搜档网
当前位置:搜档网 › 开关电源设计

开关电源设计

开关电源设计
开关电源设计

课程设计任务书

学生姓名:专业班级:

指导教师:工作单位:

题目: 开关电源设计

初始条件:

输入交流电源:单相220V,频率50Hz。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)

1、输出两路直流电压:12V,5V。

2、直流最大输出电流1A。

3、完成总电路设计和参数设计。

时间安排:

课程设计时间为两周,将其分为三个阶段。

第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。

第二阶段:根据设计的技术指标要求选择方案,设计计算。

第三阶段:完成设计和文档整理,约占总时间的40%。

指导教师签名:年月日

系主任(或责任教师)签名:年月日

目录

引言 (1)

1设计意义及要求 (2)

1.1设计意义 (2)

1.2开关电源的组成部分 (2)

1.3开关电源的工作过程 (2)

1.4开关电源的工作方式 (3)

1.5脉宽调制器的基本原理 (3)

2方案设计 (5)

2.1设计要求 (5)

2.2方案选择 (5)

2.3整流滤波部分 (6)

2.4降压斩波电路 (7)

2.5脉宽调制电路 (8)

2.6MOSFET管的驱动电路 (9)

2.7总电路图 (11)

3主电路参数设定 (12)

3.1变压器、二极管、MOSFET管选择 (12)

3.2反馈回路的设计 (13)

3.3MOSFET的驱动设计 (14)

结束语 (15)

参考文献 (16)

附录一 (17)

引言

随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。

开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。

开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

1设计意义及要求

1.1设计意义

《电力电子技术》主要培养我们统筹运用课本所学的理论知识,掌握电路设计模块化基本理论和基本方法。所谓开关电源,广义上凡用半导体功率器件作为开关,将一种电源形态转变成为另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源。开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。本次课程设计是针对我们平时学习的理论知识的检验,也是让我们更加熟练的运用仿真软件,更好的解决开关电源的一些问题。

1.2开关电源的组成部分

开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。其电路比较复杂,基本构成如图1所示。

主要由以下5部分构成:①输入整流滤波器:包括从交流电到输入整流滤波器的电路;②功率功率管(VT)及高频变压器(T);③控制电路(PWM调制器),含振荡器、基准电压源、误差放大器和PWM比较器,控制电路能产生脉宽调制信号,其占空比受反馈电路的控制;④输出整流滤波器;⑤反馈电路。除此之外,还需增加偏置电路、保护电路等。其中,PWM调制器为开关电源的核心。

1.3开关电源的工作过程

交流电网电压进入输入电路后,经输入电路中的线路滤波器、浪涌电流控制电路以及

整流电路,变换成直流电压。其中线路滤波器及浪涌电流控制电路的主要作用是削弱由电网电源线进入的外来噪声以及抑制浪涌电流,整流电路则完成交流到直流的变换,可分为电容输入型和扼流圈输入型两大类,开关电源中通常采用电容输入型。功率变换电路是整个开关电源的核心器件,它将直流电压变换成高频矩形脉冲电压,其电路主要由开关电路和变压器组成。开关电路的驱动方式分为自激式和他激式两大类;开关变压器因是高频工作,其铁芯通常采用铁氧体磁芯或非晶合金磁芯;开关晶体管通常采用开关速度高,导通和关断时间短的晶体管,最典型的有功率晶体管(GTR)、功率场效应晶体管(MOSFET)和绝缘栅型双极晶体管(IGBT)等三种。输出电路是将高频变压器次级方波电压经过高频整流滤波电路整流成单向脉动直流,并将其平滑成设计要求的低纹波直流电压,供给负载使用。

1.4开关电源的工作方式

开关电源按控制原理来分类,有以下4种工作方式:

(1)脉冲宽度调制(Pulse Width Modulation,简称PWM,即脉宽调制)式:其特点是开关周期为恒定值,通过调节脉冲宽度来改变占空比,实现稳压目的。其核心是脉宽调制器。

(2)脉冲频率调制(Pulse Frequency Modulation,简称PFM,即脉频调制)式:其特点是脉冲宽度为恒定值,通过调节开关频率来改变占空比,实现稳压目的。其核心是脉频调制器。

(3)脉冲密度调制(Pulse Density Modulation,简称PDM,即脉密调制)式:其特点是脉冲宽度为恒定值,通过调节脉冲数实现稳压目的。它采用零电压技术,能显著降低功率电压管的损耗。

(4)混合调制式:它是(1)、(2)两种方式的组合。开关周期和脉冲宽度都不固定,均可调节。它包含了脉宽调制器和脉频调制器。

以上4种统“称时间比率控制”方式,其中以脉宽调制器应用最广。

1.5脉宽调制器的基本原理

脉宽调制式开关电源的工作原理如图2所示。220V交流电u首先经过整流滤波电路变

成直流电压i U ,再由功率开关管VT 斩波、高频变压器T 降压,得到高频矩形波电压,最后通过整流滤波后后的所需要的直流输出电压o U 。脉宽调制器能产生频率固定而脉冲宽度可调的驱动信号,控制功率开关管的通、断状态,进而调节输出电压的高低,达到稳压目的。锯齿波发生器用于提供始终信号。利用取样电阻。误差放大器和PWM 比较器形成闭环调节系统。输出电压o U 经R1、R2取样后,送至误差放大器的反相输入端,与加在同相输入端的基准电压REF U 进行比较,得到误差电压r U ,再用r U 的幅度去控制PWM 比较器输出的脉冲宽度,最后经过功率放大和降压式输出电路使o U 保持不变。J U 为锯齿波发生器的输出信号。

2方案设计

2.1设计要求

初始条件:

输入交流电源:单相220V,频率50Hz。

要求完成的主要任务:

1、输出两路直流电压:12V,5V。

2、直流最大输出电流1A。

3、完成总电路设计和参数设计。

2.2方案选择

方案一:

电源输入,即单相交流电压。输出为:12V、5V直流电压,最大电流1A。交流电220V 经过一个整流滤波电路后得到直流电压,送入DC-DC降压斩波电路,控制电路提供控制信号控制MOSFET管的关断,调节直流电压的占空比,最后经过LC滤波电路得到所需电压。通过对输出电压的取样,比较和放大,调节控制脉冲的宽度,以达到稳压输出的目的。

开关电源原理框图如图3所示。

整流部分是利用具有单向导通性的二极管构成桥式电路来实现的;滤波部分是利用电容电感器件的储能效应,构成LC电路来实现的;降压部分是利用降压斩波电路来实现,控制方式为脉宽调制控制(PWM),即在控制时对半导体开关器件的导通和关断进行控制,

使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。本次设计的开关电源控制时首先保持主电路开关元件的恒定工作周期(on off T t t =+),再由输出信号与基准信号的差值来控制闭环反馈,以调节导通时间on t ,最终控制输出电压(或电流)的稳定。

方案二:

首先对输入的220V,50Hz 的交流电源进行整流滤波,得到直流电压,再经过高频逆变得到高频交流电压,然后在经过高频变压器降压,再经过高频整流得到脉动直流,最后经过滤波器得到要求的直流电。

整体设计方框图如图4所示:

整流部分是利用具有单向导电性质的二极管构成的桥式电路来实现;滤波部分则是利用电容电感器件的储能效应,构成LC 电路来实现的;高频逆变电路则是通过开关电力电子器件的开通关断性质实现的;高频变压器降压则是通过互感变压器实现降压的;高频整流则是通过整流器件实现交流变脉动直流的;而滤波器则是通过电容的滤波效应实现脉动直流向直流的转化的。

因为方案一的设计思路简单,步骤少,所以本次设计选择方案一。

2.3整流滤波部分

整流电路工作原理:在输入交流电压的正半周期,二极管D1、D4承受正向电压导通,

D2、D3承受反向电压截至,整流输出电压等于输入电压;在输入交流电压的负半周期,二极管D2、D3承受正向电压导通,二极管D1、D4承受反向电压截至,输出电流是输入电流的相反数。

整流电路工作时的波形如图5所示。

由图5可知,经过二极管整流桥后,输入的正弦电压成了正的电压,同时由于电容电

感的储能效应,整流桥输出的电压和电流会进一步变的平直。当然电容量越大,滤波效果越好,输出波形越趋于平滑,输出电压也越高。但是,电容量达到一定值以后,再加大电容量对提高滤波效果已无明显作用。通常应根据负载电压和输出电流的大小选择最佳电容。本电路选择470uF 电容即可。

图5整流部分电路图

2.4降压斩波电路

图6 基本降压斩波电路

将整流后得到的直流电压输入降压斩波电路通过脉宽调制控制调节输出电压平均值,

在经过LC 滤波电路是电压稳定。脉宽调制控制型号有IGBT 驱动电路发出;RCD

保护电路

用以缓冲IGBT在高频工作环境下关断时因为正向电流迅速降低而由线路电感在器件两端感应出的过电压。

本设计中电路图如图7所示。电路中采用两级RL滤波电路使输出电压稳定。

图7 降压斩波电路

2.5脉宽调制电路

本设计选用TL494作为脉宽调制电路的主要芯片。其典型应用电路图如图8所示。

TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。这是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可以通过外部的一个电阻和一个电容进行调节。输出电容的脉冲其实是通过电容上的正极性锯齿波电压与另外2个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触压器的时钟信号为低电平时才会被通过,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。控制信号由集成电路外部输入,一路送至时间死区时间比较器,一路送往误差放大器的输入端。死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波的周期4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。当把死区时间控制输入端接上固定的电压,即能在输出脉冲上产生附加的死区时间。

图8 TL494典型电路图

脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V 变化到 3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降为零。误差放大器的输出端常处于高电平,它与脉冲宽度调智器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制电路。

照典型电路图修改后得到本次设计的电路图,如图9所示。

2.6 MOSFET管的驱动电路

本次课设选用美国IR公司的IR2110S芯片。用于IGBT或功率MOSFET驱动的集成芯片模块中,应用技术比较成熟的有东芝LP250、富士EXB8系列、三菱M579系列等,但是这些模块都是单驱动,如果要驱动全桥结构的逆变电路则需要4个隔离的驱动模块,不但费用高、而且体积大。美国IR公司推出的高压浮动驱动集成模块IR2110S是一种新型的功率MOSFET或IGBT驱动模块,它本身允许驱动信号的电压上升率达±50 V/μs,极大地

减小了功率开关器件的开关损耗。此外,由于IR2110S采用自举法实现高压浮动栅极双通

道驱动,因此可以驱动500 V以内的同一相桥臂的上下两个开关管,减小了装置体积,节省了成本。

图9 脉宽调制电路

IR2110S采用HVIC和锁抗干扰CMOS制造工艺,双列直插14脚封装。具有独立的低端和高端输入通道;悬浮电源采用自举电路,其高端工作电压可达500V,dv/dt=±50V/ns,15V下静态功耗仅116mW;输出的电源端(脚3,即功率器件的栅极驱动电压)电压范围10~20V;逻辑电源电压范围(脚9)5~15V,可方便地与TTL,CMOS电平相匹配,而且逻辑电源地和功率地之间允许有±5V的偏移量;工作频率高,可达500khz;开通、关断延迟小,分别为120ns和94ns;图腾柱输出峰值电流为2A。

本次设计采用的MOSFET管驱动电路如图10所示。从TL494芯片出来的OUT信号,输入到IR2110S来驱动MOSFET,最终使输出电压稳定在5V或12V。

图10 MOSFET的驱动电路

2.7 总电路图

整个电路的总电路图用Altium Designer 制作,图如附录一所示。

3主电路参数设定

3.1变压器、二极管、MOSFET 管选择

由于是单相电,所以必须使用单相变压器,原边额定电压1220U V =,副边额定电压约为230U V =,额定电流大于等于1A 。

对于整流滤波电路中的四个二极管D1、D2、D3、D4,它们承受的反向最大峰值电压为

2;承受的正向最大峰值电压为

2

2U ,流过的最大平均电流约为1A 。所以我们可以选择正向平均电流I 大于1A ,反向重复峰值电压大于4.2V 的电力二极管用来构成单相整流电路。

对于斩波电路中的电力二极管VD ,承受的最大反向重复峰值电压约为4V ,最大正向平均电流I 约为1A ,所以我们可以选择正向平均电流I 大于1A ,反向重复峰值电压大于4V 的电力二极管作为续流二极管。

对于斩波电路中的MOSFET ,漏极与源极之间承受的最大电压ds U 约为4V ,流过的最大电流值约为1A ,则最大耗散功率约为4W 。所以我们可以选择最大漏极与源极之间电压大于4V ,流过最大电流大于1A ,功耗大于4W 的MOSFET ,如IRF540型号。

斩波电路中的电感尽量取大,以避免电流过大,磁路饱和。 综上所述,主电路的主要参数如下:

所用电力二极管和MOSFET 的导通压降约为0.8V ,电感压降约为0.2V 。 1.整流滤波电路部分: 输入电压i U :单相220V 交流 输出电压o U :30V 直流

电力二极管D1、D2、D3、D4参数:

正向平均电流大于1A ,反向重复峰值电压大于4V 。

2.降压斩波电路部分: 输入电压i U :4V 直流

输出电压o U :5V 和12V 稳压直流 电力二极管:

正向平均电流大于1A ,反向重复峰值电压大于4V

MOSFET 管取IRF540型号。

3.2 反馈回路的设计

由于加入反馈回路,输出电压不再像教材中那样有单一占空比的PWM 来控制,而是由时刻变化着的PWM 来控制,所以其电压也就不能由公式来推出。

在输出端并联一个分压电路,50K Ω电阻和200K Ω滑动变阻器串接,并从中间引出一个信号电压作为反馈点——Feedback 。将Feedback 输入TL494控制电路,于是反馈点一直和TL494内部基准源比较,影响输出的PWM 的占空比,若大于5V ,占空比将减小,若小于5V ,占空比将增大,这样控制MOSFET 得导通与关断,直到保持反馈点电压保持5V ,输出电压按比例可以算出为5~25V 。PWM 的频率由外接阻容决定。

电路图如图11所示。 计算过程:

112

2

o U R R U R +=

, 其中1U 恒为5V , 所以当R1=0Ω是,5o U V =;R1=200K Ω时,25o U V =。

图11 反馈电路

当R1跳到0K Ω 时,输出电压为5V ,当R1滑到70K Ω时,输出电压为12V ,即为所求的值。

3.3 MOSFET的驱动设计

由于选用大功率MOSFET,如何驱动该管也成了一个问题。从TL494出来的WM信号电压电流不能直接用来控制MOSFET的通断,于是在两者之间加一个驱动电路。该驱动电路主要由IR2110构成,IR2110输出的电压可达20V,电流可达几安培,可以用来驱动本设计选用的MOSFET管。

结束语

通过本次课程设计让我学到了很多东西,受益匪浅,使我更加深刻地理解了直流斩波电路以及开关电源,了解了开关电源的基本结构、设计过程和实现的功能。使我了解到开关电源在电子设备、电力设备和通信系统的直流供电中得到广泛应用,在高频开关电源中,DC-DC变换是其核心。随着半导体技术的发展,高集成度,功能强大的大规模集成电路不断出现,使电子设备不断缩小,重量不断减轻,相应地要求系统供电电源的体积和重量相应减小,如何减小开关电源的体积,提高其效率,是将在在设计开关电源的过程需要着重考虑的一个方面。

设计过程中不仅要求我对知识的掌握能力,还要细心和耐心。一个参数,一个符号的错误都会造成结果的很大偏差。这就要求我们认真仔细的对待每一步的运算,了解每一步设计的含义,注意每一步程序的编写。在几天的时间中,我感到自己的知识还是比较匮乏,所以平时还是需要多锻炼自己,加深对所学的知识的了解。本次设计涉及到了书本的绝大部分内容,将课本中所学的知识一一串联起来,考验了自己的基础知识,也提升了学会串联知识的能力。

在今后的学习中我要锻炼自己独立分析问题,解决问题的能力,端正态度努力学习,不断的完善自己,充实自己。

参考文献

[1]王兆安.电力电子技术(第五版).机械工业出版社.2009

[2]曹丰文.电力电子技术基础.中国电力出版社.2007

[3]唐建新.电力电子技术试验教程.机械工业出版社.2007

[4]沙占友.开关稳压器计算机辅助设计与仿真软件的应用.机械工业出版社.2008年

[5]曲学基.IGBT及其集成控制器在电力电子装置中的应用.电子工业出版社.2010年

附录一

基于TOPSwitch的开关电源设计

基于TOPSwitch Ⅱ的开关电源设计 1 引言 功率开关管、PWM控制器和高频变压器是开关电源必不可少的组成部分。传统的开关电源一般均采用分立的高频功率开关管和多引脚的PWM集成控制器,例如采用UC3842+MOSFET是国内小功率开关电源中较为普及的设计方法。 90年代以来,出现了PWM/MOSFET二合一集成芯片,他大大降低了开关电源设计的复杂性,减少了开关电源设计所需的时间,从而加快了产品进入市场的速度。 二合一集成控制芯片多采用3脚,4脚,5脚,7脚和8脚封装,其中美国功率集成公司于97年推出的三端脱线式TOPSwitch Ⅱ系列二合一集成控制器件,是该类器件的代表性产品。 2 TOPSwitch Ⅱ器件简介 TOPSwitch系列器件是三端脱线式PWM开关(Three-terminal Off-line PWM Swtich)的英文缩写。TOPSwitch 系列器件仅用了3个管脚就将脱线式开关电源所必需的具有通态可控栅极驱动电路的高压N沟道功率的MOS场效应管,电压型PWM控制器,100kHz高频振荡器,高压启动偏置电路,带隙基准,用于环路补偿的并联偏置调整器以及误差放大器和故障保护等功能全部组合在一起了。 TOPSwitch Ⅱ系列器件是TOPSwitch的升级产品,同后者相比,内部电路做了许多改进,器件对于电路板布局以及输

入总线瞬变的敏感性大大减少,故设计更为方便,性能有所增强。其型号包括TOP221-TOP227,内部结构如图1所示[1]。 TOPSwitch Ⅱ是一个自偏置、自保护的电流-占空比线性控制转换器。由于采用CMOS工艺,转换效率与采用双集成电路和分立元件相比,偏置电流大大减少,并省去了用于电流传导和提供启动偏置电流的外接电阻。 漏极连接内部MOSFET的漏极,在启动时,通过内部高压开关电流源提供内部偏置电流。 源极连接内部MOSFET的源极,是初级电路的公共点和基准点。 控制极误差放大电路和反馈电流的输入端。在正常工作时,由内部并联调整器提供内部偏流。系统关闭时,可激发输入电流,同时也是提供旁路、自动重启和补偿功能的电容连接点。 控制电压控制极的电压V c给控制器和驱动器供电或提供偏压。接在控制极和源极之间的外部旁路电容C T,为栅极提供驱动电流,并设置自动恢复时间及控制环路的补偿。在正常工作(输出电压稳定)时,反馈控制电流给V c供电,并

开关电源设计与实现毕业设计(论文)

毕业论文(设计) 题目开关电源设计 英文题目switch source design

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

(完整版)高频开关电源设计毕业设计

目录 引言......................................................... 1本文概述 ................................................. 1.1选题背景............................................................................................................................ 1.2本课题主要特点和设计目标 ........................................................................................... 1.3课题设计思路.................................................................................................................... 2SABER软件................................................ 2.1SABER简介 ..................................................................................................................... 2.2SABER仿真流程 ............................................................................................................. 2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计.................................. 3.1工作原理............................................................................................................................ 3.1.1 三相桥式全控整流电路的特点 ..................................................................................... 3.2保护电路............................................................................................................................ 3.2.1 过电压产生的原因.......................................................................................................... 3.2.2 过压保护 (1) 3.2.3 过电流产生的原因 (1) 3.2.4 过流保护 (1) 3.3SABER仿真 (1) 3.3.1 设计规范 (1) 3.3.2 建立模型 (1)

开关电源基础知识简介

1、输出纹波噪声的测量及输出电路的处理 PWM 开关电源的输出的纹波噪声与开产频率有关。其纹波噪声分为两大部分:纹波(包括开关频率的纹波和周期及随机性漂移)和噪声(开关过程中产生)。 周期及随机性漂移 在纹波与噪声的测量过程中,如果不使用正确的测量方法将无法正确地测量出真出的输出纹波噪声。下面是推荐的测量方法: 平行线测量法:输出管脚接平行线后接电容,在电容两端使用20MHz C 为瓷片电容,负载与模块之间的距离在51mm 和76mm(2in.和3in)之间。 在大多数电路中, 2、多路输出的交互调节及其应用 交互调节的优点。图中lo1路负载电流、Vo2为辅助路输出电压。由图可见,20% 100% Io2 在主路负载从20%~100%变化时,辅助路输出电压随 辅助路负载电流的变化曲线中,辅助路输出电压始终在±4%范围之内。即使在最坏的情况,即主路空载、辅助路江载,主路满载、辅助路空载时其输出电压也能保证在标称电压的±10%范围之内。由此,对于输出稳压精度要求不太高的情况下,这种不稳压的辅助输出不仅能够满足供电的条件,而且相对成本低、器件少、可靠性高。建议用户首先考虑不稳压的辅助输出的电源模块。 开关电源基础知识简介

3、容性负载能力与电源输出保护 建议用户对电源模块的阻性负载取大于10%额定负载,这样模块工作比较稳定。 电容作为电源去耦及抗干扰的手段,在现代电子线路中必不可少,本公司的电源模块考虑此因素,都有相当的容性负载能力。但由于考虑到电源的综合保护能力,尤其是输出过载保护, 容性负载能力不可能太大,否则保护特性将变差。因此用户在使用过程中负载电容总量不应 超过最大容性负载能力。 Vo 输出电流保护一般有四种方式: ●恒流式:当到达电流保护点时,输出电流随负载的 进一步的加重,略有增加,输出电压不断下降。 ●回折式:当到达电流保护点时,输出电流随负载的 的加重,输出电压不断下降,同时输出电流也不断下降。 ●恒流-截止式:当到达电流保护点时,首先是恒流式 ●精确自恢复截止式:输出电流到达保护点,电源模块输出被禁止,负载减轻电路自恢复。 在大部分电路中使用恒流式与截止式较多,比较理想的保护方式是精确自恢复截止式,或者恒流-截止式保护。其中恒流式、回折式保护本质上就是自恢复的,但输出短路时的功耗较大, 尤其是恒流式。而截止式、恒流-截止式保护的自恢复特性须加辅助复位电路来完成自恢复,其 输出过载时的功耗可以通过复位电路的周期进行调整,即调整间歇启动的时间间隔。一般电流 保护1.2~2倍标称输出电流。精确自恢复截止式电流保护点设定为标称输出电流1.2倍或1.3倍。 一般输出有过压嵌位保护。 4、负载瞬态响应 当输出的负载迅速发生变化时,输出的电压会出现 上冲或下跌。电源模块经过调整恢复原输出电压。这个 响应过程中有两个重要的指标:过冲电压( Vo)和恢复 时间(tr)。过冲越小,恢复时间越短,系统响应速度 越快。一般在25%的标称负载阶跃变化,输出电压的 过冲为4%VO,恢复时间为500μS左右。 5、外围推荐电路 1)输出电压的调节: 本公司产品中有TRIM输出管脚的产品,可以通过电阻或电位器对输出电压进行一定范围内的调节。将电位器的中心与TRIM相连,在有+S,-S管脚的模块中,其他两端分别接+S、-S,没有相应主路的输出正负极(+S接Vo1,-S接GND上,调节电位器即可。辅路跟随主路调节。电位器阻值根据输出电压的大小选用5~20K?比较合适。一般微调范围为±10%。

基于TOP244Y的开关电源设计

1.开关电源感念 1.1开关电源就是用通过电路控制开关管进行高速的道通与截止。将直流电转化为高频的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压,转化为高频交流电的原因是高频交流在变压器变压电路中的效率要比50HZ高很多,所以开关变压可以做的很小,而且工作时不是很热,成本很低。如果不将50HZ变为高频开关就没有意义,开关变压也不神秘,就是一个普通的变压器。这就是开关电源。 *简单地说,开关电源的工作原理是: *1、交流电源输入经整流滤波成直流; *2、通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; *3、开关变压器次级感应出高频电压,经整流滤波供给负载; *4、输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。 1.2开关电源自20世纪70年代开始应用以来,涌现出许多功能完备的集成控制电路,使开关电源电路日益简化,工作频率不断提高,效率大大提高,并为电源小型化提供了广阔的前景。我司采用的TOP244Y是将PWM控制器与功率开关场效应管合二为一封装在一起,可使用电路大为简化,体积进一步缩小,成本也明显降低。 ★TOP 244Y开关电源的基本原理: 封装形式

*漏极管脚(D):高压功率场效应管漏极输出。 *控制管脚(C):用于调节占空比的误差放大器。 *源极管脚(S):将其连接至输出场效应管源极可得到高压功率回馈。 *L:为输入电压的欠压与过压检测端。 *F:开关频率选择端,当F端接到源极时,其开关频率为132kHz,而当F端接到控制端时,其开关频率为66kHz。我司频率为132KHZ。 *X:外部电路流定调整端。在X端与源极之间接入不同的电阻,则开关电流可限定在不同的数值。若R=12kΩ,则流过开关的电流被设定为额定值的69%;若R1=6k Ω,则为额定值的90%;也就是说,随着电阻值的增大,开关允许流过的电流随之减小。 *若在L端与输入电压正端接入2MΩ的电阻,那么其: 欠压保护值为:Vuv=100VDC 过压保护值为:Vou=450VDC *产品主要有如下性能特点:输出功率250W;外围电路简单,成本低;在极低压或冲情况下能充分集成软启动;外部可编程精确电流限制的高效率,低成本设计和功率可限电路;线性欠压保护,无关断干扰。

开关电源系统设计方案毕业论文

开关电源系统设计方案毕业论文 目录 摘要.......................................... 错误!未定义书签。Abstract.......................................... 错误!未定义书签。 1 绪言 1.1课题背景 (2) 1.2选题的国外研究现状及水平、研究目标及意义 (2) 1.3 本课题主要的研究容 (3) 2 系统设计方案与论证 2.1课题研究的基本要求 (4) 2.2方案论证 (4) 2.2.1 DC/DC电路模块方案 (4) 2.2.2 MOSEFT驱动电路方案 (7) 2.2.3 单片机选择方案 (7) 2.2.4检测采样方案 (8) 2.2.5系统框图 (8) 3 硬件电路设计 3.1变压整流滤波电路 (9) 3.2辅助电源的设计 (11) 3.3 Buck电路参数选择原理和计算 (12) 3.3.1参数选择原理 (12) 3.3.2 电感值的计算 (15) 3.3.3 滤波电容的计算 (15) 3.3.4开关管的选择和开关管保护电路设计 (16) 3.4驱动电路的设计 (18)

3.5采样电路设计 (19) 3.6保护电路的设计 (20) 4 软件部分设计 4.1 AVR128简介 (21) 4.2 PWM波的产生 (22) 4.3 AD采样 (26) 5系统调试及结果分析 6 总结与展望 6.1 总结 (30) 6.2 展望 (30) 致谢 (31) 参考文献 (32) 附录 (34)

1 绪言 开关电源具有效率高、体积小、重量轻等特点,应用越来越广泛,从70年代开始,并用轻量高频变压器替代笨重的工频变压器。高效的开关电源飞速发展,逐步替代传统的的线性电源,开关电源不需要较大的散热器,开关电源自20世纪90年代问世以来,便显示出强大的生命力,并以其优良特性倍受人们的青睐。近年来,开关电源在通信、工业自动化、航空、仪表仪器等领域的应用越来越广泛。随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、模块化的方向发展,高效率的开关电源已经得到越来越广泛的应用。随着高频开关电源技术和应用电子技术的高速发展,直流高频开关电源依靠它的高精度、低纹波及高效率等优越性能,正在逐步取代传统的线性电源。同时,高频开关电源系统的高速响应性能、输出短路电流限制及稳压和稳流等优点也使其负载的使用寿命大大增加。评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过流、短路等保护电路。同时,在同一开关电源电路中,设计多种保护电路的相互关联和应注意的问题也要引起足够的重视[15]。 许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合出许多毛刺尖峰,甚至出现畸变。大量的谐波分量倒流入电网,造成对电网的谐波“污染”,一方面电流流过线路阻抗造成谐波电压降,反过来使电网电压也发生畸变;另一方面,会造成电路故障,使用设备损坏。因为它没有采用有源功率因数校正,功率因数较低,只达到 0.9,如果采用有效的功率因数校正,功率因数可以达到0.99以上。开关电源输入端产生功率因数下降问题,利用有源功率因数校正电路,成本只增加5%,成功解决了这个问题。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种校正功率因数的方法[1]。 目前市场上出售的开关电源中采用双极性晶体管制成的100kHz、用MOSFET 管制成的500kHz 电源,虽已实用化,但其频率有待进一步提高。要提高开关频率,就要减少开关损耗,而要减少开关损耗,就需要有高速开关元器件。然而,开关速度提高后,不仅会影响周围电子设备,还会大大降低电源本身的可靠性。对1MHz以上的高频,要采用谐振电路,这样既可减少开关损耗,同时也可控制浪涌的发生。现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性

各种开关电源介绍-开关电源设计知识大全

开关电源介绍 一、基础知识: 新型变压器:磁性元件,新型磁材料和新型变压器的开发。如集成磁路,平面型磁心,超薄型变压器;以及新型变压器如压电式,无磁芯印制电路变压器等,使开关电源的尺寸重量都可减少许多。 硬开关的条件下MOSFET和IGBT开关损耗分析: 1).开通损耗方面:由于MOSFET的输出电容大,器件处于断态时,输入电压加在输出电容上,输出电容储存较大能量。在相继开通时这些能量全部消耗在器件内,开通损耗大。器件的开通损耗和输出电容成正比,和频率成正比和输入电压的平方成正比[12]。而IGBT的输出电容比MOSFET小得多,断态时电容上储存的能量较小,故开通损耗较小。 2).关断损耗方面:MOSFET属单极型器件,可以通过在施加栅极反偏电压的方法,迅速抽走输入电容上的电荷,加速关断,使MOSFET关断时电流会迅速下降至零,不存在拖尾电流,故关断损耗小[10];而IGBT由于拖尾电流不可避免,且持续时间长(可达数微秒),故关断损耗大。 综合以上分析,硬开关条件下MOSFET的开关损耗主要是由开通损耗引起,而IGBT则主要是由关断损耗引起。因此使用MOSFET作为主开关器件的电路,应该工作于ZVS条件下,这样在器件开通前,漏极和源极之间的电压先降为零,输出电容上储存能量很小,可以大大降低MOSFET的开通损耗;而使用IGBT作为主开关器件的电路,应该工作于ZCS条件下,这样在器件关断前,流过器件的电流先降为零,可以大大降低因拖尾电流造成的关断损耗。 软开关:当电流过零时,使器件关断;当电压过零时,使器件开通-实现开关损耗为零。 变流器:把输入的电源,进行电压、电流变换,达到规定的要求后输出给用电设备。 DC-DC:直流变压器。斩波器。 为什么反激开关电源只能适合小功率?200W以下。正激开关电源适合大功率开关电源? 高效率小体积(高功率密度)一直是DC-DC变换器用户的追求,也是设计的要点。提高功率密度最有效的方式就是提高开关频率,线圈和变压器对高速变化的磁力线感应灵敏度高、特别高效率,衰减特别小,传递效率特别高,而对低频变化的磁力线灵敏度低、衰减大,传递效率差,因此高频下的磁芯体积会大幅度减小,但频率的提高会使开关管的开关损耗加大,对变换器的效率造成影响。如何在高频下减小开关管的开关损耗,是DC-DC变换器是否能实现高效率高功率密度的关键,在这种背景下,高频软开关技术逐渐成为研究的热点,LLC谐振变换器是在串联谐振变换器的基础上增加了一个与负载并联的电感,是目前效率最高的开关电源。

基于MC34063的开关电源设计

正文 一、设计任务与要求 2.掌握开关电源的设计、组装与调试方法。 3.研究开关电源的实现方法,并按照设计指标要求进行电路的设计与仿真。 具体要求如下: 分析、掌握该课题总体方案,广泛阅读相关技术资料,并提出见解。 掌握开关电源的工作原理。 主要技术指标 直流输入电压:15~30V; 输出电压:8V; 输出电流:0.5A; 效率:≥80%。 二.BUCK型电路 在实际应用中我们对电压有很重要的应用,而且很多时候我们对电压的值有十分严格的要求,所以有时在电路中也要求我们使用一些方法来达到升压或者降压的目的,以完成自己设计的要求,故对升压与降压电源电路的认识有着重要的意义。 开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。 开关稳压电源分为三种,即BUCK型电路(降压)、 BOOST型电路(升压)、Buck-Boost型电路(降压-升压混合)。现在我对基本电路BUCK做简要说明,以方便大家对基于MC34063开关稳压电源设计的理解。 2.1.线路组成 图1(a)所示为由单刀双掷开关S、电感元件L和电容C组成的Buck变换器电路图。图1(b)所示为由以占空比D工作的晶体管T r、二极管D1、电感L、电容C组成的Buck变换器电路图。电路完成把直流电压V s转换成直流电压V o的功能。 图1Buck变换器电路 当开关S在位置a时,有图2 (a)所示的电流流过电感线圈L,电流线性增加,在负

载R上流过电流I o ,两端输出电压V o ,极性上正下负。当i s >I o 时,电容在充电状态。这时 二极管D 1承受反向电压;经过时间D 1 T s 后(,t on 为S在a位时间,T s 是周期), 当开关S在b位时,如图2(b)所示,由于线圈L中的磁场将改变线圈L两端的电压极性, 以保持其电流i L 不变。负载R两端电压仍是上正下负。在i L 0,开关打开时,i s =0,故i s 是脉动的,但输出电流I o ,在L、D 1 、C作用 下却是连续的,平稳的。 图2Buck变换器电路工作过程 三、开关电源的分类: (1)按开关管的连接方式,开关电源可分为串联型开关电源和并联型开关电源。串联型开关电源的开关管是串联在输入电压和输出负载之间,属于降压式稳压电路;而并联型开关电源的开关管是在输入电压和输出负载之间并联的,属于升压式稳压电路。 (2)按激励方式,开关电源可分为自激式和他激式。在自激式开关电源中,由开关管和高频变压器构成正反馈环路,来完成自激振荡,类似于间歇振荡器;而他激式开关电源必须附加一个振荡器,振荡器产生的开关脉冲加在开关管上,控制开关管的导通和截止,使开关电路工作并有直流电压输出。 (3)按调制方式,开关电源可分为脉宽调制(PWM)方式和脉频调制(PFM)方式。PWM是通过改变开关脉冲宽度来控制输出电压稳定的方式,而PFM是当输出电压变化时,通过取样比较,将误差值放大后去控制开关脉冲周期(即频率),使输出电压稳定。 (4)按输出直流值的大小,开关电源可分为升压式开关电源和降压式开关电源,也可分为高压开关电源和低压开关电源。 (5)按输出波形,开关电源可分为矩形波和正弦波电路。 (6)按输出性能,开关电源可分为恒压恒频和变压变频电路。 (7)按开关管的个数及连接方式又可将开关电源分为单端式、推挽式、半桥式和全桥式等。单端式仅用一只开关管,推挽式和半桥式采用两只开关管,全桥式则采用四只开关管。 (8)开关电源按能量传递方式又可分为正激式和反激式。 (9)按软开关方式分,开关电源有电流谐振型、电压谐振型、E类与准E类谐振型和部分谐振型等 四.MC34063的基本知识 该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜。它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。该器件可用于升压变换器、降压变换器、反向器的控制核心,

开关电源设计步骤(精)

开关电源设计步骤 步骤1 确定开关电源的基本参数 ① 交流输入电压最小值u min ② 交流输入电压最大值u max ③ 电网频率F l 开关频率f ④ 输出电压V O (V ):已知 ⑤ 输出功率P O (W ):已知 ⑥ 电源效率η:一般取80% ⑦ 损耗分配系数Z :Z 表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级, Z=1表示发生在次级。一般取Z=0.5 步骤2 根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3 根据u ,P O 值确定输入滤波电容C IN 、直流输入电压最小值V Imin ① 令整流桥的响应时间tc=3ms ② 根据u ,查处C IN 值 ③ 得到V imin 步骤4 根据u ,确定V OR 、V B ① 根据u 由表查出V OR 、V B 值 ② 由V B 值来选择TVS 步骤5 根据Vimin 和V OR 来确定最大占空比Dmax V OR D m a x = ×100% V OR +V I m i n -V D S (O N ) ① 设定MOSFET 的导通电压V DS(ON) ② 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6 确定C IN ,V Imin 值

步骤7 确定初级波形的参数 ① 输入电流的平均值I A VG P O I A VG= ηV Imin ② 初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③ 初级脉动电流I R ④ 初级有效值电流I RMS I RMS =I P √D max ×(K RP 2/3-K RP +1) 步骤8 根据电子数据表和所需I P 值 选择TOPSwitch 芯片 ① 考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值 I LIMIT(min)应满足:0.9 I LIMIT(min)≥I P 步骤9和10 计算芯片结温Tj ① 按下式结算: Tj =[I 2RMS ×R DS(ON)+1/2×C XT ×(V Imax +V OR ) 2 f ]×R θ+25℃ 式中C XT 是漏极电路结点的等效电容,即高频变压器初级绕组分布电容 ② 如果Tj >100℃,应选功率较大的芯片 步骤11 验算I P IP=0.9I LIMIT(min) ① 输入新的K RP 且从最小值开始迭代,直到K RP =1 ② 检查I P 值是否符合要求 ③ 迭代K RP =1或I P =0.9I LIMIT(min) 步骤12 计算高频变压器初级电感量L P ,L P 单位为μH 106P O Z(1-η)+ η L P = × I 2P ×K RP (1-K RP /2)f η 步骤13 选择变压器所使用的磁芯和骨架,查出以下参数: ① 磁芯有效横截面积Sj (cm 2),即有效磁通面积。 ② 磁芯的有效磁路长度l (cm ) ③ 磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2) ④ 骨架宽带b (mm ) 步骤14 为初级层数d 和次级绕组匝数Ns 赋值 ① 开始时取d =2(在整个迭代中使1≤d ≤2) ② 取Ns=1(100V/115V 交流输入),或Ns=0.6(220V 或宽范围交流输入) ③ Ns=0.6×(V O +V F1) ④ 在使用公式计算时可能需要迭代 步骤15 计算初级绕组匝数Np 和反馈绕组匝数N F ① 设定输出整流管正向压降V F1 ② 设定反馈电路整流管正向压降V F2 ③ 计算N P

12种开关电源拓扑及计算公式

输入输出电压关系 D T Ton Vin Vout == 开关管电流 Iout Iq =(max)1开关管电压 Vin Vds =二极管电流 ) 1(1D Iout Id ?×=二极管反向电压 Vin Vd =12、BOOST 电路 输入输出电压关系 D Ton T T Vin Vout ?= ?=11 开关管电流 11( (max)1D Iout Iq ?×=开关管电压 Vout Vds =二极管电流 Iout Id =1二极管反向电压 Vout Vd =13、BUCK BOOST 电路 输入输出电压关系 D D Ton T Ton Vin Vout ?= ?=1开关管电流 11( (max)1D Iout Iq ?×=开关管电压 Vout Vin Vds ?=二极管电流 Iout Id =1二极管反向电压 Vout Vin Vd ?=1

输入输出电压关系 D D Vin Vout ?= 1开关管电流 )1( (max)1D D Iout Iq ?×=开关管电压 Vout Vin Vds +=二极管电流 Iout Id =1二极管反向电压 Vin Vout Vd +=15、FLYBACK 电路 输入输出电压关系 Lp Iout Vout T D Vin Vout ×××=2开关管电流 (max)1Lp Ton Vin Iq ×= 开关管电压 Ns Np Vout Vin Vds × +=二极管电流 Iout Id =1二极管反向电压 Np Ns Vin Vout Vd × +=16、FORW ARD 电路 输入输出电压关系 D Np Ns T Ton Np Ns Vin Vout ×=×=开关管电流 Iout Np Ns Iq ×= (max)1开关管电压 Vin Vds ×=2二极管电流 D Iout Id ×=1

(完整版)开关电源毕业设计论文

优秀论文审核通过 未经允许切勿外传 设计题目:12V5A直流开关电源姓名: 专业: 班级: 学号:

系部: 同组人: 指导教师: 年月日 摘要 本文介绍一种以UC3842作为控制核心,根据UC3842的应用特点,设计了一种基于该电流型PWM控制芯片、实现输出电压可调的开关稳压电源电路。开关电源是利用现代电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。开关电源比普通的线性电源效率高,开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。 关键词:UC3842、开关电源、PWM 引言 开关电源是运用现代电力电子技术,控制开关开启和关闭的时候,这个比率的输出电压稳定的电源,电源一般由脉宽调制控制集成电路和场效应晶体管。开关电源、线性电源,并与成本的功率输出的增加,但这两种不同的

发展速度。在某一线性功率成本的输出功率的观点,但高于开关电源,它被称为成本反转点。随着电力电子技术的发展和创新、开关电源技术在不断的创新,这一成本更低的输出功率对于移动、开关电源提供了广阔的发展空间 第一章开关电源概述 1.1 开关电源发展历史与应用力 开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和功率开关器件(如MOS-FET)等构成。简单的说:就是开关型直流稳压电源。开关电源把直流电源或交流电源通过它可以获得一个稳定的直流电压源。它具有效率高,输出电压稳定,交流纹波小,体积小和重量轻的许多优点。获得广泛使用。 高频开关电源的发展方向是高频开关电源、小型化、使开关电源到更广阔的应用领域,尤其是在高技术领域的应用,促进高新技术产品的小型化、光。另一个开关电源的发展与应用在节约能源、节约资源和保护环境,具有重要的意义。 噪音和纹波:附加在直流输出信号上的交流电压和高频尖峰信号的峰值。用示波器测量其纹波幅值,通常是以mv度量。 第二章输入电路 适,在负载电流达到稳定状态时,其阻值应该是最小。这样,就不会影响整个开关电源的效率。 2.2 输入阳间电压保护 在一般情况下,交流电网上的电压为115v或230v左右,但有时也会

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该如何来计算高频变压器的匝数,从而解决这个问题?接下来,晨飞电子就为大家介绍下匝数的计算方法:

基于uc3844的开关电源设计

要:介绍一种采用UC3844集成芯片实现的多路输出单端反激式IGBT驱动电源。根据设计要求给出了该电路的具体设计步骤及电路参数。实验结果表明,该电源的可靠性高,稳定性好,输出纹波小,能够适应电网电压10% 和负载20% 的波动。 近年来,随着电力电子技术的发展,各个应用领域对电源的体积、重量、效率等方面提出了越来越高的要求。单端反激式变换电路由于具有体积小、重量轻、效率高、线路简洁、可靠性高以及具有较强的自动均衡各路输出负载的能力等优点,非常适合用于设计大功率高频开关电源的辅助电源或功率开关的驱动电源。 开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,在其控制过程中,电源电路中的电感电流未参与控制,是独立变量,开关变换器为二阶系统,而二阶系统是一个有条件的稳定系统;后者是一个电压、电流双闭环控制系统,电感电流不再是一个独立变量,从而使开关变换器成为一个一阶无条件的稳定系统,因而很容易不受约束地得到大的开环增益和完善的小信号、大信号特性。为此,应用电流控制型芯片(峰值电流控制)UC3844设计了一种大功率高频开关电源功率开关(例如IGBT)驱动电源,其主要技术指标为:5路输出(各路均为20V/0.5A);输出电压纹波<±0.5% ;工作频率为40kHz;输入交流电压范围(1±10%)220V。 1 主电路设计 1.1 主电路拓扑 图1是所设计电源的原理图,主电路采用单端反激式变换电路,220 V交流输入电压经桥式整流、电容滤波变为直流后,供给单端反激式变换电路,并通过电阻R1、C2为UC3844提供初始工作电压。为提高电源的开关频率,采用功率MOSFET作为功率开关管,在 UC3844的控制下,将能量传递到输出侧。为抑制电压尖峰,在高频变压器原边设置了RCD 缓冲电路。

10kW直流开关电源设计_毕业设计论文

10kW直流开关电源设计 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

开关电源入门基本知识新手必备

目录 :整流与滤波 (3) 13 2:并联稳压电路 (20) :串联稳压电路 (31) 3串联稳压电路31 4:集成稳压电路 (44) 5:BUCK电路 (51) 6:BOOST电路 (65) 7:反激变换器 (75) :正激变换器 (118) 8118

1:整流与滤波 1.1:直流稳压电源的构成 基本概念 1.2:基本概念 交流电压(电流):幅值与方向均随时间作周期性变化的交流电压 (电流)。

1:整流与滤波 正弦交流电压(电流):幅值与方向均随时间作正弦周期性变化的交流 有效值电压(电流)称为正弦交流电压(电流)。我们常说的交流电就是正弦交流电压或电流的简略称呼。 有效值:与交流电压(电流)热等效的直流电压(电流)直称为该交流电压(电流)的有效值。 值交流电压(电流)所达到的最大瞬时值 峰值:交流电压(电流)所达到的最大瞬时值。 频率:交流电压(电流)每秒做周期性变化的次数。 直流电压(电流):数值大小与方向均不随时间变化的电压(电流)称为直流电压(电流)实际上方向安全可以保证不随时间而 为直流电压(电流),实际上,方向安全可以保证不随时间而 变化,但数值不可能做到一直恒定,因此,对于方向不变、数值 随时间而变的交流电压(电流)可以用一个直流电压(电流) 与一个幅值、方向随时间变化的交流电压(电流)叠加。

平均值:- t R U i o ωsin 22 = 0~π: L =o i π~2π: 2102t td R U I L AV ωωπ π sin 20 2 ) (0∫ =L L R U R U 2245.≈=π2 )(0)(045.0U R I U L AV AV ==

开关电源热阻计算方法及热管理

开关电源热阻计算方法及热管理 我们设计的DC-DC电源一般包含电容、电感、肖特基、电阻、芯片等元器件;电源产品的转换效率不可能做到百分百,必定会有损耗,这些损耗会以温升的形式呈现在我们面前,电源系统会因热设计不良而造成寿命加速衰减。所以热设计是系统可靠性设计环节中尤为重要的一面。但是热设计也是十分困难的事情,涉及到的因素太多,比如电路板的尺寸和是否有空气流动。 我们在查看IC产品规格书时,经常会看到R JA 、T J 、T STG 、T LEAD 等名词;首先R JA 是指芯 片热阻,即每损耗1W时对应的芯片结点温升,T J 是指芯片的结温,T STG 是指芯片的存储温 度范围,T LEAD 是指芯片的加工温度。 二、术语解释 首先了解一下与温度有关的术语:T J 、T A 、T C 、T T 。由“图1”可以看出,T J 是指芯片 内部的结点温度,T A 是指芯片所处的环境温度,T C 是指芯片背部焊盘或者是底部外壳温度, T T 是指芯片的表面温度。 数据表中常见的表征热性能的参数是热阻R JA ,R JA 定义为芯片的结点到周围环境的热阻。 其中T J = T A +(R JA *P D ) 图1.简化热阻模型 对于芯片所产生的热量,主要有两条散热路径。第一条路径是从芯片的结点到芯片 顶部塑封体(R JT ),通过对流/辐射(R TA )到周围空气;第二条路径是从芯片的结点到背部焊 盘(R JC ),通过对流/辐射(R CA )传导至PCB板表面和周围空气。 对于没有散热焊盘的芯片,R JC 是指结点到塑封体顶部的热阻;因为R JC 代表从芯片内 的结点到外界的最低热阻路径。 三、典型热阻值 表1典型热阻

基于开关电源设计的报告总结

设计并制作所示的开关稳压电源。 R L U 1= 开关稳压电源 题目要求变压器把市电转变为15V —21V ,正常情况下为18V ,经合适的变换器,输 出30—36V 步进可调的电压,其输出最大电流可达2A ,电压调整率及负载调整率小于2%,电源效率大于70%。 一、变换器的选择: 拿到这个题目,首先是要选择合适的变换器,已知输入电压15V -21V ,输出电压30-36,那么很明显要先择升压电路,以下是常用的具有升压功能的变换器: 1.单管反激式 : o 1in D U n U D =- 其中D 为开关PWM 的占空比 2.半桥逆变—整流电路 o in U nDU = 3.全桥逆变-整流

o 2in U nDU = 4.双Boost 电路 o 1in U U D = - 5.Boost 电路 o 1in U U D = - 6.Buck-Boost 变换电路 o 1in U U D = -

以上这6种电路,只要选择合适的n和调整合适的占空比D就能得到输出电压大于输入电压的升压变换电路,以下是这几种电路的特点: 根据以上比较可以看出,该电路要求输出的电压较小,输出电流也较小,但对纹波指标要求较高,因此可选择比较容易控制,电路较简单的Boost升压变换电路。 二、控制方案选择 1.采用单片机产生PWM信号控制,控制比较灵活,可以通过键盘设定对输出电压步进调整,但电路设计比较复杂,需要对反馈回路和驱动电路单独进行设计,同时对软件的要求也比较高。下面对该控制方案进行具体分析: 首先,在单片机的选择上,由于比赛要求,单片机选择肯定是TI公司的MSP430,但是就我们目前的学习来看,有两款可供选择,MSP430F149和MSP430G2553,MSP430G2553有20个引脚,IO口有16个,如果仅仅用来做显示液晶使用,IO端口还够用,但如果用来控制开关管,同时还要进行过流检测和电压电流保护功能,则IO端口需要用专用芯片扩展,如果选择MSP430F149,则该单片机有64个引脚,48个IO端口,对该电路来说,具有充足的IO口余量,但同时也增加了电路的复杂性,不过在理论上这两款单片机都是可行的。 其次,由于单片机不可能直接去控制开关管,所以需要单独的驱动电路,常用的驱动芯片有IR2302、IR2110、IR2104、IR2153 以下是这些芯片的电气特性:

相关主题