搜档网
当前位置:搜档网 › Kinetic study of steam gasification of two mineralogically different

Kinetic study of steam gasification of two mineralogically different

Kinetic study of steam gasification of two mineralogically different
Kinetic study of steam gasification of two mineralogically different

Kinetic study of steam gasi?cation of two mineralogically different lignite chars:An active site/intermediate

model

Jia Tang,Xuantao Wu,Jie Wang ?

Department of Chemical Engineering for Energy,Key Laboratory of Coal Gasi?cation and Energy Chemical Engineering of Ministry of Education,East China University of Science and Technology,130#Meilong Road,Shanghai 200237,PR China

h i g h l i g h t s

A novel kinetic model is proposed to describe the kinetics of lignite char gasi?cation. The model is based on the active site/intermediate mechanism of char gasi?cation. The model ?ts the kinetic pro?les of the Ca-catalyzed and uncatalyzed char gasi?cation. The model predicts the changes of the intermediate during the char gasi?cation.

a r t i c l e i n f o Article history:

Received 4June 2014

Received in revised form 13October 2014Accepted 14October 2014

Available online 28October 2014Keywords:Lignite char Gasi?cation

Catalytic gasi?cation Kinetic model

a b s t r a c t

A new active site/intermediate model (ASIM)is formulated in terms of a simpli?ed calcium-catalyzed mechanism of char gasi?cation to characterize a conversion-dependent maximum in reaction rate.In a limited case,the model is retrogressed to a common volumetric model (VM).Two sets of kinetic data were experimentally gathered by steam gasi?cation of two lignite chars in a ?xed bed reactor with neg-ligible mass diffusion limitation.The gasi?cation behaviors of two chars were,respectively,representa-tive of catalyzed and uncatalyzed gasi?cation as a result of the in?uences of different mineral components in them.It was found that ASIM intimately ?t the kinetic pro?les over the entire range of conversion for both catalyzed and uncatalyzed char gasi?cation,demonstrating the good adaptability to varying chars.The model could determine the activation energies for the formation of the total car-bon-containing gases and of two individual gases (CO and CO 2)from the oxygenated intermediate.More-over,for the case of catalyzed gasi?cation,ASIM reasonably predicted the formation,growth and decline of the intermediate with carbon conversion as well as the change in the intermediate concentration with gasi?cation temperature.For the case of uncatalyzed gasi?cation,the model portrayed essentially a linear decline in the intermediate concentration with increasing carbon conversion,similar to VM.

ó2014Elsevier Ltd.All rights reserved.

1.Introduction

Coal gasi?cation is a very old but still ongoing technology.In recent years,coal gasi?cation has been rapidly growing in the world scale of industrial production,as it comparatively provides a clean,ef?cient,and secure way to use coal for generating a wide range of products,fuel gas,synthetic natural gas or syngas,elec-tricity,hydrogen,and so on.Syngas is available to make into trans-portation fuels (methanol,gasoline,diesel,etc.)and a diversity of downstream chemicals as a substitute for petrochemicals.Under this circumstance,research interest is resurging more than in the recession period from a climax of the last 70–80s with respect to coal gasi?cation,but it seems like the current trend is towards making use of more inferior coal resources such as lignite [1–3]and other untraditional gasi?cation feedstocks [4–6].

The kinetics of char gasi?cation has been ever the subject of a large number of previous studies [7–10],for it is of crucial impor-tance in determining the rate and whole process of coal gasi?ca-tion.It remains a prevalent subject in recent researches [11–13].The part of reason for this situation is that the char gasi?cation kinetics is complicated by a multitude of in?uencing factors,par-ticularly by the properties of char such as granularity,porosity,compositions and dispersion of minerals in char,and carbon struc-tures [14].The complexity also arises from the fact that the prop-erties of char vary kaleidoscopically with the properties of coals such as coal rank,coal mineralogy and coal petrography as well as char formation processes [15,16],and that the properties of char

https://www.sodocs.net/doc/9e16141681.html,/10.1016/j.fuel.2014.10.028

0016-2361/ó2014Elsevier Ltd.All rights reserved.

?Corresponding author.Tel./fax:+862164252853.

E-mail address:jwang2006@https://www.sodocs.net/doc/9e16141681.html, (J.Wang).

are even changed with the elapse of char burnout.Therefore,it is hard to establish a universal mathematical expression to correlate the gasi?cation rate of an arbitrary char with the in?uencing vari-ables.Table1tabulates some known kinetic models adapted to char gasi?cation.These models are developed along a long history of research progress but each model is merely asserted from case to case.

Volumetric model(VM),as shown in Table1,is a simple model. It is based on an assumption that the active site distributed uni-formly on the surface of coal char over the process of gasi?cation. Thus,the reaction rate decreases linearly with reaction time.This model can predict the char conversion as a function of reaction time for uncatalyzed gasi?cation,but an acceptable?t is usually limited to a range of char conversion smaller than75%or a more narrow range[21].

The shrinking core model(SCM)is described in detail by Leven-spiel et al.[20].This model assumes the homogenous distributions of mass and porosity in the char particle and a spatial shrinking of char with the char burnout.The amount of active sites is propor-tionate to the char surface area exposed to gasifying agents through the pores of char.In the regime of chemical reaction con-trol,SCM expresses the reaction rate as Eq.(2)(Table1),where m is a shape factor that depends on the geometry of the grains,and for spheres,m=2/3,for cylinders,m=1/2,and for?at plates, m=0.This model,particularly with m=2/3,is widely used to describe the char gasi?cation rate.

Nevertheless,neither VM nor SCM is supposed to characterize a char conversion-dependent maximum of gasi?cation rate.The VM and SCM models are invalid to express the kinetics of char gasi?ca-tion for some cases,especially for catalyzed char gasi?cation [21,25,26].In dealing with this problem,some researchers ever introduced a function of char conversion,g(x),into the VM or SCM rate expression[23,24].An example is the Johnson model, as shown as Eq.(3)(Table1),where g(x)=f1exp(àa x2).Although the introduction of g(x)makes it possible for the gasi?cation rate to have a maximum at a point of char conversion and thus allows for better?t to the pro?les of gasi?cation rate with time,the selection of g(x)is almost a sheer mathematical excise without its chemical meanings being rendered.

The random pore model(RPM)is initially proposed by Bhatia and Perlmutter[21],as shown in Table1.RPM assumes that char holds a cylindrical pore structure with random pore size distribu-tions in char particle,and the surface area changes with the growth and coalesce of pores by the mass loss of https://www.sodocs.net/doc/9e16141681.html,pared to SCM, RPM is capable to describe a complex change in the surface area of char particle during char gasi?cation and it allows a maximum of gasi?cation rate to appear in a range of carbon conversion between0and0.393depending on a dimensionless structure parameter of char,w.This model was reported to success in?tting the char gasi?cation kinetics in some instances[26,27].

However,Liu et al.[22]and Zhang et al.[25]found that RPM was quite unsatisfactory for?tting the catalytic char gasi?cation. RPM could collapse into VM with w=0when it was applied for the catalytic char gasi?cation.In this case,by no mean could RPM predict the characteristic appearance of maximum gasi?ca-tion rate.Their work was then going to explore an extended ran-dom pore model(ERPM)by incorporating a function of char conversion,g(x)=1+(cx)p or g(x)=1+[c(1àx)]p,into the original RPM equation,as shown in Table1.ERPM behaved indeed well in denoting a maximum at a lower or higher carbon conversion[12]. Kopyscinski et al.[11]further validated the high accuracy of ERPM to?t the uncatalyzed and K2CO3-catalyzed char gasi?cation of ash-free coal char by comparing with RPM and other models.Despite the above success,the drawback of ERPM is apparent due to the introduction of two more parameters into RPM,c and p,either of which has no chemical meanings.Therefore,ERPM is at most a semi-empirical formula.

In the present work,we undertake to develop a new kinetic model(abbreviated to ASIM),based on a simpli?ed mechanism of calcium-catalyzed char gasi?cation.The model has been veri?ed to be highly accurate in?tting the gasi?cation kinetics of two lignite chars,which are,respectively,representative of calcium-catalyzed char gasi?cation and uncatalyzed char gasi?cation.The model is expected to have the adaptability to various chars.The

Nomenclature

L j an average of the relative likelihoods for model j

m the number of estimated parameters

n the number of observations

k i the rate constant of reaction i,minà1

N a the mole numbers of C?–C–CaO(a)per mole of carbon in the char

N c the mole numbers of CaO(c)per mole of carbon in the char

N o the mole numbers of C(O)–C–CaO(o)per mole of carbon in the char

N t total mole number of calcium per mole of carbon in an original char

p a dimensionless kinetic parameter in Eq.(5);the num-ber of temperature points in Eq.(35)P H

2

O

partial pressure of steam,Pa

t gasi?cation reaction time,min

x total carbon conversion

Greek letters

a characteristic parameter

g the ratio of the mole numbers of C(O)–C–CaO deacti-

vated to C(O)–C–CaO returned to active site

h a the dimensionless concentration of C?–C–CaO

h o the dimensionless concentration of C(O)–C–CaO

h c the dimensionless concentration of CaO

w a dimensionless structure parameter

u a catalysis factor

Table1

The typical models applied for char gasi?cation.

Eq.no.Model name Differential formula References 1Volumetric model(VM)dX

dt

?ke1àXT[17,18] 2Shrinking core(SCM)dX

dt

?ke1àXT23[19,20]

3Random pore(RPM)dX

dt ?ke1àXT

?????????????????????????????????

1àw lne1àXT

p[21,22]

4Modi?ed VM or SCM dX

dt

?ke1àXT2=3gexT[23,24]

5Extended random pore(ERPM)dX

dt ?ke1àXT

?????????????????????????????????

1àw lne1àXT

p

gexT[11,25]

J.Tang et al./Fuel141(2015)46–5547

model also possesses some preferred features as compared to ERPM:(1)a less parameter formula;(2)be based on the char gas-i?cation mechanism,although simpli?ed;(3)be capable to predict the change of the intermediate with carbon conversion and gasi?-cation temperature.

2.Model development

As described above,the gasi?cation rate of char is sophistically affected by many intrinsic properties of char and operating condi-tions of gasi?cation.It is almost impossible to theoretically deduce a mathematical formula to express the correlation of the gasi?ca-tion rate with all variables.However,it is well known that the char gasi?cation process is mechanistically associated with the forma-tion of active site and intermediate during gasi?cation.The active site and intermediate in a char,although dif?cult to quantify and track,is a key factor for determining the gasi?cation rate[28–30].Lignite char is generally the most reactive among the chars derived from a whole spectrum of coal.This is related to the more amorphous and more porous carbon structure of lignite char,but in most cases,more importantly to mineral matter in lignite.The mineral matter in char can play a paramount role in the formation of active site or intermediate,resulting in a catalytic effect on the char gasi?cation[31,32].

It is well recognized that lignite is enriched with carboxyl groups,which is often combined with alkali and alkaline metals (AAMEs),especially with calcium[28,33,34].This form of calcium is highly or atomically dispersed in lignite.When lignite is ther-mally converted to char,at least part of calcium in the char is retained in a carboxylate-like form[35]or a highly dispersed cal-cium oxide form[36].What we can make sure is that the highly dispersed calcium(HDC)is an active catalyst for char gasi?cation [37].This scenario is unique to HDC.Radovic et al.[37]revealed that the catalytic effect of calcium in char deactivates as HDC grad-ually agglomerates.Ohtsuka and Tomita[38]found that HDC was transformed to crystalline calcium oxide and calcium carbonate during the gasi?cation.However,the realistic chemical form or structure of HDC in char is not yet fully identi?ed.It remains debatable what is an exact mechanism underlying the catalytic effect of calcium on the char gasi?cation.We are inclined to an argument advocated by some academicians that the mechanism of calcium catalysis involved in a reduction and combination of cal-cium oxide by/with carbon to form a intercalated cluster C?–C–O–Ca with non-stoichiometry.This cluster has an active carbon site, represented as C?,for extracting oxygen from CO2or H2O.This mechanism is supported from the molecular orbital calculation by Chen et al.[30]and from the density functional theory by Gonz-ales et al.[39]that the binding of calcium with carbon leads to a greater propensity of the neighboring carbons towards chemisorp-tion of oxygen atom forming an intermediate.

From the knowledge introduced above,we propose a simpli?ed mechanism of calcium-catalyzed char gasi?cation,as depicted in Fig.1,where CaO(c)is the crystalline calcium oxide,i.e.,a catalyt-ically inactive form of calcium,and C?–C–CaO(a)is a dispersed cal-cium,i.e.,an active site,which has a potential to take oxygen in it from steam,forming the oxygenated intermediate C(O)–C–CaO(o). Further,the desorption of C(O)releases CO,and the parallel reac-tion of C(O)with H2O generates CO2and H2.After these reactions, a part of C(O)–C–CaO lose the catalytic activity,and the other part returns to C?–C–CaO.g refers to a ratio of the mole numbers of C(O)–C–CaO which formed to the deactivated CaO(c)to those which turns to C?–C–CaO.

Assuming that the calcium in an original char does not evapo-rate at all during gasi?cation,in the light of the mass balance we have

N ctN atN o?N te6THere N t is the total mole number of calcium per mole of carbon in an original char,N c,N a and N o are,respectively,the mole num-bers of CaO(c),C?–C–CaO(a)and C(O)–C–CaO(o)per mole of car-bon in the char.If de?ning dimensionless concentrations

h a?N a=N te7Th o?N o=N te8Th c?N c=N te9Tthen,we have

h ath oth c?1e10T

In the non-steady state,h a and h o vary during gasi?cation rely-ing on the formation rates of C?–C–CaO(a)and C(O)–C–CaO(o), respectively,expressed as

d h a

dt

?e1àgTek2P H2Otk3Th oàek1P H2Otk4Th ae11T

d h o

dt

?k1P H

2

O

h aàek2P H

2

O

tk3Th oe12TWith designating

k0

1

?k1P H

2

O

tk4e13T

k0

2

?k2P H

2

O

tk3e14TEqs.(16)and(17)are then written as

d h a

dt

?e1àgTk02h oàk01h ae15T

k0

1

àk4

àá

h a?

d h o

dt

tk0

2

h oe16T

Differentiating Eq.(16)yields

k0

1

àk4

àád h a

dt

?

d2h o

dt

tk0

2

d h o

dt

e17T

By substituting Eqs.(21)and(22)into Eq.(15),we obtain the following two-order differential equation to resolve the relational expression of h o with t:

d2h o

dt

tk0

1

tk0

2

àád h o

tg k01k02te1àgTk02k4

àá

h o?0e18T

The general solution of Eq.(18)is

h o?C1eàattC2eàbte19T

48J.Tang et al./Fuel141(2015)46–55

where a and b are

a ?

k 01

t

k 02

àát?????????????????????????????????????????????????????????????????????????????k 01tk 02àá2à4g k 01k 02te1àg Tk 02k 4

??q 2

e20T

b ?

k 0

1tk 02

àá

à?????????????????????????????????????????????????????????????????????????????k 01tk 02àá2à4g k 01k 02te1àg Tk 02k 4

??q e21T

Supposing the boundary conditions:h a =h t =1and h o =0at t =0,we can determine C 1and C 2,and accordingly give a function of h o versus t

h o ?k 0

1àk 4b àa

ee àat

àe àbt T

e22T

In our gasi?cation experiment,however,the kinetic data are collected in the form of the carbon conversion as a function of gas-i?cation time.The total carbon conversion x is de?ned as the sum-mative amounts of carbon released as CO 2,CO and CH 4to the amount of carbon in the initial char.The rate of carbon conversion x can be expressed as

dx ?u k 0

2h 0e23T

where u is a catalysis factor,which signi?es that a calcium atom in the cluster C ?–C–CaO can activate a multiple of carbon atoms C ?according to the quantum theories [39],so that it is possible for only a small fraction of calcium in char to induce a large degree of and even complete gasi?cation of char.Replacing Eq.(23)with Eq.(22)and integrating dx with dt ,we arrive at

dx dt ?c b àa ee àat àe àbt Te24T

x ?c 1à

b b àa e àat ta

b àa

e àbt

e25T

Here c ?u k 01àk 4àák 0

2.Despite a hypothesis that C(O)–C–CaO in part returns to C ?–C–CaO after being gasi?ed,for the sake of sim-plicity,we suppose g =1,that is,C(O)–C–CaO is entirely lost in the catalytic activation after its reaction.This supposition seems to be inconsistent with the practice,but it is not going to damage the rationality of the model by aid of the interpolation of a catalysis factor u into Eq.(23).Then,Eqs.(24)and (25)can be transformed to two ?nal expressions

dx dt

?f 0e àk 01t àe àk 02t e26T

x ?f 1àk 0

2k 02àk 01e àk 01t tk

1k 02àk 01

e àk 02t

!

e27T

What we enjoy is that Eqs.(26)or (27)has only three parame-ters,k 01,k 02and f 0,or k 01,k 02and f ,where f 0?u k 01àk 4àák 02=ek 02àk 0

1T,

and f ?u k 01àk 4àá=k 0

1.These three parameters of either set can be determined by a non-linear ?t to the experimental data using Eqs.(26)or (27).

It should be noted that when k 01is considerably larger than k 0

2,Eq.(27)is simpli?ed to

x ?u e1àe àk 0

2t T

e28T

This equation is just the same as that of VM if u is taken to be 1.It is implied that if the kinetic limitation is small towards the oxy-genated intermediate formation,ASIM approaches to VM.An example of this case is that the oxygenated intermediate is abruptly developed over the surface of char once the char starts to be in contact with steam,and then the intermediate uniformly decreases with carbon mass loss.

3.Experimental

3.1.Preparation of char

Two lignite coals,Yuxi lignite (YX)and Xundian coal (XD),were

used in this study.Both coals were mined from Yunnan Province,China,but from different districts.The proximate and ultimate analyses of two coals are shown in Table 2.It could be seen that the two coals are enriched with acidic functional groups.The ash compositions of two coals are shown in Table 3.A distinct differ-ence in the ash compositions between two coals were that XD coal was enriched with calcium,whereas YX coal was enriched with aluminum and silicon with less AAEMs.All coal samples were air-dried,and ground and sieved to the particle sizes of 0.074–0.15mm for preparation of char.

The char sample was prepared by pyrolysis of two lignite coals in a tubular reactor under a stream of argon.The pyrolysis exper-iment was carried out under a ?xed condition (heating rate,10°C/min;the ?nal temperature,750°C;holding time,30min).After cooling down,the char was taken out.The yields of char produc-tion were 55.0wt%and 50.7wt%(dried sample basis),respectively,for YX coal and XD coal.The chars were then ground and sieved again to assure a powdery sample with the particle size of smaller than 0.15mm.The char samples were stored in a capped bottle before use for gasi?cation and elemental analysis.3.2.Char gasi?cation

Char gasi?cation was carried out in a tubular ?xed-bed reactor,as describe elsewhere [40].In each gasi?cation experiment,a 0.2g sample of char was thinly spread on a platinum boat,and then heated in the reactor at 10°C/min from room temperature to 750°C under a stream of argon (500mL/min).Then,the argon stream was switched to the steam/argon gas (partial pressure of steam to ambient pressure,0.5±0.02)to start the isothermal steam gasi?cation for a period of 50min.Steam in the off-gas was completely removed through an ice/water-cooled condenser followed by a dehumidizer.The major gases (CO 2,CO and CH 4)were measured online with a rapid GC (Agilent Micro 3000)which used helium as a carrier gas.H 2was determined with a GC (Agilent 6820)which used argon as a carrier gas,through the collection of gaseous product in gas bags.It should be pointed out that the thin spread of char sample on platinum was purposed to eliminate the external diffusion of steam to char particle as greatly as possible,and it was reported that the intraparticle diffusion could also be ignored when the particles size of char was smaller than 0.17mm [29].Consequently,we could ignore the in?uence of both

Table 2

Properties of YX,and XD lignites.Property

XD lignite YX lignite Proximate analysis

Moisture (%wet basis)11.427.71Fixed carbon (%d.b.)30.0431.32Volatile matter (%d.b.)48.4843.59Ash (%d.b.)

21.4825.09Ultimate analysis (%daf)C 63.6365.20H 4.62 5.90O 28.5727.67N 2.19 1.26S

0.990.15Oxygen-containing functional groups Carboxylic groups (mmol g à1-dry coal)

4.12 2.96Phenolic hydroxyl groups (mmol g à1-dry coal) 6.30 3.39Total (mmol g à1-dry coal)

10.42

6.35

J.Tang et al./Fuel 141(2015)46–5549

the external and internal mass diffusion on the kinetic data in the experiment.On the other hand,since the reactor system volume, the?ow rate of purging gas plus steam and the gas switching per-iod could distort the pattern of gas release rate and affect the kinetic calculation[41],efforts were made in the experiment to reduce these in?uences.The delayed time of gas?ow from the sample position to the gas analyzer was estimated to be as short as16s.The in?uence caused by this gas release delay was ignored in this study.

3.3.Other analysis

Elemental analysis(C,H,N and S)was performed on an Elemen-tar Vario EL III elemental analyzer for raw coal samples and chars. X-ray?uorescence analysis(XRF)was conducted on an X-ray Fluorescence Spectrometer(XRF-1800)to determine the ash com-position in coal,and in this method,the ash was prepared by the combustion of coal sample at550°C prior to XRF analysis. Determination of acidic functional groups in lignite was performed by using a chemical titration method[42].The kinetic data?t was performed using a MATLAB software.

4.Results and discussion

4.1.Model?t to the kinetic data

4.1.1.RPM or VM?t

Fig.2shows the char conversion as a function of the gasi?cation time at different temperatures for YX and XD chars,where the intermittent symbols denote the experimental results.The char conversion is de?ned as the summative moles of carbon released as CO,CO2and CH4,divided by the total moles of carbon in the char fed to gasi?cation.The time is referred to as the steam gasi?cation time,and a zero time is set at the beginning point of steam?owed into reactor.The temperature ranges used for gasi?cation were dif-ferent for YX char and XD char,because two chars were extremely different in the gasi?cation reactivity,although both chars were derived from lignite.YX char was observed to gasify insigni?cantly at750°C,whereas the gasi?cation of XD char was appreciable at 750°C,which is such a low temperature as usually used only for catalytic gasi?cation.This clearly indicated that the mineral matter inherent in XD lignite had a strong catalytic activity for the char gasi?cation,consistent with the relative abundance of calcium in XD lignite(Table1).In our previous work,it was also shown by means of the X-ray absorption near edge structure(XANES)spec-trometry that about84%of calcium in XD lignite was organically associated[34].This was why XD char was gasi?ed so fast at a low temperature.However,for XD char,it was observed from the residue collected after gasi?cation that the char was not com-pletely gasi?ed even at800°C,although the gasi?cation occurred fast in the primary stage of gasi?cation.This was attributed to the deactivation of calcium in the char during the gasi?cation. For YX char,the complete gasi?cation was not observed until the temperature was elevated to950°C,with no or feeble indication of catalytic gasi?cation.Incidentally,for a complete gasi?cation of YX char at950°C,the carbon conversion was somewhat lower than100%because some carbon was released during the heat-up stage with other miscellaneous inventories of carbon loss caused during the gasi?cation.

To better understand the characteristic behaviors of gasi?cation for two chars,we have used two common models(SCM and RPM) to?t the experimental data.The?tting results by RPM are shown in Fig.2,where the dotted lines are the?tting results.It could be seen that for YX char,overall the?tting results were acceptable, despite the enlarged deviations from the experimental results at higher temperatures;for XD char,the?tting results were too poor, especially at higher temperatures.This sharp contrast demon-strated an interesting matter that the two chars used,although both from lignite,were distinctly different in the reactivity of char and the kinetic behavior of gasi?cation;the two chars were, respectively,characteristic of the uncatalyzed and catalyzed char gasi?cation due to their mineralogical difference rather than any external catalyst.RPM is con?rmed again to be gravely inappropri-ate for the catalytic char gasi?cation,as revealed in the literature [12].It should be pointed out that when RPM was used to?t the data shown in Fig.2,the structure parameter w in the model was invariably given a value of zero for both chars.Therefore, RPM was equivalent to VM in this case,

4.1.2.ASIM?t

The?tting results by ASIM are shown in Fig.3,where the dotted lines represent the ASIM?tting results in contrast to the marks of experimental result.Whether for XD char or YX char,ASIM excel-lently predicted the pro?les of the total carbon conversion with reaction time.It is worthy of remark that VM,SCM and RPM have a common feature that the total carbon conversion x?1,as the

Table3

Main metallic compositions of two lignites.

Coal samples Content(wt.%-dry basis)

Si Al Ca Fe Mg K Na Ti

XD 3.21 2.11 4.71 1.170.590.210.060.11 YX 4.08 3.360.080.330.090.7300.10

50J.Tang et al./Fuel141(2015)46–55

gasi?cation time t?1.Therefore,these models can be unreason-able if a catalyst is initially very active but ceases to be alive in a later period of char gasi?cation,because in this circumstance,the char gasi?cation cannot reach completeness even for an in?nite time if the temperature is not high enough for an uncatalyzed gas-i?cation.However,ASIM is nicely?exible to meet either x?1or x<1at t?1,by a regulative catalysis factor u in the model.As a result,the curves predicted by ASIM tended to level off at a con-stant of x<1for the cases of gasifying XD char at higher tempera-tures,distinct from those predicted by RPM or VM(Fig.2).One may have suspected why ASIM could also well?t the uncatalyzed kinetic pro?les of YX char,and we wait to give an explanation in a later section.

Taking into account the mechanism presented in Fig.1,on the other hand,we can easily derive the expression relating the partial carbon conversion to CO or CO2with gasi?cation time from Eq.

(27).Fig.4shows the experimental data and the predicted curves by ASIM regarding the partial carbon conversions to CO and CO2.It could be seen that the agreement between the experimental data and the predicted data was good for both chars.According to the amounts of CO and CO2accumulated from the beginning to the end of the steam gasi?cation experiment,the CO/CO2molar ratios were0.20,0.38and0.57,respectively,at the gasi?cation tempera-tures of800°C,900°C and950°C for YX char,and0.17,0.27and 0.36,respectively,at725°C,750°C and800°C for XD char.For both the catalyzed and uncatalyzed gasi?cation,the CO/CO2ratio increased with increasing temperature,suggesting that a higher temperature enabled a preferential acceleration to the CO formation.By the way,the accumulated moles of CH4were not more than one

percent of the total moles of three carbon-containing gases in all experiments of gasi?cation.Consequently,the formation of CH4 is not considered in the model formulation.However,if CH4is formed via the intermediate indicated in Fig.1,the mathematical expressions of ASIM(Eqs.(26)and(27))can still hold tightly,no matter what more CH4is generated.

Table4lists the detailed kinetics parameters and the squared values of correlation coef?cient(R2),determined by?t to the gas-i?cation of two chars at different temperatures with the use of ASIM.For XD char,the value of k0

2

increased with increasing gasi?-

cation temperature.Assuming that the reaction rate constant k0

2 follows an Arrhenius equation,we can plot a straight line of the logarithmic k0

2

with reciprocal absolute temperature to obtain the

activation energy.The plots of lnek0

2

Tversus1/T for XD coal are illustrated in Fig.5.The corresponding activation energy and the pre-exponential of the reaction of the intermediate towards the total gaseous product was119.24kJ/mol and 1.11?107minà1, respectively(Table4).Similarly,the activation energies of the reac-tions of the intermediate towards CO and CO2were estimated to be,respectively,116.68kJ/mol and113.02kJ/mol,for XD char.It should be noticed that the straight lines in Fig.5looked divergent from the plateaus tendency of experimental data at high tempera-ture(750–800°C).This was probably because the catalytic effect was masked by the thermal effect at high temperature.In addition,

k0

1

decreased with increasing temperature,implying an intermedi-ate decline at high temperature.As a result,no calculation was

conducted using the Arrhenius equation for k0

1

.

For YX char,it could be noticed that the values of k0

1

were

extraordinarily larger than those of k0

2

at750°C and800°C.In this case,ASIM could be simpli?ed to VM without uncertainty(see Eq.

(28)).At900°C and950°C,the values of k0

1

were not so much lar-

ger than those of k0

2

,but still one hundred times larger,so VM can also be an approximation of ASIM.Therefore,ASIM is adaptable to ?t the uncatalyzed kinetic pro?les of YX char,even though ASIM is originally formulated from the mechanism of calcium-catalyzed char gasi?cation.As a matter of fact,VM model also involves a con-cept of the active site concerning the catalytic mechanism,only that it assumes a simple case that the active site is uniformly dis-tributed in char,with a direct proportion to the unconverted char in amount.Analogously,for YX char,the activation energies were estimated to be71.56kJ/mol,91.57kJ/mol,and52.46kJ/mol, respectively,for the total carbon conversion,the partial carbon conversion to CO,and that to CO2.It could be seen that the activa-tion energies for XD char were signi?cantly larger than those for YX coal.This result seems to be unreasonable because a catalyst generally acts to reduce the activation energy of reaction.From ERPM modeling,Kopyscinski et al.[11]observed a similar result by comparing the uncatalyzed char gasi?cation with the K2CO3-catalyzed char gasi?cation that the latter gasi?cation exhibited a signi?cantly higher activation energy than the former.They inter-preted that a hindrance in the solid catalyst motion on the surface of char might account for a rise in the activation energy.Since the uncatalyzed char gasi?cation and the catalyzed gasi?cation were performed in the quite different temperature regimes,we guess that the state of carbon–oxygen binding occurring in the different temperature regimes may be different,having an important in?u-ence on the activation energy.The oxygenated intermediate form-ing at a low temperature,may have a higher energy barrier to gasi?cation,although this barrier is largely mitigated by a catalyst. Finally in this section,it could be seen that the activation energies for the CO formation were larger than those for the CO2formation for both chars,especially for XD char.This was consistent with the observation that elevating temperature resulted in an increase in the CO/CO2ratio.

J.Tang et al./Fuel141(2015)46–5551

4.2.Discussion on ASIM

https://www.sodocs.net/doc/9e16141681.html,parison of ASIM with SCM and RPM

The model discrimination is performed by the Akaike informa-tion criterion(AIC),which was proposed by Akaike[43]and applied to assess the kinetic models of char gasi?cation by Kopyscinski et al.AIC is expressed as

AIC?m 2

n

tln

1

n

RSS

&'

e34T

where m is the number of estimated parameters in a model,and n is

the number of observations(i.e.,the number of experimental points

used for a?t at each gasi?cation temperature),and RSS is residual

sum of squares which is derived from the model?t to a set of exper-

imental data obtained at each temperature.A smaller value of AIC

suggests a better?t irrespective of the type of model.The prefer-

ence of model j is overall assessed by an average of the relative like-

lihoods L j,which is modi?ed from the literature to make a more

objective assessment from the data obtained over the range of tem-

perature rather than at a reference temperature[11].

Table4

Estimated kinetic parameters of ASIM for XD and YX lignites at different temperatures.

Parameters a XD YX

675°C700°C725°C750°C800°C750°C800°C900°C950°C Total k0

1

0.57170.37970.36490.19760.19787.030E12 1.480E18 3.497 2.178

k0

2

0.036490.056630.093010.15240.19780.021800.019860.038880.07642

f0.68330.65150.66150.75470.84210.22380.45210.90180.9081

R20.99970.99980.99980.99910.99310.99930.99940.99970.9998

A 1.11E+0783.44

E a119.2071.86

CO2k0

1

0.58120.36860.30490.17000.1710 5.260E21 1.080 3.020E147.35E20

k20.035370.054630.089880.054630.089880.017830.023000.022470.05087

f0.64920.60290.57460.64360.61510.15700.34460.79630.5125

R20.99970.99970.99980.99920.99180.99960.99990.99990.9991

A 1.73E+077.86

E a113.0052.46

CO k0

1

0.056140.089220.18480.25730.28950.0286770.022740.096900.1266

k30.42180.37740.38520.24350.2899 5.290E23 2.370E170.59710.7220

f0.036930.050550.087760.11330.23220.070110.068890.21250.3632

R20.99960.99980.99970.99640.98240.99850.99810.99910.9979

A 1.45E+08 1.12E+03

E a116.6891.57

a Unit of k0

1,k02,k2,k3,and A,minà1;unit of E a,kJ/mol.

52J.Tang et al./Fuel141(2015)46–55

L j?1

p

X p

i?1

exp

AIC minàAIC j

2

i

e35T

where the subscript j represents model j,AIC min is a minimum among all AIC j values obtained from the models which prepare to compare,i represents the data corresponding to the i th point of temperature,and p is the number of temperature points used for gasi?cation.The model is preferred if L j approaches to1.

Table5shows the values of RSS,AIC and L j with SCM,RPM and ASIM.For all three models,the value of AIC had a similar increasing trend with increasing temperature.This was because the carbon conversion covered a wider range at higher temperature,resulting in a worse?t for each model.However,it could be seen that for YX char,the value of AIC did not change so much with temperature for ASIM as compared to those for SCM and RPM;for XD char,despite the noticeable change in the value of AIC,all values of AIC for ASIM were much smaller than the corresponding values for SCM and RPM.From the model assessment by L j,it was obvious that for XD char,the preference of three model was ASIM)SCM%RPM, and for YX char,ASIM>SCM>RPM.

To serve for the understanding of the characteristic features of ASIM,the rates of char gasi?cation are displayed against carbon conversion in Fig.6by way of comparing the experimental data to those?tted by ASIM,SCM and RPM.For XD char,the experimen-tal data showed an asymmetric convex pattern.The gasi?cation rate exponentially increased from zero at the initial point to the maximum in the vicinity of the carbon conversion of0.2,then stee-ply decreased,and?nally tailed with a small gasi?cation rate.The curve of ASIM well mirrored this changing pattern,whereas neither RPM nor SCM did.As mentioned in Section4.1.1,RPM was observed to collapse into VM in all of our?tting work,so for both RPM and SCM,the gasi?cation rate decreased linearly with increasing carbon conversion.However,as well known,RPM has a capability of producing a maximum of gasi?cation rate in the range of carbon conversion between0and0.393by increasing the structure parameter w[44],a question is why RPM could not go to show a maximum of gasi?cation rate with a positive and fairly large value of w as expected,and instead the model was dri-ven downward to VM.The reason is that for both SCM and RPM, the reaction rate is restricted to a direct relation with the surface area of pores in char without consideration of a process of interme-diate formation.Like SCM,RPM does not render a zero value of gas-i?cation rate at the initial point,and thus causes an inability to?t the primary stage of gasi?cation in our case.Therefore,RPM can be, overall,more departed from the experimental data if a zero of w is replaced with any positive value.

For YX char,an illustration of the experimental data is given at a temperature of900°C.In contrast to the result for XD coal,the gas-i?cation rate was almost vertically launched at the initial stage of gasi?cation and then decreased linearly with increasing carbon conversion for a wide range of carbon conversion.It was found that ASIM also matched this changing pattern well.It is evident that the new model can be adapted for the quite different patterns of dx/dt versus x,which are characteristic of both the catalyzed and uncat-alyzed char gasi?cation.As for SCM and RPM,the serious inconsis-tence occurred between the?tting results and the experimental data mainly at the initial stage,and for RPM,the?tting results emerged to diverge more from the experimental data at the last stage of gasi?cation.If neglecting the initial and last stage of gasi-?cation,either SCM or RPM can be expected to become a better?t to the experimental data.It can thus be made to understand that in the literature,in general,only a middle part of data is extracted for modeling when SCM or RPM is applied[22].

4.2.2.Predicted change in intermediate

As shed light on above,a feature of ASIM distinct from SCM and RPM lies in the temporal intermediate concentration which is dic-tated by the formation and deactivation reactions.Fig.7shows the predicted dimensionless concentrations of the intermediate C(O)–C–CaO as a function of carbon conversion at different tempera-tures.For XD char,all pro?les obtained in the temperature regime were asymmetrically convex,with a maximal concentration located in a range of carbon conversion between0.1and0.25. The maximal concentration decreased with increasing tempera-ture.This result seemed to be super?cially contradictory to an increase in the overall rate of char gasi?cation with increasing temperature.However,it could be explained because the crystalli-zation or deactivation of dispersed calcium in the char hap-pened more rapidly at higher temperature,resulting in a

lower

Table5

Model Discrimination Results for XD and YX lignites.

Model Index XD YX

675°C700°C725°C750°C800°C750°C800°C900°C950°C

SM RSS 2.050Eà3 6.370Eà30.020860.044290.09328 3.140Eà5 2.300Eà4 2.560Eà39.880Eà3 AICà10.56à9.427à8.240à7.488à6.743à14.50à12.51à10.10à8.746

j

0.19250.4690

RPM RSS 5.300Eà30.018160.065360.074610.09375 5.000Eà4 1.880Eà37.880Eà30.08128 AICà9.574à8.343à7.061à6.929à6.701à11.68à10.36à8.926à6.591

L j0.14290.1570

ASIM RSS 1.540Eà4 1.290Eà4 1.170Eà48.160Eà48.400Eà3 2.090Eà5 6.550Eà5 2.520Eà4 1.530Eà4 AICà13.07à13.25à13.35à11.41à9.075à14.81à13.67à12.32à12.82

L j11

J.Tang et al./Fuel141(2015)46–5553

concentration of the maximal intermediate,and even so,the over-

all rate of char gasi?cation could be still faster at higher tempera-ture as a result of a great increase in the reaction rate constant of the intermediate towards gaseous products.The intermediate con-centration eventually diminished to zero,and thereafter,the char gasi?cation stopped,resulting in a permanently incomplete char conversion.In addition,it could be observed that the location of the maximal intermediate concentration moved towards a lower temperature.

For YX char,we have also calculated the dimensionless concen-trations of intermediate as a function of carbon conversion at dif-ferent temperature,as shown in Fig.7.In this case,strictly speaking,the intermediate is not the same form as shown in Fig.1,and it is considered a form of C(O)–C[45],which derives from an active site C?–C without being conjunction with a catalyst. C(O)–C reacts with steam to form CO2and H2,and in parallel the oxygenated group in it desorbs to form CO,while these reactions re-produce C?–C.Therefore,the mechanism framework shown in Fig.1is not wavered,only that C?–C behaves without deactivation unlike C?–C–CaO.From Fig.7,it was observed that at the temper-atures of750°C and800°C,the intermediate concentration increased at the initial point of gasi?cation almost along the verti-cal axis.This could be explained by the approximation of Eq.(22) to h o?k0

1

t when t is a differential increment from zero.Since the

values k0

1

were very huge at these two temperatures(Table4),it caused a sudden increase in the immediate concentration once the gasi?cation commenced.It was thus implied that nearly no limitation existed on the step of the active site C?–C towards the intermediate C(O)–C in this situation.At higher temperatures, since the reactions of C(O)–C towards gaseous products became comparatively fast,a maximal intermediate emerged from0.05 to0.1of carbon conversion,and its location was reasonably shifted to a higher conversion as the temperature increased;however,it was apparent that the maximum was located at a lower carbon conversion than that for the catalyzed case.From the maximum onward,ASIM predicted the linear declines in the intermediate concentration with carbon conversion at all the temperatures,sug-gesting that the intermediate was uniformly converted to gaseous products as the char gasi?cation proceeded.It was also interesting to notice that opposite to the result of XD char,the intermediate became more concentrated at the maximal point with increasing temperature for YX char.This could be attributed to the heteroge-neous carbon structure of coal char.There are numerous publica-tions regarding the relationship between the gasi?cation reactivity and the carbon structure of char[46].It was likely that only a small group of carbon in a char was active enough to form the oxygenated complexes at a low temperature,and conse-quently,the intermediate concentration decreased to zero at a small carbon conversion.At a high temperature,the intermediate concentration decreased to zero at a higher carbon conversion because more carbon became reactive.

5.Conclusions

A new model(ASIM)has been formulated based on the simpli-?ed active site/intermediate mechanism of steam char gasi?cation. The forms of model are relatively simple with only three integrated

54J.Tang et al./Fuel141(2015)46–55

parameters for both the xàt equation and the dx/dtàt equation, and hence easy to handle in application.The two equations are expressed as

x?f1à

k0

2

k0

2

àk0

1

eàk01tt

k0

1

k0

2

àk0

1

eàk02t

!

dx

dt

?f0eeàk01tàeàk02tT

ASIM has been con?rmed to well predict the total carbon con-versions,the partial carbon conversions to CO and CO2as functions of gasi?cation time and temperature over the entire range of car-bon conversion,for a case of calcium-catalyzed char gasi?cation and another case of uncatalyzed char gasi?https://www.sodocs.net/doc/9e16141681.html,pared to SCM and RPM,ASIM presents not only a great enhancement in the modeling accuracy for both cases,particularly for the cal-cium-catalyzed gasi?cation,but also reasonably re?ects the char-acteristic behaviors of the char gasi?cation arising from the calcium catalysis,catalytic deactivation and heterogeneous char structure for two different lignite chars.

Acknowledgements

The research work is funded by the National‘‘863’’Scienti?c Research Program(2011AA05A201)and by the Natural Science Foundation of China(Grant No.21076081).

References

[1]Bhattacharya S,Kabir KB,Hein K.Dimethyl ether synthesis from Victorian

brown coal through gasi?cation-current status,and research and development needs.Prog Energy Combust Sci2013;39:577–605.

[2]Kajitani S,Tay HL,Zhang S,Li CZ.Mechanisms and kinetic modelling of steam

gasi?cation of brown coal in the presence of volatile-char interactions.Fuel 2013;103:7–13.

[3]Mangena S,Bunt JR,Waanders FB,Baker G.Identi?cation of reaction zones in a

commercial Sasol-Lurgi?xed bed dry bottom gasi?er operating on North Dakota lignite.Fuel2011;90:167–73.

[4]Nilsson S,Gómez-Barea A,Cano DF.Gasi?cation reactivity of char from dried

sewage sludge in a?uidized bed.Fuel2012;92:346–53.

[5]Nemanova V,Abedini A,Liliedahl T,Engvall K.Co-gasi?cation of petroleum

coke and biomass.Fuel2014;117:870–5.

[6]Pinto F,AndréRN,Carolino C,Miranda M,Abelha P,Direito D,et al.Gasi?cation

improvement of a poor quality solid recovered fuel(SRF).Effect of using natural minerals and biomass wastes blends.Fuel2014;117:1034–44.

[7]Chornet E,Baldasano J,Tarki HT.Kinetic expressions for coal char-gas

reactions.Fuel1979;58:395–6.

[8]Goyal A,Zabransky RF,Rehmat A.Gasi?cation kinetics of Western Kentucky

bituminous coal char.Ind Eng Chem Res1989;28:1767–78.

[9]Hill M,Fott P.Kinetics of gasi?cation of Czech brown coals.Fuel

1993;72:525–9.

[10]Molina A,Mondragon F.Reactivity of coal gasi?cation with steam and CO2.

Fuel1998;77:1831–9.

[11]Kopyscinski J,Habibi R,Mims CA,Hill JM.K2CO3-catalyzed CO2gasi?cation of

ash-free coal:kinetic study.Energy Fuels2013;27:4875–83.

[12]Zhang Y,Hara S,Kajitani S,Ashizawa M.Modeling of catalytic gasi?cation

kinetics of coal char and carbon.Fuel2010;89:152–7.

[13]Bryan Woodruff R,Weimer AW.A novel technique for measuring the kinetics

of high-temperature gasi?cation of biomass char with steam.Fuel 2013;103:749–57.

[14]Radovic LR,Steczko K,Walker Jr PL,Jenkins https://www.sodocs.net/doc/9e16141681.html,bined effects of inorganic

constituents and pyrolysis conditions on the gasi?cation reactivity of coal chars.Fuel Process Technol1985;10:311–26.[15]Takarada T,Tamai Y,Tomita A.Reactivities of34coals under steam

gasi?cation.Fuel1985;64:1438–42.

[16]Van Heek KH,Mühlen HJ.Aspects of coal properties and constitution

important for gasi?cation.Fuel1985;64:1405–14.

[17]Lacey D,Bowen J,Basden K.Theory of noncatalytic gas-solid reactions.Ind Eng

Chem Fund1965;4:275–81.

[18]Ye D,Agnew JB,Zhang D.Gasi?cation of a South Australian low-rank coal with

carbon dioxide and steam:kinetics and reactivity studies.Fuel 1998;77:1209–19.

[19]Adánez J,de Diego LF.Mineral matter effects on the reactivity of chars during

gasi?cation.Fuel Process Technol1990;24:298–304.

[20]Levenspiel O.Chemical reaction engineering.3rd ed.New York:Wiley;1998.

[21]Bhatia S,Perlmutter D.A random pore model for?uid–solid reactions:I.

Isothermal,kinetic control.AIChE J1980;26:379–86.

[22]Liu H,Luo C,Kaneko M,Kato S,Kojima T.Uni?cation of gasi?cation kinetics of

char in CO2at elevated temperatures with a modi?ed random pore model.

Energy Fuels2003;17:961–70.

[23]Gardner N,Samuels E,Wilks K.Catalyzed hydrogasi?cation of coal chars.In:

Massey LG,editor.Coal gasi?cation.United states:American Chemical Society;

1974.p.217–36.

[24]Johnson JL.Kinetics of coal gasi?cation:a compilation of research.New

York:John Wiley&Sons Inc;1979.

[25]Zhang Y,Ashizawa M,Kajitani S,Miura K.Proposal of a semi-empirical kinetic

model to reconcile with gasi?cation reactivity pro?les of biomass chars.Fuel 2008;87:475–81.

[26]Kajita M,Kimura T,Norinaga K,Li CZ,Hayashi JI.Catalytic and noncatalytic

mechanisms in steam gasi?cation of char from the pyrolysis of biomass.

Energy Fuels2009;24:108–16.

[27]Gavals GR.A random capillary model with application to char gasi?cation at

chemically controlled rates.AIChE J1980;26:577–85.

[28]Hippo EJ,Jenkins RG,Walker Jr PL.Enhancement of lignite char reactivity to

steam by cation addition.Fuel1979;58:338–44.

[29]Radovic′LR,Walker Jr PL,Jenkins RG.Importance of carbon active sites in the

gasi?cation of coal chars.Fuel1983;62:849–56.

[30]Chen S,Yang R.Uni?ed mechanism of alkali and alkaline earth catalyzed

gasi?cation reactions of carbon by CO2and H2O.Energy Fuels1997;11:421–7.

[31]K?psel R,Zabawski H.Catalytic effects of ash components in low rank coal

gasi?cation:2.Gasi?cation with steam.Fuel1990;69:282–8.

[32]Walker Jr PL.Catalysis of lignite char gasi?cation by exchangeable calcium and

magnesium.Fuel1984;63:1214–20.

[33]Dryden I,Lowry H.Chemistry of coal utilization:supplementary volume.New

York:Wiley;1963.

[34]Liu L,Fei J,Cui M,Hu Y,Wang J.XANES spectroscopic study of sulfur

transformations during co-pyrolysis of a calcium-rich lignite and a high-sulfur bituminous coal.Fuel Process Technol2014;121:56–62.

[35]Hu J,Liu L,Cui M,Wang J.Calcium-promoted catalytic activity of potassium

carbonate for gasi?cation of coal char:the synergistic effect unrelated to mineral matter in coal.Fuel2013;111:628–35.

[36]Huffman G,Huggins F,Jenkins R,Piotroswski A,Lytle F,Greegor R.

Investigation of alkali and alkaline earth coal gasi?cation catalysts by EXAFS spectroscopy.Fuel1986;65:1339–44.

[37]Radovic LR,Walker Jr PL,Jenkins RG.Importance of catalyst dispersion in the

gasi?cation of lignite chars.J Catal1983;82:382–94.

[38]Ohtsuka Y,Tomita A.Calcium catalysed steam gasi?cation of Yallourn brown

coal.Fuel1986;65:1653–7.

[39]González JD,Mondragón F,Espinal JF.Effect of calcium on gasi?cation of

carbonaceous materials with CO2:a DFT study.Fuel2013;114:199–205. [40]Wang J,Jiang M,Yao Y,Zhang Y,Cao J.Steam gasi?cation of coal char catalyzed

by K2CO3for enhanced production of hydrogen without formation of methane.

Fuel2009;88:1572–9.

[41]Zeng X,Wang F,Wang Y,Li A,Yu J,Xu G.Characterization of char gasi?cation

in a micro?uidized bed reaction analyzer.Energy Fuels2014;28:1838–45. [42]Murata S,Hosokawa M,Kidena K,Nomura M.Analysis of oxygen-functional

groups in brown coals.Fuel Process Technol2000;67:231–43.

[43]Akaike H.A new look at the statistical model identi?cation.IEEE Trans

Automat Contr1974;19:716–23.

[44]Gupta JS,Bhatia S.A modi?ed discrete random pore model allowing for

different initial surface reactivity.Carbon2000;38:47–58.

[45]Chen S,Yang R,Kapteijn F,Moulijn J.A new surface oxygen complex on

carbon:toward a uni?ed mechanism for carbon gasi?cation reactions.Ind Eng Chem Res1993;32:2835–40.

[46]Zhu X,Sheng C.In?uences of carbon structure on the reactivities of lignite char

reacting with CO2and NO.Fuel Process Technol2010;91:837–42.

J.Tang et al./Fuel141(2015)46–5555

如何写先进个人事迹

如何写先进个人事迹 篇一:如何写先进事迹材料 如何写先进事迹材料 一般有两种情况:一是先进个人,如先进工作者、优秀党员、劳动模范等;一是先进集体或先进单位,如先进党支部、先进车间或科室,抗洪抢险先进集体等。无论是先进个人还是先进集体,他们的先进事迹,内容各不相同,因此要整理材料,不可能固定一个模式。一般来说,可大体从以下方面进行整理。 (1)要拟定恰当的标题。先进事迹材料的标题,有两部分内容必不可少,一是要写明先进个人姓名和先进集体的名称,使人一眼便看出是哪个人或哪个集体、哪个单位的先进事迹。二是要概括标明先进事迹的主要内容或材料的用途。例如《王鬃同志端正党风的先进事迹》、《关于评选张鬃同志为全国新长征突击手的材料》、《关于评选鬃处党支部为省直机关先进党支部的材料》等。 (2)正文。正文的开头,要写明先进个人的简要情况,包括:姓名、性别、年龄、工作单位、职务、是否党团员等。此外,还要写明有关单位准备授予他(她)什么荣誉称号,或给予哪种形式的奖励。对先进集体、先进单位,要根据其先进事迹的主要内容,寥寥数语即应写明,不须用更多的文字。 然后,要写先进人物或先进集体的主要事迹。这部分内容是全篇材料

的主体,要下功夫写好,关键是要写得既具体,又不繁琐;既概括,又不抽象;既生动形象,又很实在。总之,就是要写得很有说服力,让人一看便可得出够得上先进的结论。比如,写一位端正党风先进人物的事迹材料,就应当着重写这位同志在发扬党的优良传统和作风方面都有哪些突出的先进事迹,在同不正之风作斗争中有哪些突出的表现。又如,写一位搞改革的先进人物的事迹材料,就应当着力写这位同志是从哪些方面进行改革的,已经取得了哪些突出的成果,特别是改革前后的.经济效益或社会效益都有了哪些明显的变化。在写这些先进事迹时,无论是先进个人还是先进集体的,都应选取那些具有代表性的具体事实来说明。必要时还可运用一些数字,以增强先进事迹材料的说服力。 为了使先进事迹的内容眉目清晰、更加条理化,在文字表述上还可分成若干自然段来写,特别是对那些涉及较多方面的先进事迹材料,采取这种写法尤为必要。如果将各方面内容材料都混在一起,是不易写明的。在分段写时,最好在每段之前根据内容标出小标题,或以明确的观点加以概括,使标题或观点与内容浑然一体。 最后,是先进事迹材料的署名。一般说,整理先进个人和先进集体的材料,都是以本级组织或上级组织的名义;是代表组织意见的。因此,材料整理完后,应经有关领导同志审定,以相应一级组织正式署名上报。这类材料不宜以个人名义署名。 写作典型经验材料-般包括以下几部分: (1)标题。有多种写法,通常是把典型经验高度集中地概括出来,一

《女人的资本》读后感,-女性必读的三十部经典-最新范文

《女人的资本》读后感,:女性必读的三十部经典 篇一:女人一生必读的本书 女人一生必读的本书 世界有十分美丽,但如果没有女人,将失掉七分色彩;女人有十分美丽,但如果远离书籍,将失掉七分内蕴。有人说,书是女人最好的化妆品。做时尚的女性,不需要掌握男人,只需要善待自己。读书的女人是美丽的。正如著名女作家毕淑敏所说:“日子一天一天地走,书要一页一页地读。清风朗月水滴石穿,一年几年一辈子地读下去。书就像微波,从内到外震荡着我们的心,徐徐地加热,精神分子的结构就改变了、成熟了,书的效力就凸现出来了。”女人不可不读书,世界因女人的存在而美丽,女人因书籍的滋养而变得更加聪慧. 1《第二性》 被《时代》周刊评为20世纪改变人类思想和生活的10本书之一当代西方女权主义运动的“圣经” 迄今为止对女性问题研究得最为透彻的一本书 2《写给女人》 畅销全球的女性缔造成熟之爱、获取人生幸福的经典之作 当代女性的必读文本 为广大女性朋友们提供了切实可行的人生指导和精神启迪 3《红楼梦》 中国古今第一奇书 中国古典小说的巅峰之作

一本不读就是人生极大遗憾的书 4《谁是最美的女人》 一本女人塑造个性形象的建议书 打开这本书你会发现原来美丽并不远 做一个标准女孩的必读书 5《简·爱》 一个平凡女人不平凡的生活经历 一段曲折离奇而又缠绵动人的爱情故事 一部历久不衰的经典名著 6《居里夫人传》 一部内容详实的科学家传记 一位影响过世界进程的伟大女性不平凡的一生一垃为子女树立光辉榜样的伟大母亲的精神世界 7《圣经》 一部包罗万象的古代文化百科全书 打开西方精神世界的钥匙 要了解西方文学首先应该了解《圣经》 8《世界美术名作二十讲》 艺术史著作中一部难得的佳作 有利于女性读者增强美术修养的艺术杰作 一本为广大女性读者指点艺术迷津的经典之作 9《金锁记》

幼儿教育书籍读后感

篇一:卡尔威特的教育读后感 作为妈妈和老师,我对儿童教育方面的书籍一直是更为关注一些。一次在新华书店里,发现的这本书。《卡尔·威特的教育》真的是一本好书,这是一本关于幼儿教育方面的书籍,是一部有有着很长的历史的经典教育书籍。因为是教师,所以我带着疑问的眼光读完老卡尔写的育儿经验,卡尔威特在三个世纪前的教育经验在现世仍然具有很大的参考意义。对现代的小学教育,仍有很多地方可以借鉴。 素质教育很早就开始有了,至少在卡尔威特的教育方式上就是这样应用的。以素质教育的非智力因素打下基础,在上面建筑一个神童般的宫殿,这就是卡尔威特的成功秘诀。 教育孩子要有正确的方法,要培养孩子的生活自理和良好的行为习惯,要开发孩子的智力,引导孩子对周围事物的兴趣,养成勤于思考、善于思考的习惯。培养孩子发现问题、解决问题的能力,要鼓励孩子敢于向成人提问,作为老师和父母,我们可能什么都知道,只要把问题的思考和解决的方法和步骤展现在孩子面前。明确告诉孩子你不懂或不清楚,但可以一起查书,上网或者请专家。在引导孩子查书找资料、向别人请教的过程中,孩子学到的不仅仅是知识,同时培养了孩子对读书的好奇心、发现问题的恒心、解决问题的自信心。 要养成孩子的好习惯。专心致志的习惯——学习必须专心致志才能有好的结果。学语文时就只考虑语文,学数学时就专心于数学,如果在学习时想着玩,玩时又担心学习跟不上,不能用心一处,即使学生整天坐在书桌旁,那也只不过是装装样子而已,只是一种对自己和别人的一种欺骗。学习任何学科也是一样,只有专心致志才能学好。 敏捷灵巧的习惯——一部分学不拖到最后就不想做,久而久之,这些学生作业一直迟交,甚至不交,其实这些学生不明白,迅速完成作业之后,多余的时间可以做自己喜欢做的事,发展自己的爱好。如果不养成敏捷,灵巧的习惯,能做的事就更少了!坚持不懈的习惯——在学习上会有很多难以预料的困难,但是只要有恒心,只要能够坚持,那么一切困难都会迎刃而解。好习惯是从小养成的,小学阶段是养成好习惯的关键时期,所以我觉得无论是老师还是父母,都应该重视培养孩子良好的习惯。 从玩中学是孩子更易接受的,父母要常深入研究。辅导孩子的过程和孩子学习的过程都应是快乐的,并且成效显着的话,我想智慧的大门就打开了。 早期教育是非常的重要,不都是说“三岁决定人的一生”吗?但又是什么在三岁之前决定了孩子的一生呢?是早期的识字教育?早期的数学教育?还是早期的才艺教育?这些并非不重要,但却不是最重要的。这本书的副标题为:为孩子的终身学习奠定良好的基础。这让我想起了圣经里的一句话:“凡听见我的话就去行的,好比聪明人,把房子盖在磐石上。雨淋,水冲,风吹,撞着那房子,房子总不倒塌,因为根基立在磐石上。凡听见我的话不去行的,好比一个无知的人,把房子盖在沙土上。雨淋,水冲,风吹,撞着那房子,房子就倒塌,并却倒塌得很大。” 你愿意你的孩子是那磐石上的房子,还是沙土上的呢?我想没有人选择后者,那么这本书会教给你,如何站在孩子的角度,读懂孩子的行为,并将孩子的行为引导到一个有效的目标上去。就像圣经里说的:“教养孩童,走他当行的路,就是到老他也不偏离。”

《俗世奇人》读后感

《俗世奇人》读后感 本文是关于读后感的,仅供参考,如果觉得很不错,欢迎点评和分享。 《俗世奇人》读后感(一) 《俗世奇人》里面的一个个人物,一个个故事讲得都是发生在码头上的。 动作干净麻利的苏七块;力大无边的张大力;手巧灵活的泥人张……读了《俗世奇人》这本书后,书中觉得让我最佩服的人是——张大力。一听到这个就觉得他很有力气。他原名叫张金璧,津门一员赴赴武功,身强力蛮,力大无边,所以那里的人都故称他大力。天津人都知道他的名字,他之所以力气大这么多人知道他的名字的原因就是:侯家后有一家石材店,叫聚合成。大门口放一把死沉沉的青石大锁,锁把也是石头做的,锁上刻着一行字:凡举起此锁者,赏银两百。旁观的人不停地嘀咕着,没人举起过,甚至没人能叫它稍稍动一动,您而猜出它有多重吗? 一天,张大力到侯家后,看到这把锁,也看到了上边的字,便俯下身子,使手问一问,轻轻一撼,竟然摇动起来,而且赛摇一竹篮子,人们看到了,都赶紧围上来看。只见张大力手握锁把,腰一挺劲,大石锁被他轻易地举到空中胳膊笔直不弯,脸上遍布笑容老板上来笑嘻嘻的说:“张老师,您没看锁下还有一行字吗?”张大力怔了一下,石锁下写着:唯张大力不算! 张大力扔了石锁,扬长而去!

我最后的感受是:码头上的人,不强活不成,一强就出生各样空前绝后的人物,但都是俗世奇人;小说里的人,不奇传不成,一奇就演出各种匪夷所思的事情,却全是真人真事! 《俗世奇人》读后感(二) 《俗世奇人》是着名作家冯骥才创作的同名小说集,也是冯骥才的第一本小说。全书由19个短篇小说连缀构成,各篇文字极精短,本书用天津方言以及古典小说的白描入笔,极具有故事性和传奇性,读起来让人拍案叫绝。 书中的故事素材均收集于长期流传津门的民间传说,写出生活在天津的诸般奇人妙事。故事生动有趣,惟妙惟肖,使人物跃然纸上,令人赞叹不已。在当时,“天津卫”是天津的古称,它既是水陆交通要道,也是世人瞩目的开放城市。所以,在天津生活的人,“不强活不成,一强就生出各样空前绝后的人物”。他们有的现身于上流社会,有的混迹在市井民间,都是“俗世”中人;然而他们又不是普通人,他们所做的事情令人匪夷所思,是“俗世”中的“奇人”。他们中间有凭着一把钓竿把鱼钓绝的大回;有看病前必先收七块银洋的正骨医生“苏七块”;既有专会溜须拍马的“死鸟”贺道台,也有造假画的黄三爷以假乱真耍得蓝眼丢了饭碗。书中粉刷匠“刷子李”干完活全身不沾一个白点;泥人张从鞋底上取下一块泥巴便单手捏出活人嘴脸……皆是些听起来神乎其神,实际上存在过的人物。这些“俗世奇人”,在作家冯骥才独到的眼里、幽默的笔下,个个生动有趣,活灵活现。

最新小学生个人读书事迹简介怎么写800字

小学生个人读书事迹简介怎么写800字 书,是人类进步的阶梯,苏联作家高尔基的一句话道出了书的重要。书可谓是众多名人的“宠儿”。历来,名人说出关于书的名言数不胜数。今天小编在这给大家整理了小学生个人读书事迹,接下来随着小编一起来看看吧! 小学生个人读书事迹1 “万般皆下品,惟有读书高”、“书中自有颜如玉,书中自有黄金屋”,古往今来,读书的好处为人们所重视,有人“学而优则仕”,有人“满腹经纶”走上“传道授业解惑也”的道路……但是,从长远的角度看,笔者认为读书的好处在于增加了我们做事的成功率,改善了生活的质量。 三国时期的大将吕蒙,行伍出身,不重视文化的学习,行文时,常常要他人捉刀。经过主君孙权的劝导,吕蒙懂得了读书的重要性,从此手不释卷,成为了一代儒将,连东吴的智囊鲁肃都对他“刮目相待”。后来的事实证明,荆州之战的胜利,擒获“武圣”关羽,离不开吕蒙的“运筹帷幄,决胜千里”,而他的韬略离不开平时的读书。由此可见,一个人行事的成功率高低,与他的对读书,对知识的重视程度是密切相关的。 的物理学家牛顿曾近说过,“如果我比别人看得更远,那是因为我站在巨人的肩上”,鲜花和掌声面前,一代伟人没有迷失方向,自始至终对读书保持着热枕。牛顿的话语告诉我们,渊博的知识能让我们站在更高、更理性的角度来看问题,从而少犯错误,少走弯路。

读书的好处是显而易见的,但是,在社会发展日新月异的今天,依然不乏对读书,对知识缺乏认知的人,《今日说法》中我们反复看到农民工没有和用人单位签订劳动合同,最终讨薪无果;屠户不知道往牛肉里掺“巴西疯牛肉”是犯法的;某父母坚持“棍棒底下出孝子”,结果伤害了孩子的身心,也将自己送进了班房……对书本,对知识的零解读让他们付出了惨痛的代价,当他们奔波在讨薪的路上,当他们面对高墙电网时,幸福,从何谈起?高质量的生活,从何谈起? 读书,让我们体会到“锄禾日当午,汗滴禾下土”的艰辛;读书,让我们感知到“四海无闲田,农夫犹饿死”的无奈;读书,让我们感悟到“为报倾城随太守,西北望射天狼”的豪情壮志。 读书的好处在于提高了生活的质量,它填补了我们人生中的空白,让我们不至于在大好的年华里无所事事,从书本中,我们学会提炼出有用的信息,汲取成长所需的营养。所以,我们要认真读书,充分认识到读书对改善生活的重要意义,只有这样,才是一种负责任的生活态度。 小学生个人读书事迹2 所谓读一本好书就是交一个良师益友,但我认为读一本好书就是一次大冒险,大探究。一次体会书的过程,真的很有意思,咯咯的笑声,总是从书香里散发;沉思的目光也总是从书本里透露。是书给了我启示,是书填补了我无聊的夜空,也是书带我遨游整个古今中外。所以人活着就不能没有书,只要爱书你就是一个爱生活的人,只要爱书你就是一个大写的人,只要爱书你就是一个懂得珍惜与否的人。可真所谓

经典教育类书籍读后感

《孩子,把你的手给我》读后感 “孩子,把你的手给我”,不论是父母和孩子围坐在餐桌上共进晚餐,还是老师和学生相聚在窗明几净的办公室内促膝谈心,这将是一幅多么温馨的画卷。然而,我们并不常这样表达,我们几乎没有这样的机会,我们许久没有感受过这样的温馨了。掩卷深思,作为一名未来的教师,我要学习的改变的还有很多很多。 《孩子,把你的手给我》分为十个章节,通过一个个生动的例子阐述了如何实现与孩子真正有效沟通的方法和技巧。不论是教师还是父母,都希望每天会是平静的一天,没有叫嚷、争辩、战争。可是尽管如此,生活中还是充满了无休止的小麻烦、阶段性的冲突,以及突如其来的危机。为什么会这样?因为教师亦或是父母都没有意识到语言的破坏力量。因为语言像刀能够带来痛苦,即使不是身体上的痛苦,在感情上也会留下很多痛苦的伤痕。在沟通中发生的不幸,常常不是因为缺乏爱,而是缺乏对孩子的理解;不是因为缺乏智慧,而是缺乏知识。与孩子沟通应该学会把孩子像客人一样对待。 第一章分多个方面解释了和孩子对话的这门有规则的独特艺术。首先,孩子在交谈时很少是无知的,他们的信息里经常有需要解读的密码。孩子们看似没有完结的十万个为什么并不是单纯的想获得大量的知识,他们想要得到的是这个问题会不会影响到他们的生活,所以同孩子沟通应该理解到孩子提出的简单问题背后的真正用意。其次,与孩子沟通应做到换位思考,因为只有当孩子感到被理解时,他们的孤独和伤痛就会减少。 由此,我想到我的中学时代老师通常对有情绪怒气的学生的做法是:冷处理或者是立刻严厉的批评他。如果我作为老师不妨换一种方式,说一些理解他的话。我想这样立即能让孩子感受到你的心和他在一起,你是理解他的。这样学生心情得到理解,情绪也会缓和,师生的情感关系自然会提升很多。给孩子一定地理解,他们的孤独和伤痛就会减少,诚恳地承认孩子的困境,承认他们的情绪和抱怨,说出他们的失望。说教和批评是毫无效果的,不能起到一点好作用,并且会产生距离和怨恨。 除此之外让我记忆深刻的是的是父母如何正确有效地与孩子沟通。这本书提出了这样的命题:爱是需要技巧的。只拥有爱是不够的,掌握大量的育儿常识也是不够的,自以为有了爱和知识就可以教育孩子的父母其实并不一定能使孩子

读周国平的《人与永恒》有感

《人与永恒》读书笔记 这本书只有薄薄的181页,但是,却花了我不少时间去阅读它。尽管,我最后将它读完了。但是,我仍不敢说,我读懂了它。然而,尽管在这片海滩上,我根本算不上是一个拾到贝壳的孩子,但我仍愿不自量力地将我之所得展示在人前。 孔子说,“未知生,焉知死。”但是,我认为生是一种并不深刻的存在,而死才是生的终极。试想一下,假如人的生命是不息的,那么,生的一天,两天,甚至十年又因何而珍贵?正因为会死,人才穷其一生去创造价值,如此生才显得弥足珍贵。所以,从某种程度上说,死还成就了生的意义。还曾在《人生哲理小品》这本书上看到老宣说,“人生就是离了母腹走向坟墓的过程。”可见,死终究是人最后的归宿。 周国平在他的小书里说,“死是最令人同情的,因为物伤其类:自己也会死。死又是最不令人同情的,因为殊途同归:自己也得死。”可能是因为年轻吧,路还很长,我还不曾想到因最终会死而同情自己。但是,我却因经历别人的死而心生感触。其实,对于死,人并不是本能的害怕的,它给带来的伤心绝望,很多时候不是因为知道自己最终会死,而是因为看到自己的至亲至爱在自己眼前死去。我看到过一些失去孩子的父母,他们向上天祈求,让他们代替孩子死。这让我觉得,许多人其实是不畏自己死的,而是担心他人死。然而无论是谁死,最后大家也都“殊途同归”:死。曾经,我因为一个至亲的离世而久久不能从悲伤中走出来。正如无人不知的谁都必须死,我也深知这个道理。但是,就是不能释怀。直到有一天,我的一个老师对我说,“人就是这样的,来这世上一趟,做完了他该做的事,他也就走了。”多么微妙,我顿时放下心中所有的阴郁。 死,未必应该悲伤的。它有时,只是按程序办事而已。我们人赋予它各种惨白的情感,有时真是太自作多情了。如果,我们豁达一点,心平气和一点,死不也是平常事么? 其实,我一直疑惑,为什么我们总要谈论幸福与痛苦。在我们的生活中,夹杂在幸福与痛苦之间,并且也是我们经历得最多的,不是平淡吗?白岩松也说,“我们的日子80%都是平淡的。”既然平淡占据了我们人生的大部分,那么,它不应该是主流吗?我们不应该谈论它或研究它吗?然而,天空很辽阔,飞鸟才是主角。夜幕也终敌不过,烟火刹那的灿烂。正因为幸福与痛苦给了我们情感上强烈的冲击,所以它们才成了我们永恒的话题。 假设,在痛苦与幸福两者之间,定要你选其一,你会选哪个?我选了痛苦。正如周国平在书中所说,“痛苦使人深刻。”我还不曾感受过幸福给我带来的重大冲击,但是,我却领教过了痛苦赐予我的那份刻骨铭心。恕我冒昧,我有时会在心里偷偷认为,幸福是肤浅的,它的形式也是肤浅。所以,很多人说吃饭、睡觉、玩就是幸福。当然,也有人说要做作业就是痛苦。但我想说,你根本不懂痛苦。痛苦是折磨人却诱使人不断甘愿与它纠缠的东西。它有魔力,可以摧毁一个人,也可以成就一个人。当一个人战胜痛苦时,这种克服痛苦的力量就会成为他自身能力的一部分。反之,痛苦则将人打倒,吞噬,甚至毁灭。尽管有这样的风险,我仍愿痛苦着思考也不愿幸福着平庸。我始终相信,一个真正痛苦的灵魂是高贵的。 “我不知道什么叫爱情。” 如周国平所言,我也不知道什么叫爱情。但是,我知道它是甘药,也是毒药。俗言“爱之愈深,爱之愈切”。爱是毒药的一面,在某些分手的男女面前会被展现得淋漓尽致,因为有人会耿耿于怀,会心有不甘,会怀恨在心,会无法自拔。起初,我对这种反应很是理解,但是,周国平写在他的小书中的一句话,提醒了我。他说,“在失恋的痛苦中,自尊心的受挫占了很大的比重。”有些时候,人们爱上的不是那个他们口中的人,而是他们的自尊心。当他们追求而不可得的时候,其自尊心就会受挫,以至于耿耿于怀,不肯轻易放手。而倘若他们追求且得到的时候,那个爱慕的对象则不再美丽。这可能就是人性,得不到的总是好的,

俗世奇人读后感100字五篇

俗世奇人读后感100字 读了俗世奇人,我明白了一个道理:要想学成本领,就要脚踏实地去干,不能总想着走近道。其次便是坚持,不可半途而废。 世上无难事,只怕有心人。只要你有一颗热爱之心,做事能成就传奇,写文章也能留下传奇! 俗世,果然有奇人!就看您怎么做了。 我也在心中种下了一个梦 俗世奇人读后感100字 这《俗世奇人》是一篇一篇的写人文章,里边的‘刷子李’特别有趣。 比方说这段:刷子李是河北大街一家营造厂的师傅,专干粉刷一行,别的不干。他要是给您刷好一间屋子,屋里任嘛甭放,单坐着,就赛升天一般美。最让人叫绝的是,他刷浆时必穿一身黑,干完活,身上绝没有一个白点。别不信!他还给自己立下一个规矩,只要身上有白点,白刷不要钱。再加上他刷的墙是匀匀实实一道白,好似打开了一道雪白的屏障,也不难看出,这手艺有多好了。 俗世奇人读后感100字 在华大夫的身上发生了一件事,让我觉得十分有意思。 巡捕来问华大夫认不认识一个‘黑脸巨匪’华大夫因为记不住人的模样坚决说记不清!然而,华大夫根据巡捕的提示,在吃饭时,根据自己的医术和巡捕的提示,捉住了那个‘黑脸巨匪’。随后,就有很多人说华大夫是:认牙不认人。 俗世奇人读后感100字 在这本书里,我最喜欢的人物就是:苏七块和华大夫。首先来说苏七块,苏七块原名:苏金散。他每次给病者看病,病者都要先放七块银两在桌子上,如果没有这七块银两,他就动也不动,好赛旁边没有人似的。 所以,别人都在背后骂他:认钱不认人!又给苏金散起了个挨贬的外号:苏七块! 俗世奇人读后感100字 这个寒假,我在看一本十分有趣的书。它的名字叫做——《俗世奇人》。它,是著名作家冯骥才的作品。文章采用半文半白的写法,短小而精湛。

个人先进事迹简介

个人先进事迹简介 01 在思想政治方面,xxxx同学积极向上,热爱祖国、热爱中国共产党,拥护中国共产党的领导.利用课余时间和党课机会认真学习政治理论,积极向党组织靠拢. 在学习上,xxxx同学认为只有把学习成绩确实提高才能为将来的实践打下扎实的基础,成为社会有用人才.学习努力、成绩优良. 在生活中,善于与人沟通,乐观向上,乐于助人.有健全的人格意识和良好的心理素质和从容、坦诚、乐观、快乐的生活态度,乐于帮助身边的同学,受到师生的好评. 02 xxx同学认真学习政治理论,积极上进,在校期间获得原院级三好生,和校级三好生,优秀团员称号,并获得三等奖学金. 在学习上遇到不理解的地方也常常向老师请教,还勇于向老师提出质疑.在完成自己学业的同时,能主动帮助其他同学解决学习上的难题,和其他同学共同探讨,共同进步. 在社会实践方面,xxxx同学参与了中国儿童文学精品“悦”读书系,插画绘制工作,xxxx同学在班中担任宣传委员,工作积极主动,认真负责,有较强的组织能力.能够在老师、班主任的指导下独立完成学院、班级布置的各项工作. 03 xxx同学在政治思想方面积极进取,严格要求自己.在学习方面刻苦努力,不断钻研,学习成绩优异,连续两年荣获国家励志奖学金;作

为一名学生干部,她总是充满激情的迎接并完成各项工作,荣获优秀团干部称号.在社会实践和志愿者活动中起到模范带头作用. 04 xxxx同学在思想方面,积极要求进步,为人诚实,尊敬师长.严格 要求自己.在大一期间就积极参加了党课初、高级班的学习,拥护中国共产党的领导,并积极向党组织靠拢. 在工作上,作为班中的学习委员,对待工作兢兢业业、尽职尽责 的完成班集体的各项工作任务.并在班级和系里能够起骨干带头作用.热心为同学服务,工作责任心强. 在学习上,学习目的明确、态度端正、刻苦努力,连续两学年在 班级的综合测评排名中获得第1.并荣获院级二等奖学金、三好生、优秀班干部、优秀团员等奖项. 在社会实践方面,积极参加学校和班级组织的各项政治活动,并 在志愿者活动中起到模范带头作用.积极锻炼身体.能够处理好学习与工作的关系,乐于助人,团结班中每一位同学,谦虚好学,受到师生的好评. 05 在思想方面,xxxx同学积极向上,热爱祖国、热爱中国共产党,拥护中国共产党的领导.作为一名共产党员时刻起到积极的带头作用,利用课余时间和党课机会认真学习政治理论. 在工作上,作为班中的团支部书记,xxxx同学积极策划组织各类 团活动,具有良好的组织能力. 在学习上,xxxx同学学习努力、成绩优良、并热心帮助在学习上有困难的同学,连续两年获得二等奖学金. 在生活中,善于与人沟通,乐观向上,乐于助人.有健全的人格意 识和良好的心理素质.

读后感1500字《人与永恒》

读后感1500字《人与永恒》 一直都很喜欢周国平的文章,觉得他的文章里流露着浓浓的人文主义和对人生对生活的感悟与哲理。而《人与永恒》就体现而来周国平先生对人和自然生态的关系来着手,用了关怀的角度看问题。提醒着人们要爱护珍惜自然。 《人与永恒》一书记录了作者思想的原生态,而这样的原生态正存在于每一个感受着思考的人的头脑里。当人们为了生活忙碌,忘记了思考,作者却将他经过深思熟虑的生活感悟呈现出来,他用散文的笔调写他的哲学思考:人、自然和生命、爱、孤独、人生、美、超脱、幸福和痛苦、幽默、女人和男人、天才、婚姻、死、时间和永恒等26个话题。 周国平先生的《人与永恒》,是他随手写下的内心的点滴感思,令我万万没有想到的是,文字奇妙的排列组合竟渗透出如此的人生真谛。下面我将我在这本书中读到的最喜欢句子摘录出来跟大家分享,

也跟大家谈谈我对这些句子的感想。周国平先生是个爱思考的人,我也希望自己可以像他一样从平常的生活中去感悟生活,感悟生命。“幽默是一种轻松的深刻。面对严肃的肤浅,深刻露出了玩世不恭的微笑。幽默是智慧的表情,它教不会,学不了。有一本杂志声称它能教人幽默,从而轻松地生活。我不曾见过比这更缺乏幽默感的事情。幽默是对生活的一种哲学式态度,它要求与生活保持一个距离,暂时以局外人的眼光来发现和揶揄生活中的缺陷。毋宁说,人这时成了一个神,他通过对人生缺陷的戏侮而暂时摆脱了这缺陷。那种毫无幽默感的人,常常把隐蔽的讽刺听作夸奖,又把善意的玩笑听作辱骂。”我们喜欢 和幽默的人相处是因为能从他们身上得到欢笑。那些幽默的人似乎天生具有一种能力能给人带去欢乐,我们在羡慕那些幽默的人的同时却忘了原来不苟言笑的我们也有这种能力。正如周国平先生说的那样幽默是一种对生活的态度,只要我们对生活持一种乐观的态度,我们会惊奇的发现生活回馈给我们的不仅仅是幽默而已。 “闲适和散漫都是从俗务中抽身出来的状态,心境却迥异。闲适

教育书籍读后感

玫瑰,教育的理想之园 ——读《玫瑰与教育》有感 不管何时何地,谁收到玫瑰花都会怦然心动。你看,一朵有一朵的吉义。比如,“1朵”代表“我的心中只有你”;“18朵”是“真诚与坦白”;“99朵”是“天长地久”。现在,我已用玫瑰的含义要求自己——像“6朵”玫瑰那样,对待同行,努力做到“互敬、互爱、互谅”;“8朵”玫瑰那样怀着感恩之心对待“关怀及鼓励”我的人;像“19朵”玫瑰那样学会在现实生活中“忍耐与期待”;像“20朵”玫瑰那样,“一颗赤诚的心”对待自己的人生;像红玫瑰代表的那样,对教学付出热情和真爱;像黄玫瑰代表的那样珍重自己,祝福别人;像紫玫瑰代表的浪漫那样感受心灵的真实和独特;像白玫瑰代表的纯洁一样,一辈子拥有童年天真;以至努力做到黑玫瑰的温柔,橘色玫瑰的友情,蓝玫瑰的善良……爱事业如同热爱我的生命一样。 ——摘自《玫瑰与教育》 作为一名小学老师,我常常为自己的课堂缺乏生动、灵性、激情、思想……而苦恼、烦忧、惭愧、自责。或许这就是我不断买书读书的最重要原因之一吧,是的,我自知自幼农村长大,没有书香的熏染,师范里自己倾心于玩耍,而对图书馆比较陌生,工作以后,才知道什么叫浅薄,“唯有读书”才能让自己长“高”啊! 教师的一生或许就是一个不断翻阅书籍,行走于学生中间以及文字之间的生命过程吧! 羡慕过李吉林童话般优美的文字,倾心过于永正幽默而活泼的课堂,感叹过支玉恒的四两拨千斤,震撼于李镇西的民主教育……现在,面前放的是一本《玫瑰与教育》。 吸引我的,首先是书名。这就好比一个人的眼睛,通过眼睛,我们有了想了解她内心的愿望,更多的是疑惑:被说三道四、世人表面热心其实漠然的教育怎么和这么美的字眼、这么美的形象“玫瑰”联系在了一起? 于是,在她高雅的“清谈”中感受其深深的“忧患”,随她走进“听说读写的背后”,聆听关于语文教学的真知灼见,伴着她的行踪,“管窥”一下“日本”的教育状况,“在白纸黑字的沃野上”领略一道道文化风景…… 窈然回首,“玫瑰”与“教育”的含义及关系已渐清晰。原来是因为有了激情的阳光和思想的空气,玫瑰才长久地灿烂在教育的四季里——芬芳四溢。 一个女性,能做到除工作之外,全部时间几乎都在看书和写作上,这是怎样的一个女性? 《玫瑰与教育》记录的是“玫瑰”的教育生命一次次花开的轨迹,抒写的是“玫瑰”对教育的一片真情,对生活的热爱,对事业、家庭、爱情的体悟,因为真,所以爱。 按我的阅读心习惯,看完一个人的一本书,我是要尽量找他的全部著作的。一朵玫瑰将我引向整个玫瑰园。于是,又得以欣赏一簇“玫瑰”:《听窦桂梅老师讲课》、《激情与思想》、《创造生命的课堂》,接着又在线观看了她的一些课堂录像和演讲实录,这是怎样的一片让人怦然心动、心潮澎湃的园子啊!这是我们理想教育的园子呀! 玫瑰堪称大家,因为她有大心境,大气魄。 “玫瑰”是窦桂梅的网名,其实是窦桂梅的化身——外表美丽而内在芬芳。或者,在她的眼里,教育本身就是开不败的玫瑰花。 《玫瑰与教育》一书最后一页,窦桂梅引用狄金森的一句诗:“跳着舞过黯淡的日子,让我飞翔的是一本书。”因为她的《玫瑰与教育》,我想把这句诗改写一下: 跳着舞过平凡的日子,让我走进玫瑰的理想教育之园。 《教师的20项修炼》读后感 《教师的20项修炼》为三篇“修炼教师形象”“精炼教师生活”“锤炼教师专业”。本书没有用枯燥的理论,没有艰涩的专业名词,而是用和风细雨般的的细节,润物细无声式的魅力,令人感动,触动我们久已死水一滩的心灵,引领我们去追逐、去领会、去反思、去品悟。 一、和煦的笑容。 教师的微笑如春风化雨,能让学生感到亲切,增加师生间的凝聚力,增添学生学习的自信心。于是,我努力地微笑着走进教室,努力给学生营造一个宽松、和谐的学习氛围;微笑着鼓励学生探究知识,大胆提问,学生遇到难题,我微笑地对他说:“别着急,再想想,我相信你一定能行的。”在耐心的等待中,学生终于解决了难题。教师应心平气和,循循善诱,帮助他们认识自己的不足,微笑着等待孩子的成长。可见,微笑有着无穷的教育魅力,作为教师,我们每天都应带着微笑走进教室,给自己一份好心情,给学生一份好印象。 二、积极的反思 “经验+反思=成长”是教师的成长规律。教师的成长过程,其实就是在平时工作中,养成发现问题,捕捉问题,并及时总结经验,反思后再指导实践。读了郭教授的文章,我感到自己的反思,只停留在教学层面,今后我还应将教学反思深入到教育领域的价值观和教师的思维方式等方面,在反思中提升自己的专业素质,人格魅力。因为教师的反思是新型教师的必备能力。 三、无声的宽容 宽容是无声的教育,但决不是纵容,教师的是一种教育智慧,是一种教育修养;宽容是一种积极有效的教育态度,它要求教师真心地关爱自己的教育对象。多一点理解和包容,多一点微笑效果会好一些。小学生的观念习惯理解能力不同于成年人,他们在学习生活中出现一些失误也不足为奇,孩子犯了错,愿意改正,我们就应该宽容他们,给他改正的机会。 我们面对的学生不是装知识的口袋,不是机器人,学生是活的,是有思想有情感的人。怎样靠近学生的内心世界,怎样把知识传递给他们,这需要教育的艺术,需要老师的教育技巧,深入钻研和思考,使他们在自己的知识阶梯上,自信地向上前进。 《教师的20项修炼》的一篇篇精妙论述,让我的内心一次次受到触动,引导我不断地修炼自己。今后每天问自己一句:“今天修炼了吗? 《教师的20项修炼》读后感 本学期学校为了提高教师们思想理论水平的提高又发了两本书给大家学习,就我个人而言感觉很好,这样通过教学之余时间学习学习,理论武装头脑,对增强自己教育教学能力有很大的裨益。 在学习《教师的20项修炼》时看到教师的反思一章节时,感触很多。“教学反思是教师以自己的教学活动过程为思考对象,对自己的某种教学行为、决策以及由此产生的结果进行审视和分析的活动。”教学反思旨在引领老师们“关注自己的教育教学行为,总结自己的教育教学经验,分析问题与困惑、成功与失败,进一步提升教育教学的智慧,提高自己的教育教学质量。”我觉得还有非常重要的一点,就是让反思促发展,只有通过反思,教师才能成为教师。事实上,教学反思是教师的自发行为,是自然而然发生的,毋需刻意追逐。 一、运用现代课程观,反思自己在教学过程中所扮演的角色 现代课程观认为,教学过程是师生交往、积极互动、共同发展的过程。在这个过程中教师与学生相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求得新的发现,从而达到共识、共享、共进,实现教学相长和共同发展。没有交往、没有互动,就不存在或未发生教学,教学是教师的教与学生的学的统一,要以学生为主体,教师为主导。因此,我们要重新审视教育的原则,重新审视教师的作用。现在的教师,已经不仅仅是知识的重要载体,教师应该成为学生学习的伙伴;教学不是为了教师的表演和个人魅力的展示,而是为了促进学生的发展。教师应从传统单一的知识传播者转变为教学过程的设计者、学生学习过程的组织者和引导者,学生全面发展的促进者等多重角色。这一转变对于习惯了传统教学方式的教师而言,并非是一个自然而然的过程,因此需要经常反思自己的角色。 为了适应这种多重角色,教师备课不应把大量的时间放在组织教案和讲授上,不应以自己所理解的重点难点去把握教材,也不能拘泥于教材;教学设计要以学生的需要为出发点,以培养学生的能力、激发学生的潜能为教学目标,教师要改变传统的教学方法,重在指导学生应该怎么学习,选择正确的学习路线和学习策略;告诉他们学习的方法,教会他们处理信息的手段,而不是把现成的结论传授出去。教学过程中充分发挥学生的能动作用,一切活动应最大限度地调动和发挥学生的积极性。教师的主要精力应放在策划、组织、启发、引导、点拨、答疑、做好总结工作上来,摆正教师的主导位置和学生的主体位置,力求获得最佳教学效果。教学效果的评价应以学生的“收获与发展”为标准,而非教师“教给了什么”。本学期我教的《电子技术项目课程》就是以此为标准要求自己的教学。 二、运用教育民主思想,反思自己的学生观 现代教育强调以人为本,因材施教,和谐发展。其核心是实行教育民主化。教育民主化观念是教师人格特征的重要内容。实行教学民主,首先,要求教师把学生放到一个平等的人的位置来对待,尊重每一个学生的独立人格,关注学生的尊严与情感,真诚地对待学生,尊重学生的个性,建立伙伴型的师生关系,因此,教师要反思自己是否把学生当人看。其次,始终记住学生是思想意义上的未成年人、不完美的人和需要教化之人,学校是他们走向成年、走向完美、接受教化的主要场所,教师是他们的引路人,来自教师的鼓励、宽容或讽刺、批评会产生两种截然相反的作用。教师要多换位思考,将心比心。对待有缺点、犯错误的学生要多宽容,少责备;多激励,少批评,绝不能讽刺挖苦,要

俗世奇人读后感800字高中读俗世奇人有感5篇范文

俗世奇人读后感800字高中读俗世奇人有感5 篇范文 冯先生在《俗世奇人》里塑造的人物一个个栩栩如生,完整传神。大家读了《俗世奇人》这本书有什么心得感想呢?以下是WTT为大家准备的《俗世奇人》读后感,欢迎大家前来参阅。 我们的“俗班奇人”-----读《俗世奇人》有感 话说,在那老天津城内呐,有着一群群的人;那这人呐,又是一个个的绝!苏七块,认识吧?什么,你不认识?那泥人张,酒婆,小达子,皮大嘴和甄一口,你总算认识了吧?什么,不清楚?那刷子李一定认识吧!如果你全都认识,那你一定看过冯骥才先生的《俗世奇人》吧!如果你没有看过,把下面我就带你去领略领略在天津卫的这些俗世奇人吧! 天津狗不理包你应该知道吧,可是你知道狗不理又是怎么来的吗?那难道是狗不理那个包子?不是不是都不是。其实是在运河边上有个卖包子的狗子,是当年跟随他爹打武清来到天津的。 你以为他真的叫狗子?不,他的真名叫高贵友,别人只知道是他爹天天呼他的小名:狗子。 他爹老高没啥能耐,那的包子也没啥好,专给一些干重活的粗人吃。老高死了,就归狗子说了算。狗子把包子一改良,不仅味儿美,那貌也美,这下可热闹了起来。

这不,忙的都没空搭理别人了,别家包子店本来就是生气,就骂他“狗不理”这一来,反到成为了一张大大的招牌。 有个官员献了些狗不理包给袁世凯,袁世凯一吃,心中大喜,也给老佛爷慈禧送了点狗不理包,慈禧吃了它,就不吃那餐桌上的任何菜了。而且慈禧还说了这么一句:“老天爷吃了也保管说好!”那可见狗不理包有多美味呀!这金口一开,从宫里传到宫外,京城传到天津,天津再名扬四海,流传至今。 接下来呀,我要给你们介绍一下我们班的土味《俗班奇人》中的大名鼎鼎的肩负:“抠脚大佬”,“虫子刘”等等多个名号刘相贝同学。事例太多,说也说不完呀!下面说一下身为“虫子刘”的他吧!他折磨虫子可是一流的。 现在正是木棉花盛开的季节-夏天。在一堆堆雪白的棉花中,藏匿着一个个小红点-木棉虫。尽管上课再无趣,无趣的想打瞌睡,他还是会找些乐子来。他折磨虫子的方法可谓是各式各样,如:一只虫子六条腿先把虫子的两条腿拔了,看看能不能走,然后再拔掉两条腿,放在桌子上让虫子爬,没想到还能爬。我开始佩服小红虫的毅力了。 正好那天喝可乐,我突然蹦出了一个可怕的想法,竟然还说出来了-把虫子放进可乐里,会死吗?没想到他竟然毫无悬念地说:“我早试过了,不会死。”他还现场直播给我们看,那虫子像是在游泳,也像是在汲取可乐。唉...手法一流呀!还早就试过了。最让人意想不到的是,他还把虫子捞了出来,涂上闪光粉裹

人与永恒读后感

人与永恒读后感 Prepared on 24 November 2020

《人与永恒》读后感 《人与永恒》是周国平随手写下的点滴生活思考。这是他早期的一本书,是他在研究尼采的同时,随手写下的内心的点滴感思。起文笔随性,文字朴实。细细品来,觉得意义深刻。文字奇妙的排列组合竟散发出如此芳香凛冽的人生真谛,正如“哲学家生活在永恒中,诗人生活在瞬时中,他们都不会 老”。 我偏爱那些用随笔、格言、手记等散文形式写作的哲学家,我喜欢徜徉在哲学的散文天地里。这里较少独断的论证和说教,有更多的质朴和自然,更多的直觉和洞见。这里没有普洛克路斯忒斯之床,用不着为了体系的需要而拉长或截短活的感觉和思想。 托尔斯泰的伟大在于他那种异乎寻常的质朴和真实。学了《世间最美的坟墓》后,更加觉得他的朴素正是我所向往的,我喜欢这种朴素的感觉。我不喜欢太多的争吵,我喜欢平静的生活,与其浪费时间争吵,倒还不如在争吵的时候腾出时间来寻求真理。 在世界万物中,人是最大的谜,在人类心目中,永恒是最大的谜。展现了人生意义探求的广阔领域,生与死,爱与孤独,自然与生命,真实,美,等等,无不是人与永恒相沟通的形式与体验。人是唯一能追问自身存在之意义的动物,这是人的伟大之处,也是人的悲壮之处。因为意义没有确定的标准,寻求生命的意义,可贵的不在意义本身,而在于寻求。 从生到死,人的起点和终点都一样,人会遇见不同的路途风景,但人的情绪大多是相似的:快乐与悲伤,程度的不同只在于两者的界限区分不同,就这样形成两种人,乐观者与悲观者。对我们年轻人而言,生与死的两头都很遥

远,无法感受生命开始的神圣,也无法感受死亡宣判的恐惧。我们只是在行走,一路寻找一路走,“生”在脚下延续,“意义”可能在心里,可能在脚印里,始终遍寻不见。但我始终相信,有自我感知,有精神品级,就足够。 爱是人生最美的梦,爱情一直是不朽的传说。人类想要幸福,把“爱情”当作终极象征的幸福,但世间好多的爱都不幸福,要么是难成眷属的无奈,要么是终成眷属后的厌倦,就如庄子云,“相濡以沫不如相忘于江湖”。相濡以沫,却让人厌倦到老;相忘于江湖,却让人怀念到哭。爱不是一潭死水,而是一股涓涓细流,时间在走,一切在变。没有什么人什么事会静止不动地等在原地。拥有的时候要懂得珍惜,失去的时候要懂得忘记,再铭记于心的曾经也只是过去,过去在去。回忆始终是时光赠予的最好的礼物,带着这份礼物,可以微笑着往前走。 爱与孤独一直是个矛盾,人怕孤独,这是大多数人的宿命。宿命的原因在于他们不理解孤独,孤独源于爱,无爱的人不会孤独,理解孤独的人学会珍惜自己,能领悟人生根本性孤独的人,便已经站到了一切人间欢爱的上方,不会做爱的奴隶,不会丢失自己。对人生深刻的感受大多是自我意识的产物,很难让别人懂你所懂,想你所想。所以,学会孤独,学会与自己交谈,听自己说话,就这样学会深刻。无聊者自厌,寂寞者自怜,孤独者自知。理解孤独的人,内心会冷暖自知,会眼神清亮,是一种智慧。 “人生唯一能够追问自身存在具有什么意义的生物,这就算人的伟大之处,但也正是人的悲壮之处,因为对自己的存在意义没有明确的标准。”人寻求生命存在的意义,其实可贵的并不在于意义本身,而是在于寻求的过程!生或死,

与孩子一起成长读后感

与孩子一起成长读后感 与孩子一起成长读后感(一) 儿女的成长只有一次,与他们一起成长,是责任,是幸福,也是一门艺术。 厚厚的一本书翻完,作者对女儿的一片爱心跃然纸上,本书是作者送给女儿的一份生日礼物,也是作者对自己培养孩子全过程的一个系统总结,李镇西老师既是一个学校的教育者,又是一位家庭教育者,视野全面客观,不存在厚此薄彼,以偏盖全之说,正适合当下有心于教育孩子的既是教师,又是家长的我们阅读。作者从日常生活中的一点一滴,一事一物入手,阐述了教育其实并不高深,寻常处,见真谛。 书中,李镇西老师告诉我们“家长也是教育者”,“教”“育”是相辅相成的,在我们教育子女的同时子女也在教育着我们,而且家庭教育和学校教育应该是和-谐的统一,作为家长首先应该是一位当之无愧的教育者,是孩子永远的老师,无论是学校老师或家长,其教育的目的都是为了把孩子培养成优秀的可造之才。我从未认为教育孩子只是学校老师的事情,也从不认为把孩子送到学校自己就完全放心,万事大吉。但在实际行动中却在这样做,读完本书后自觉惭愧。 李镇西老师记录女儿生命成长的历程,是用心在记录。从女儿一颦一笑到女儿许多的第一次,无不体现了一位伟大父亲对女儿的记挂和关爱。第一次随爸爸妈妈坐公交车,第一次呈现出笑的表情,第一

次独坐,第一次“手足舞蹈”地跳舞……无不体现出伟大的爱心。十八年,父亲从年轻到中年,从女儿呀呀学语到幼儿园到小学到初中到高中到亭亭玉立的大学生,失败则鼓励,迷惘则开导,困惑则解惑,始终充满期待充满微笑。 李老师在书中强调:“和许多年轻的父母一样,我非常爱我的女儿,但我不把我曾有过的‘科学家梦’、‘艺术家梦’强加给她。我抱定一个信念:我要让她成为一个快乐的人!而什么是快乐呢?李镇西告诉女儿:”快乐,源于善良:让人们因我的存在感到幸福,就是最大的快乐!快乐,源于知识:畅游在浩瀚知识的无边海洋,就是最大的快乐!快乐,源于童心:永远保持赤子般的纯净无暇,就是最大的快乐!快乐,源于超越:战胜自己并争取做最好的自己,就是最大的快乐!原来,快乐就是如此朴实的一个概念。 是的,世界上的孩子千差万别,不同的家庭,不同的环境,自然有着不同的孩子。这些孩子不一定智慧超常、才高八斗,不一定都能成名成家,铸成大器,不可能样样优秀,处处超越别人。但是,不论怎样的孩子,我们应该把他们培养成善良和快乐的人,塑造孩子完整的人格,让他们拥有一个幸福的人生。所以,“让女儿成为一个快乐的人!和女儿一起快乐地成长!”是李镇西坚定不移的家庭教育理念,也应该成为我们教育子女坚定不移的理念。 翻看多遍后,才发觉何谓“最好”?只有对比才有好坏,而此中的“最好”,却不是让家长们之间互相比较出来的“最好”,而是家长

俗世奇人读后感作文五篇

俗世奇人读后感作文五篇 俗世奇人读后感作文篇一: 《俗世奇人》这本书讲的是在平凡的世间生活着各式各样的、独一无二的的本领的人,在当时那算得上是赫赫有名。 他们每人只要有独一无二的绝技或者是另有绝活的,那就一定有绰号,比如说:像刷子李、刻砖刘、泥人张、风筝魏、机器王、苏金散等等。津门人好把这种人的性,和他拿手擅长的行当连在一起称呼。时间一长,名字不知道,倒知道一个响当当的绰号。 在刚看这本书的第一章《苏七块》时,我就一直在想:难道这本书里的这些人都有自己先天的能力?最让我感动的是:刷子李和苏金散,刷子李他刷完之后就绝不会有一个白颜色的小点;苏金散凭着他精湛的医技赢得了民众的尊敬。读完了这本《俗世奇人》我才知道这是怎么一回事原来我们一个个生下来并不是天才,而是靠后天付出“百分之九十九的努力,和百分之一的汗水。” 这不正体现出我可爱而又宽松的生活中的一个例子吗?在我刚开始学习舞蹈平转的时候我练了不到五分钟,我就不耐烦了,我觉得肯定练不好了,妈妈并没有逼着我练,而是在在网上查了一个有关平转的杂技表演拉出来给我看有句俗话说的好:台上一分钟,台下十年功。我想:她们居然能在舞台上表演杂技而且还是我连不好的平转。于是我信心十足的开始练平转,一遍练不好,练第二遍;第二遍练不好,练第三遍;三遍练不好练第四遍……我练了十遍终于练成了平转。

让我们在赛道上赛跑,即使摔倒了,不要气馁也不要懈怠,爬起来继续跑。 俗世奇人读后感作文篇二: 生活是平凡的,但不是平淡的。平凡的生活中同样也是波澜起伏,妙趣横生。冯骥才老师的《俗世奇人》说得好,“手艺人靠的是手,手上就必得有绝活”,“各行各业,全有几个本领齐天的活神仙。刻砖刘、泥人张、风筝魏、机器王、刷子李等等。天津人好把这种人的姓,和他们拿手擅长的行当连在一起称呼。叫长了,名字反没人知道。只有这一个绰号,在码头上响当当和当当响。” 在平凡的生活中,这些有“绝技”的奇人,生活会平淡吗? 但问题的关键在于,“手艺人靠的是手,手上就必得有绝活。有绝活的,吃荤,亮堂,站在大街中央;没能耐的,吃素,发蔫,靠边呆。这一套可不是谁家定的,它地地道道是码头上的一种活法。” 得有真本事,才不会平淡啊!没有真本事,岂只平凡、平淡,还会更加糟糕,把生活过得一塌糊涂。 我们要把平凡的生活过得不平淡。就得靠那份才艺,不只是在那时候这套是种活法,就今时今日才华也是人不可缺少的啊。 在这时代有才华的人不怕遇不上伯乐,只怕才华比不上别人。随着社会的进步,物尽天择,强者生存,弱者淘汰,这不算残酷,这只是一个事实而已。 《俗世奇人》中的奇人并不是样样精通,但他们却把生活过得有滋有味,受人尊敬,当今社会也是一样,我们不可能成为面面俱到

相关主题