搜档网
当前位置:搜档网 › 函数对称性、周期性和奇偶性规律总结

函数对称性、周期性和奇偶性规律总结

函数对称性、周期性和奇偶性规律总结
函数对称性、周期性和奇偶性规律总结

函数对称性、周期性和奇偶

性规律总结

-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

函数对称性、周期性和奇偶性

关岭民中数学组

(一)、同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性)

1、奇偶性:(1) 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f

(2)偶函数关于y (即x=0)轴对称,偶函数有关系式

)()(x f x f =-

2、奇偶性的拓展 : 同一函数的对称性

(1)函数的轴对称:

函数)(x f y =关于a x =对称?)()(x a f x a f -=+

)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 若写成:)()(x b f x a f -=+,则函数)(x f y =关于直线

2

2)()(b a x b x a x +=-++= 对称 证明:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,

)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。

说明:关于a x =对称要求横坐标之和为2a ,纵坐标相等。

∵1111(,)(,)a x y a x y +-与 关于x a =对称,∴函数)(x f y =关于a x =对称

?)()(x a f x a f -=+

∵1111(,)(2,)x y a x y -与关于x a =对称,∴函数)(x f y =关于a x =对称

?)2()(x a f x f -=

∵1111(,)(2,)x y a x y -+与关于x a =对称,∴函数)(x f y =关于a x =对称

?)2()(x a f x f +=-

(2)函数的点对称:

函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-

若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2

,2(

c b a + 对称 证明:设点),(11y x 在)(x f y =上,即)(11x f y =,通过

b x f x a f 2)()2(=+- 可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称 得证。

说明: 关于点),(b a 对称要求横坐标之和为2a ,纵坐标之和为2b ,如())a x a x +-与( 之和为 2a 。

(3)函数)(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则有可能会出现关于b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。

(4)复合函数的奇偶性的性质定理:

性质1、复数函数y =f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]。 复合函数y =f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]。 性质2、复合函数y =f(x +a)为偶函数,则f(x +a)=f(-x +a); 复合函数y =f(x +a)为奇函数,则f(-x +a)=-f(a +x)。

性质3、复合函数y =f(x +a)为偶函数,则y =f(x)关于直线x =a 轴对称。 复合函数y =f(x +a)为奇函数,则y =f(x)关于点(a,0)中心对称。 总结:x 的系数一个为1,一个为-1,相加除以2,可得对称轴方程

总结:x 的系数一个为1,一个为-1,f(x)整理成两边,其中一个的系数是为1,另一个为-1,存在对称中心。

总结:x 的系数同为为1,具有周期性。

(二)、两个函数的图象对称性

1、()y f x =与()y f x =-关于X 轴对称。

证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f x =-经过点11(,)x y -

∵11(,)x y 与11(,)x y -关于X 轴对称,∴11()y f x =与()y f x =-关于X 轴对称.

注:换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=y 对称。

2、()y f x =与()y f x =-关于Y 轴对称。

证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f x =-经过点11(,)x y -

∵11(,)x y 与11(,)x y -关于Y 轴对称,∴()y f x =与()y f x =-关于Y 轴对称。

注:因为11(,)x y -代入()y f x =-得111(())()y f x f x =--=所以()y f x =-经过点11(,)x y -

换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=x 对称。

()(())()g x f x f x -=--=

3、()y f x =与(2)y f a x =-关于直线x a = 对称。

证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以(2)y f a x =-经过点11(2,)a x y -

∵11(,)x y 与11(2,)a x y -关于x a =轴对称,∴()y f x =与(2)y f a x =-关 于直线x a = 对称。

注:换种说法:)(x f y =与()(2)y g x f a x ==-若满足)2()(x a g x f -=,即它们关于a x =对称。

4、)(x f y =与)(2x f a y -=关于直线a y =对称。

证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以)(2x f a y -=经过点11(,2)x a y -

∵11(,)x y 与11(,2)x a y -关于y a =轴对称,∴)(x f y =与)(2x f a y -=关于直线a y =对称.

注:换种说法:)(x f y =与()2()y g x a f x ==-若满足a x g x f 2)()(=+,即它们关于a y =对称。

5、)2(2)(x a f b y x f y --==与关于点(a,b)对称。

证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以2(2)y b f a x =--经过点11(2,2)a x b y --

∵11(,)x y 与11(2,2)a x b y --关于点(a,b)对称,∴)2(2)(x a f b y x f y --==与关于点(a,b)对称.

注:换种说法:)(x f y =与()2(2)y g x b f a x ==--若满足

b x a g x f 2)2()(=-+,即它们关于点(a,b)对称。

(2)2(2(2))2()g a x b f a a x b f x -=---=-

6、)(x a f y -=与()y f x b =-关于直线2

b a x +=对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f a x =-经过点11(,)a x y -,()y f b x =-经过点11(,)b x y +,∵11(,)a x y -与11(,)b x y +关于直线2

b a x +=对称, ∴)(x a f y -=与()y f x b =-关于直线2b a x +=

对称。 三、总规律:定义在R上的函数()x f y =,在对称性、周期性和奇偶性这三条性质中,只要有两条存在,则第三条一定存在。

一、 同一函数的周期性、对称性问题(即函数自身)

(一)、函数的周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。

1、周期性:

(1)函数)(x f y =满足如下关系式,则T x f 2)(的周期为

A 、)()(x f T x f -=+

B 、)(1)()(1)(x f T x f x f T x f -=+=

+或 C 、)(1)(1)2(x f x f T x f -+=+或)

(1)(1)2(x f x f T x f +-=+(等式右边加负号亦成立) D 、其他情形

(2)函数)(x f y =满足)()(x a f x a f -=+且)()(x b f x b f -=+,则可推出 )](2[)]2([)]2([)2()(a b x f b x a b f b x a b f x a f x f -+=---=--+=-=即可以 得到)(x f y =的周期为2(b-a),即可以得到“如果函数在定义域内关于垂直于x 轴两条直线对称,则函数一定是周期函数”

(3)如果奇函数满足)()(x f T x f -=+则可以推出其周期是2T ,且可以推出对

称 轴为kT T x 22

+=)(z k ∈,根据)2()(T x f x f +=可以找出其对称中心为 )0(kT ,)(z k ∈(以上0≠T )

如果偶函数满足)()(x f T x f -=+则亦可以推出周期是2T ,且可以推出对称中心为)0,22

(kT T +)(z k ∈,根据)2()(T x f x f +=可以推出对称轴为kT T x 2+=)(z k ∈ (以上0≠T )

(4)如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)

(x f y =是

以4T 为周期的周期性函数。如果偶函数)(x f y =满足)()(x T f x T f -=+ (0≠T ),则函数)(x f y =是以2T 为周期的周期性函数。 定理1:若函数()x f 在R 上满足()x a f x a f -=+)(,且()

x b f x b f -=+)((其

中b a ≠),则函数()x f y =以()b a -2为周期.

相关主题