线程求解器。另外,该软件还内置了新型SPARSE 矩阵求解器,这种求解器采用汇编语言,旨在接近现用FPU (浮点处理单元) 的理论浮点计算限值。当采用四核处理器时,LTspice IV 可将大中型电路的仿真速度提高3 倍,同等设置的精度,电路仿真时间远远小于PSpice的计算时间(本来你要等待3个小时,现在一个小时就结束了)。功能强大而且免费使用仿真工具,何乐而不为呢? 这里不是贬低pspice软件,cadence的Pspice软件具有更加丰富的配置和应用,可以进行更加繁多的电路仿真和设置,因为大多数工程师不需要非常复杂的应用,所以,免费的LTspice可以满足基本的应用。 Pspice仿真工具还有一个大佬就是multisim,这也是一个非常优秀的软件,multisim软件也是非常强大的软件的,其示波器功能,非常适合学生和老师的教学示范功能,但是multisim和pspice 都需要昂贵的license费用,ltspice 在企业应用和小企业应用也是不错的替代方案,尤其设计任务和仿真需求不是很频繁的情况下,ltspice 就凸现了独特的优势。

相关主题