搜档网
当前位置:搜档网 › 计算化学-基本计算及问题

计算化学-基本计算及问题

1计算化学概述

1计算化学概述 计算化学在最近十年中可以说是发展最快的化学研究领域之一。究竟什么是计算化学呢?由于其目前在各种化学研究中广泛的应用, 我们并不容易给它一个很明确的定义。简单的来说, 计算化学是根据基本的物理化学理论通常指量子化学、统计热力学及经典力学及大量的数值运算方式研究分子、团簇的性质及化学反应的一门科学。最常见到的例子是以量子化学理论和计算、分子反应动力学理论和计算、分子力学及分子动力学理论和计算等等来解释实验中各种化学现象,帮助化学家以较具体的概念来了解、分析观察到的结果。对于未知或不易观测的化学系统, 计算化学还常扮演着预测的角色, 提供进一步研究的方向。除此之外, 计算化学也常被用来验证、测试、修正、或发展较高层次的化学理论。同时准确或有效率计算方法的开发创新也是计算化学领域中非常重要的一部分。简言之, 计算化学是一门应用计算机技术, 通过理论计算研究化学反应的机制和速率, 总结和预见化学物质结构和性能关系的规律的学科。如果说物理化学是化学和物理学相互交叉融合的产物, 那么计算化学则是化学、计算机科学、物理学、生命科学、材料科学以及药学等多学科交叉融合的产物, 而化学则是其中的核心学科。近二十年来, 计算机技术的飞速发展和理论方法的进步使理论与计算化学逐渐成为一门新兴的学科。今天、理论化学计算和实验研究的紧密结合大大改变了化学作为纯实验科学的传统印象, 有力地推动了化学各个分支学科的发展。而且, 理论与计算化学的发展也对相关的学科如纳米科学和分子生物学的发展起到了巨大的推动作用。 2计算化学的产生、发展、现状和未来 2.1计算化学的产生 计算化学是随着量子化学理论的产生而发展起来的, 有着悠久历史的一门新兴学科。自上个世纪年代量子力学理论建立以来, 许多科学家曾尝试以各种数值计算方法来深人了解原子与分子之各种化学性质。然而在数值计算机广泛使用之前, 此类的计算由于其复杂性而只能应用在简单的系统与高度简化的理论模型之中, 所以, 即使是在此后的数十年里, 计算化学仍是一门需具有高度量子力学与数值分析素养的人从事的研究, 而且由于其庞大的计算量, 绝大部分的

计算化学学习指南

计算化学学习指南 计算化学学习基本要求: 在学习了化学系列基础课程之后,通过本课程的学习,掌握化学中常用的数值计算方法,并能利用计算方法来解决化学中和部分工程实践中的实际问题,学习中坚持理论与实践相结合,才能更深刻的理解与运用理论,并在解决实际问题中,掌握理论和方法,培养学习能力、实践能力和创新能力。 计算化学学习的难点: 学生学习计算化学时由于受原有化学、数学、计算机基础的制约,感到课程涉及知识面广,入门较慢。尤其是对各种化学、化工知识的综合应用及编程需要有一个熟悉的过程。 计算化学的研究方法: 传统意义上的计算化学要完成的任务一般包括以下几个方面: 1.量子结构计算,分子从头计算(Schrodinger方程的精确解)、半经验计算(Schrodinger方程的估计解)和分子力学计算(根据分子参数计算),属于量子化学和结构化学范畴; 2.物理化学参数的计算,包括反应焓、偶极矩、振动频率、反应自由能、反应速率等的理论计算,一般属于统计热力学范畴; 3.化学过程模拟和化工过程计算等。 但是随着科学的发展,要界定计算化学的范围是很困难的,因为它是化学学科现代化过程中新的生长点,它与迅速崛起的高科技关系密切,深受当今计算机及其网络技术飞速发展的影响,正处在迅速发展和不断演变之中,研究的侧重点也因研究者及其所处的学术环境、原有基础和人员的知识背景而异。在今后的一段时期内,计算机辅助结构解析、分子设计和合成路线设计将是计算化学的主题。尽管实际上计算化学覆盖的面还要广得多,比较公认的研究领域至少有:1.化学数据挖掘(Data mining);

2.化学结构与化学反应的计算机处理技术; 3.计算机辅助分子设计; 4.计算机辅助合成路线设计; 5.计算机辅助化学过程综合与开发; 6.化学中的人工智能方法等。 无论计算化学涉及的内容多么广泛,其核心依然是数值计算问题。 本课程主要学习利用用计算机解化学中的数值计算问题,一般包括以下几个步骤: 1.对所要解决的问题进行分析,将化学问题转变为数学模型,选择所需的计算方法; 问题分析是完成计算任务的基础,包括对问题所含物理化学意义的清楚认识。在进行数值计算时要量纲明确,保证计算步骤分解准确。采用的数学理论正确、计算方法合理有效。 2.写出解决问题的程序框图 根据分析结果给出程序框图是编写程序的基础和关键。写出清晰、流畅、准确的程序框图是任何计算机语言编写程序的必要步骤。程序框图的绘制要根据计算机运算的特点和编写代码程序的需要。 3.代码程序的编写 选择一种合适的计算机语言,运用该种语言将上述程序框图写成计算机程序(高级程序)。由于一种计算机语言往往有不同版本,适合于不同的编译平台,彩的程序代码要符合该编译平台的规范。 4.程序的调试和编译 一个计算机程序编写完成后,一般需要通过编译、调试和修改步骤,构成计算机可以识别的代码集,并找出问题,加以完善。编译和高度的方法依据不同的程序编译平台会略有不同。 5.试算分析,输出结果 调试得到执行程序后,用已知的算例去试算检查,分析结果正确无误码,才能用于未知的算例。

量子化学计算方法试验

量子化学计算方法试验 1. 应用量子化学计算方法进行计算的意义 化学是一门基础学科,具有坚实的理论基础,化学已经发展为实验和理论并重的科学。理论化学和实验化学的主要区别在于,实验化学要求把各种具体的化学物质放在一起做试验,看会产生什么新的物质,而理论化学则是通过物理学的规律来预测、计算它可能产生的结果,这种计算和预测主要借助计算机的模拟。也就是说,理论化学可以更深刻地揭示实验结果的本质并阐述规律,还可以对物质的结构和性能预测从而促进科学的发展。特别是近几年来,随着分子电子结构、动力学理论研究的不断深入以及计算机的飞速发展,理论与计算化学已经发展成为化学、生物化学及相关领域中不可缺少的重要方向。目前,已有多种成熟的计算化学程序和商业软件可以方便地用于定量研究分子的各种物理化学性质,是对化学实验的重要的补充,不仅如此,理论计算与模拟还是药物、功能材料研发环境科学的领域的重要实用工具。 理论化学运用非实验的推算来解释或预测化合物的各种现象。理论化学主要包括量子化学,(quantum chemistry)是应用量子力学的基本原理和方法研究化学问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。量子化学可分基础研究和应用研究两大类,基础研究主要是寻求量子化学中的自身规律,建立量子化学的多体方法和计算方法等,多体方法包括化学键理论、密度矩阵理论和传播子理论,以及多级微扰理论、群论和图论在量子化学中的应用等。理论与计算化学的巨大进展,正使化学学科经历着革命性的变化。今天的理论与计算化学几乎渗透到现代一切科技领域,与材料、生物、能源、信息和环保尤为密切,理论化学的应用范围将越来越广。理论与计算化学逐步发展成为一门实用、高效、富有创造性的基础科学,在化学、生物学等领域的影响越来越显著,且与日剧增。 2. 应用量子化学计算方法进行计算的目的 (1)了解量子化学计算的用途。 (2)了解量子化学计算的原理、方法和步骤。 (3)通过一两个计算实例进行量子化学计算的上机操作试验。 (4)学会简单的分析和应用计算结果。 3. 量子化学计算试验的原理

化学实验六大解题技巧有哪些

化学实验六大解题技巧有哪些 实验综合题是高考的热点问题,高考再现率为100%。要想快速而准确的解决实验综合题,不仅要掌握实验基本操作技能,而且要理解实验原理。为了帮助同学们在化学实验方 面的应考能力有质的飞跃,归纳总结了以下几个步骤供学习参考。 一、导气管的连接 一般应遵循装置的排列顺序。对于吸收装置,若为洗气瓶则应“长”进利于杂质的充 分吸收“短”出利于气体导出;若为盛有碱石灰的干燥管吸收水分和,则应“粗”进同样 利用和水蒸气的充分吸收“细”出利于余气的导出;若为了排水量气时,应“短”进“长”出,被排出水的体积即为生成气体的体积。 二、仪器的连接 根据实验原理选择仪器和试剂,根据实验的目的决定仪器的排列组装顺序,一般遵循 气体制取→除杂→干燥→主体实验→实验产品的保护与尾气处理。其中除杂与干燥的顺序,若采用溶液除杂则应先净化后干燥。尾气处理一般用溶液吸收或将气体点燃。 三、气密性的检查 制气装置一般都存在气密性检查问题。关键是何时进行气密性检查?如何进行气密性 检查?显然应在仪器连接完之后,添加药品之前进行气密性检查。气密性检查的方法虽多 种多样,但总的原则是堵死一头,另一头通过导管插入水中,再微热用掌心或酒精灯容积 较大的玻璃容器,若水中有气泡逸出,停止加热后导管中有一段水柱上升,则表示气密性 良好,否则须重新组装与调试。 四、防倒吸 用溶液吸收气体或排水集气的实验中都要防倒吸。防倒吸一般可分为两种方法:一是 在装置中防倒吸如在装置中加安全瓶或用倒扣的漏斗吸收气体等;二是在加热制气并用排 水集气或用溶液洗气的实验中,实验结束时,应先取出插在溶液中的导管,后熄灭酒精灯 以防倒吸。 五、实验方案的评价 对实验方案的评价应遵循以下原则:①能否达到目的;②所用原料是否常见易得、廉价;③原料的利用率高低;④过程是否简捷优化;⑤有无对环境污染;⑥ 实验的误差大小等等。能达到上述六点要求的实验方案应该说不失为最优实验方案。最优方案的设计应遵循 上述实验方案评价的六原则。方案确定后,为确保实验目的实现,必须选择简捷而正确的 操作程序。

计算化学学习指南

《计算化学》课程学习指南 计算化学学习基本要求: 在学习了化学系列基础课程之后,通过本课程的学习,掌握化学中常用的数值计算方法,并能利用计算方法来解决化学中和部分工程实践中的实际问题,学习中坚持理论与实践相结合,才能更深刻的理解与运用理论,并在解决实际问题中,掌握理论和方法,培养学习能力、实践能力和创新能力。 计算化学学习的难点: 学生学习计算化学时由于受原有化学、数学、计算机基础的制约,感到课程涉及知识面广,入门较慢。尤其是对各种化学、化工知识的综合应用及编程需要有一个熟悉的过程。坚持一定会有收获! 计算化学的研究方法: 传统意义上的计算化学要完成的任务一般包括以下几个方面: 1.量子结构计算,分子从头计算(Schrodinger方程的精确解)、半经验计算(Schrodinger方程的估计解)和分子力学计算(根据分子参数计算),属于量子化学和结构化学范畴; 2.物理化学参数的计算,包括反应焓、偶极矩、振动频率、反应自由能、反应速率等的理论计算,一般属于统计热力学范畴; 3.化学过程模拟和化工过程计算等。 但是随着科学的发展,要界定计算化学的范围是很困难的,因为它是化学学科现代化过程中新的生长点,它与迅速崛起的高科技关系密切,深受当今计算机及其网络技术飞速发展的影响,正处在迅速发展和不断演变之中,研究的侧重点也因研究者及其所处的学术环境、原有基础和人员的知识背景而异。在今后的一段时期内,计算机辅助结构解析、分子设计和合成路线设计将是计算化学的主题。尽管实际上计算化学覆盖的面还要广得多,比较公认的研究领域至少有:1.化学数据挖掘(Data mining);

2.化学结构与化学反应的计算机处理技术; 3.计算机辅助分子设计; 4.计算机辅助合成路线设计; 5.计算机辅助化学过程综合与开发; 6.化学中的人工智能方法等。 无论计算化学涉及的内容多么广泛,其核心依然是数值计算问题。 本课程主要学习利用计算机解化学中的数值计算问题,一般包括以下几个步骤: 1.对所要解决的问题进行分析,将化学问题转变为数学模型,选择所需的计算方法; 问题分析是完成计算任务的基础,包括对问题所含物理化学意义的清楚认识。在进行数值计算时要量纲明确,保证计算步骤分解准确。采用的数学理论正确、计算方法合理有效。 2.写出解决问题的程序框图 根据分析结果给出程序框图是编写程序的基础和关键。写出清晰、流畅、准确的程序框图是任何计算机语言编写程序的必要步骤。程序框图的绘制要根据计算机运算的特点和编写代码程序的需要。 3.代码程序的编写 选择一种合适的计算机语言,运用该种语言将上述程序框图写成计算机程序(高级程序)。由于一种计算机语言往往有不同版本,适合于不同的编译平台,彩的程序代码要符合该编译平台的规范。 4.程序的调试和编译 一个计算机程序编写完成后,一般需要通过编译、调试和修改步骤,构成计算机可以识别的代码集,并找出问题,加以完善。编译和高度的方法依据不同的程序编译平台会略有不同。 5.试算分析,输出结果 调试得到执行程序后,用已知的算例去试算检查,分析结果正确无误码,才能用于未知的算例。

现代分子理论与计算化学导论作业

《现代分子理论与计算化学导论》 ——课程大作业班级:xxxxxxx 姓名:小签牛学号:xxxxxxxxxx 题目:在T*=1.5条件下,分别用分子模拟方法和微扰理论方法计算ρ*=0.02和0.85的体系的压力,并比较两种方法计算 的结果。 Ⅰ.当T*=1.5、ρ*=0.02时的情况 ①由Monte Carlo模拟获得体系的内能、径向分布函数和压力,流 体参数及模拟条件见contrifile文件; 此时的contrifile文件为: ---------------ENTER THE FOLLOWING IN LENNARD-JONES UNITS-------------------- 0.02 # Enter The Density 1.5 # Enter The Temperature 8.0 # Enter The Potential Cutoff Distance 108 # Enter The Intial Molecular Number ---------------ENTER THE SIMULATION STEP CONTROLLING PARAMETES--------------- 200000 # Enter Number Of Cycles 400 # Enter Number Of Steps Between Output Lines 400 # Enter Number Of Steps Between Data Saves 400 # Enter Interval For Update Of Max. Displ. .False. # Whether Read config. From Old Simulation Run config.dat # Enter The Configuration File Name ---------------ENTER THE RADIAL DISTRIBUTION FUNCTION PARAMETES-------------- .True. # Whether Calculate The Radial Distribution Function 0.01 # Enter The Radial Distribution Distance 100000 # Enter Number Of Cycles Of Start Calculating The Radial Distribution gr0.02.dat # Enter The Radial Distribution File Name (运行程序见附件1) 所得“result.dat”文件中的结果为: A VERAGES = -0.149649

= 0.028542

《计算化学》教学大纲

《计算化学》教学大纲 一、课程基本信息 二、课程教育目标 本课程的教育目标在于在计算化学多学科交叉(化学、数学、计算机科学)内容的优化与整合上,突出课程内容的基础性与前沿性;充分利用现代信息技术,用现代化教学理念指导教学全过程,使学生全面

掌握应用计算机解决化学、化工相关问题的基本思路、基本原理、基本方法和基本技能,培养学生学习能力、实践能力与创新能力。 通过本课程的学习,使学生达到: ——掌握如下计算方法及其在化学中的应用: ?Newton-Raphson迭代法、二分法求解一元N次(N>2)方程; ?消去法、Gauss-Seidel迭代法解线性方程组; ?线性回归分析方法; ?Lagrange插值法和差商; ?Simpson法求数值积分; ?Euler法解常微分方程。 ——理解如下计算方法及其在化学中的应用: ?非线性回归分析,多项式回归分析; ?Gauss 法求数值积分; ?Runge-Kutta法解常微分方程。 ——了解如下计算方法及其在化学中的应用: ?样条函数插值法; ?Jacobi方法、QL方法求本征值; ?单纯形优化; ?化工调优; ?化学化工中常用的计算机软件与网络资源; ?分子动力学模拟;Monte Carlo模拟法。 三、理论教学内容与要求 1.前言(1学时)什么计算化学;计算机在化学中的应用;计算化学的过去、现在和将来;学习方法。 2.代数方程及代数方程组的求解在化学中的应用(5学时)二分法;Newton-Raphson迭代法;Gauss消去法;Gauss-Seidel迭代法。 3.插值法和回归分析——实验数据的拟合及模型参数的确定(5学时)线性插值;Lagrange插值;中心差商;一元线性回归分析;一元非线性回归;多元回归;多项式回归分析(自学)。 4.数值积分与常微分方程的数值解法(4学时)梯形法;Simpson法;离散点数据的求积;Gauss法(自学);Euler法及其改进;Runge-Kutta法。 5.本征值和本征向量(1.5学时)Jacobi方法;QL方法(自学)。 6.化学化工中常用的软件及网络资源简介(1.5学时)结构式绘图软件;科学数据处理软件;化学化工重要网站;化工信息源。 7.化学化工中的最优化方法简介(1.5学时)单纯形法优化;化工调优。 8.化学化工过程计算机模拟简介(1.5学时)分子动力学模拟;Monte Carlo法;化工过程模拟;课程小结。 9.拓展课堂(1学时)上机实践主讲教师作计算化学相关的研究报告。 或外请专家作计算化学相关的专题报告。 10.学生讨论课(2学时)学生根据自查资料,写出课程报告并进行课堂讨论。

化学计算方法与技巧

化学计算与技巧专题 考点1 守恒法 守恒法就是化学变化过程中存在的某些守恒关系,如: 1.化学反应前后质量守恒、元素守恒、得失电子守恒、能量守恒、电荷守恒。 2.化合物中元素正负化合价总数绝对值相等(化合价守恒)、电解质溶液中阳离子所带正电荷总数与阴离子所带负电荷总数守恒。 方法点击 化学计算中,“守恒”无处不在,运用守恒法可以提高解题的速率,又可以提高解题的准确性,所以只要看到化学计算,就想到守恒。例: 1.质量守恒法 例:0.1 mol 某烃与1 mol 过量氧气混合,充分燃烧后通过足量的Na 2O 2固体,固体增重15 g ,从Na 2O 2中逸出的全部气体在标准状况下为16.8 L 。求烃的化学式。 解析:设烃的化学式为C x H y ,摩尔质量为a g·mol -1,因为最后逸出的气体不仅包括反应剩余的O 2,也包括烃燃烧产物CO 2和水蒸气与Na 2O 2反应放出的O 2。 烃的质量+m(O 2)=Na 2O 2的增重+m(逸出气体) 0.1 mol×a g·mol -1+32 g·mol -1×1 mol=15 g+32 g·mol -1×16.8 L/22.4 L·mol -1 解得a=70,烃的式量为70, 1270=5余10,烃的化学式为C 5H 10。 2.原子(或离子)守恒 例:用含1.0 mol NaOH 的溶液吸收0.8 mol CO 2,所得溶液中的-23CO 和-3HCO 的物质的量之比为( ) A.1∶3 B.2∶1 C.2∶3 D.3∶2 解析:设生成Na 2CO 3、NaHCO 3物质的量为x 、y ,由反应前后C 原子和Na +守恒可知,可得方程组: [???=+=+mol y x mol y x 8.028.0 解得???==mol y mol x 6.02.0 即所得溶液中-23CO 和-3HCO 的物质的量之比为1∶3。 3.电子守恒 例:在一定条件下,PbO 2与Cr 3+反应,产物为-272O Cr 和Pb 2+,则与1.0 mol Cr 3+反应所需的PbO 2物质的 量为____________。 解析:考查氧化还原反应。解题的关键是抓住电子守恒进行计算:1.0 mol×(6-3)=x×(4-2),得x=1.5 mol 。 4.电荷守恒 例如:在硫酸铝和硫酸钾、明矾的混合物中,若c(-24SO )=0.2 mol·L -1,当加入等体积的0.2 mol· L -1 KOH 溶液时,生成的沉淀又恰好溶解为止,则原溶液中K +的物质的量浓度(mol·L -1)是( ) A.0.2 B.0.25 C.0.3 D.0.45 解析:方法1:原混合液中含有的阳离子是K +、Al 3+,阴离子是-24SO ,加入KOH 溶液后发生的反应是Al 3++4OH -====-2AlO +2H 2O ,所以原溶液中c(Al 3+)=c(K +)= 41×0.2 mol·L -1=0.05 mol·L -1 方法2:根据电荷守恒有:3c(Al 3+)+c(K +)=2c(-24SO ) 推出:c(K +)=2c(-24SO )-3c(Al 3+)=0.25 mol·L -1 考点2 差量法 差量法是根据化学反应前后物质的某些物理量发生的变化,这个差量可以是质量、气体物质的体积、压强、物质的量、反应过程中热量的变化等。该差量的大小与参与反应的物质的量成正比。差量法就是借

高考化学实验题大归纳

实验习题选摘 1.(6分)下列有关实验的叙述,正确的是(填序号)(少一个扣一分,多一个倒扣一分,扣完为止) 。 (A)配制500mL某物质的量浓度的溶液,可用两只250mL的容量瓶 (B)用渗析法分离淀粉中混有的NaCl杂质 (C)无法用分液漏斗将甘油和水的混合液体分离 (D)用酸式滴定管量取20.00mL高锰酸钾溶液 (E)为了测定某溶液的pH,将经水润湿的pH试纸浸入到待测溶液,过一会取出,及标准比色卡进行对比 (F)用浓氨水洗涤做过银镜反应的试管 (G)配制银氨溶液时,将稀氨水慢慢滴加到硝酸银溶液中,产生沉淀后继续滴加到沉淀刚好溶解为止 (H)配制一定浓度的溶液时,若定容时不小心加水超过容量瓶的刻度线,应立即用滴管吸去多余的部分。 (J)在氢氧化铁胶体中加少量硫酸会产生沉淀 (K)用结晶法可以除去硝酸钾中混有的少量氯化钠 答案、(6分)(BCDGJK)(少一个扣一分,多一个倒扣一分,扣完为止) 2、(8分)指出在使用下列仪器(已经洗涤干净)或用品时的第一步操作: (1)石蕊试纸(检验气体):。 (2)容量瓶:。 (3)酸式滴定管:。 (4)集气瓶(收集氯化氢):。

答案、(8分,每空2分) (1)把试纸用蒸馏水湿润(2)检查容量瓶是否漏水 (3)用已给酸液润洗滴定管2~3次(4)干燥集气瓶 3(5分).下列有关实验的说法正确的是_________。 A.配制100g10%的硫酸铜溶液时,称取10g硫酸铜晶体溶解于90g水中 B.鉴别溴乙烷:先加NaOH溶液,微热,在加稀HNO3酸化后,再加AgNO3溶液 C.制乙烯时,温度计应插入反应混合液中 D.用3mL乙醇、2mLH2SO4、2mL冰醋酸制乙酸乙酯,为增大反应速率,现改用6mL乙醇、4mLH2SO4、4mL冰醋酸 E.将一定量CuSO4和NaOH溶液混合后加入甲醛溶液,加热至沸腾,产生黑色沉淀,原因可能是NaOH量太少 答案. BCE(共5分,错选得0分,漏选得2分). 4、(4分)下列有关化学实验的操作或说法中,正确的是(填写字母代号) A、实验室制取肥皂时,将适量植物油、乙醇和NaOH溶液混合,并不断搅拌、加热, 直到混合物变稠,即可得到肥皂 B、进行中和热测定实验时,需要测出反应前盐酸及NaOH溶液的各自温度及反应后溶液 的最高温度 C、检验红砖中的氧化铁成分时,向红砖粉末中加入盐酸,放置到充分沉淀后,取上层 清液于试管中,滴加KSCN溶液2~3滴即可 D、制备硫酸亚铁晶体时,向稀硫酸中加入废铁屑至有少量气泡发生时,过滤,然后加 热蒸发滤液即可得到硫酸亚铁晶体 E、进行纤维素水解实验时,把一小团脱脂棉放入试管中,滴入少量90%的浓硫酸搅拌, 使脱脂棉变成糊状,再加入一定量的水,加热至溶液呈亮棕色,然后加入新制的Cu (OH)2加热至沸腾即可 答案。BC 5.(6分)下列操作或说法合理的是 A.用10毫升的量筒量取4.80毫升的浓硫酸 B.金属钠着火,用泡沫灭火器扑灭 C.用胶头滴管向试管滴液体时,滴管尖端及试管内壁一般不应接触

大学化学综合实验

\ 化学实验报告 实验项目名称安息香的合成及表征 专业班级生物工程112 班 同组人员钟坤徐再鸿何德维刘洪念熊泽雨 学号1108110391 1108110375 1108110384 1108110379 1108110389 指导老师郭妤老师 实验时间:2013年12月5日

安息香的合成及表征 前言 1943年Ukai等发现噻唑盐具有和氰负离子相同的催化性能,同样可以用作安息香缩合反应的催化剂,维生素B1(VB1)在碱性条件下可生成噻唑盐,因此容易获得的VB1可作为催化剂用来进行安息香缩合反应。但在实际操作中发现,VB1催化反应产率低且不稳定,重复性差。何强芳通过探讨反应时间、反应温度、溶液pH值、VB1用量、反应物料加入方式对糠偶姻合成的影响,改进了VB1催化糠醛缩合生成糠偶姻的反应条件: 常温下糠醛与VB1的质量比为20∶1-15∶1,滴加2.5mol/L NaOH使溶液pH 值为8-9,然后65-75℃回流反应60-90 min,产率可达74.16% -76.19%。 安息香缩合反应一般采用氰化钾(钠)作催化剂,是在碳负离子作用下,两分子苯甲醛缩合生成二苯羟乙酮。但氰化物是剧毒品,易对人体危害,操作困难,且“三废”处理困难。20世纪70年代后,开始采用具有生物活性的辅酶维生素B1代替氰化物作催化剂进行缩合反应.以维生素B1作催化剂具有操作简单,节省原料,耗时短,污染轻等特点。 芳香醛在氰化钠(氰化钾)作用下,分子间发生缩合反应生成α-羟酮,称为安息香缩合反应。氰离子几乎是专一的催化剂。反应共同使用的溶剂是醇的水溶液。使用氰化四丁基铵作催化剂,则反应可在水中顺利进行。

计算化学在化学中的应用

计算化学在化学方面的应用 摘要:计算化学在最近十年中是发展最快的化学研究领域之一,通过对具体的分子系统进行理论分析和计算,能比较准确地回答有关稳定性、反应机理等基本化学问题。如今计算化学已被广泛用于材料、催化和生物化学等研究领域。本文主要就计算化学的背景、计算化学常用的方法及其在化学化工中的应用等几个方面作一简单介绍。 关键词计算化学材料催化应用 Abstract: Computational chemistry is one of the fastest growing areas of chemical research in the last decade.Through theoretical analysis and calculations to a specific molecular system, one can accurately answer the basic chemical problems, for example, the stability and the reaction mechanism, etc. Today, computational chemistry has been widely used in materials, catalysis and biochemistry research. In this paper, the background of computational chemistry, the commonly used methods in computational chemistry and its application in chemistry and chemical industry have been briefed respectively. Key words:Computational chemistry; Materials; Catalysis; Application 1、计算化学的背景介绍 计算化学(Computational Chemistry)在最近10年是发展最快的化学研究领域之一。它是根据基本的物理化学理论(通常是量子化学)以大量的数值运算方式来探讨化学系统的性质。最常见的例子是以量子化学计算来解释实验上的各种化学现象,帮助化学家以较具体的概念来了解、分析观察到的结果。除此之外,对于未知或不易观测的化学系统,计算化学还常扮演着预测的角色,提供进一步研究的方向。另外,计算化学也常被用来验证、测试、修正或发展较高层次的化学理论。同时,更为准确或高效的计算方法的开发创新也是计算化学领域中非常重要的一部分。 量子化学,作为量子力学的一个分支,是将量子力学的基本原理和方法,应用于研究化学问题的一门基础科学,其核心问题就是通过一系列近似,求解薛

计算化学复习题

计算化学复习题 第一章 1.请列举计算化学的基本任务 答:几何结构优化,电子结构分析,频率计算,蛋白质的计算,电子和电荷分布的计算,势能面搜索,化学反应速率常数的计算,热力学计算。 2.量子力学、量子化学、分子力学、分子动力学模拟的英文 答:Quantum Mechanics Quantum Chemistry Molecular Mechanics Molecular Dynamics Modelling 3.计算化学的基本方法有哪些 答:(1)ab initio methods从头算方法:是量子力学非参数化分子轨道处理方法。它建立在非相对论近似、Born-oppenheimer近似、轨道近似的基础上,采用原子轨道线性组合和Hartree-Fock自洽场方法,方法中的全部积分均做精确的计算,不使用任何计算方法的任何实验资料。包括HF,MP2(MPX),DFT。 (2)Semi-empirical techniques半经验方法:应用来自于实验或半经验的近似值作为数学计算 模型的初始参数。 (3)Molecular mechanics 分子力学方法:是应用经典物理去解释和说明原子和分子的行为 (4)QM和MM的混合方法—QM/MM:QM/MM方法是将系统分成两个区域,对需了解详细化学过程的区域用量子力学(QM)方法处理,其他区域用分子力学(MM)方法处理。 4.简要描述计算化学的基本过程 答:构建分子结构模型,选择计算方法,几何结构优化,性质计算,结果分析。 第二章和第三章 5.分子力场方法中,请写出分子体系的势能的一般表达方式。 答:E FF=E str+E bend+E tor+E vdw+E el+E cross 6.分子力学的基本思想 答:在分子内部,化学键都有“自然”的键长值和键角值。分子要调整它的几何形状(构像),以使其键长值键角值尽可能接近自然值,同时也使非键作用处于最小的状态吗,给出原子核位置的最佳排布。 7.分子力学的基本假设 答:(1)Born-oppenheimer近似:原子核的运动和电子的运动可以看成是独立的。 (2)体系中原子和分子的运动服从经典力学,即服从牛顿运动定律而不是薛定谔方程。8.力场是什么? 答:势能函数以及它的有关参数、常数和表达式通常称为力场。由于分子内部的作用力比较复杂,作用类型也较多;对于不同类型的体系作用力的情况也有差别。力场的完备与否决定计算的正确程度。 9.了解分子力学的主要应用和局限性。 答:应用:分子力学宜用于对大分子进行构象分析、研究与空间效应密切相关的有机反应机理、反应活性、有机物的稳定性及生物活性分子的构象与活性的关系。 局限性:当研究对象与所用的分子力学力场参数化基于的分子集合相差甚远时不宜使用,当然也不能用于人们感兴趣但没有足够多的实验数据的新类型的分子。对于化合物的电子结构、光谱性质、反应能力等涉及电子运动的研究,不能用分子力学的计算方法。 10.了解分子动力学的方法原理。了解常用的系综及应用:

《理论与计算化学》开卷考试答卷-韩朋

2009~2010 学年春季学期研究生课程《理论与计算化学》开卷考试 答 卷 考试日期:2010年7月2日 姓名: 韩朋 学号或单位: 2009211583 成绩: 题 1. 在BLYP/6-31G*水平上哒嗪(Pyridazine ,C 4N 2H 4)在气相和环己烷溶液中的IR 光谱计算。 解: 表1-1. 在BLYP/6-31G*水平上计算的哒嗪IR 吸收光谱及谱峰的振动归属 -1 吸收峰振动归属 * 实验数据给出的是透光度而不是吸收强度。此处假定空白溶液的本底透光度为80.0,将此值与各吸收峰的透光度之差作为实验吸收强度的相对值来与理论计算值相比较。 图1-1 哒嗪分子的平衡几何结构

题 2. 用QST2法在B3LYP/6-31+G**水平上计算反应CO(g )+H 2(g ) ?→ HCHO(g )的过渡态(TS )和 IRC 曲线)。并在热校正的基础上计算出正、逆向反应的活化能、标准反应焓和反应自由能。 解: ⑴ 反应CO(g )+H 2(g ) ?→ HCHO(g )的IRC 曲线 ⑵ TS 鞍点以及反应物络合物H 2···CO 的几何结构 TS 鞍点 反应物络合物 ⑶ 正、逆向反应的活化能、标准反应焓和反应自由能 表2-1 反应CO(g )+H 2(g ) ?→ HCHO(g )的能量计算和热力学修正(能量单位:a.u.) H 2 (g) CO (g) H 2???CO (g) TS (g) HCHO (g) E 0 -1.17854 -113.31732 -114.49603 -114.37258 -114.51152 E ZPV 0.01017 0.00502 0.01581 0.01864 0.02667 E 0 + E ZPV -1.16837 -113.31231 -114.48022 -114.35394 -114.48485 298 ZVP 0E E + -1.16601 -113.30995 -114.47420 -114.35097 -114.48198 298 QM H = E 0 + δ(H 298 ) -1.16506 -113.30900 -114.47325 -114.35002 -114.48104 298 QM G = E 0 + δ(G 298 ) -1.17985 -113.33144 -114.50775 -114.37574 -114.50587 TS R P

(完整版)高中化学计算题基本计算方法

高中化学计算题基本计算方法 当反应前后固体或液体的质量发生变化时或反应前后气体的压强、密度、物质的量、体积等发生变化时可用差量法计算。(1)体积差 [练习1] 常温下盛有20mL的NO2和NO组成的混合气体的大试管倒立在水中,充分反应后,剩余气体的体积为16mL气体,则原混合气体中,NO2和NO的体积分别是多少? 若在上述大试管中缓缓通入O2,一段时间后,试管内残留2mL气体,则通入O2体积可能为多少mL? 【解答】 (2)质量差 [练习2] 将10.000g氯化钠、溴化钾和氯化钙的混合物溶于水中,通入氯气充分反应,然后把溶液蒸干并灼烧(高温高压),灼烧后残留物的质量为9.813g。若将此残留物再溶于水并加入足量的碳酸钠溶液,所得的沉淀经干燥后质量为0.721g,求原混合物中各化合物的质量。 【解答】

【练习3】将一定量的Na投入246gt℃时的水中,得到t℃时312g饱和NaOH溶液,计算t℃时NaOH的溶解度。 【解答】 (3)其他差值 [练习4] 在一定条件下,NO跟NH3可以发生反应生成N2和H2O。现有NO和NH3的混合物1.2mol,充分反应后所得产物中,若经还原得到的N2比经氧化得到的N2多1.4g。(1)写出反应的化学方程式. (2)若以上反应进行完全,试计算原反应混合物中NO与NH3的物质的量各是多少? 【解答】 2.守恒法 (1)质量守恒包含两项内容:①质量守恒定律,②反应前后某原子的质量不变。 [练习1] 密度为1.1g/cm3的盐酸溶液中,逐滴加入AgNO3溶液,直到沉淀完全为止。已知沉淀的质量和原盐酸的质量相等,求原盐酸的物质的量浓度。 【解答】本题的分析方法如下,即可将AgCl的式量看做原盐酸的质量。

计算化学及其应用

计算化学及其应用 摘要:随着计算化学方法不断完善和计算机技术迅猛发展,计算化学在化学研究中占有越来越重要的地位。本文着重介绍了从头算方法,MΦller Plemet{MP)方法,密度泛函理论等计算方法的特点,并论述了计算化学的应用和前景,以及由计算化学带来的深远影响。 关键词:计算化学;量子化学,计算方法,应用 计算化学(computational chemistry)是理论化学的一个分支。计算化学的主要目标是利用有效的数学近似以及电脑程序计算分子的性质(例如总能量,偶极矩,四极矩,振动频率,反应活性等)并用以解释一些具体的化学问题。 理论化学泛指采用数学方法来表述化学问题,而计算化学作为理论化学的一个分支,常特指那些可以用电脑程序实现的数学方法。计算化学并不追求完美无缺或者分毫不差,因为只有很少的化学体系可以进行精确计算。不过,几乎所有种类的化学问题都可以并且已经采用近似的算法来表述。理论上讲,对任何分子都可以采用相当精确的理论方法进行计算。很多计算软件中也已经包括了这些精确的方法,但由于这些方法的计算量随电子数的增加成指数或更快的速度增长,所以他们只能应用于很小的分子。对更大的体系,往往需要采取其他一些更大程度近似的方法,以在计算量和结果的精确度之间寻求平衡。 计算化学的主要有从头算方法,MΦller Plemet{MP)方法,密度泛函理论等。 从头算方法(Ab initio methods)[1],是指基于量子力学理论的,完全由理论推导而得,不使用基本物理常数和原子量以外的实验数据、以及经验或者半经验参数的求解薛定谔方程的方法。大多数情况下这些第一原理方法包括一定的近似,而这些近似常由基本数学推导产生,例如换用更简单的函数形式或采用近似的积分方法。大多数从头算方法都使用波恩-奥本海默近似,将电子运动和原子核运动分离以简化薛定谔方程。计算经常分两个步骤进行:(1)电子结构计算,(2)化学动力学计算。 MΦller Plemet{MP)方法[2],是一种以Hartree-Fock波函数为微扰波函数的处理原子和分子体系的微扰理论方法,亦称对称性匹配的微扰方法。所谓对称性匹配是指在微扰展开中要考虑波函数的反对称化,也就是考虑了Pauli原理。由于考虑了电子相关作用,可以准确地计算分子聚集体中的弱相互作用能,因此,MP方法常被用于研究含氢键的复合体系和稀有气体元素小分子复合体系。对于一些生物分子复合物现在也已能够得到比较精确的稳定化能,尤其是一些小的超

量子化学计算实验详解2014

量子化学计算方法及应用 实验目的: (1)掌握Gaussian03W的基本操作,通过计算小分子比较不同方法与基组对结果的影响,并比较同分异构体的稳定性;(2)通过运用量子力学方法计算分子的总电子密度,自旋密度,分子轨道及静电势。 实验注意: (1)穿实验服;实验记录用黑色,蓝色或蓝黑色钢笔或签字笔记录,不需要画表格; (2)实验前请先仔细阅读后附的软件使用介绍,然后逐步按照实验步骤所写内容进行操作; (3)所有保存的文件全部保存在E盘或D盘根目录用自己学号命名的文件夹内,文件不要带中文命名,实验完毕全部删除,不得在计算用机上使用自己携带的U盘或其他便携存储设备! 实验步骤: 一、计算准备 打开GaussView,在新建的分子窗口中画出给定的分子结构,点击右键选择Lables显示原子序号;点击File –Save...,把分子保存为mol.gjf文件;用记事本打开mol.gjf文件,根据分子的对称性修改分子的Z矩阵,为相同环境的原子设置相同的键长并给出名称及初始值,以丙二烯的初始Z-矩阵为例: C C 1 B1 H 2 B2 1 A1 H 2 B3 1 A2 3 D1 C 4 B4 2 A3 1 D2 H 5 B5 4 A4 2 D3 H 5 B6 4 A5 2 D4 B1 1.35520000 B2 1.07000000 B3 1.07000000 B4 3.37362449 B5 1.07000000 B6 1.07000000 A1 120.22694612 (以下省略...) 由于氢3,氢4与碳2的键长和氢6,氢7与碳5的键长均相等,所以B2、B3、B5、B6均可设定为键长CH(自定义名称,注意所有字母都用大写!),把下面的B2改为CH并把B3、B5、B6删除(数值不同不要紧,后面已为其给出相同的键长初始值);另外把B1改为键长CC,B4改为键长CC2,键角二面角可无视;修改后Z矩阵如下:C C 1 CC H 2 CH 1 A1 H 2 CH 1 A2 3 D1 C 4 CC2 2 A3 1 D2 H 5 CH 4 A4 2 D3 H 5 CH 4 A5 2 D4 CC 1.35520000 CH 1.07000000 CC2 3.37362449 A1 120.22694612 (以下省略...) 注意内坐标所有变量均在后面给出初始值,变量设值不能重复,修改好后保存,用GaussView点击File – Open尝试打开刚才保存的mol.gjf文件,如果打开有误请再检查和修改。把分子结构和原子编号在实验原始数据记录上记录下来(不需记录Z-矩阵)。

计算化学在生物大分子研究中的应用

计算化学及其在生物大分子研究中的应用 摘要:生物分子动态模拟技术是运用计算机对生物大分子的结构、功能、质子 运动轨迹以及生物分子间的相互作用进行预测,是研究生物分子结构和功能的重要手段。本文综述了近年来报道的研究生物大分子体系的量子化学计算方法(HF、MP、DFT等),简单介绍分子动态模拟技术在生物大分子研究中的应用和研究进展,分析了目前存在的问题,并展望了该领域的研究前景。 关键词:生物大分子;计算化学;分子动态模拟 引言 理论与计算化学是一门应用量子力学和统计力学研究化学问题的化学分支学科。以1998年沃尔特·库恩(Walter Kohn)和约翰·波普尔(John Pople)获得诺贝尔化学奖为标志,化学这一传统实验科学进一步走向严密科学的趋势越加明朗。理论与计算化学在其中的重要作用,也愈加为人们所重视。作为一门独立的学科,它和物理化学、化学物理、分子物理、生物物理、计算科学等相关学科有很强的交叉和渗透。理论化学的重要性在于,它研究的是化学学科最核心和普遍的规律。 大分子体系的理论计算一直是具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构、设计并合成人工酶;可以揭示遗传与变异的奥秘,进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药,等等。可见运用量子化学的手段来研究生命现象是十分有意义的。 随着理论的发展与计算机技术的提高,目前量子化学计算方法和计算程序已能对由几个甚至几十个原子组成的中小分子的性质进行十分精确的理论研究。特别是分子的总能量,许多计算方法(如MP、DFT、QCISD等方法)的计算结果都能与精确实验结果很好地吻合。J.A.Pople小组创建的Gaussian-1(G1)、Gaussian-2(G2)、G2(MP2)和G2(MP3)理论,其能量方面的计算值与精确实验结果的差异在2kcal/mol范围以内,而所需的计算机资源相对较小,计算结果甚至可以用来评判有关实验测定结果的可靠性。然而,到目前为止,还没有一种成熟的理论和普遍可接受的计算程序用于对由数以千计乃至数以万计个原子组成的大分子体系(如核酸、蛋白质和固体材料等)进行量子化学计算研究。这主要是由于计算量与分子大小呈指数(电子数的3次方或更高)关系。因此,大分子体系的量子化学计算方法的研究便成为当今计算化学领域中极具挑战性的研究热点之一。 1.计算化学方法与应用 1.1 Abinitio Hartree-Fock (HF) SCF方法 从头算法在上个世纪70年代被逐渐开展,是求解多电子体系问题的量子理论

相关主题