搜档网
当前位置:搜档网 › 二重积分的几种计算方法[1]

二重积分的几种计算方法[1]

二重积分的几种计算方法[1]
二重积分的几种计算方法[1]

浅谈几种综合国力测算方法

.
研究生课程(论文类)试卷
2 0 1 6 /2 0 1 7 学年第一学期
课程名称:
国民经济统计学
课程代码:
论文题目: 浅谈几种综合国力测算方法
学生姓名:
专业﹑学号:
统计学
学院:
理学院
课程(论文)成绩: 课程(论文)评分依据(必填):
任课教师签字: 日期: 年 月 日
.

.
浅谈几种综合国力测算方法
摘要:综合国力,是国家实力和权力的综合体现。国家实力是指一国自己做事的 能力,是一个绝对概念。有学者把实力定义为“逾越障碍和影响结果的能力”[1] 。 权力则指一国促使别国做事的能力,是一个相对概念。有学者将权力定义为“促 使其他行为体做其原本不会去做的事情”[2] 。在国际竞争中,国家实力与权力这 两个概念的最根本区别在于:实力不以国家关系为前提,或无须以他国为参照系, 而权力则是以国家关系为前提。
一、中西方对综合国力观点的差异
对于综合国力的定义,中西方学者的观点存在若干差异,西方学者侧重于强 调国家权力的比较,其代表思想是以强权治为中心。20 世纪 80 年代美国中央情 报局前副局长克莱因说:“国家在国际舞台的实力是该国政府影响他国政府主动 或者被动去做某件事的能力,不论是通过说服、威胁甚至是通过武力。”而在今 天变化多端的国际环境下,西方学者认为,国家实力并不只是国家之间相互影响 的能力。而是利用经济、军事、外交或其他软实力相结合的方法来影响他国的能 力。
但中国学者则更偏向于国家实力的比较,认为综合国力更多的是强调国家的 和平与发展,即再保护本国国家利益的基础上,与他国互惠互利、和平共处。学 者黄硕风在其 2001 年出版的《综合国力新论》中说道:“综合国力是国家生存 与发展所拥有的全部实力,包括物质力、精神力及国际影响力”,学者王诵芬在 其 1996 年出版的《世界主要国家综合国力研究》中写道:“综合国力是国家拥 有的各种力量的有机总和,是国家赖以生存和发展的基础,也是强国确立国际地 位、发挥国际影响作用的基础。”
.

二重积分的计算方法(1)

1 利用直角坐标系计算 1.1 积分区域为X 型或Y 型区域时二重积分的计算 对于一些简单区域上的二重积分,可以直接化成二次积分来解决.在直角坐标系下,被积分函数 (,)f x y 在积分区域D 上连续时,若 D 为x 型区域(如图1),即{}12(,)()(),D x y x x x a x b ??=≤≤≤≤,其中12(),()x x ??在[,]a b 上连续,则有 21() () (,)(,)b x a x D f x y d dx f x y dy ??σ=??? ? ; (1) 若D 为y 型区域(如图2),即{}12(,)()(),D x y y y y c y d ψψ=≤≤≤≤,其中12(),()y y ψψ在[,]c d 上连续,则有 21() () (,)(,)d y c y D f x y d dy f x y dx ψψσ=?? ?? .[1] (2) 例1 计算2 2 D y dxdy x ?? ,其中D 是由2x =,y x =,及1xy =所围成. 分析 积分区域如图3所示,为x 型区域()1D=,12,x y x y x x ?? ≤≤≤≤????.确定了积分区域然后可以 利用公式(1)进行求解. 解 积分区域为x 型区域 ()1D=,12,x y x y x x ?? ≤≤≤≤???? 则 22 2 1221x x D y y dxdy dx dy x x =???? 32 121 3x x y dx x ??= ???? y y=x xy=1 D2 D1 x O 2 1 1 2 图3 图1

2 51 133x dx x ?? =- ???? 22 1 412761264 x x ??=+= ??? 1.2 积分区域非X 型或Y 型区域二重积分的计算 当被积函数的原函数比较容易求出,但积分区域并不是简单的x 型或y 型区域,不能直接使用公式(1)或者(2)进行计算,这是可以将复杂的积 分区域划分为若干x 型或y 型区域,然后利用公式 1 2 3 (,)(,)(,)(,)D D D D f x y d f x y d f x y d f x y d σσσσ=++???????? (3) 进行计算, 例2 计算二重积分D d σ??,其中D 为直线2,2y x x y ==及3x y +=所围成的区域. 分析:积分区域D 如图5所示,区域D 既不是x 型区域也不是 y 型区域,但是将可D 划分为 ()(){} 12,01,22,13,23x D x y x y x D x y x y y x ??=≤≤≤≤?? ??=≤≤≤≤-均为x 型区 域,进而通过公式 (3)和(1)可进行计算. 解 D 划分为 ()1,01,22x D x y x y x ??=≤≤≤≤???? , (){}2,13,23D x y x y y x =≤≤≤≤- 则 12 D D D d d d σσσ=+??????12230122x x x x dx dy dx dy -=+???? 120112322x x dx x dx ???? =-+-- ? ??????? 12 22013333442x x x ??? ?=+-=??????? ? 1.3 被积函数较为复杂时二重积分的计算 二重积分化为二次定积分后的计算可以按定积分的求解进行,但是当被积函数较为复杂,虽然能定出积分限,但被积函数的原函数不易求出或根本求不出,这时可根据被积函数划分积分区域,然后 y 图 4

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计 算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法

几种常用数值积分方法的比较汇总

学科分类号110.3420 州 GUIZHOU NORMAL COLLEGE 本科毕业论文 题目—几种常用数值积分方法的比较_____________ 姓名潘晓祥学号1006020540200 院(系)数学与计算机科学学院 __________________ 专业数学与应用数学年级_____________2010级 指导教师雍进军职称______________________讲师 二O—四年五月

贵州师范学院本科毕业论文(设计)诚信声明本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业论文作者签名: 年月曰

贵州师范学院本科毕业论文(设计)任务书

研究方法: 本论文主要通过对相关文献和书籍的参考,合自己的见解,复化求积公式,Newton —Cotes求积公式,Romberg求积公式,高斯型求积公式进行讨论并进行上机实验,从代数精度,求积公式误差等角度对这些方法进行分析比较完成期限和采取的主要措施: 本论文计划用6个月的时间完成,阶段的任务如下: (1) 7月份查阅相关书籍和文献; (2) 8月份完成开题报告并交老师批阅; (3) 9月份完成论文初稿并交老师批阅; (4) 10月份完成论文二搞并交老师批阅; (5) 11月份完成论文三搞; (6) 12月份定稿. 主要措施:考相关书籍和文献,合自己的见解,老师的指导下和同学的帮助下完成 主要参考文献及资料名称: [1] 关治?陆金甫?数学分析基础(第二版) [M].北京:等教育出版社.2010.7 [2] 胡祖炽.林源渠.数值分析[M]北京:等教育出版社.1986.3 [3] 薛毅.数学分析与实验[M] 北京:业大学出版社2005.3 [4] 徐士良.数值分析与算法[M].北京:械工业出版社2007.1 [5] 王开荣.杨大地.应用数值分析[M]北京:等教育出版社2010.7 [6] 杨一都.数值计算方法[M].北京:等教育出版社.2008.4 [7] 韩明.王家宝.李林.数学实验(MATLAB版[M].上海:济大学出版社2012.1 [8] 圣宝建.关于数值积分若干问题的研究[J].南京信息工程大学.2009.05.01. : 42 [9] 刘绪军.几种求积公式计算精确度的比较[J].南京职业技术学院.2009. [10] 史万明.吴裕树.孙新.数值分析[M].北京理工大学出版社.2010.4. 指导教师意见: 签名: 年月日

二重积分的计算方法

重庆三峡学院数学分析课程论文 二重积分的计算方法 院系数学与统计学院 专业数学与应用数学(师范) 姓名 年级 2010级 学号 指导教师刘学飞 2014年5月

二重积分的计算方法 (重庆三峡学院数学与统计学院10级数本1班) 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 引言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何、物理、力学等方面有着重 要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被 积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求 二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作(),D J f x y d σ= ??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??. 1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????.

二重积分的计算方法

第二节 二重积分的计算法 教学目的:熟练掌握二重积分的计算方法 教学重点:利用直角坐标和极坐标计算二重积分 教学难点:化二重积分为二次积分的定限问题 教学内容: 利用二重积分的定义来计算二重积分显然是不实际的,二重积分的计算是通过两个定积分的计算(即二次积分)来实现的. 一、利用直角坐标计算二重积分 我们用几何观点来讨论二重积分的计算问题. 讨论中,我们假定 ; 假定积分区域可用不等式 表示, 其中, 在上连续. 据二重积分的几何意义可知,的值等于以为底,以曲面为顶的曲顶柱体的体积. 在区间上任意取定一个点,作平行于面的平面,这平面截曲顶柱体所得截面是一个以区间为底,曲线为曲边的曲边梯形,其面积为

一般地,过区间上任一点且平行于面的平面截曲顶柱体所得截面的面积为 利用计算平行截面面积为已知的立体之体积的方法,该曲顶柱体的体积为 从而有 (1) 上述积分叫做先对Y,后对X的二次积分,即先把看作常数,只看作的函数,对 计算从到的定积分,然后把所得的结果( 它是的函数 )再对从到计算定积分. 这个先对, 后对的二次积分也常记作 在上述讨论中,假定了,利用二重积分的几何意义,导出了二重积分的计算公式(1).但实际上,公式(1)并不受此条件限制,对一般的(在上连续),公式(1)总是成立的. 例如:计算 解: 类似地,如果积分区域可以用下述不等式 表示,且函数,在上连续,在上连续,则 (2)

显然,(2)式是先对,后对的二次积分. 二重积分化二次积分时应注意的问题 1、积分区域的形状 前面所画的两类积分区域的形状具有一个共同点: 对于I型(或II型)区域, 用平行于轴(轴 )的直线穿过区域内部,直线与区域的边界相交不多于两点. 如果积分区域不满足这一条件时,可对区域进行剖分,化归为I型(或II型)区域的并集. 2、积分限的确定 二重积分化二次积分, 确定两个定积分的限是关键.这里,我们介绍配置二 次积分限的方法 -- 几何法.画出积分区域的图形(假设的图形如下 ) 在上任取一点,过作平行于轴的直线,该直线穿过区域,与区域的边界有两个交 点与,这里的、就是将,看作常数而对积分时的下限和上限; 又因是在区间上任意取的,所以再将看作变量而对积分时,积分的下限为、上限为 . 例1计算,其中是由轴,轴和抛物线在第一象限内所围成的区域.

浅谈复积分的计算方法

山东财经大学学士学位论文原创性声明 本人郑重声明:所呈交的学位论文,是本人在导师的指导下进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,均已在论文中作了明确的说明并表示了谢意。本声明的法律结果由本人承担。 学位论文作者签名: 年月日 山东财经大学关于论文使用授权的说明 本人完全了解山东财经大学有关保留、使用学士学位论文的规定,即:学校有权保留、送交论文的复印件,允许论文被查阅,学校可以公布论文的全部或部分内容,可以采用影印或其他复制手段保存论文。 指导教师签名:论文作者签名: 年月日年月日 浅谈复积分的计算方法

摘要 复积分即是指复变函数积分.在复变函数的分析理论中,复积分是研究解析函数的重要工具.解析函数中的许多重要性质都要利用复变函数积分来证明.柯西积分定理在复积分的计算中理论上处于关键地位, 因此,对复积分及其计算的研究显得尤为重要.复变函数中的积分不仅是研究解析函数的重要工具,也是它的后继课程积分变换的基础,所以就复变函数的积分计算方法进行总结和探讨是十分必要的.柯西积分公式、柯西高阶导数公式和留数定理对复积分的计算起到很大的作用.留数定理不仅可以用来计算复积分,而且可以用来计算实积分,它把实积分和复积分的相关知识有机的结合起来. 本文讨论了留数定理与复变函数积分之间的内在联系,并举例说明了留数定理、柯西积分定理、柯西积分公式和柯西高阶导数公式之间的密切关系.本文将利用复变函数积分基本原理,利用几种复积分的基本求法,针对每一种计算方法给出例子,并通过柯西积分定理、柯西积分公式、柯西高阶导数公式、留数定理等来计算复积分,从中揭示诸多方法的内在联系,对复积分的计算方法作出较系统的归纳总结,从中概括出求复变函数积分的解题方法和技巧.复变函数中积分分闭曲线和非闭曲线两类.本文就这两种积分的计算方法进行总结和探讨. 关键词:复积分;柯西积分定理;柯西积分公式;留数定理 Discussion on the computational methods of complex integration

归纳二重积分的计算方法

归纳二重积分的计算方法 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 前言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义]1[ 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε ,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和 都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作 (),D J f x y d σ=??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??.

1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????. 1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且 ()12 ,D D f x y d σ?? ()()1 2 ,,D D f x y d f x y d σσ=±???? 1.3在矩形区域上二重积分的计算定理 设(),f x y 在矩形区域D [][],,a b c d =?上可积,且对每个[],x a b ∈,积分(),d c f x y dy ?存 在,则累次积分(),b d a c dx f x y dy ??也存在,且 (),D f x y d σ?? (),b d a c dx f x y dy =??. 同理若对每个[],y c d ∈,积分(),b a f x y dx ?存在,在上述条件上可得 (),D f x y d σ?? (),d b c a dy f x y dx =?? 2.求的二重积分的几类理论依据 二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法. 2.1在直角坐标系下,对一般区域二重积分的计算 X -型区域: ()()(){}12 ,,D x y y x y y x a x b =≤≤≤≤ Y -型区域: ()()(){}1 2 ,,D x y x y x x y c y d = ≤≤≤≤ 定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则 (),D f x y d σ??()()() 21,b y x a y x dx f x y dy =?? 即二重积分可化为先对y ,后对x 的累次积分. 同理在上述条件下,若区域为Y -型,有

几种特殊积分的计算方法

几种特殊积分的计算方法 1前言 积分发展的动力来自于实际应用中的需求.实际操作中,有时候可以粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值.要求简单几何形体或者体积,可以套用已知的公式.比如一个长方体状的游泳池的容积可以用长乘宽乘高求出.但如果游泳池是卵形、抛物型或者更加不规则的形状,就需要用积分来求出容积.物理学中,常常需要知道一个物理量(比如位移)对另一个(比如力)的累积效果,这时候也需要积分.在古希腊数学的早期,数学分析的结果是隐含给出的.比如,芝诺的两分法悖论就隐含了无限几何和.再后来,古希腊数学家如欧多克索斯和阿基米德使数学分析变得更加明确,但还不是很正式.他们在使用穷竭法去计算区域和固体的面积和体积时,使用了极限和收敛的概念. 在古印度数学(英语:Indian mathematics)的早期,12世纪的数学家婆什迦罗第二给出了导数的例子,还使用过现在所知的罗尔定理.数学分析的创立始于17 世纪以牛顿(Newton, I.)和莱布尼茨(Leibniz, G.W.)为代表的开创性工作,而完成于19世纪以柯西(Cauchy, A.-L.)和魏尔斯特拉斯(Weierstrass, K.(T.W.))为代表的奠基性工作.从牛顿开始就将微积分学及其有关内容称为分析.其后,微积分学领域不断扩大,但许多数学家还是沿用这一名称.时至今日,许多内容虽已从微积分学中分离出去,成了独立的学科,而人们仍以分析统称之.数学分析亦简称分析(参见“分析学”).数学分析的研究对象是函数,它从局部和整体这两个方面研究函数的基本性态,从而形成微分学和积分学的基本内容.微分学研究变化率等函数的局部特征,导数和微分是它的主要概念,求导数的过程就是微分法.围绕着导数与微分的性质、计算和直接应用,形成微分学的主要内容.积分学则从总体上研究微小变化(尤其是非均匀变化)积累的总效果,其基本概念是原函数(反导数)和定积分,求积分的过程就是积分法.积分的性质、计算、推广与直接应用构成积分学的全部内容.牛顿和莱布尼茨对数学的杰出贡献就在于,他们在1670年左右,总结了求导数与求积分的一系列基本法则,发现了求导数与求积分是两种互逆的运算,并通过后来以他们的名字命名的著名公式反映了这种互逆关系,从而使本来各自独立发展的微分学和积分

二重积分的计算法教案

教 案 参赛教师: 职称: 助教 所在院系: 数学与统计学院 所授课程: 高等数学 20XX年5月 第十章重积分 第二节二重积分的计算法 (第1课时) 教学目的:理解二重积分计算公式导出的方法,理解公式中符号的意义;熟练掌握X-型区域与Y-型区域上的积分公式,并能根据条件选择恰当的积分次序计算二重积分.重点:X-型区域上二重积分的积分公式;根据条件选择恰当的积分次序计算二重积分. 难点:选择合适的方法计算二重积分. 教学方法:直观教学,启发式讲授. 教学过程: 一、利用直角坐标系计算二重积分 1.积分区域D的分类

(1)积分区域D 为X-型区域 图1 图2 图1,图2表示的区域都是X-型区域. X-型区域的特点:穿过D 的内部平行于y 轴的直线与D 的边界的交点个数不超过两个. 用不等式组表示为 ).()(21x y x b x a D ??≤≤≤≤,: (2)积分区域D 为Y-型区域 图3 图3,图4表示的都是Y-型区域. Y-型区域的特点:穿过D 的内部平行于y 轴的直线与D 边界交点的个数不多于两个. 当积分区域为Y-型区域时,即 12:,()() D c y d y x y ψψ≤≤≤≤ 2.二重积分计算公式 (1)积分区域D 为X-型区域时 (,)D f x y d σ ??的计算公式. 当0),(≥y x f 时,由二重积分的几何意义 (,)D f x y d σ ??的值等于以D 为底,以(,)z f x y =为顶的 曲顶柱体(图5)的体积V . 即 ??=D d y x f V σ ),(. 过x 轴上 x 点作平行于yOz 的平面 x π, 0a x b ≤≤ . 图5 x π截V 得一以1020[(),()]x x ??长为底,0(,)z f x y =为曲边的曲边梯形, 其面积为 2010() 00() ()(,)x x A x f x y dy ??=? . y x O ) (2y d c

二重积分计算中的积分限的确定

二重积分计算中积分限的确定 摘要:二重积分计算中积分限的确定对于初学者是一个重点更是一个难点.本文旨在介绍一种二重积分计算中确定积分限的简单易行的方法. 关键词:二重积分累次积分积分限积分次序 引言:高等数学学习过程中,二重积分计算是个难点。原因在于将二重积分化为累次积分时,对于积分限的确定学生难以掌握。本人结合自己的教学过程和自己的学习体会总结出一个口诀,发现在教学过程中效果不错可以很好的帮助学生解决这一难题。 1.高等数学中计算二重积分的方法 在高等数学课本中,在直角坐标系下计算二重积分的步骤为:]1[。 (1)画出积分区域 (2)确定积分区域是否为X-型或Y-型区域,如既不是X-型也不是Y-型区域,则要将 积分区域化成几个X-型和Y-型区域,并用不等式组表示每个X-型和Y-型区域. (3)用公式化二重积分为累次积分. (4)计算累次积分的值. 在教学的过程中我发现学生对于此种方法掌握的很不好,尤其是在第二步中,确定积分区域从而确定累次积分的积分限是一个薄弱环节.下面就本人在教学中的体会谈谈在这方面的一点心得. 2.教学过程中总结的方法 本人的心得可用下面的口诀概括:后积先定限,限内画条线,先交下限取,后交上限见.下面简单解释一下该口诀,然后以具体的例题加以说明.在将二重积分转化为累次积分的时候对于两个积分变量必然会有个先后顺序,这就要求对后积分的那个变量我们要根据积分区域确定其上下限(所谓确定是指根据积分区域图将其上下限定为常数).确定了这个变量的上下限以后,我们在其上下限内画一条和上下限平行的直线,该直线沿着坐标轴的正方向画过来,这样该直线如果和积分区域总是有两个交点,先交的即为另一个积分变量的积分下限,后交的即为其积分上限. 3.例题解析 例1 计算?? D xydxdy,其中D是由直线x y y x= = =,1 ,2所围成的区域. 解:作出积分区域D的图形 x 页脚内容1

常用算法--几种数字积分法

几种常用的数字积分方法(微分方程的数字解) 2-5数字积分法 1 欧拉法(折线法) 设一阶微分方程)y ,t (f y dx dy == 00y )t (y = 由图可知,过(t 0, y 0)点的斜率为 )y ,t (f y 000= 如果1t 离0t 很近,即t ? 很小,曲线y(t)可用切线来近似,其切线方程 )t t )(y ,t (f y y 0000-+= 其微分方程在t=t 1 时,可近似表示为 )t t )(y ,t (f y y )t (y 0100011-+== 重复上述近似过程,当2t t =时, )t t )(y ,t (f y y )t (y 1211122-+== 则有一般近似公式 ))(,()(111n n n n n n n t t y t f y y t y -+==+++ 如果令n n 1n h t t =-+,称为计算步矩,则 n n n n 1n 1n h )y ,t (f y y )t (y ?+==++ (1) 这就是欧拉法数字积分的递推计算公式。 由公式可看出,只要我们给出方程的初值(t 0, y 0)以及相应的步距,逐步进行递推就可获得微分方程的近似数字解。 欧拉法的计算是十分简单的,其计算误差正比于2h ,由此,要获得高精度解,必须减小步距,但这使得计算次数增加,又由于计算机的字长有限,h 减小得过小,将引 图2-5-1 图2-5-2

入舍入误差,所以此方法的精度提高有限,实际应用中较少采用。 2 梯形法(预报――校正法) 欧拉法精度低,却给我们一些启发,对微分方程 ),(y t f y = 可改写成 ττ+=?d )y ,(f y )t (y t 0t 0 当 1t t = 时,则 ?+=1 t t 01dt ))t (y ,t (f y )t (y 从此式可以看出,要求得 )t (y 1 的值,等式右边中含有未知函数,所以不能得到)t (y 1的值,但如果我们用已知的函数值)t (y 0来代替)t (y ,用不变取代变化的函数,即 ??≈1 1 t t 00t t dt ))t (y ,t (f dt ))t (y ,t (f 实际上右边是一个矩形面积 )t t ())t (y ,t (f dt ))t (y ,t (f 0100t t 10 -?=? 则)y ,t (f h y y 00001?+= 递推公式为)y ,t (f h y y n n n n 1n ?+=+ 用此矩形的面积的算法,其计算误差是显然的(欧拉法),为了提高精度,我们可以用梯形面积来取代矩形的面积,即 01021t t h )f f (dt ))t (y ,t (f 1 ?+= ? 则0 10101h )f f (y y ?++= 递推形式为)f f (h 2 1y y 1n n n n 1n +++?+= 或)]y ,t (f )y ,t (f [h 2 1y y 1n 1n n n n n 1n ++++?+= 应用上式求积分,产生了新的问题,即在计算1n y +时,要用1n y +,而1n y +不知,则)y ,t (f 1n 1n ++是未知的,要获得1n y +,通常可用迭代方法,即在n t 与1n t +之间迭代多次,使其计算的1n y +逐步收敛于)t (y 1,即

求积分的几种常规方法

合肥学院论文 求积分的若干方法 姓名:陈涛 学号:1506011005 学院:合肥学院 专业:机械设计制造及其自动化 老师:左功武 完成时间:2015年12月29日 求积分的几种常规方法 陈涛 摘要:数学分析中,不定积分是求导问题的逆运算,而且是联系微分学和积分学的一条纽带。为灵活运用积分方法求不定积分,本文介绍了求积分的几种重要方法和常用技巧,讨论和分析了求积分的几种方法:直接积分法,换元积分法,分部积分法以及有理函数积分的待定系数法,对于快速求不定积分有重要意义,适当的运用积分方法求不定积分,才可以简捷,准确。 关键词:定积分、不定积分、换元积分法、分部积分法、待定系数法 引言 数学分析是师范大学数学专业必修专业课,微分和积分都是数学分析的重点,而不定积分是积分学的基础,更是关键,直接关系到学习数学的重点。其任务是掌握逻辑思维方法和提高使用数学手段解决问题的能力。一般地,求不定积分要比求导数难很多,运用积分法则

和积分公式只能解决一些简单的积分,更多的不定积分要因函数的不同形式和不同类型选用不同的方法,巧妙运用恰当的方法,可以化难为易,从而简单、快捷、准确的求出不定积分。本文为解决求积分的困难问题给出了相应的解决方法,帮助理解不定积分。 1 积分的概念 设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分(indefinite integral)。 记作∫f(x)dx。其中∫叫做积分号(integral sign),f(x)叫做被积函数(integrand),x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。 1.1 不定积分 积分还可以分为两部分。第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x),C是任意的常数,所以f(x)积分的结果有无数个,是不确定的,我们一律用F(x)+C代替,这就称为不定积分。 用公式表示是:f'(x)=g(x)->∫g(x)dx=f(x)+c 不定积分是为解决求导和微分的逆运算而提出的。例如:已知定义在区间I上的函数f(x),求一条曲线y=F(x),x∈I,使得它在每一点的切线斜率为F′(x)= f(x)。函数f(x)的不定积分是f(x)的全体原函数(见原函数),记作。如果F(x)是f(x)的一个原函数,则,其中C为任意常数。 1.2 定积分 相对于不定积分,还有定积分。所谓定积分,其形式为∫[a:b]f(x)dx 。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。 微积分的最初发展中,定积分即黎曼积分。用自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线和x轴把其分割成无数个矩形,然后把某个区间[a,b]上的矩形的面积累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a、b。而实变函数中,可以利用测度论将黎曼积分推广到更加一般的情况,如勒贝格积分. 用公式表示是:∫[a,b]f(x)dx=lim(n->∞)∑(0-n)a+f(ti)*(b-a)/n 定积分是以平面图形的面积问题引出的。y=f(x)为定义在[a,b]上的函数,为求由x=a,x=b ,y=0和y=f(x)所围图形的面积S,采用古希腊人的穷竭法,先在小范围内以直代曲,求出S的近似值,再取极限得到所求面积S,为此,先将[a,b]分成n等分:a=x0

二重积分计算方法

1利用直角坐标系计算1.1 积分区域为X型或Y型区域时二重积分的计算 对于一些简单区域上的二重积分,可以直接化成二次积分来解决.在直角坐标系下,被积分函数(,) f x y在积分区域D上连续时,若D为x型区域(如图1),即 {} 12 (,)()(), D x y x x x a x b ?? =≤≤≤≤,其中 12 (),() x x ??在[,] a b上连续,则有 2 1 () () (,)(,) b x a x D f x y d dx f x y dy ? ? σ= ????;(1) 若D为y型区域(如图2),即{} 12 (,)()(), D x y y y y c y d ψψ =≤≤≤≤,其中 12 (),() y y ψψ在[,] c d上连续,则有 2 1 () () (,)(,) d y c y D f x y d dy f x y dx ψ ψ σ= ????.[1](2)例1 计算 2 2 D y dxdy x ??,其中D是由2 x=,y x =,及1 xy=所围成. 分析积分区域如图3所示,为x型区域()1 D=,12, x y x y x x ?? ≤≤≤≤ ?? ?? .确定了积分区

域然后可以利用公式(1)进行求解. 解 积分区域为x 型区域 ()1D=,12,x y x y x x ??≤≤≤≤???? 则 1.2 积分区域非X 型或Y 型区域二重积分的计 算 当被积函数的原函数比较容易求出, 是简单的x 型或y 型区域,不能直接使用公式(1行计 算,这是可以将复杂的积分区域划分为若干x 型或 y 型区域,然 后利用公式 1 2 3 (,)(,)(,)(,)D D D D f x y d f x y d f x y d f x y d σσσσ=++???????? (3) 进行计算, 例2 计算二重积分D d σ??,其中D 为直线2,2y x x y ==及3x y +=所围成的区域. 分析:积分区域D 如图5所示,区域D 既不是x 型区域也不是y 型区域,但是将可D 划 分为()(){}12,01,22,13,23x D x y x y x D x y x y y x ??=≤≤≤≤?? ??=≤≤≤≤-均为x 型 区域, 进而通过公式(3)和(1)可进行计算. 解 D 划分为

反常积分的几种计算方法

反常积分的几种计算方法 This manuscript was revised on November 28, 2020

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 0 前言 (1) 1反常积分的定义 (1) 无穷积分的定义 (1) 瑕积分的定义 (2) 2 反常积分的计算方法 (3) 利用Newton—Leibniz公式计算反常积分 (3) 利用变量替换法计算反常积分 (3) 利用分部积分法计算反常积分 (5) 利用分段积分自我消去法计算反常积分 (7) 利用方程法计算反常积分 (7) 利用级数法计算反常积分 (9) 利用待定系数法计算反常积分 (10) 结束语 (11) 参考文献 (11) 反常积分的几种计算方法 摘要:该文主要对反常积分的计算方法进行归纳、总结.重点描述了在进行计算时各种方法的灵活使用. 关键词:反常积分;变量替换;分部积分;级数法;待定系数法

Several calculation methods of abnormal integral Abstract : This paper mainly sums up the calculation methods of abnormal integral. This paper emphasizes on describing the flexible use of various methods in the calculation. Keywords : Abnormal integral; Variable substitution; subsection integral; Series method; the method of undetermined coefficient 0前言 反常积分是微积分学中一类重要的积分,反常积分的计算是学习积分计算中的重难点。本文不仅介绍了常见的三大基本方法:Newton —Leibniz 公式、利用变量替换、利用分部积分法,还介绍了分段积分自我消去法、方程法、级数法和待定系数法等一些在解决问题时较适用的方法,通过引用一些经典例题使我们对这些方法有更加深刻的认识。但是在解决具体问题时要求我们注意各种方法的灵活性与相互渗透,这样可以简便计算。 1反常积分的定义 无穷积分的定义 定义1设函数f 定义在无穷区间[)+∞,a 上,且在任何有限区间[]u a ,上可积,如果存在极限 ? =+∞→u a u J dx x f )(lim , )1( 则称此极限J 为函数f 在[)+∞,a 上的无穷限反常积分(简称无穷积分),记作 ?+∞ =a dx x f J )(, )1(' 并称?+∞a dx x f )(收敛.如果极限)1(不存在,为方便起见,亦称?+∞ a dx x f )(发散. 类似地,可定义f 在(]b ,∞-上的无穷积分: ? ? -∞→∞ -=b u u b dx x f dx x f )(lim )(. )2(

浅谈几种积分计算方法

浅谈几种积分计算方法 作者:刘清贵 单位:湖南常德西洞庭一中 职称:中教一级 关键词:不定积分,定积分,被积函数,换元法,分部积分法 摘 要:对几种类型积分的计算方法进行介绍 在高等数学的学习中,积分的计算无疑是一个非常重要的内容。在进行积分计算时,我们常用的方法有:直接积分法,换元积分法,分部积分法等等。而对于一些特殊的积分,我们往往需要一些比较特殊的方法来进行计算。在本文中,我将谈谈几种特殊积分的计算方法: ㈠ 型的积分 这种类型的积分,如果直接使用一些常规方法,是很难计算出来的,即使能够计算出来,过程也十分繁琐。实际上,在该类积分计算中,灵活使用 的换元,计算将大大简化。 例1: 计算 解:原式= 考虑到 故原式= ?++±dx bx x x 1124 2

例2:计算: 解:略提示: ㈡型的积分 对于该类型的积分,如果分母可以因式分解成: (A1Sinx+B1Cosx)(A2Sinx+B2Cosx),则计算较简单。如果分母不能加上他因式分解时,可以通过待定系数法进行被积函的分解后再进行相应计算。 例3 计算: 解:∵2Sin2x﹣4Sinx·Cosx+5Cos2x =1+(Sinx﹣2Cosx)2 =6﹣(2Sinx+Cosx)2 故设:Sinx+Cosx=A(Cosx+2Sinx)+B(2Cosx﹣Sinx) 解之有:A= B= 故原式= 事实上,对于的计算也可以采用 如上的类似方法进行计算: 例4:计算: 解:令:Sinx+Cosx=S(2Sinx+3Cosx)+B(2Cosx-3Sinx)

解元有:A= B=- 故原式 ㈢巧化对称式,简化计算: 对于及型的积分与其与之类似的积分,除可以使用配方法结合换元法进行计算外还可以先化为对称式,再直接用公式进行直接计算: 例5:计算:(b>0) 解:令A=-B=- 则:(x-a)(b-x)=[(x+A)+B][B-(x+A)] 原式= ㈣定积分的回归解法: 有些定积分直接利用牛顿——莱布尼兹公式计算是不能计算的,其中一部分定积分可以恰当的换元或分部积分之后,再利用回归解法求解:例6:证明:若函数f(x)于闭区间[0,1]上连续 则:∫ 证明:令t=π﹣x,则f(Sinx)=f(Sin(π﹣t))=f(Sint) 当x=0时,t=π,当x=π时,t=0 代入原式,得:

相关主题