搜档网
当前位置:搜档网 › 黏滞性阻尼器在超高层建筑施工塔式起重机中的减震控制研究

黏滞性阻尼器在超高层建筑施工塔式起重机中的减震控制研究

30 Industrial Construction Vol .48,No .6,2018工业建筑 2018年第48卷第6期黏滞性阻尼器在超高层建筑施工塔式

起重机中的减震控制研究*

郝可航1 闫维明1 周大兴2 郑勤飞1 潘庆华1

(1.北京工业大学,工程抗震与结构诊治北京市重点实验室,北京 100124;2.中铁建设集团有限公司,北京 100040) 摘 要:为研究超高层建筑施工塔吊的减震措施,采用黏滞阻尼器作为附加消能杆件,建立超高层建筑-施工塔吊系统有限元模型,通过数值分析优选布置方案及阻尼器性能参数。以某超高层建筑施工动臂式塔吊为研究背景,设计缩尺比为1∶15的简化试验模型,并对有控结构和无控结构模型进行振动台试验。结果表明:试验采用的阻尼器布置方案减震效果良好;超高层建筑施工塔吊的应力热区为吊臂与塔身顶部连接处、平衡臂与塔身顶部连接处及塔身顶部,设置黏滞性阻尼器明显降低了塔吊应力热区的应力值;激励强度是影响阻尼器减震效果的主要因素之一,激励强度越大减震效果越好。

关键词:超高层建筑;动臂式塔吊;黏滞阻尼器;地震振动控制

DOI:10.13204/j.gyjz201806007

RESEARCHONVIBRATIONABSORPTIONCONTROLOFVISCOUSDAMPERINTOWERCRANEFORSUPERHIGH-RISEBUILDINGCONSTRUCTION

HAO Kehang 1 YAN Weiming 1 ZHOU Daxing 2 ZHENG Qinfei 1 PAN Qinghua 1

(1.Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit ,Beijing University and Technology ,

Beijing 100124,China ;2.China Railway Construction Group Co ,Beijing 100040,China )

Abstract:In order to study the vibration damping measures for tower crane in the construction of super high -rise building ,adopting viscous damper as an additional energy dissipating rod ,a finite element model of the tower crane system for super high -rise building was established .Through the numerical analysis ,the optimal arrangement and damper performance parameters were selected .Based on a tower crane with luffing boom for a super high -rise building ,a 1∶15scaled simplified model was designed and shaking table tests were conducted on the controlled and uncontrolled structural models .The results showed that the dampers used in the experiment had a good damping effect .The stress hot zone of tower crane for super high -rise building was at the junction of boom and tower body top ,the junction between balance arm and tower body and the top of the tower ,and the viscous damper could reduce the stress of tower crane stress hot zone .The excitation intensity was one of the main factors that affected the damping effect of the damper .The damping effect increased with the increasing of excitation intensity .Keywords:super high -rise building ;tower crane with luffing boom ;viscous damper ;earthquake vibration control *国家自然科学基金资助项目(51378039,51421005)。第一作者:郝可航,女,1993年出生,硕士。电子信箱:hkhbjut @https://www.sodocs.net/doc/9c12493450.html, 收稿日期:2017-12-10 塔式起重机(简称“塔吊”)具有适用范围广、工

作效率高等优点,是各种工程建设,特别是现代化工

业和民用建筑施工的重要设备。随着经济和社会的

发展,超高层建筑的发展日新月异,在其施工过程中

“塔吊”可以附着于结构本体进行高位爬升。如果

在施工周期内发生地震且“塔吊”爬升高度较高时,

地震动力方向效应及“塔吊”与建筑之间的强耦合

作用将导致“塔吊”存在安全隐患[1],因此施工过程

中“塔吊”的抗震设计及振动控制亟需受到重视。

对于“塔吊”地震响应分析,新西兰、日本等国

家已有“塔吊”的抗震设计指南。文献[2]通过缩尺

振动台试验与数值模拟,研究了高层建筑爬升式起重机的地震响应特性,结果表明:建筑物与塔吊的耦合作用放大了施工塔吊受到的地震作用[2],补充了现有规范的不足。Akihito Otani 等以150t 桥式吊车为研究对象,对其进行非线性时程分析,并考虑竖向地震作用对吊车的影响,发现竖向地震激励很可万方数据

阻尼减振降噪技术

第十章.阻尼减振降噪技术 A、教学目的 1.隔振及其原理(C:理解) 2.阻尼降噪及其原理(C:理解) 3.阻尼降噪的量度(B:识记) 4.阻尼材料和结构的特性及选用(B:识记) B、教学重点隔振原理、阻尼降噪原理及其量度、阻尼材料和结构的特性及选用。 C、教学难点 阻尼降噪原理及其量度、阻尼材料和结构的特性及选用。 D、教学用具 多媒体——幻灯片 E、教学方法 讲授法 F、课时安排 2课时 G、教学过程 声波起源于物体的振动,物体的振动除了向周围空间辐射在空气中传播的声(称”空气声”)外,还通过其相连的固体结构传播声波,简称“固体声”,固体声在传播的过程中又会向周围空气辐射噪声,特别是当引起物体共振时,会辐射很强的噪声。 振动除了产生噪声干扰人的生活、学习和健康外,特别是1~100Hz的低频振动,直接对人有影响。长期暴露于强振动环境中,人的机体将受到损害,机械设备或建筑结构也会受到破坏。 对于振动的控制应从以下两方面采取措施:一是对振动源进行改进以减弱振动强度;二是在振动传播路径上采取隔振措施,或用阻尼材料消耗振动的能量并减弱振动向空间的辐射。从而,直接或间接地使噪声降低。 一. 振动对人体的危害 从物理学和生理学角度看,人体是一个复杂系统。如果把人看作一个机械系统。 振动的干扰对人、建筑物及设备都会带来直接的危害。振动对人体的影响可分为全身振动和局部振动:全身振动是指人直接位于振动体上时所受的振动;局部振动是指手持振动物体时引起的人体局部振动。可听声的频率范围为20~20000 Hz,而人能感觉到的振动频率范围为1~100 Hz。振动按频率范围分为低频振动(30Hz以下)、中频振动(30-100Hz)和高频振动(100 Hz以上)。 实验表明人对频率为2—12 Hz的振动感觉最敏感。对于人体最有害的振动频率是与人体某些器官固有频率相吻合(即共振)的频率。这些固有频率是:人体在6 Hz附近;内脏器官在8Hz附近;头部在25 Hz;神经中枢则在250Hz左右。低于2Hz的次声振动甚至有可能引起人的死亡。人对振动反应的敏感度按频率和振幅大小,大致分为6个等级,见图10-1。(P203) 振动的影响是多方面的,它损害或影响振动作业工人的身心健康和工作效率,干扰居民的正常生活,还影响或损害建筑物、精密仪群和设备等。根据人体对某种振动刺激的主观感觉和生理反应的各项物理量,国际标准化组织(ISO)和一些国家推荐提出了不少标准,主要包括局部振动标准(ISO5349-1981, P203)、整体振动标准(ISO2631-1978, P204)和环境振动标准(GB10070-88, P205)。 局部振动标准(ISO5349-1981):如人的手所感受的振动。

国产阻尼减振降噪材料

国产阻尼减振降噪材料(潜艇等) 前言 ?nbsp; 随着科学技术的发展和人们环保意识的提高,降低舰船等交通工具的振动和噪声越来越迫切。如何控制舰船的振动和噪声是一个复杂的系统工程,也是衡量一个国家造船水平的重要标志。 ?nbsp; 舰船上存在着多种振源,其产生的振动和噪声会造成严重的危害,如引起铆钉松动,结构破坏;影响船员的舒适性,易造成船员疲劳;影响仪器、仪表的正常工作,降低使用精度等等。对军船而言,振动和噪声还会降低声呐、雷达的作用距离,大大削弱其战斗力。 ?nbsp; 传统的减振降噪方法是结构加强,其主要缺点是振动能没有消耗掉,从而导致噪声向其它部位传播。阻尼材料利用高分子材料的粘弹性将振动能转化为热能耗散掉,从而有效地降低结构振动和噪声。阻尼技术对宽频带随机振动和噪声特别有效,尤其适合于以框架结构为主的造船业。 ?nbsp; 阻尼技术发展简史 ?nbsp; 本世纪50年代初,德国专家H.Oberst 最先提出自由阻尼结构的理论并在飞机上得到应用。50年代末,美国专家Kerwin 和 Ungar等人将Oberst的复刚度法推广至约束阻尼结构,该结构最早应用于核潜艇壳体和主机机座上。理论和应用表明:约束阻尼结构具有更好的减振降噪效果。目前,美国、俄罗斯、英国、法国、日本等发达国家在舰船上广泛使用各类阻尼材料。 ?nbsp; 我国从60年代起开始研究自由阻尼材料,70年代初具规模。80年代末期约束阻尼结构的阻尼材料在舰船上得到应用,主要产品有上海钢铁研究所的阻尼钢板、七二五所的SBⅡ阻尼涂料、化工部海洋化工研究院(青岛)的ZHY-171和T54/T60阻尼涂料等。 ?nbsp; 目前,阻尼材料已广泛应用于航空、航天、舰船、汽车、机械、纺织、建筑、体育等领域,具有重要的社会和经济效益。 ?nbsp; T54/T60阻尼涂料的主要性能 ?nbsp; 阻尼材料的作用原理是将振动能转化为热能耗散掉,使产生噪声的振动能量大大衰减,即从声(振)源上有效地控制振动和噪声。因此阻尼涂料主要用于振动和噪声的产生

阻尼减振降噪结构几何参数特性分析

阻尼减振降噪结构几何参数特性分析* 孙大刚诸文农马卫东杨光 【摘要】分析了阻尼减振降噪结构模型中几何参数的特性及其对结构损耗因子的影响。对采用非间隔式阻尼层结构和间隔阻尼层结构几何参数进行了研究,最后对大型履带式拖拉机行走系进行了阻尼减振降噪结构的实际应用和性能对比试验分析。 叙词:阻尼减振降噪几何参数分析 引言 在农业机械中常有需做减振降噪处理的杆、管等对称结构件,若对此类结构件采用不同的减振型式,其减振降噪效果会相差很大。因此有必要对它们进行研究,以获得最佳的减振降噪性能。 1 减振结构模型 对于n弹性约束层组合减振结构(简称组合结构),采用复刚度方法,用结构的损耗因子来评价其对振动能的损耗率 (1) 式中η——组合结构的损耗因子Z ——组合结构的耦连参 数(复数) (EI)*——n弹性层复弯曲刚度,E为弹性层材料的抗弯模量,I 为结构横截面对中性层的惯性矩 Y——组合结构的几何参数 Y的通式为 (2) ——组合结构的传递弯曲刚度 式中(EI) t ——组合结构未耦连时的弯曲刚度 (EI) ——组合结构完全耦连时的弯曲刚度 (EI) ∞ 由式(1)知,几何参数Y直接影响到结构的减振效果,故需研究不同的减振结构所形成的几何参数Y对结构的减振性能的影响。 2 对称结构几何参数Y的特性

图1矩形截面减振结构 首先以最常见的矩形截面结构(见图1)为例,其1、3为弹性约束层并以第1层为参考层;第2层为阻尼层。弹性层至中性层0—0的距离D 为 (3) 式中E 1′、E 3 ′——第1、3弹性约束层的弹性模量的实部 F 1、F 3 ——第1、3弹性约束层横截面的面积 再由式(2)求得 (4) 式中H 31——第3层至第1层中性层的距离B 1 ′、B 3 ′——第1、3 层复弯曲刚度的实部 K 1′、K 3 ′——第1、3层复拉伸刚度的实部 通常结构的第1、3层(弹性层)采用同种材料,经对式(4)求极值, Y/K 1 ′=0和Y/ K 3′=0,可得出结论:阻尼层采用对称布置可使结构的Y=Y max ,此时的 结构对振动能量的损耗率达最大值,若结构布置不当,其损耗因子相差很大,有时η仅为10-3~10-2ηopt数量级。 2.1 管状对称结构(非间隔式)的几何参数 管状对称结构件与矩形结构类似,所选用的阻尼层数、型式、结构几何尺寸不同均会使结构的损耗因子值出现较大的变化。图2为非间隔式阻尼层结构,其特点是结构简单,制作容易,对冲击载荷的缓冲效果好;不足的是其损耗因子达一定值后很难再提高。

结构阻尼

浅析结构阻尼 院系:土木工程学院 班级:研1404 姓名:张晓彤 学号:143085213123 日期:2014年11月24日

摘要:结构阻尼是描述振动系统在振动时能量损耗的总称。包括DTC东泰五金阻尼、阻尼铰链、阻尼滑轨粘性阻尼、干阻尼、滞后阻尼和非线性阻尼。本文主要总结和阐述了阻尼减震结构的概念与原理,结构减震控制的原理与概念,耗能减震的概念原理与分类,以及粘滞阻尼、金属耗能、粘弹性阻尼、摩擦耗能减震的原理与概念,以及各自的应用范围。 关键词:减震金属耗能摩擦耗能粘弹性阻尼粘滞阻尼 前言 地震和风灾害严重威胁着人类的生存和发展,自从人类诞生以来人们就为抗拒这两种自然灾害而奋斗。随着科学技术和人民生活水平的提高,预防与抵御地震和风灾的能力也在不断的提高,结构减震(振)控制技术作为抗御地震(强风)的一种有方法,也得到了发展和应用,并成为比较成熟的技术,结构减震(振)控制方法改变了通过提高结构刚度、强度和延性来提高结构的抗震抗风能力的传统抗震抗风方法,而是通过调整或改变结构动力特性的途径,改变结构的震(振)动反应,有效的保护结构在地震强风中的安全。在结构中加入耗能器来控制结构的地震和风振反应的耗能减震(振)方法是结构减震控制技术中一种有效、安全、可靠、经济的减震(振)方法。 1 阻尼结构的概念与原理 1.1结构减震控制的基本概念 传统的结构抗震方法是通过增强结构本身的抗震性能(强度、刚度、延性)来抵御地震作用的,即由结构本身储存和耗散地震能量,这是被动消极的抗震对策。由于地震的随机性,人们尚不能准确的估计未来地震灾害作用的强度和特性,按照传统抗震方法设计的结构不具备自我调节功能。因此,结构很可能在地震或风荷载作用下不满足安全性能的要求,而产生严重破坏或倒塌,造成重大的经济损失和人员伤亡。 合理有效的抗震途径是对结构安装抗震装置系统,由抗震装置与结构共同承受地震作用,即共同存储和耗能地震能量,以调节和减轻结构的地震反应。这是积极主动的抗震对策,也是目前抗震对策中的重大突破和发展方向。 1.2结构减震控制的分类 结构减震控制根据是否需要外部能量输入可分为被动控制、主动控制、半主动控制、智能控制和混合控制。 1.3耗能减震的概念 结构耗能减震技术是在结构物的某些部位(如支撑、剪力墙、节点、联结缝或连接件、楼层空间、相邻建筑间、主附结构间等)设置耗能(阻尼)装置(或元件),通过耗能阻尼装置产生摩擦、弯曲(或剪切、扭转)、弹塑(或粘滞、粘弹)性滯回变形来耗散或吸收地震输入结构中的能量,以减小主体结构地震反应,从而避免结构产生破坏或倒塌,达到减震控制的目的。耗能阻尼装置元件和支撑构件构成耗能部件,装有耗能

建筑用液体粘滞阻尼器设计方法简介

1.阻尼器应用的设计目标和理念 传统建筑,无论木结构,钢筋混凝土,钢结构已经有上百年的抗风,抗震历史,为什么提出在这些建筑中添加阻尼器?精简总结,有以下几点原因: ●对于一些使用要求较高的建筑结构(超高层,大跨结构等),地震,抗风形成动力难题,需 要更合理的解决办法; ●对比其他传统方案,减少结构受力体系的造价; ●科学不断发展,开辟了解决结构工程问题的新思路;可以使结构最大限度的保持在弹性范围 内工作,为结构提升安全保障。 以某抗震加固工程为例,我们对剪力墙(传统方案)和液体粘滞阻尼器两个方案从理念和计算结果作了如下对比如下表: 我国现行抗震设计规范中已经开始有了关于消能减震的有关规定。结合国内外有关阻尼器应用发展情况和我们的应用体会,我们再谈一下在建筑上使用阻尼器的目标和理念。简单的说,我们安置阻尼器可以有以下几个目的。 A 增加抗震、抗风能力 原设计可能已经可以满足所有规范规定的抗震抗风要求,加上液体粘滞阻阻尼器,在振动过程中起到耗能和增加结构阻尼的作用,从而降低结构反应的基底剪力,减少整个结构的受力,也就可以大大提高结构的抗地震能力。同时,只要阻尼器安装的合适,设置到不同的需要方向,还可以预防和减少原设计没有考虑,或考虑不足的振动受力。 对特别重要的结构,高发地震区,花钱不多,设置这一第二防线是很值得的。对于非严重地震区,也可以用阻尼器达到抗风和增加抗震能力的目的。 B.用阻尼器去防范罕遇大地震或大风 按小震不坏大振不倒的原则,我们可以用常规的设计办法使设计满足多遇地震的抗震要求。对于罕遇的大地震可能显得不足、不理想或不经济。用结构的被动保护系统-特别是阻尼器来等待和解决这罕遇大地震的问题,不仅新建结构建议采用这一设计理念,原设计未设防抗震或设防不足的结构加固工程也很适于。 这一理念会带来经济实用和可靠的结果,设计的好,可以为工程节省费用。国外抗震先进国家大都采用这一理念。在所有可能发生地震的地区,我们主要想提出推广的这一设计理念。 国外有的工程,在结构的小振设计中也充分利用施加了阻尼器的优越。他们大胆的用加阻尼器后的修正反应谱作结构的设计。

阻尼减震橡胶

阻尼减震橡胶 现实生活中振动无处不在,振动的现象是不容忽视也是不可缺少的,人们一直致力于振动的产生,控制和消除的研究,所有的物体的振动都会产生声音,如果没有振动就不会有音乐,人类也无法进行语言交流了.但是振动也会对人们的生活产生许多不利的影响,如:共振会导致装置的损坏,噪音会影响人类的生活环境等.怎样将振动对人们产生的不利影响减到最小,是当前减震技术发展和追求的方向。减震技术的核心是消除干扰性振动或找出解决的方法,现在比较适用和成熟的减震方法是橡胶减震系统,早在橡胶应用于工业之初,人们就使用了橡胶隔离来进行减震。 橡胶是一种很理想的阻尼材料,阻尼减震技术是利用橡胶特有的粘弹性,在震动过程中,在外力作用下导致剧烈的内摩擦,产生了反作用力,将动能转化为热能,实现了能量转换,从而达到降低震幅的目的。 减震橡胶的作用: 代替金属弹簧起到消振,吸振作用.其主要的性能要求在静刚度、动刚度、耐久性能上。 减震橡胶的特点: ①橡胶是由多种材料相组合而成,同一种形状通过材料调整可以拥有不同的性能. ②橡胶内部分子之间的摩擦使它拥有一定的阻尼性能,即运动的滞后性(受力过程中橡胶的变形滞后于橡胶的应力). ③橡胶在压缩、剪切、拉伸过程中都会产生不同的弹性系数 减震橡胶的性能特征: 静刚度的定义:指减震橡胶在一定的位移范围内,其所受压力(或拉伸力) 变化量与其位移变化量的比值. 动刚度的定义:指减震橡胶在一定的位移范围内, 一定的频率下, 其所受压力(或拉伸力)变化量与其位移变化量的比值. 动倍率的定义指减震橡胶在一定的位移范围内所测定的动刚度与静刚度的比值,即:Kd/Ks 损耗系数: 在减震橡胶的受力过程中,橡胶的变形与橡胶的应力之间存在着一定的相位差,而橡胶的应力一般要超前于橡胶的变形一定的相位角δ 扭转刚度: 指减震橡胶在一定的扭转角范围内,其扭转力矩与扭转角之间的比值. 耐久性能: 指减震橡胶在一定的方向一定的预加载荷、振幅、振动频率下,经往复振动n次后产品完好或将产品往复振动直至破坏时的振动次数, 耐久性能是衡量一个减震橡胶件的安全性能和综合性能的重要指标.

阻尼综述——阻尼模型、阻尼机理、阻尼分类和结构阻尼建模方法

阻尼 1 引言 静止的结构,一旦从外界获得足够的能量(主要是动能),就要产生振动。在振动过程中,若再无外界能量输入,结构的能量将不断消失,形成振动衰减现象。振动时,使结构的能量散失的因素的因素称为结构的阻尼因素。 索罗金在其论著中将结构振动时的阻尼因素概括为几种类型,即界介质的阻尼力;材料介质变形而产生的内摩擦力;各构件连接处的摩擦及通过地基散失的能量。百多年来,不同领域的专家,均根据自身研究的需要,着重研究某种阻尼因素,如外阻尼、摩擦阻尼、材料阻尼及辐射阻尼等。 对于材料阻尼的物理机制,文献[82]、[126]、[127]等分别做了简要描述。 材料阻尼是一个机制比较复杂的物理量,由多种基本的物理机制组合而成。如金属材料中的热弹性、晶体的粘弹性、松弛效应、旋转流效应、电子效应等对阻尼均有贡献。对一般的非金属材料(如玻璃、各种聚合物等),电子效应对能量的损失影响较小。温度、绝热系数等也是影响阻尼的重要因素。一般来说,非金属材料的能量损失比金属大。此外地质岩石由不同种固体微粒组成,且有空隙体积,因此,其阻尼特性与一般材料不同。岩石中能量损失主要由三个物理机制构成:岩石内部微粒间的粘性=岩石的内摩擦及较大的塑性变形,而岩石的内摩擦与岩石内部微粒间接触处的位错及塑性变形有关。 如献[82]所述, 为了计算、分析结构在外界载荷作用下产生的反应,人们建立了描述固体材料应力应变关系的物理模型。最简单的物理模型是单参数模型,即材料只产生弹性应力或只产生粘滞应力,但这两种模型不能代表材料中真实存在的粘弹性。人们又建立了双参数线性模型,即Maxwell及Kelvin模型。其中Maxwell模型由线性粘滞体和线弹性体串联而成,Kelvin模型是此二者并联而成的。若设线粘滞体的应变为

海上钻机减震阻尼装置

海上钻机减震阻尼装置 发表时间:2019-12-16T13:35:51.437Z 来源:《工程管理前沿》2019年第21期作者:王立晗 [导读] 海上钻机减震阻尼装置,装置主要由底座、铰链、弹簧、拉簧组成,在钻机后侧使用铰链将底座与钻机相连 一.概述 海上钻机减震阻尼装置,装置主要由底座、铰链、弹簧、拉簧组成,在钻机后侧使用铰链将底座与钻机相连,在钻机前侧使用弹簧、拉簧组合的方式将底座与钻机相连,本装置结构简单、可靠性高、缓冲减震效果好,可有效减小海上钻探施工过程中因涌浪、潮汐等不利条件对钻机产生的上顶下压作用的影响。 二. 海上钻机减震阻尼装置发明背景 随着我国社会、政治和经济的发展,海洋勘察在新一轮沿海大开发中的作用也更加突出,一大批跨海大桥工程,海上风电工程、港口与近海工程已经被提上日程,海上勘察项目也随之增多。 传统的海上钻探作业是将钻机的底座采用刚性连接的方式固定在船舶施工平台上,因海上风大浪急、潮汐涨落、海流复杂多变,施工船起伏晃动剧烈,施工条件极为恶劣。钻机在钻进过程中受施工船起伏晃动的影响,钻杆连同钻机上下往复运动,使得钻机更加频繁的发生上顶下压作用,引起钻压变化,影响钻机钻进的效率,同时也极大的损耗钻杆、钻具、钻机内部零部件,降低钻杆、钻具、钻机的使用寿命,产生操作上的安全隐患,甚至导致无法钻进而被迫停工,造成较大的经济损失。海上天气又复杂多变的,每一天的施工时间都非常宝贵,为充分利用有限的时间,保证钻机在施工期间可靠持续运行,在这样的背景下克服现有技术缺点,经过反复摸索与实践,设计了海上钻机减震阻尼装置,该装置使得钻机与底座之间为弹性连接,钻机在钻进过程中出现上顶下压时,由于弹性软连接对钻机起到了缓冲减震,减小海上涌浪起伏等不利条件对钻探施工的影响。 三. 海上钻机减震阻尼装置工作原理 海上钻机减震阻尼装置示意图如图1所示,装置主要包括底座、铰链、弹簧、拉簧等几个部分,底座使用铰链、弹簧、拉簧组合的方式与原有钻探钻机进行连接。其中底座使用16#国标槽钢进行焊接制造,使用时将底座直接固定在海上平台上。钻机尾端使用铰链将底座与钻机相连接,在钻机前端不固定的情况下,钻机与底座可绕铰链旋转,实际效果如图2所示。 在钻机前端左右两侧各布置一个弹簧与拉簧,共计4个弹簧和拉簧,弹簧规格为2吨,拉簧规格为800公斤。弹簧与拉簧用以提供竖直方向上的约束,如图3所示,当钻机在施工过程出现上顶下压现象时,钻机上顶产生的冲击可经由拉簧缓冲再传到钻杆上,减小对钻杆钻具的影响,降低钻杆钻具的磨损。而钻机下压时产生的冲击可经由弹簧的缓冲再传到的钻机本身,避免了钻机直接冲击平台而发生的零部件损耗。在弹簧与底座、钻机的连接部位设置定位销,避免因装置上下升降剧烈,导致弹簧脱钩的情况出现。概括的说,当钻机在钻进过程中发生上顶下压现象时,装置中的弹簧与拉簧的协同组合发挥作用,对钻机钻进过程中的冲击做反向缓冲减震,达到上拉下弹的效果,减小对钻杆、钻具、钻机零部件的损耗。 在实际使用过程中,可根据实际施工海况条件以及弹簧、拉簧的拉弹应力消散情况对弹簧、拉簧拉弹力进行动态调节,保证钻机与底

粘弹性阻尼减振的基本概念

第一章粘弹性阻尼减振的基本概念 1.1振动控制和阻尼的概念 1.1.1振动与噪声的危害 振动是一种普遍的物理现象,我们这里讨论涉及到的震动问题主要是机械结构的振动及由此产生的物理现象。 大多数情况下,机械振动会造成严重危害,必须采用各种有效的方法加以控制,振动与噪声的危害主要包括: 1)振动造成机械结构的损坏,破坏工作条件。如建筑物在地震中受到随机 激励后,其强度承受不了共振响应造成损坏。 2)振动降低机器、仪器或工具的精度。如运载工具(火箭等)的命中精度 和控制装置如仪器、计算的抗振能力直接有关。 3)振动引起噪声,严重污染环境。如一些大型的振动设备工作过程中会产 生严重的噪声污染。 4)振动增加机械磨损,降低及其寿命。如在常高在低不平的路面上行驶, 汽车的寿命会严重减少。 1.1.2振动与噪声控制的主要方法 振动控制的工程含义有两层:振动利用和振动抑制。前者指利用系统的振动以实现某种工程目的;后者则指抑制系统的振动以保证系统正常工作,延长其使用寿命,本文主要讨论的是后面一个问题。 振动控制的方法很多,就机械产品设计和结构改进的角度上作分析和研究,振动和噪声控制主要是从消除振源或噪声源;隔离振源(及声源)与受影响机构间的传递和联系;以及减少结构本身响应这三个方面采取措施。 1)消除振动源或噪声源。 2)隔离振源(或声源)与受影响机构(或环境)之间的联系及能量传输。 3)结构的抗振及抗噪设计。 1.2阻尼减振降噪技术的定义以及工程应用实例 1.2.1阻尼技术的定义 从减振降噪的角度上来看,阻尼是指损耗振动能量的能力、也就是将机械振动及声振的能量,转变成热能或其它可以损耗的能量,从而达到减振及降噪的目的。 阻尼减振、降噪技术就是充分运用阻尼耗能的一般规律,从材料、测量、

(完整word版)建筑消能减震-阻尼器

一、消能减震结构的发展与应用: 利用阻尼器来消能减震并不是什么新技术,在航天航空、军工枪炮等行业中早已得到应用。从20世纪70年代后,人们开始逐步地把这些技术专用到建筑、桥梁、铁路等工程中。 在美国,20世纪80年代开始,美国东西两个地震研究中心等单位做了大量试验研究,发表了几十篇有关论文。90年代美国科学基金会和土木工程协会组织了两次大型联合,给出了权威性的试验报告,供工程师参考。 在我国,1997年,沈阳市政府大楼的抗震加固中首次采用了摩擦耗能装置,其后北京饭店、北京火车站和北京展览馆等多座建筑中应用消能减震技术。 在日本,目前已有超过100多栋的建筑物采用消能减震技术。 现代高层建筑日益增多,结构受地震和风振影响十分明显,减小结构所受的地震和风振反应,成为结构设计的一个重要方面。消能减震阻尼器,通过增加结构阻尼,耗散结构的振动能量来达到减小结构所受振动。 (1)“阻尼”是指任何振动系统在振动中,由于外界作用或系统本身固有的原因引起的振动幅度逐渐下降的特性,以此一特性的 量化表征。 (2)《高层建筑混凝土结构技术规程》JGJ3-2010中: 2.1.1 高层建筑:10层及10层以上或房屋高度大于28m的住宅 建筑和房屋高度大于24米的其他高层民用建筑。

(3)《民用建筑设计通则》GB50352-2005中: 3.1.2建筑高度大于1OOm的民用建筑为超高层建筑。 二、阻尼器耗能减震原理: 耗能减震的原理可以从能量的角度来描述。 传统结构:Ei =Er+Ed+Es 耗能结构:Ei =Er+Ed+Es+Ea Ei为地震时输入结构的总能量; Er为结构在地震过程中存储的动能和弹性应变能; Ed为结构本身阻尼消耗的能量; Es为结构产生弹塑性变形吸收的能量; Ea为耗能装置消耗的能量; (其中Er为能量转换,并不是能量的消耗。) (1)传统结构中: 构件在利用其自身弹塑性变形消耗地震能量的同时,构件本身将遭到损伤甚至破坏。 (2)在消能减震结构中: 耗能(阻尼)装置在主体结构进入耗能状态前率先进入耗能工作状态,耗散大量输入结构体系的地震、风振能量,则结构本身需消耗的能量很少,主体结构反应将大大减小,从而有效地保护了主体结构,使其不再受到损伤或破坏。 三、阻尼器的种类: 阻尼器种类繁多,我国将其分为位移相关型和速度相关型。

赛弗粘滞阻尼器技术手册

赛弗 粘滞阻尼器 技术手册赛弗

CONTENT目录 P2 - P4 P5 - P6 P7 P8 - P9 P10 - P17上海赛弗工程减震技术有限公司 1. SF-VFD产品简介 …………… 产品构造及原理 技术参数 产品特点 SF-VFD 2. SF-VFD产品应用策略……… SF-VFD产品应用领域 国外案例 3. SF-VFD产品试验…………… 4. 工程案例 ……………………… 5. SF-VFD黏滞阻尼器参数表…

SF-VFD 支撑式黏滞阻尼器构造如右图所示,主要由高硬度缸筒、高精度活塞、活塞杆、特殊填充材料、关节耳环及大量高性能配件组成,当缸内的活塞进行往复运动时,填充材料从阻尼孔中高速流过从而产生剪切阻抗力。 SF-VFD 黏滞阻尼器阻尼力的大小与活塞运动速度非线性相关,可用下式表达: 1 SF-VFD 产品简介 1.1产品构造及原理 F=Csign(v)|v| α 1.2 技术参数 式中: C — 阻尼系数; v — 活塞与缸筒的相对运动速度; α — 速度指数,根据工程需求选取,选取范围为0.2~1.0。 (α为SF-VFD 的主要性能指标参数) 1)良好的耗能能力 试验表明,在简谐荷载作用下,黏滞阻尼器力-位移曲线如图1.2所示,阻尼器具有良好的耗能能力,且速度指数α越小,滞回曲线越饱满。 1.3 产品特点 图1.1 黏滞阻尼器构造 (a)斜撑型 (b)剪切连接型 (c)支撑型 图1.2 黏滞阻尼器滞回曲线图1.3 拟加速度反应谱图 1.4 拟速度反应谱 2)控制结构在地震中的振动响应 黏滞阻尼器应用于建筑中可改善结构阻尼特性,对结构在地震作用下的振动响应进行控制,有效降低结构层剪力及层间位移。 3)布置灵活安装方式多样性 根据结构特点及建筑需求可灵活布置黏滞阻尼器,同时提供多种阻尼器安装方式,如斜撑型、剪切连接型、墙 型、肘节型等,其中前三种安装方式较为常用。 4)小震作用下即可进入耗能 黏滞阻尼器滞回曲线由于不存在弹性段,因此在外部振动能量输入时能够即时的进入耗能状态。 黏滞阻尼器滞回曲线 SF-VFD

液压阻尼减震器的工作原理

液压阻尼减震器的工作原理 Tag:减震器,隔震器,减震,隔震,钢 液压式减震器是目前摩托车使用最为普遍的减震器,现简要介绍其工作原理。 1、液压阻尼式后减震器 液压式减震器的结构同吸入式泵基本相似,不同之处只是液压减震器的钢体上端是封闭的,而阀门上留有小孔。当后轮遇到凸起的路面受到冲击时,缸筒向上移动,活塞在内缸筒里相对往下移动。此时,活塞阀门被冲开向上,内缸筒腔内活塞下侧的油不受任何阻力地流向活塞上侧。同时,这一部分油也通过底部阀门上的小孔流入内、外缸筒之间的油腔内。这样就有效地衰减了凹凸路面对车辆的冲击负荷。而当车轮越过凸起地面往下落时,缸筒也会跟着往下运动,活塞就会相对于缸筒向上移动。当活塞向上移动时,油冲开底部的阀门流向内缸筒,同时内缸筒活塞上侧的油经活塞阀门上的小孔流向下侧。此时当油液流过小孔过程中,会受到很大的阻力,这样就产生了较好的阻尼作用,起到了减震的目的。 2、伸缩管式前*液力减震器 伸缩式前*同前轮和车架是连在一起的,它既起到一部分骨架支撑作用,又起到减震器的作用。随着柄管和套管之间的相互伸缩,前*内的油经设置在隔壁的小孔流动。当柄管压缩时,随着柄管的移动,B室里的油受压后经柄管上的小孔流向C室。同时经自由阀流向A室。油液流动时,受到的阻力衰减了压缩力。当压缩行程快到极限时,柄管末端的锥形油封片就会插上,从而封闭了B室内油的通路。此时,B室油压激剧上升,使其处于被封闭的状态,这样就限制了柄管的行程,有效地防止前*上的可动零件之间的瞬间机械碰撞。 在柄管伸张(即反弹)时,A室内的油经设在前*活塞上部(*近活塞环附近)的小孔流向C室。此时,油液流动所受到的阻力衰减了伸张力。当伸张行程快到极限时,反弹弹簧的伸长吸收了振动能量,而且在这一过程中,油经前*活塞下部的小孔补充到B室,为下一次的工作做好了准备。 三、减震力调节器及防点头装置 1、减震力调节器 根据道路状况和摩托车上负荷的大小,需要对摩托车乘坐的缓冲程度进行调节。减震力调节器主要有凸轮式、螺旋式及气压式和油压式,最常见的是凸轮式。 凸轮式调节器在减震器本体上焊接制动器处装一个波纹阶梯的圆筒凸轮,转动凸轮进行调节。这种结构最简单,且价格低,因而被广泛采用。不过,也有通过拨动手柄来改变凸轮位置进行调节的。 2、防点头装置 防点头(即防俯冲)装置的作用是根据制动力的大小自动减轻制动时俯冲的影响,以及获得舒适的制动感。该机构装在前*下部。前轮受到冲击及轻微制动时,前*管内的油沿着中细箭头的方向流动。紧急制动时,利用制动钳的动作制动钳的销(即活塞)介入,从而堵住减震器油的通路,油从活塞上的油路通过孔阀回到内油管,孔阀的通道比减震器受冲击动作时的油路小,油的流动受到限制,防俯冲装置使减震器受到压缩时的阻尼增大,俯冲得到有效控制。这时,由于制动力的作用,前面的负荷增加,由于制动钳的作用,俯冲力就和阀的挤压力相平衡,即使在动作中受到路面的冲击,由于正常的油路还通着,也可起到一定的缓冲作用。

悬架用减振器设计指南

悬架用减振器设计指南 一、功用、结构: 1、功用 减振器是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力.另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命.目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为双筒式,单筒充气式和双筒充气式三种. 导向机构的作用是传递力和力矩,同时兼起导向作用.在汽车的行驶过程当中,能够控制车轮的运动轨迹。 汽车悬架系统中弹性元件的作用是使车辆在行驶时由于不平路面产生的 振动得到缓冲,减少车身的加速度从而减少有关零件的动负荷和动应力。如果只有弹性元件,则汽车在受到一次冲击后振动会持续下去。但汽车是在连续不平的路面上行驶的,由于连续不平产生的连续冲击必然使汽车振动加剧,甚至发生共振,反而使车身的动负荷增加。所以悬架中的阻尼必须与弹性元件特性相匹配。 2、产品结构定义 ①减振器总成一般由:防尘罩、油封、导向座、阀系、储油缸筒、工作缸筒、活塞杆构成。 ②奇瑞现有的减振器总成形式:

二、设计目的及要求: 1、相关术语 *减振器 利用液体在流经阻尼孔时孔壁与油液间的摩擦和液体分子间的摩擦形成对振动的阻尼力,将振动能量转化为热能,进而达到衰减汽车振动,改善汽车行驶平顺性,提高汽车的操纵性和稳定性的一种装置。 *阻尼特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与位移(S)的关系为阻尼特性。在多种速度下所构成的曲线(F-S)称示功图。 *速度特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与速度(V)的关系为速度特性。在多种速度下所构成的曲线(F-V)称速度特性图。 *温度特性 减振器在规定速度下,并在多种温度的条件下,所测得的阻力(F)随温度(t)的变化关系为温度特性。其所构成的曲线(F-t)称温度特性图。 *耐久特性 减振器在规定的工况下,在规定的运转次数后,其特性的变化称为耐久特性。 *气体反弹力 对于充气减振器,活塞杆从最大极限长度位置下压到减振器行程中心时,气体作用于活塞杆上的力为气体反弹力。 *摩擦力

粘滞阻尼器

工程结构用液体粘滞阻尼器的结构构造和速度指数 摘要:用于增加阻尼、耗能减振的液体粘滞阻尼器已经得到越来越广泛的认同和工程应用。然而,世界上先进的液体粘滞阻尼器内部的结构到底是怎样的?我们可能看到的图片和文字中介绍的外置或内设油库、外置或内设阀门、活塞小孔、单出杆或双出杆都是什么零件?有什么作用?特别是我们结构设计要给出的阻尼器速度指数是怎样实现的?我们想尽我们所知作一个介绍和分析。各种阻尼器产品的速度指数是阻尼器的一个重要标志。希望速度指数能在一定范围内由设计者自由选择,也是设计者优化设计的需要和期望。不幸的是,世界上实际仅有极少数阻尼器生产厂可以满足这一要求,生产出速度指数不同的阻尼器。介绍世界各种液体粘滞阻尼器的构成。其先进厂家和阻尼器的发展过程和设计理念,希望为阻尼器的生产者和使用者提供参考。 关键词:速度指数油库阻尼器阀门活塞小孔双出杆 Abstract: The Fluid Viscous Damper (FVD) get more and more acceptable and application of the structural engineers in the world. However, few structural engineers concern its construction. What is damper's external or internal accumulator, external or internal damper valve? What is damper orifice? What is run through piston rod? What kind of function these parts have? Especially, how to realize the different value of velocity exponents in the dampers? The above questions will be discussed here. It is a important symbol of damper quality the damper velocity exponents. Free choose of the exponents in certain range is need by design optimization. Unfortunately only few damper manufactories are able to make damper with different exponents Introduction of the construction of damper and design ideal is to be reference for both damper's maker and users. Key worlds : Velocity Exponents Accumulator Damper Valve Orifices Run Through Piston Rod ?前言 我们所谈的是速度型液体粘滞阻尼器。这种阻尼器基本公式为: F=CV α (1 ) 这里,F -阻尼力;C -阻尼系数;α -速度指数。速度指数为 1 时,为线性阻尼器。不等于 1 时通称非线性阻尼器。我们工程中常用的范围为α 在0.3 ~1.0 之间。一般的说, 速度指数越小阻尼器的耗能越大(见图 1 ),但对结构未必是最优状态(见后)。 图 1 不同速度指数的位移-阻尼力模型

粘滞阻尼器的工作原理

黏滞阻尼器分为建筑消能器和桥梁黏滞流体阻尼器两种。 两种阻尼器的结构和工作原理是一样的。 结构组成:主要由缸体、端盖、活塞、阻尼介质和连接体及左右两侧的连接耳板所组成。 工作原理:活塞将缸体一分为二,活塞在缸体内往复运动过程中,阻尼介质在两个分隔腔体 内迅速流动,介质的分子间,介质与活塞产生剧烈的摩擦,介质在通过活塞孔时产生巨大的 节流阻尼,这些作用的合力成为阻尼力。流动中产生的阻尼力,将地震动能,通过活塞在阻 尼介质中的往复运动转化为热量耗散掉,使活塞运动速度逐渐降低,达到阻尼耗能的目的。 特点:黏滞阻尼器是一种无刚度的速度型阻尼器,工作时不会改变结构的固有动力特性,只 对结构提供附加阻尼,阻尼力—位移滞回曲线饱满近似矩形,使其具有稳定的动力特性和很 强的耗能能力。黏滞阻尼器可以用于建筑结构的基础隔震层,也可用于上部结构,因此在建 筑减震结构中应用极为广泛。 以上是对粘滞阻尼器的介绍,如有生产设计安装方面的需要可以咨询专业的厂家河北宝力工 程装备股份有限公司进行详细的了解。 河北宝力工程装备股份有限公司创建于1993年,注册资金人民币25700万元,总占地面积 40万平方米。公司技术力量雄厚,生产、检测设备齐全,具备建筑、桥梁减隔震产品生产能 力的主要机械设备572台(套),检验设备(仪器)37台(套)。公司在职员工2600余人,中高级专业工程技术人员300余人,拥有专利技术132项,年生产能力达到40亿人民币。 公司主导产品涵盖粘滞阻尼器、建筑隔震橡胶支座、金属屈服型阻尼器、摩擦阻尼器、屈曲 约束支撑、调谐质量阻尼器、速度锁定器及速度锁定器支座、公铁路桥梁支座、桥梁伸缩装置、桥梁结构件和水利、隧道防水材料、通讯光缆护套、土工格栅、机车轨道减震器材以及 工业胶辊、橡胶护舷等,涉及九大类3000余个品种规格。 公司已于1998年获得ISO9001质量体系认证,2009年获得了ISO14001环境管理体系认证及GB/T28001职业健康安全管理体系认证,在多年运行当中坚持了持续改进和运行有效。 二十多年中,河北宝力工程装备股份有限公司参加了《桥梁用粘滞流体阻尼器》、《建筑摩 擦摆隔震支座》、《公路桥梁盆式支座》等行业标准和《高分子防水材料第二部分止水带》、《橡胶支座第4部分:普通橡胶支座》等国家标准的编制起草工作。 目前,公司的减隔震产品已被应用到全国各地的建筑、桥梁中,为中国的建筑、桥梁更加安 全保驾护航。

粘滞性阻尼器安装施工工法

粘滞阻尼器安装施工工法 完成单位名称:XX 公司主要完成人:XX XX 1 前言 自然灾害严重威胁着建筑结构的安全,尤为严重的当属地震带来的危害,如何减轻自然灾害对建筑结构的破坏备受关注。在这种大条件下,阻尼器应运而生。阻尼器是一种通过提供运动的阻力,耗减运动能量来达到吸能减震目的的抗震减震设备。自阻尼器用于建筑工程之后,地震灾害在一定程度上得到了控制,同时,随着科学技术的不断发展,阻尼器发展非常迅速,并在不断的改进、完善中,粘滞阻尼器就是其中最具代表性的一种,它在经历大量实验以及地震的考验之后,显示出无法比拟的优越性,从而被广泛应用于建筑结构工程。昆明新机场距小江断裂带只有12 千米,该断裂带为世界上活动级别最高的断裂带之一。为了提高新机场工程的抗震能力,新机场航站楼前中心区8 万m2 采用了减隔震技术。整个前中心区共六层结构全部由1810个叠层橡胶隔震垫托起,上部混凝土结构与基础底板完全断开,同时,为限制建筑物在地震作用下产生过大水平位移,设置了108 个粘滞性阻尼器,这是目前国内乃至世界上最大规模的隔震建筑,其中所采用的粘滞性阻尼器由上海材料研究所研发,其使用年限为30年,具有的最大阻尼力为160T,误差控制由国家规定的± 20%提高为± 15%。 2 工法特点 粘滞性阻尼器安装施工,目前在我国运用时间较短,尚属新工艺、新技术范畴。而我局更是未曾应用过该项技术,没有成熟的施工经验可以借鉴,兼之阻尼器安装施工过程须仔细、精确,耗时耗工,同时,阻尼器的安装对于本工程来说,还存在以下几个难点: (1)阻尼器耳板预埋件定位施工; (2)阻尼器耳板定位测量施工; (3)阻尼器安装施工偏差控制; (4)阻尼器的运输机吊装施工。 为能很好的解决上述难题,做到阻尼器安装施工既快又经济,我们对阻尼器的安装施工进 行研讨,最终明确了阻尼器安装施工工艺。经过不断实施及改进施工工艺,

阻尼复合结构阻尼性能的研究与优化

[研究与设计] 阻尼复合结构阻尼性能的研究与优化① 杨 雪 王源升 朱金华 余红伟 (海军工程大学 武汉 430033) [关键词]复合结构;阻尼性能;优化;遗传算法 [摘 要]制备了多层粘弹阻尼复合结构,研究了结构布置形式变化及各层厚度变化对多层粘弹阻尼复合结构阻尼性能的影响,并利用遗传算法对阻尼复合结构阻尼性能进行优化设计。 [中图分类号]O327;O345 [文献标识码]A [文章编号]100129855(2005)0320017203 Research and opti m ization of com pounded dam p i ng structure’s dam p i ng performance Yang Xue W ang Yuan sheng Zhu J inhua Yu Hongw ei Keywords:com pounded structu re;dam p ing p erfo rm ance;op ti m is m;inheritance algo rithm Abstract:W ith the m odel of a m u lti2layer viscoelastic com pounded dam p ing structu re,the p ap er studied the structu re arrangem en t tran sfo rm ing and influence of each layer th ickness change on dam p ing p erfo r2 m ance of m u lti2layer com pounded viscoelastic dam p ing structu re.T he inheritance algo rithm is app lied to m ake op ti m izati on design on com pounded dam p ing structu re’s dam p ing p erfo rm ance. 1 前 言 现代水声探测技术的发展,促使世界各国对舰艇的减振降噪进行了大量的研究工作,采用了各种技术手段,其中粘弹阻尼减振降噪技术是最有效的手段之一[1,2]。粘弹阻尼减振降噪技术是利用聚合物在受交变应力(如振动)作用时,变形滞后于应力的变化,这种滞后将振动体的动能转化为热能而消耗掉,进而达到减振降噪的目的。对这项技术来说,阻尼材料是核心。又由于大多数粘弹性材料的弹性模量很低,它们不能直接成为工程中的结构材料,因此必须将它们粘附于需要作减振降噪处理的构件上,组成阻尼复合结构,才能发挥减振降噪的作用。对于选定的粘弹性阻尼材料来讲,材料本身的损耗因子是确定的,为了寻求最佳的阻尼效果,敷设厚度和敷设方式就尤其重要了。所以阻尼复合结构阻尼性能的研究和优化设计对于粘弹阻尼减振降噪技术来说是非常重要的。阻尼复合结构的实质就是:将现有的性能较单一的各种阻尼材料进行简单的物理组合,使其变成能满足各种不同性能要求的阻尼结构形式,因此它是一种既经济又实用且能获得各种阻尼性能要求的有效措施。实践证明[3],使用这种方法,能从有限种类的阻尼材料中,派生出各种不同阻尼性能的阻尼复合结构。现有的复合结构的基本类型有自由阻尼和约束阻尼两种。约束阻尼结构由于剪切损耗而具有更大的结构损耗,因而在噪声与振动控制工程中得到了越来越广泛的应用[4~7],但其缺点是材料比重较大、剪裁困难、工艺复杂且成本高而受到限制[8]。本文将制备一类新型阻尼复合结构——多层粘弹阻尼复合结构(它既不同于一般的自由阻尼结构,也不同于传统的约束阻尼结构),并详 ①[收稿日期]2004-3-5 [作者简介]杨 雪(1975-),女,汉族,湖北人,博士研究生,研究方向:阻尼材料及其复合结构的研究。 王源升(1960-),男,汉族,山东人,教授,研究方向:阻尼材料及其复合结构的研究。 朱金华(1961-),男,汉族,山东人,教授,研究方向:阻尼材料及其复合结构的研究。 余红伟(1967-),男,汉族,河南人,教授,研究方向:阻尼材料及其复合结构的研究。

阻尼减振材料滞弹性位移场模型参数寻优及计算

阻尼减振材料滞弹性位移场模型参数寻优及计算* 曹友强1邓兆祥1,2李军1 (1.重庆大学机械传动国家重点实验室,重庆400030 2.汽车NVH及安全控制国家重点实验室,重庆400039) 摘要:针对阻尼材料滞弹性位移场模型多参数、多目标、非线性优化问题,给出了一种粒子群算法与序列二次规划法相结合的多参数变量寻优解法,并将模型优化结果与标准流变学模型、分数导数模型及试验结果进行了比较。基于ADF 数学模型建立了粘弹性集中参数系统及阻尼夹芯板结构的动力学方程,并进行了结构模态响应分析及阻尼预测。计算结果表明:该组合寻优解法不仅能得到较好的最优解,而且确定出的模型参数准确可信,优化后的ADF模型能很好的再现阻尼材料的本构特征。 关键词:阻尼材料;ADF模型;混合算法;多参数优化;动力特性 中图分类号:TH113.1文献标识码:A 在工程实践中,含阻尼材料的复合结构常被广泛用于抑制结构的振动和噪声[1]。粘弹性阻尼材料的本构模型决定了这类结构的动力学方程形式,由此可见阻尼材料本构模型的选用和计算尤为重要。由于粘弹性材料的本构关系随时间、频率和温度的变化而变化,使得粘弹性材料本构模型变得复杂多样,其参数优化计算也变得比较繁琐。目前大多数文献[2-5]都是直接采用经验参数代入本构模型进行计算,缺少对模型参数的优化选取。 由Lesieutre[6-7]于1995年提出的滞弹性位移场(Anelastic Displacements Fields,ADF)模型从位移场的角度出发,将总的位移场分为弹性部分和滞弹性部分。ADF模型的辅助坐标在单元之间是连续的,体现了其位移场的特点,它能直接进行有限元解算,能很容易融入有限元动力学方程,因此受到众多学者的青睐[6-8]。但是,ADF模型各参数的确定是一个非线性、多变量、多目标规划,具有约束条件的优化问题,解决这一问题难度较大。针对此类问题的全局最优解没有任何数学条件可以表征,基于传统数学规划的优化方法因其优化结果易陷入局部极值而难以处理[9],现代优化算法如遗传算法容易出现早熟状态,导致收敛时间长,优化失败[10]。 基于此,本文详细给出了基于粒子群算法(PSO)与序列二次规划法(SQP)相结合的求解方法。首先利用PSO算法的全局优化功能开展全局搜索,确定全局最优解的可行位置,再用SQP算法的局部精细搜索能力确定其局部最优解。文中建立ADF模型的优化模型,获取了ADF模型的各参数优化结果,并与标准流变模型、分数导数模型两种典型形式的松弛函数曲线进行拟合比较,由此验证了优化算法的可行性;通过 *基金资助项目:国家高技术研究发展计划(863计划)项目(2006AA110102)第一作者:曹友强男,博士研究生,1982年7月生。对悬臂阻尼夹芯板结构的动力特性分析进一步验证了本文优化结果的准确性。这可为阻尼类材料本构模型的参数优化问题提供参考。 1阻尼材料结构ADF数学模型 ADF材料模型[6-8]是基于热不可逆原理的连续场模型,用于描述粘弹性材料作一维剪切运动时的频率特性和温度特性。ADF模型将粘弹性材料在频域内的复模量模型表示为: ?? ? ? ?? ? ? + + + =∑ = ? n i i i i A j G G 1 2 2 2 1 ) ( ? ω ? ω ω ? ω(1) ) (*ω G是粘弹性材料的复剪切模量, A G对应于 松弛弹性模量, i ?, i ?,代表第i阶ADF模型的材料参数。n是的非弹性位移场的个数的总数目。如果有n 阶摄动量,则需要确定2n+1个参数。 粘弹性材料ADF模型中弹性部分和滞弹性部分的 关系可以通过引入一系列耗散辅助变量 ) ,..., 1 (n i x a i =表示: ∑ ? = n i a i e x x x(2)式子中,x是总的位移场,e x是弹性位移场,a i x是第i个滞弹性位移场。 考虑到粘弹性材料频变和温变特性,并假定粘弹性 材料的泊松比为定值,则由虚功原理可获得含有粘弹 性材料复合结构的动力学模型[8]为 } {F x G K x K x M v e = + +) (*ω ??(3)

相关主题