搜档网
当前位置:搜档网 › 实验40 光栅衍射法测定光波长

实验40 光栅衍射法测定光波长

实验40 光栅衍射法测定光波长
实验40 光栅衍射法测定光波长

大学物理实验教案

实验名称:光栅衍射法测定光波长 1 实验目的

1)熟练分光计的调节。 2)理解光栅衍射现象;

3)学习用光栅衍射法测定光的波长。

2 实验器材

分光计、平面透射光栅、汞灯、平面反射镜

3 实验原理

3.1 实验原理

光栅和棱镜一样,是重要的分光光学元件,已广泛应用在光栅光谱仪、光栅单色仪等。光栅是一组数目极多的等宽、等距和平行排列的狭缝。它分为透射光栅和反射光栅两种。应用透射光工作的称为透射光栅,应用反射光工作的称为反射光栅。现代制造光栅主要有刻划光栅、复制光栅和全息光栅等形式。本实验用的是平面透射光栅。

描述光栅特征的物理量是光栅常数d ,其大小等于狭缝宽度a 与狭缝间不透光部分的宽度b 之和,即b a d +=,习惯上用单位毫米里的狭缝数目N 来描述光栅特性。光栅常数d 与N 的关系为

N d 1

=

(1)

根据夫琅禾费衍射理论,波长为λ的平行光束垂直入射到光栅平面上时,透射光将形成衍射现象,即在一些方向上由于光的相互加强后光强度特别大,而其他的方向上由于光的相消后光强度很弱就几乎看不到光。图40-1给出了形成光栅衍射的光路图。如果入射光源为线光源,经过光栅后衍射图样为一些相距较大的锐利的色彩斑斓的明亮条纹组成。而这些亮条纹

1、光源

2、狭缝

3、凸透镜

4、平面透射光栅

5、光栅衍射光谱

图40—1 实验原理示意图

图40—2 汞灯的部分光栅衍射光谱示意图

所在的方位由光栅方程所确定,方程为

λφk d =sin ( 2,1,0±±=k ) (2)

其中,d 为光栅常数,k 为衍射级别,λ为光波长,φ为衍射角它是光栅法线与衍射方位角

之间的夹角。由(2)式可见,同一级的衍射条纹,如果波长不同其衍射角不同,所以光栅具有分光功能。图40-2为汞灯的部分光栅衍射光谱示意图。

光栅衍射现象是很容易观察到的,如果手头有一块光栅,可直接透过光栅观察某一光源就可看到衍射现象。实验室中经常在分光计上利用光栅衍射现象来进行光波长或光栅常数的测量。实验上,只要选择光栅常数已知的光栅,可见用待测光照射,使其产生衍射现象,同时用分光计测出各级衍射亮条纹所对应的衍射角k φ,那么由光栅方程(3)可以确定光波长,即:

k

d k

φλsin =

(3)

3.2 实验方法

如果有一台调节好的分光计,便可用来观察光栅衍射现象以及进行相关物理量的测定。如果光栅常数是已知的,那么把光栅置于分光计的载物台上,并确定光栅的刻线与平行光管的狭缝平行并使光栅平面与平行光管垂直。观察时,先把望远镜调节到对准平行光管,然后分别向左边和右边漫漫转动望远镜,便可观察到各个级别的衍射条纹,包括条纹的分布情况、各级条纹的亮度等等。对于第k 级衍射角的测量,可以把望远镜转动到对准第k 级衍射条纹,

测量其方向,读数为(k θ,k θ')。再把望远镜转动到对准第k -级衍射条纹并测量其方向,读数为(k -θ,k -'θ)。根据条纹的对称性质,那么第k 级衍射条纹的衍射角用(4)式

)()(41

k k k k k θθθθφ'-'+-=

-

- (4)

得以计算。

4教学内容

1)分光计调节。

2)利用透射光栅测定汞灯中各个谱线的光波长。

5 实验教学组织及教学要求

1)检查设计方案并提出问题。 2)介绍光栅。

3)介绍测量内容及测量要求。 6 实验教学的重点及难点 1)重点:

1.分光计的调节(望远镜调焦、望远镜光轴调节、平行光管调节。) 2. 光栅放置的要求。 3.衍射角测量方法。 2)难点:

1.分光计调节。

7 实验中容易出现的问题

1. 光栅放置时没有使光栅平面与入射光方向垂直。

2. 光射刻线没有与望远镜扫过的平面垂直导致正负级别的衍射条纹不等高。

8 实验参考数据

1)提供的光栅其光栅常数分别有N = 100.0、300.0、600.0/mm 。 2)分光计的仪器误差为:2'。

3)汞灯三条较强谱线的波长公认值为: 436nm (紫色)、546nm (绿色)、577nm (黄色)。 4)几种不同光栅常数对应的衍射角测量参考数据 N = 100.0/mm ,

紫光:237/05/0320

30201'='='=???。

绿光:729/716/830

30201'='='=??? 黄光:959/936/0230

30

20

1'='='=??? N = 300.0/mm ,

紫光:0115/0370

20

1'='=??。 绿光:0119/6290

20

1'='=?? 黄光:5120/8590

20

1'='=?? N = 600.0/mm ,

紫光:01150

1'=?。绿光:9190

1'=? 黄光:71200

1'=?

9 实验结果检查方法

1)检查分光计调节是否符合要求。 2)检查重复测量的数据重复性。

3)检查测量结果与公认值之间的偏差是否符合要求。 10 课堂实验预习检查题目

1. 分光计调节有哪些要求?

2. 如何判断入射光方向与光栅平面垂直? 11 讨论题

1. 试分析如果入射光方向与光栅平面有点不垂直的话,将给波长测量带来多大的系统

误差?

2. 实验中对于波长测量不确定度的评价并未考虑到光栅常数的影响,如果把光栅常数

的影响一起考虑进来的话,那么波长的不确定度计算公式是什么?

实验内容与步骤:

1.分光计的调整:

调整分光计就是要达到望远镜聚焦于无穷远处;望远镜和平行光管的中心光轴一定要与分光计的中心轴相互垂直,平行光管射出的光是平行光。

(1)调望远镜聚焦于无穷远处

目测粗调:由于望远镜的视场角较小,开始一般看不到反射象。因此,先用目视法进行粗调,使望远镜光轴、平台大致垂直于分光计的转轴。然后打开小灯的电源,放上双面镜(为了调节方便,应将双面镜放置在平台上任意两个调节螺丝的中垂线上,且镜面与平台面基本垂直),转动平台,使从双面镜正、反两面的反射象都能在望远镜中看到。若十字象偏上或偏下,适当调节望远镜的倾斜度和平台的底部螺丝,使两次反射象都能进入望远镜中。

用自准直法调节望远镜:经目测粗调,可以在望远镜中找到反射的十字象。然后通过调节望远镜的物镜和分划板间的距离,使十字象清晰,并且没有视差(当左右移动眼睛时,十字象与分划板上的叉丝无相对移动),说明望远镜已经聚焦到无穷远处,既平行光聚焦于分划板的平面上。(2)调望远镜光轴垂直于仪器转轴

利用自准法可以分别观察到两个亮十字的反射象。如果望远镜光轴与分光计的中心轴相垂直,而平面镜反射面又与中心轴平行,则转动载物平台时,从望远镜中可以两次观察到由平面镜前后两个面反射回来的亮十字象与分划板准线上部十字线完全重和。如果不重合,而是一个偏低,一个偏高,可以通过半调整法来解决,即先调节望远镜的高低,使亮十字象与分划板准线上部十字线的距离为原来的一半,再调节载物平台下的水平调节螺丝,消除另一半距离,使亮十字象与分划板准线上部十字线完全重和。将载物平台旋转180度,使望远镜对着平面镜的另一面,采用同样的方法调节,如此反复调整,直至从平面镜两表面反射回来的亮十字象与分划板准线上部十字线完全重和为止。

(3)调节平行光管产生平行光

用已调好的望远镜作为基准,正对平行光管观察,并调节平行光管狭缝与透镜的距离,使望远镜

中能看到清晰的狭缝象,且象与叉丝无视差。这时平行光管发出的光既为平行光,然后调节平行光管的斜度螺丝,使狭缝居中,上下对称,即平行光管光轴与望远镜光轴重合,都垂直于仪器转轴。

2.调节光栅方位及测量:

(1)分光计调节好后可将光栅按双面镜的位置放好,适当调节使从光栅面反射回来的亮十字像与分划板准线上部十字线完全重合。

(2)从中央条纹(即零级谱线)左侧起沿一个方向向左移动望远镜,使望远镜中的叉丝依次与第一级衍射光谱中的绿线相重合,记下对应位置的读数,再移动望远镜,越过中央条纹,依次记录右侧第一级衍射光谱中的绿线位置对应的读数。为了减少误差,再从右侧开始,重测一次。【数据记录与处理】

表1 测量光栅常数绿光波长: =546.1nm

绿光波长λ=0.546.1微米

1.707微米

0.038微米

1.707±0.038微米

T(0.95)=1.645

3.80'

18o41'

思考题:

1.怎样调整分光计?调整时应注意的事项?

答:⑴先目测粗调,使望远镜和平行光管大致垂直与中心轴;另外再调载物台使之大致呈水平状态。(2)点亮照明小灯,调节并看清准线和带有绿色小十字窗口。(3)调节并使载物台上的准直镜正反两面都进入望远镜,并且成清晰的像。(4)采取逐步逼近各半调节法使从准直镜上发射所成的十字叉丝像与准直线重合。(5)目测使平行光管光轴与望远镜光轴重合,打开狭缝并在望远镜中成清晰的大约1mm宽的狭缝像。(6)使狭缝像分别水平或垂直并调节使狭缝像中心与十字叉丝中点想重合。调节过程中要注意已经调节好的要固定好,以免带入新的误差,另外注意逐步逼近各半调节法的使用。

2.光栅方程和色散率的表达式中各量的物理意义及适用条件?

答:(1)在光栅方程中λ为实验中所测光的波长,如本实验中绿光的波长。K为衍射光谱级数φ为衍射角,d为光栅常数即光栅相临两刻蚊间长度。实用条件取决与级数的选取应与实验相一致。

(2)色散率的表达式中相应量与光栅方程中具有相同含义。

3.当平行光管的狭缝很宽时,对测量有什么影响?

答:造成测量误差偏大,降低实验准确度。不过,可采取分别测狭缝两边后求两者平均以降低误差。

4.若在望远镜中观察到的谱线是倾斜的,则应如何调整?

答:证明狭缝没有调与准线重合有一定的倾斜,拿开光栅调节狭缝与准线重合。

5.为何作自准调节时,要以视场中的上十字叉丝为准,而调节平行光管时,却要以中间的大十字叉丝为准?

答:因为在自准调节时照明小灯在大十字叉丝下面,另外要保证准直镜与望远镜垂直,就必须保证其在大十字叉丝上面,并且距离为灯与大十字叉丝相同的地方,即以视场中的上十字叉丝为准。现在,很容易就知道为什么在调节平行光管时,却要以中间的大十字叉丝为准了。

6.光栅光谱与棱镜光谱相比有什么特点?

答:棱镜光谱为连续的七色光谱,并且光谱经过棱镜衍射后在两边仅仅分别出现一处;

光栅光谱则不同,它为不连续的并且多处在平行光管轴两边出现,另外还可以条件狭缝的宽度以保证实验的精确度。

1实验目的

2实验原理

2.1光栅衍射

介绍垂直入射时的光栅方程式以及波长计算公式。

2.2光栅衍射现象的观察以及衍射角的测量方法

介绍用什么仪器来观察衍射现象以及如何测量衍射光方向,并给出计算衍射角的计算公式。

2.3分光计调节步骤

2.4衍射角测量步骤

3实验数据与处理

3.1 实验数据

用规范的表格列出实验数据并进行数据检验结果说明。

3.2 数据处理

给出各个直接测量物理量的平均值、标准偏差以及仪器极限误差等数据。

进行各个直接测量物理量的测量不确定度计算。

进行光波长测量平均值计算。

进行光波长测量不确定度计算。

注意:计算过程表述必须完整、严密。

主要计算公式有:

4 实验结果

结果文字说明时必须说清什么光的波长。

5讨论

可以谈体会、方法改进、新方法、提高测量精确度、回答讨论题等。

光栅衍射法测量光波长

光栅衍射法测量光波长数据处理参考 1.数据记录 表一 汞灯绿光衍射角的测量 次序 k θ 'k θ k -θ 'k -θ 1 230°3’ 50°0’ 268°27’ 88°25’ 2 230°2’ 49°59’ 268°28’ 88°24’ 3 230°2’ 50°0’ 268°26’ 88°23’ 4 230°2’ 49°59’ 268°28’ 88°24’ 5 230°3’ 49°58’ 268°27’ 88°24’ 6 230°2’ 49°59’ 268°28’ 88°25’ 7 230°2’ 49°59’ 268°27’ 88°25’ 8 230°3’ 49°59’ 268°28’ 88°23’ 注:极限误差0.017,2,1/300()m k d mm ?=?== 2、实验数据处理(数据计算要有过程,即计算公式、数值代入,有效数字的保留要正确) A 、对 k θ进行数据处理: 根据肖维涅准则,对以 k θ测量量进行检查,无坏值出现。 8 1 1230.048k ki i θθ===?∑ 0.0031k S θ= =? vp t =1.08 1.080.00310.0034k A vp u t S θ==?= 0.0098B u = == 0.010k u ===? B 、对 'k θ进行数据处理: 根据肖维涅准则,对以 'k θ 测量量进行检查,无坏值出现。 8 ''1 149.988k k i i θθ===?∑ ' 0.0038k S θ= = ? vp t =1.08 ' 1.080.00380.0041k A vp u t S θ==?= 0.0098B u = == '0.010k u ===? C 、对 k -进行数据处理: 根据肖维涅准则,对以 k θ-测量量进行检查,无坏值出现。

光栅衍射实验实验报告

工物系 核11 李敏 2011011693 实验台号19 光栅衍射实验 一、 实验目的 (1) 进一步熟悉分光计的调整与使用; (2) 学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3) 加深理解光栅衍射公式及其成立条件; 二、 实验原理 2.1测定光栅常数和光波波长 如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产生衍射;出射光夹角为?。从B 点引两条垂线到入射光和出射光。如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即 ()sin sin d i m ?λ ±= (1) m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λ?,,,i d 中的三个 量,可以推出另外一个。 若光线为正入射,0=i ,则上式变为 λ ?m d m =sin (2) 其中 m ?为第m 级谱线的衍射角。 据此,可用分光计测出衍射角m ?,已知波长求光栅常数或已知光栅常数求 波长。 2.2用最小偏向角法测定光波波长 如右图。入射光线与m 级衍射光线位于光栅法线同侧,(1)式中应取加号,即d (sin φ+sin ι)=mλ。以Δ=φ+ι为偏向角,则由三角形公式得 2d (sin Δ 2cos φ?i 2 )=mλ (3) 易得,当φ?i =0时,?最小,记为δ,则(2.2.1)变

为 ,3,2,1,0,2 sin 2±±±==m m d λδ (4) 由此可见,如果已知光栅常数d ,只要测出最小偏向角δ,就可以根据(4)算出波长λ。 三、 实验仪器 3.1分光计 在本实验中,分光计的调节应该满足:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。 3.2光栅 调节光栅时,调节小平台使光栅刻痕平行于分光计主轴。放置光栅时应该使光栅平面垂直于小平台的两个调水平螺钉的连线。 3.3水银灯 1.水银灯波长如下表 2.使用注意事项 (1)水银灯在使用中必须与扼流圈串接,不能直接接220V 电源,否则要烧 毁。 (2)水银灯在使用过程中不要频繁启闭,否则会降低其寿命。 (3)水银灯的紫外线很强,不可直视。 四、 实验任务 (1)调节分光计和光栅使满足要求。 (2)测定i=0时的光栅常数和光波波长。 (3)测定i=15°时的水银灯光谱中波长较短的黄线的波长

光栅衍射实验

光栅衍射实验 Prepared on 22 November 2020

一、实验名称:光栅衍射实验核51粟鹏文 二、实验目的: (1)进一步熟悉分光计的调整与使用; (2)学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3)加深理解光栅衍射公式及其成立条件。 三、实验原理: 衍射光栅简称光栅,是利用多缝衍射原理使光发生色散的一种光学元件。它实际上是一组数目极多、平行等距、紧密排列的等宽狭缝,通常分为透射光栅和平面反射光栅。透射光栅是用金刚石刻刀在平面玻璃上刻许多平行线制成的,被刻划的线是光栅中不透光的间隙。而平面反射光栅则是在磨光的硬质合金上刻许多平行线。实验室中通常使用的光栅是由上述原刻光栅复制而成的,一般每毫米约250~600条线。由于光栅衍射条纹狭窄细锐,分辨本领比棱镜高,所以常用光栅作摄谱仪、单色仪等光学仪器的分光元件,用来测定谱线波长、研究光谱的结构和强度等。另外,光栅还应用于光学计量、光通信及信息处理。 1.测定光栅常数和光波波长 光栅上的刻痕起着不透光的作用,当一束单色光垂直Array照射在光栅上时,各狭缝的光线因衍射而向各方向传 播,经透镜会聚相互产生干涉,并在透镜的焦平面上形 成一系列明暗条纹。 如图1所示,设光栅常数d=AB的光栅G,有一束平行 光与光栅的法线成i角的方向,入射到光栅上产生衍射。 从B点作BC垂直于入射光CA,再作BD垂直于衍射光 AD,AD与光栅法线所成的夹角为。如果在这方向上由图1光栅的衍射

于光振动的加强而在F 处产生了一个明条纹,其光程差CA +AD 必等于波长的整数倍,即: ()sin sin d i m ?λ±=(1) 式中,为入射光的波长。当入射光和衍射光都在光栅法线同侧时,(1)式括号内取正号,在光栅法线两侧时,(1)式括号内取负号。 如果入射光垂直入射到光栅上,即i=0,则(1)式变成: sin m d m ?λ=(2) 这里,m =0,±1,±2,±3,…,m 为衍射级次,m 第m 级谱线的衍射角。 2.用最小偏 向角法测定光波波长 如图2所示,波长为λ的光束入射在光栅G 上,入射角为i ,若与入射线同在光栅 法线n 一侧的m 级衍射光的衍射角为沪,则由式(1)可知 ()sin sin d i m ?λ±=(3) 若以△表示入射光与第m 级衍射光的夹角,称为偏向角, i ??=+(4) 显然,△随入射角i 而变,不难证明i ?=时△为一极小值,记作δ,称为最小偏向角。并且仅在入射光和衍射光处于法线同侧时才存在最小偏向角。此时 2 i π ?== (5) 带入式(3)得 2sin 2 d m δ λ=m=0,±1,±2, (6) 由此可见,如已知光栅常数d ,只要测出了最小偏向角δ,就可根据式(6)算出波长λ。 四、主要的实验仪器及实验步骤: 图2衍射光谱的偏向角示意图 图3光栅衍射光谱

光栅常数测定实验数据处理及误差分析

光栅常数测定实验数据处理及误差分析 摘 要: 在光栅常数的测定实验中,很难保证平行光严格垂直人射光栅,这将形成误差,分光计的对称测盘法只能消除误差的一阶误差,仍存在二阶误差。.而当入射角较大时,二阶误差将不可忽略。 关键词: 误差,光栅常数,垂直入射,数据处理 Analysis and Improvements of the Method to Measure the Grating Constant xuyongbin (South-east University, Nanjing,,211189) Abstract: During the m easuring of grating constant determination,the light doesn’t diffract the grating and leads to error.Spectrometer rm,there is still the measured the symmetry disc method can only eliminate the first -order correction term,there is still the second-order correction error.When the incident angle of deviation is large,the error can not be ignored,an effective dada processing should be taken to eliminate the error . key words: Grating Constant ,Accidental error ,Improvements 在光栅常数测定的实验中,当平行光未能严格垂直入射光栅时,将产生误差,用对称测盘法只能消除一阶误差,仍存在二阶误差,我们根据推导,采取新的数据处理方式以消除二阶实验误差。 1.1 光栅常数测定实验误差分析 在光栅光谱和光栅常数测定实验中,我们需要调节光栅平面与分光计转抽平行,且垂直准直管,固定载物台,但事实上,我们很做到,因此导致了平行光不能严格垂直照射光栅平面,产生误差,虽然分光计的对称测盘可以消除一阶误差,但当入射角θ 较大时,二阶误差也会造成不可忽略的误差。 当平行光垂直入射时,光栅方程为: d k k /sin λφ= (1) 如上图,当平行光与光栅平面法线成θ角斜入射时的光栅方程为: d k k /sin )sin(λθθφ=+- (2)

分光计的调节和用衍射光栅测定光的波长.docx

分光计的调节和用衍射光栅测定光的波长 一、实验任务 1.了解分光计的结构和调节过程, 学习正确调节分光计; 2.观察光栅对钠光衍射现象; 3.用光栅衍射法测量钠光的波长; 4.观察白光的光栅衍射现象。 二、操作要点 1.调节分光计 ( 1)调节望远镜:先调节望远镜聚焦于无穷远处(即适合平行光),再调节望远镜的光轴与仪器的主轴垂直; (2)调节平行光管:先调节平行光管,使其发出平行光,再调节平行光管的光轴与 仪器的主轴垂直。 2.调节光栅 调节光栅平面的法线垂直于仪器的主轴,调节光栅刻痕方向平行于仪器的主轴。 3.测定钠光波长 测出各级衍射亮线的角位置,将测量数据填入记录表格中。光栅常数d=1/300 mm 。 4.观察光栅的白光衍射现象,并画出观察到的衍射图像。 三、注意事项 1.分光计是较精密的仪器,调节时要严格按照操作规程; 2.光栅是易损元件,注意轻拿轻放,以防打碎; 3.为了延长钠光灯的使用寿命,严禁频繁开闭。 四、报告要求 -- 1.计算衍射角度,由所测的各λ值计算λ,并将λ与钠黄光标准值λ= 589.3 nm相比较, κ 计算测量的相对偏差。要求写出完整的计算过程,包括所用公式和代入实验数据后的表达 式。 2.画出白光光栅衍射光谱示意图并标出光谱的色序排列。 五、设计性内容 钠黄光由两条谱线组成,测量它们的波长差。 六、讨论题 1、 3 。 附录: FGY-10 型分光计结构特点与使用方法简介(二校区实验室使用) 该型分光计的望远镜、平行光管结构及其调整方法与讲义中介绍的基本相同,但其读 数盘的结构及读数方法是不同的。见下图:

读数装置: 该分光计的读数装置如图所示,由主刻度盘、游标盘、照明灯及读数窗组成。在主刻 度盘周边沿半径方向刻有1080 条透光线条,将周边等份为1080 个分度。每分度所对应的圆心角为20′。在游标盘上对称地配置两个分度相同的游标。游标的40个分度与主刻度盘上的 39 个分度对应的圆心角相同(13° 00′ 00″)。根据游标原理可知,此游标的分度值 为30″。 读数方法: 接通分光计电源后,在读数窗中看到的度盘和游标刻线均呈亮条纹。游标盘与刻度盘 所对准的刻线,在两盘的弧线间以亮线贯通。读数时,20 ′的整数倍部分(以 A 表示)根据游标盘0 刻线在刻度盘中所处位置进行读数;不足20′的部分(以 B 表示)根据贯通线的位置再游标上读取。两部分之和(A+B)即为分光计角度的读数。 由于两盘的刻线面间有一定间距,当从 读数窗望下看时,贯通线的位置会随观察角 度不同而变化。这就要求在测量时要始终以 相同的观察角度(如总是垂直于读数窗)进 行读数。又因刻线具有一定宽度,有时会出 现两条线同时贯通的情况,这是刻将读数估 计在两条贯通亮线中间所对应的位置。 例如上图 (a) 所示情况, A = 250 ° 40′, B= 02′00″。于是,分光计的读数值为 θ=175 ° 42′ 00″。对于上图 (b) 的情况, A = 175 °20′, B= 06′ 15″,则分光计 读数为θ=175°26′15″。 ·1·

光栅衍射实验报告

字体大小:大| 中| 小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 --- ---实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2.加深对分光计原理的理解。 3.用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵,常用的是复制光栅和全息光栅。图1中的为刻痕的宽度, 为狭缝间宽度, 为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射,所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜,在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 出现明纹时需满足条件 (2) (2)式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2)式光栅方程,若波长已知,并能测出波长谱线对应的衍射角,则可以求出光栅常数d 。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm;绿色2=546.1nm;黄色两条3=577.0nm和4=579.1nm。 衍射光栅的基本特性可用分辨本领和色散率来表征。 角色散率D(简称色散率)是两条谱线偏向角之差Δ两者波长之差Δ之比:

光栅衍射实验报告

光栅衍射实验报告 字体大小:大|中|小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 ------实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2. 加深对分光计原理的理解。 3. 用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其

示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

,常用的是复制光栅和 的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵 全息光栅。图1中的为刻痕的宽度,为狭缝间宽度,为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹 数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路 图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射, 所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜, 在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 岀现明纹时需满足条件 (2) (2 )式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2 )式光栅方程,若波长已知,并能测岀波长谱线对应的衍射角,则可以求岀光栅常数 d。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的 两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同 的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm; 绿色2=546.1 nm; 黄色两条3=577.0nm 和4=579.1 nm 。 衍射光栅的基本特性可用分辨本领和色散率来表征。

衍射光栅测波长

衍射光栅测波长 光栅是一种重要的分光元件,是一些光谱仪器(如单色仪,光谱仪)的核心部分,它不仅用于光谱学,还广泛用于计量,光通信及信息处理等方面。 一、实验目的: 1、熟悉分光计的调整和使用。 2、观察光线通过光栅后的衍射现象。 3、掌握用光栅测量光波长及光栅常数的方法。 二、实验仪器 TTY —01型分光计,待测波长的光源,光栅。 三、实验原理: 光栅是根据多缝衍射原理制成的一种分光元件,它能产生谱线间距离较宽的匀排光谱。所得光谱线的亮度比棱镜分光时要小一些,但光栅的分辨本领比棱镜大。 光栅不仅适用于可见光,还能用于红外和紫外光波,常用于光谱仪上。 光栅在结构上有平面光栅,阶梯光栅和凹面光栅等几种、同时又分为透射式和反射式两类。本实验选用透射式平面刻痕光栅或全息光栅。 透射式平面刻痕光栅是在光学玻璃片上刻划大量互相平行,宽度和间距相等的刻痕制成的。当光照射在光栅面上时,刻痕处由于散射不易透光,光线只能在刻痕间的狭缝中通过。因此,光栅实际上是一排密集均匀而又平行的狭缝。 若以单色平行光垂直照射在光栅面上,则透过各狭缝的光线因衍射将向各个方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一系列被相当宽的暗区隔开的间距不同的明条纹。 按照光栅衍射理论,衍射光谱中明条纹的位置由下式决定: λφk b a k ±=+sin )( 或:λφk d k ±=sin ( 2.1.0=k ) (1.3—1) 式中:d=)(b a +称为光栅常数,λ为入射光波长,k 为明条纹(光谱线)级数,φk 为K 级明条纹的衍射角。(参看图1.3—1)。 如果入射光不是单色光,则由式(1.3—1)可以看出,光的波长不同其衍射角φk 也各不相同,于是复色光将被分解。而在中央k=0,φk=0处,各色光仍重叠在一起,组成中央明条纹,在中央明条纹两侧对称分布着k=1、2……级光谱,各级光谱线都按波长大小的顺序依次排列成一组彩色谱线,这样就把复色光分解为单色光(如图1.3—1)

光栅衍射实验报告

光栅衍射实验 系别 精仪系 班号 制33 姓名 李加华 学号 2003010541 做实验日期 2005年05月18日 教师评定____________ 一、0i =时,测定光栅常数和光波波长 光栅编号:___2____;?=仪___1’___;入射光方位10?=__7°6′__;20?=__187°2′__。 由衍射公式,入射角0i =时,有sin m d m ?λ=。 代入光谱级次m=2、绿光波长λ=546.1及测得的衍射角m ?=19°2′,求得光栅常数 ()2546.13349sin sin 192/60m m nm d nm λ??= ==+? cot cot 2m m m d d ?????==?=? ()4cot 192/601/60 5.962101802180ππ-????=+??=? ? ????? 445.96210 5.962103349 1.997d d nm nm --?=??=??= ()33492d nm =± 代入其它谱线对应的光波的衍射角,得 ()3349sin 2013/60sin 578.72 m nm d nm m ?λ?+?===黄1

()3349sin 209/60576.82 nm nm λ?+? = =黄2 ()3349sin 155/60435.72 nm nm λ?+?==紫 λ λ?== 578.70.4752nm nm λ?==黄1 576.80.4720nm nm λ?= =黄2 435.70.4220nm nm λ?==紫()578.70.5nm λ=±黄1,()576.80.5nm λ=±黄2,()435.70.4nm λ=±紫 由测量值推算出来的结果与相应波长的精确值十分接近,但均有不同程度的偏小。由于实验中只有各个角度是测量值(给定的绿光波长与级数为准确值),而分光计刻度盘读数存在的误差为随机误差,观察时已将观察显微镜中心竖直刻线置于谱线中心——所以猜测系统误差来自于分光镜调节的过程。 二、150'i =?,测量波长较短的黄线的波长 光栅编号:___2____;光栅平面法线方位1n ?=__352°7′__;2n ?=__172°1′__。

用透射光栅测定光波波长

用透射光栅测光波波长 一、实验目的 1、进一步学习分光计的调整和使用。 2.加深对光的衍射理论及光栅分光原理的理解 3 掌握用透射关光栅测定光波波长、光栅常数及角色散率的方法。 二、实验仪器 分光计、钠灯、光栅等 三、实验原理 光栅是根据多缝衍射原理制成的一种分光元件。它 不仅适用于可见光,还能用于红外和紫外光波。由于制造方法或用途不同,光栅的种类很多,有刻痕光栅和全 息光栅之分;有透射光栅和反射光栅之分等等。本实验 选用透射式平面刻痕光栅,它在光栅上每毫米刻有n 条 刻痕,其光栅常数d = 1/n 。现代光栅技术可使n 多达一千条以上。 1.光栅衍射及光波波长的测定 由夫琅和费衍射理论,当波长为λ的单色光垂直入射至光栅上,满足光栅方程 λθk d =sin ( ,3,2,1,0=k ) (1) 时,θ方向的光加强,其余方向的光几乎完全抵消。式中d 为光栅常数,θ为衍射角。若已知λ,则可求d ;若已知d ,则可求λ。 2. 光栅的角色散率 光栅在θ方向的角色散率为 θ λθcos d k d d D == (2) 测出d 及θ,可求出该方向的角色散率D 。 四、实验内容和步骤 1.调节分光计 分光计的调节要求是:望远镜聚焦于无穷远;准直管发出平行光;准直管与望远镜同轴并与分光计转轴正交.调节时,首先用目视法进行粗调。使望远镜、准直管和载物台面大致垂直于分光计转轴,然后按下述步骤和方法进行细调. (1)用自准法调节望远镜聚焦于无穷远. (2)调节望远镜主轴垂直于仪器转轴. 1 75——图b d θP θ2L 1L S G

图33-5-------图33-6 (3)调节分划板上十字叉丝水平与垂直.转动载物平台,从目镜中观察绿十字像是否沿叉丝水平线平行移动,若不平行,则可转动分划板套筒使其平行(注意不要破坏望远镜的调焦), 到此,望远镜已调好,可作为基准进行其它调节. (4)调节准直管发出平行光且准直管主轴与转轴垂直 2、光栅位置的调节 将光栅按照上面平面镜的位置放置,并与准直管尽量垂直。一般情况下,因为光栅片与载物小平台并不垂直,因此,光栅放在已经调好的分光计上后,还要对分光计进行调节,但此时不能调节分光计的望远镜系统,只能调节载物小平台。其要求是:亮十字反射回来的像(绿十字)及狭缝像与调整叉丝的竖直线重合,亮十字反射回的像的水平线同时与调整叉丝的水平线重合。因为光栅的两面并不严格平行,因此,此时调节光栅时不必将光栅转动1800 。 用钠灯照亮狭缝,转动望远镜观察光谱,如果左右两侧的光谱线相对于目镜中的叉丝的水平线高低不等,说明光栅的衍射面和观察面不一致,这时可调节平台上的螺钉c ,使他们一致(调整a,b 可否?为什么?)。 3、测定光栅常数d 根据(1)式,只要测出第k 级光谱中波长为λ的已知谱线的衍射角θ,就可以求出d 值。测量钠光谱中双黄线中的nm D 995.5882=λ的第1级或第2级的衍射角。 方法:转动望远镜使叉丝对准谱线的中心,记录两游标的读数21,v v ;将望远镜转到另一侧,使叉丝对准谱线的中心,记录两游标的读数' '21,v v ,衍射角 )]()[(2 12211v v v v -'+-'=θ 重复测量三次,计算光栅常数d 及其标准不确定度。 4、测量光谱中绿光的波长 用以测出的光栅常数,在测量此谱线的衍射角就可以用衍射公式求出谱线的波长。衍射角的测量同上,测量三次。 5、测量光栅的角色散 对钠光灯,光谱中的双黄线nm D 592.5891=λ,nm D 995.5882=λ,两黄线的波长差为nm 597.0=?λ,测出其第1级、第2级光谱中的两黄线的衍射角21,θθ,衍射角的测量同上,测量三次。根据公式(2)计算角色散率。 思考题 1.本实验对分光仪的调整有何特殊要求?如何调节才能满足测量要求? 2.分析光栅和棱镜分光的主要区别。 3.如果光波波长都是未知的,能否用光栅测其波长?

分光计的调节与光栅衍射

物理实验报告 一、【实验名称】 分光计的调节与使用及光栅的衍射 二、【实验目的】 1、掌握分光计的调整技术和技巧; 2、用分光计测三棱镜的一个顶角; 3、进一步熟悉分光计的调整与使用; 4、学习利用衍射光栅测定光波波长及光栅常数的原理和方法; 5、加深理解光栅衍射公式及其成立条件。 三、【实验原理】 1、分光计的调节 1:狭缝装置2:狭缝装置锁紧螺丝3:准直管 4:制动架(二)5:载物台6:载物台调平螺丝 7:载物台锁紧螺丝8:望远镜9:望远镜锁紧螺丝 10:阿贝式自准直目镜11:目镜视度调节手轮12:望远镜光轴高低调节螺丝13:望远镜光轴水平调节螺丝14:望远镜微调螺丝15:转轴与度盘止动螺丝16:望远镜止动螺丝17:制动架(一)18:底座 19:转座20、21:度盘、游标盘 22:游标盘微调螺丝23:游标盘止动螺丝24:准直管光轴水平调节螺丝 25:准直管光轴高低调节螺丝26:狭缝宽度调节手轮 图1 分光计的结构 分光计是精确测定光线偏转角的仪器,也称测角仪。光学中的许多基本量如波长、折射率等都可以直接或间接地表现为光线的偏转角,因而利用它可测量波长、折射率,此外还能精确地测量光学平面间的夹角。许多光学仪器(棱镜光谱仪、光栅光谱仪、分光光度计、单色仪等)的基本结构也是以它为基础的,所以分光计是光学实验中的基本仪器之一。使用分光计时必须经过一系列精细调整才能得到准确的结果,它的调整技术是光学实验中的基本技术之一,必须正确掌握。

(1)分光计的结构 分光计主要由底座、平行光管、望远镜、载物台和读数圆盘五部分组成。外形如图1所示。 1)底座——中心有一竖轴,望远镜和读数圆盘可绕该轴转动,该轴也称为仪器的公共轴或主轴。 2)平行光管——是产生平行光的装置,管的一端装一会聚透镜,另一端是带有狭缝的圆筒,狭缝宽度可以根据需要调节。 3)望远镜——观测用,由目镜系统和物镜组成,为了调节和测量,物镜和目镜之间还装有分划板,它们分别置于内管、外管和中管内,三个管彼此可以互相移动,也可以用螺钉固定,如图19-2所示。在中管的分划板下方紧贴一块45o 全反射小棱镜,棱镜与分划板的粘贴部分涂成黑色,仅留一个绿色的小十字窗口。光线从小棱镜的另一直角边入射,从45o反射面反射到分划板上,透光部分便形成一个在分划板上的明亮的十字窗。 图19- 2 4)载物台——放平面镜、棱镜等光学元件用,台面下的三个螺钉可调节台面的倾斜角度,平台的高度可悬松螺钉(7)升降,调到合适位置再锁紧螺钉。 5)读数圆盘——是读数装置,由可绕仪器公共轴转动的刻度盘和游标盘组成。度盘上刻有720等分刻线,格值为30′。在游标盘对称方向设有两个角游标,这时因为读数时,要读出两个游标处的读数值,然后取平均值,这样可消除刻度盘和游标盘的圆心与仪器主轴的轴心不重合所引起的偏心误差。 读数方法与游标卡尺相似,这里读出的是角度。读数时以角游标零线为准,读出刻度盘上的度值,再找游标上与刻度盘上刚好重合的刻线为所求的分值,如果游标零线落在半度刻线之外,则读数应加上30′。 (2)分光计的调整原理和方法 调整分光计,最后要达到下列要求: 平行光管发出平行光; 望远镜对平行光聚焦(即接收平行光); 望远镜、平行光管的光轴垂直仪器公共轴。 分光计调整的关键是调好望远镜,其他的调整可以以望远镜为标准。 1)调整望远镜 ①目镜调焦 这是为了使眼睛通过目镜能清楚地看到如图19-3所示分划板上的刻线。调焦方法使把目镜调焦手轮轻轻旋出,或悬进,从目镜中观看,直到分划板刻线清晰为止。 ②调望远镜对平行光聚焦 这是要将分划板调到物镜焦平面上,调整方法是: (a) 把目镜照明,将双面平面镜放到载物台上。为了便于调节,平面镜和载物台下三个调节螺钉的相对位置如图19-4所示。

实验40 光栅衍射法测定光波长

大学物理实验教案 实验名称:光栅衍射法测定光波长 1 实验目的 1)熟练分光计的调节。 2)理解光栅衍射现象; 3)学习用光栅衍射法测定光的波长。 2 实验器材 分光计、平面透射光栅、汞灯、平面反射镜 3 实验原理 3.1 实验原理 光栅和棱镜一样,是重要的分光光学元件,已广泛应用在光栅光谱仪、光栅单色仪等。光栅是一组数目极多的等宽、等距和平行排列的狭缝。它分为透射光栅和反射光栅两种。应用透射光工作的称为透射光栅,应用反射光工作的称为反射光栅。现代制造光栅主要有刻划光栅、复制光栅和全息光栅等形式。本实验用的是平面透射光栅。 描述光栅特征的物理量是光栅常数d ,其大小等于狭缝宽度a 与狭缝间不透光部分的宽度b 之和,即b a d +=,习惯上用单位毫米里的狭缝数目N 来描述光栅特性。光栅常数d 与N 的关系为 N d 1 = (1) 根据夫琅禾费衍射理论,波长为λ的平行光束垂直入射到光栅平面上时,透射光将形成衍射现象,即在一些方向上由于光的相互加强后光强度特别大,而其他的方向上由于光的相消后光强度很弱就几乎看不到光。图40-1给出了形成光栅衍射的光路图。如果入射光源为线光源,经过光栅后衍射图样为一些相距较大的锐利的色彩斑斓的明亮条纹组成。而这些亮条纹 1、光源 2、狭缝 3、凸透镜 4、平面透射光栅 5、光栅衍射光谱 图40—1 实验原理示意图

图40—2 汞灯的部分光栅衍射光谱示意图 所在的方位由光栅方程所确定,方程为 λφk d =sin ( 2,1,0±±=k ) (2) 其中,d 为光栅常数,k 为衍射级别,λ为光波长,φ为衍射角它是光栅法线与衍射方位角 之间的夹角。由(2)式可见,同一级的衍射条纹,如果波长不同其衍射角不同,所以光栅具有分光功能。图40-2为汞灯的部分光栅衍射光谱示意图。 光栅衍射现象是很容易观察到的,如果手头有一块光栅,可直接透过光栅观察某一光源就可看到衍射现象。实验室中经常在分光计上利用光栅衍射现象来进行光波长或光栅常数的测量。实验上,只要选择光栅常数已知的光栅,可见用待测光照射,使其产生衍射现象,同时用分光计测出各级衍射亮条纹所对应的衍射角k φ,那么由光栅方程(3)可以确定光波长,即: k d k φλsin = (3) 3.2 实验方法 如果有一台调节好的分光计,便可用来观察光栅衍射现象以及进行相关物理量的测定。如果光栅常数是已知的,那么把光栅置于分光计的载物台上,并确定光栅的刻线与平行光管的狭缝平行并使光栅平面与平行光管垂直。观察时,先把望远镜调节到对准平行光管,然后分别向左边和右边漫漫转动望远镜,便可观察到各个级别的衍射条纹,包括条纹的分布情况、各级条纹的亮度等等。对于第k 级衍射角的测量,可以把望远镜转动到对准第k 级衍射条纹, 测量其方向,读数为(k θ,k θ')。再把望远镜转动到对准第k -级衍射条纹并测量其方向,读数为(k -θ,k -'θ)。根据条纹的对称性质,那么第k 级衍射条纹的衍射角用(4)式 )()(41 k k k k k θθθθφ'-'+-= - - (4) 得以计算。 4教学内容 1)分光计调节。 2)利用透射光栅测定汞灯中各个谱线的光波长。 5 实验教学组织及教学要求 1)检查设计方案并提出问题。 2)介绍光栅。 3)介绍测量内容及测量要求。 6 实验教学的重点及难点 1)重点: 1.分光计的调节(望远镜调焦、望远镜光轴调节、平行光管调节。) 2. 光栅放置的要求。 3.衍射角测量方法。 2)难点:

2020年光栅衍射实验报告范文

实验时间2019 年 月 日签到序号 【进入实验室后填写】 福州大学 【实验七】 光栅的衍射 (206 实验室) 学学院 班班级 学学号 姓姓名 实验前必须完成【实验预习部分】 登录下载预习资料 携带学生证提前 10 分钟进实验室 实验预习部分【实验目的】 】 【实验仪器】( 名称、规格或型号) 【实验原理】(文字叙述、主要公式、衍射的原理图)实验预习部分【实验步骤和注意事项】 】 实验预习部分

一、 巩固分光计的结构(P 197 ,图25-10 ) 载物台 6 7 25 望远镜11 12 15 16 17 平行光管2 27 调节分光计,要求达到(验调节步骤参阅实验25 ) ⑴⑴望远镜聚焦于无穷远,且其光轴与仪器转轴垂直。 ⑵⑵平行光管产生平行光,且其光轴与望远镜光轴同轴等高,狭缝为宽度在望远镜视场中约为1 mm (狭缝宽度不当应由教师调节) 二、光栅位置的调节 1 、光栅平面与平行光管轴线垂直 ①①转动望远镜使竖直叉丝对准 。 ,然后固定望远镜位置。 ②放置光栅时光栅面要垂直

。 ③③调节 螺丝直到望远镜中看到光栅面反射回来的绿色十字叉丝像与 重合。 2 、光栅上狭缝与仪器转轴平行。 松开望远镜止动螺钉,向左(或向右)转动望远镜,观察各谱线,调节被螺丝使各谱线都被分划板视场中央的水平叉丝平分。 3 、反复调节直到1 和2 两个要求同时满足! 数据记录与处理【一】测定光栅常数 测出第一级绿光谱线的衍射角 绿=541 nm k=1 置望远镜位置 T 1 置望远镜位置 T 2 1 1 2 2 2 1 2 1 1- -41 1′= rad) (弧度) 10sin 绿 kd

光栅衍射实验实验报告

工物系 核11 敏 2011011693 实验台号19 光栅衍射实验 一、 实验目的 (1) 进一步熟悉分光计的调整与使用; (2) 学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3) 加深理解光栅衍射公式及其成立条件; 二、 实验原理 2.1测定光栅常数和光波波长 如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产生衍射;出射光夹角为?。从B 点引两条垂线到入射光和出射光。如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即 ()sin sin d i m ?λ ±= (1) m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λ?,,,i d 中的三个 量,可以推出另外一个。 若光线为正入射,0=i ,则上式变为 λ ?m d m =sin (2) 其中 m ?为第m 级谱线的衍射角。 据此,可用分光计测出衍射角m ?,已知波长求光栅常数或已知光栅常数求 波长。 2.2用最小偏向角法测定光波波长 如右图。入射光线与m 级衍射光线位于光栅法线同侧,

(1)式中应取加号,即。以为偏向角,则由三 角形公式得 (3) 易得,当时,?最小,记为 ,则(2.2.1)变为 ,3,2,1,0,2 sin 2±±±==m m d λδ (4) 由此可见,如果已知光栅常数d ,只要测出最小偏向角,就可以根据(4) 算出波长。 三、 实验仪器 3.1分光计 在本实验中,分光计的调节应该满足:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。 3.2光栅 调节光栅时,调节小平台使光栅刻痕平行于分光计主轴。放置光栅时应该使光栅平面垂直于小平台的两个调水平螺钉的连线。 3.3水银灯 1.水银灯波长如下表 颜色 紫 绿 黄 红 波长/nm 404.7 491.6 577.0 607.3 407.8 546.1 579.1 612.3 410.8 623.4 433.9 690.7

衍射光栅习题及数据处理

衍射光栅 简答题利用钠光(波长0.589=λ钠米)垂直入射到一毫米有500条刻痕的平面透射光栅上时,试问最多能看到第几级光谱?并说明理由。 答:最多能看到三级光谱。 如果光线不是垂直入射光栅面,看到什么现象? 如何调整? 答:如果光线不是垂直入射光栅面,看到零级两侧 的谱线高度不一样。 调节螺钉B 2..按图9-4放置光栅有什么好处? 答:只需调节螺钉B 2..平 行光管的狭缝平行,直到中央明条纹两侧的衍射光谱基本上 在同一水 平面内为止。 4. 试述光栅光谱和棱镜光谱有哪些不同之处。 答:光栅是根据多缝衍射原理制成的一种分光元件,它能产生谱线间距较宽的匀排光谱。所得光谱线的亮度比棱镜分光时要小些,但光栅的分辨本领比棱镜大。光栅不仅适用于可见光,还能用于红外和紫外光波,常用在光谱仪上。 实验数据及数据处理: 分光计:JJY 型,1'=?仪 光栅:透射式平面刻痕光栅,标称600条/mm. 现将1级汞光谱中可见光部分最亮的几条,并将刻度盘读数一栏略去,其测量结果列于下表: 1. 已知汞光谱中绿光波长绿λ=546.0740nm ,根据测出的绿?,计算光栅常数d 。 k d ?sin = k λ 图9-5 光栅的放置

='?==3 .719sin 0740.5461sin k k d ?λ1667.2nm 2. 计算1黄λ和2黄λ,并令12黄黄???-=?,12黄黄λλλ-=?,由此计算光栅的角色本领。 k d ?sin = k λ 412121060 .5772.57951200220-?=-'-'=--=??= 黄黄黄黄h D λλ??λ?? 3. 本实验中平行光管物镜口径D=22mm ,可认为光栅实际被利用的宽度是20mm 。由此算 出一级光谱的光栅分辨本领 R=kN=1×20=20mm nm k d k 2.57910220sin 2.1667sin 2='?== ?λ黄nm k d k 0.5771 5120sin 2.1667sin 1='?== ?λ黄

光栅特性与光波波长测量(精)

衍射光栅的特性与光波波长的测量 衍射光栅由大量等宽、等间距、平行排列的狭缝构成。实际使用的光栅可以用刻划、复制或全息照相的方法制作。衍射光栅一般可以分为两类:用透射光工作的透射光栅和用反射光工作的反射光栅。本实验使用的是透射光栅。 根据多缝衍射的原理, 复色光通过衍射光栅后会形成按波长顺序排列的谱线, 称为光栅光谱, 所以光栅和棱镜一样是一种重要的分光光学元件。在精确测量波长和对物质进行光谱分析中普遍使用的单色仪、摄谱仪就常用衍射光栅构成色散系统。 本实验要求 :理解光栅衍射的原理, 研究衍射光栅的特性; 掌握用衍射光栅精确测量波长的原理和方法 ; 进一步熟悉分光计的工作原理和分光计的调 节、使用方法。 【实验原理】 1. 光栅常数和光栅方程 图 4.11— 1 衍射光栅 衍射光栅由数目极多, 平行排列且宽度、间距都相等的狭缝构成, 用于可见光区的光栅每毫米缝数可达几百到上千条。设缝宽为 a ,相邻狭缝间不透光部分的宽度为 b , 则缝间距 d = a + b 就称为光栅常数 (图 4.11— 1 , 这是光栅的重要参数。

根据夫琅和费衍射理论 , 波长λ的平行光束垂直投射到光栅平面上时 , 光波将在每条狭缝处发生衍射, 各缝的衍射光在叠加处又会产生干涉 , 干涉结果决定于光程差。因为光栅各狭缝间距相等,所以相邻狭缝沿θ方向衍射光束的光程差都是d sin θ(图 4.11— 1 。θ是衍射光束与光栅法线的夹角 ,称为衍射角。 在光栅后面置一会聚透镜, 使透镜光轴平行于光栅法线 (图 4.11— 2 , 透镜将会使图 4.11— 2所示平面上衍射角为θ的光都会聚在焦平面上的 P 点 , 由多光束干涉原理, 在θ满足下式时将产生干涉主极大, 户点为亮点 : , 2 , 1 , 0 ( sin ± ± = =k k d λ θ(4.11— 1 式中 k 是级数 , d 是光栅常数。 (1式称为光栅方程 ,是衍射光栅的基本公式。

光栅衍射实验报告

光栅衍射实验报告 字体大小:大| 中| 小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 --- ---实验日期:20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2.加深对分光计原理的理解。 3.用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵,常用的是复制光栅和全息光栅。图1中的为刻痕的宽度, 为狭缝间宽度, 为相邻两狭缝上相应两点之间的距离,称为

光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入 射时衍射光路 图3光栅衍射光谱示意图图4载物台当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射,所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜,在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 出现明纹时需满足条件 (2) (2)式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2)式光栅方程,若波长已知,并能测出波长谱线对应的衍射角,则可以求出光栅常数d 。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色 1=435.8nm;绿色 2=546.1nm;黄色两条 3=577.0nm和 4=579.1nm。 衍射光栅的基本特性可用分辨本领和色散率来表征。 角色散率D(简称色散率)是两条谱线偏向角之差Δ两者波长之差Δ之比: (3)

光栅光谱仪的使用实验报告-董芊宇

实验报告 题目: 光栅光谱仪的使用 姓名董芊宇 学院理学院 专业应用物理学 班级2013214103 学号2013212835 班内序号22 2015年9 月

一. 实验目的 1. 了解光栅光谱仪的工作原理。 2. 学会使用光栅光谱仪。 二. 实验原理 1.闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(φ=90?)光栅衍射的一般特性。当入射角φ=90?时,衍射强度公式为 22 2 sin sin sin I u Nv A u v = ???? ? ????? (9.1) 光栅衍射强度仍然由单缝衍射因子和多缝干涉因子共同决定。只不过此时 ()sin sin a u π φθλ= + (9.2) ()sin sin d v πφθλ =+ (9.3) 当衍射光与入射光在光栅平面法线同侧时,衍射角θ取+号,异侧时取-号,单缝衍射中央主 极大的条件是0u =,即sin sin φθ=-或?θ=-。将此条件代入到多缝干涉因子中,恰好满足0v =,即0级干涉最大条件。这表明单缝衍射中央极大与多缝衍射0级最大位置是重合的,光栅衍射强度最大的峰是个波长均不发生散射的0级衍射峰,没有实用价值。而含有丰富信息的高级衍射峰的强度却非常低。 为了提高信噪比,可以采用锯齿形的反射光栅(又称闪耀光栅)。闪耀光栅的锯齿相当于平面光栅的“缝”,与平面光栅一样,多缝干涉条件只取决于光栅常数,与锯齿角度、形状无关。所以当光栅常数及入射角与平面光栅一样时,两者0级极大的角度也一样。闪耀光栅的沟槽斜面相当于单缝,衍射条件与锯齿面法线有关。中央极大的衍射方向与入射线对称于齿面法线N ,于是造成衍射极大与0级干涉极大方向不一致。适当调整光栅参数,可以使光栅衍射的某一波长最强峰发生在1级或其他高级干涉极大的位置。 2.非平衡光辐射(发光) 处于激发态上的电子处于非平衡态。它向低能级跃迁时就会发光。设电子跃迁1 E 和0E ,发 射光子的能量为 10hc hv E E E λ ==-=? (9.4) 电子受光辐射激发到高能态上导致的发光成为光致发光。光致发光时,电子在不同能级间跃迁常见如下情况。 (1) 电子受光辐射激发,然后以无辐射情况跃迁到低能级。(无发射跃迁释放的能量转化成热能

相关主题