搜档网
当前位置:搜档网 › 电动汽车正面碰撞结构耐撞性分析及优化

电动汽车正面碰撞结构耐撞性分析及优化

电动汽车正面碰撞结构耐撞性分析及优化
电动汽车正面碰撞结构耐撞性分析及优化

(完整版)纯电动汽车动力性计算公式

XXEV 动力性计算 1 初定部分参数如下 2 最高行驶车速的计算 最高车速的计算式如下: mph h km i i r n V g 5.43/70295 .61487 .02400377.0.377.00 max ==??? =?= (2-1) 式中: n —电机转速(rpm ); r —车轮滚动半径(m ); g i —变速器速比;取五档,等于1; 0i —差速器速比。 所以,能达到的理论最高车速为70km/h 。 3 最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 00max 2.8)015.0487 .08.9180009 .0295.612400arcsin( ).....arcsin( =-?????=-=f r g m i i T d g tq ηα

所以满载时最大爬坡度为tan( m ax α)*100%=14.4%>14%,满足规定要求。 4 电机功率的选型 纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。 4.1 以最高设计车速确定电机额定功率 当汽车以最高车速m ax V 匀速行驶时,电机所需提供的功率(kw )计算式为: max 2 max ).15.21....(36001 V V A C f g m P d n +=η (2-1) 式中: η—整车动力传动系统效率η(包括主减速器和驱动电机及控制器的工作效率),取0.86; m —汽车满载质量,取18000kg ; g —重力加速度,取9.8m/s 2; f —滚动阻力系数,取0.016; d C —空气阻力系数,取0.6; A —电动汽车的迎风面积,取2.550×3.200=8.16m 2(原车宽*车身高); m ax V —最高车速,取70km/h 。 把以上相应的数据代入式(2-1)后,可求得该车以最高车速行驶时,电机所需提供的功率(kw ),即 kw 1005.8970)15.217016.86.0016.08.918000(86.036001).15 .21....(360012 max 2 max <kw V V A C f g m P D n =???+???=+?=η (3-2) 4.2满足以10km/h 的车速驶过14%坡度所需电机的峰值功率 将14%坡度转化为角度:018)14.0(tan ==-α。 车辆在14%坡度上以10km/h 的车速行驶时所需的电机峰值功率计算式为:

电动汽车结构与原理

名词解释 1.纯电动汽车:指由蓄电池或其他储能装置作为电源的汽车。 2.再生制动:指将一部分动能转化为电能并储存在储能设备装置内的制动过程。 3.续驶里程:指电动汽车在动力蓄电池完全充电状态下,以一定的行驶工况,能连续行驶的最大距离。 4.逆变器:指将直流电转化为交流电的变换器。 5.整流器:指将交流电变化为直流电的变换器。 6.DC/DC变换器:指将直流电源电压转换成任意直流电压的变换器。 7.单体蓄电池:指构成蓄电池的最小单元,一般由正、负极及电解质组成。 8.蓄电池放电深度:指称为“DOD”,表示蓄电池的放电状态的参数,等于实际放电量与额定容量的百分比。 9.蓄电池容量:指完全充电的电池在规定条件下所释放的总的电量,用C表示。 10.荷电状态:称为“SOC”,指蓄电池放电后剩余容量与全荷电容量的百分比。 11.蓄电池完全充电:指蓄电池内所有的活性物质都转换成完全荷电的状态。 12.蓄电池的总能量:指蓄电池在其寿命周期内电能输出的总和。 13.蓄电池能量密度:指从蓄电池的单位质量或体积所获取的电能。 14.蓄电池功率密度:指从蓄电池的单位质量或单位体积所获取的输出功率。 15.蓄电池充电终止电压:指蓄电池标定停止充电时的电压。 16.蓄电池放电终止电压:指蓄电池标定停止放电时的电压。 17.蓄电池能量效率:指放电能量与充电能量之比值。 18.蓄电池自放电:指蓄电池内部自发的或者不期望的化学反应造成的电量自动减少的现象。 19.车载充电器:指固定安装在车上的充电器。 20.恒流充电:指以一个受控的恒定电流给蓄电池进行充电的方式。 21.感应式充电:指利用电磁感应给蓄电池进行充电的方式。 22.放电时率:电流放至规定终止电压所经历的时间。 23.连续放电时间:指蓄电池不间断放电至中止电压时,从开始放电到中止电压的时间。 24.记忆效应:指蓄电池经过长期充放电后显示出明显的容量损失和放电电压下降,经过数次完全充放电循环后可恢复的现象. 25.蓄电池的循环寿命:在一定的充放电制度下,电池容量下降到某一规定值时,电池所能

电动汽车无线充电技术文献综述

电动汽车无线充电技术的现状与展望 王利军(合肥工业大学,合肥230000) 刘小龙(合肥工业大学,合肥230000) 端木沛强(合肥工业大学,合肥230000) 景池(合肥工业大学,合肥230000) 【摘要】介绍了无线充电技术的分类、电动汽车无线充电技术的工作原理以及电动汽车无线充电技术的应用情况,对比分析电动汽车传统能源供给方式及无线充电方式的优缺点。分析电动汽车用无线充电技术的特点,并介绍应用于电动汽车的无线充电技术的研发现状。然后以行驶中的充电技术为重点,对将来电动汽车用无线充电技术的发展进行展望。Abstract:The categories, operating principles and applications of wireless charging technology are introduced in this paper. The advantages and disadvantages are analyzed by comparing traditional energy supply mode and wireless charging mode. The characteristic of wireless charging technology for EV is analyzed. And then the development present of wireless charging technology is introduced. Finally,the future of wireless charging technology for EV is described with focus on charging of a moving vehicle on road. 【关键词】电动汽车无线充电无线电力输送电磁感应 Key words:electric vehicle; wireless charging technology; wireless power transmission; electromagnetic induction; 0 引言 随着社会的进步、科技的发展、环境和能源问题的日益突出,发展和普及电动汽车等新能源汽车的呼声日趋高涨,国内外纯电动汽车( EV) 和插电式混合动力汽车( PHEV) 的量产和销售也已开始。然而当前电动汽车的普及还面临着诸多问题。其中充电技术方面,现在电动汽车的充电方式全部是接触式充电(无论是充电模式还是换电模式) ,非接触式的无线充电技术尚处于起步阶段。然而,从便利性来看,非接触式无线充电技术更适用。由于电动汽车二次电池的能量密度远不及汽油,必须经常进行充电作业,且每次充满电都需要数小时。而利用无线充电技术可以省却繁琐的充电作业,甚至可以在汽车行驶中自动进行充电,实现智能化和人性化,同时解决了接触式充电在安全和维护方面的问题。 1 无线充电技术 无线充电技术引源于无线电力输送技术。无线电力传输也称无线能量传输或无线功率传输,主要通过电磁感应、电磁共振、射频、微波、激光等方式实现非接触式的电力传输。根据在空间实现无线电力传输供电距离的不同,可以把无线电力传输形式分为短程、中程和远程传输三大类。 1.1 短程传输 通过电磁感应电力传输(ICPT)技术来实现,一般适用于小型便携式电子设备供电。ICPT 主要以磁场为媒介,利用变压器耦合,通过初级和次级线圈感应产生电流,电磁场可以穿透一切非金属的物体,电能可以隔着很多非金属材料进行传输,从而将能量从传输端转移到接收端,实现无电气连接的电能传输。电磁感应传输功率大,能达几百千瓦,但电磁感应原理的应用受制于过短的供电端和受电端距离,传输距离上限是10 cm 左右。 1.2 中程传输 通过电磁耦合共振电力传输(ERPT)技术或射频电力传输(RFPT)技术实现,中程传输可为手机、MP3 等仪器提供无线电力传输。ERPT 技术主要是利用接收天线固有频率与发射场电磁频率相一致时引起电磁共振,发生强电磁耦合的工作原理,通过非辐射磁场实现电能的高

新能源汽车项目可行性分析报告详解

新能源电动车项目 可 行 性 分 析 报 告 项目名称:××新能源车项目 项目类别:×× 项目负责人:××× 联系电话:××××× 项目实施单位:××××××××××× 编制日期:2016年10月15日

新能源汽车项目可行性分析报告 第一部分电动汽车成为新能源汽车主要发展 方向 1、进入21世纪,能源问题已成为困扰全球各国经济发展的重大问题,石油这一工业发展黑色血液的逐渐枯竭要求人们不断寻找新的能源,并且逐步改变目前的用能方式及结构。 2、传统汽车在全球保有量的不断增加使人类面临能源短缺、气候变暖、空气和水质量下降等问题。针对这些问题,各国政府部门与跨国汽车企业从不同技术路线出发,加大新能源汽车技术开发力度。 3、从20世纪末发展起来的现代电动汽车在新能源汽车的多种技术中脱颖而出,具有低排放甚至零排放、热辐射低、噪音低且环境友好等特点,是节能、环保和可持续发展的新型交通工具,具有广阔的发展前景。先进的电动汽车包括纯电动(BEV)、混合动力(HEV)与燃料电池汽车(FCEV)等三类。 4、未来的汽车仍将是以电能驱动为主,这是国际汽车界对新能源汽车发展方向的既定共识。具有高效率、无排放,不依赖汽油的纯电动汽车是将来城市用车的主要发展方向,而目前在市场上销售的纯电动汽车,以微型车为主,随着近年来动力电池技术的巨大发展,纯电动汽车技术已进入了快速发展期。虽然混合动力不是未来汽车能源问题的终极解决方案,但作为传统汽车与未来纯电动汽车之间的过渡方案,混合动力汽车是目前较为实用的电动汽车技术。 第二部分新能源汽车立项的背景随着全球能源危机的出现,油价不断上涨,新能源汽车的发展成为近年来汽车工业发展的主要方向之一。政府的大力扶植与推动,产业竞争与合作为我国新能源汽车的发展奠定了一定基础,但是也面临着技术不过硬,配套设施以及相关法律法规不完善等不利因素。在能源与环保的压力下,新能源汽车无疑代表着汽车工业发展的主流方

电动汽车结构与原理

名词解释 1、纯电动汽车:指由蓄电池或其她储能装置作为电源得汽车。 2、再生制动:指将一部分动能转化为电能并储存在储能设备装置内得制动过程。 3、续驶里程:指电动汽车在动力蓄电池完全充电状态下,以一定得行驶工况,能连续行驶得最大距离。 4、逆变器:指将直流电转化为交流电得变换器. 5、整流器:指将交流电变化为直流电得变换器。 6、DC/DC变换器:指将直流电源电压转换成任意直流电压得变换器。 7、单体蓄电池:指构成蓄电池得最小单元,一般由正、负极及电解质组成. 8、蓄电池放电深度:指称为“DOD",表示蓄电池得放电状态得参数,等于实际放电量与额定容量得百分比。 9、蓄电池容量:指完全充电得电池在规定条件下所释放得总得电量,用C表示. 10、荷电状态:称为“SOC",指蓄电池放电后剩余容量与全荷电容量得百分比. 11、蓄电池完全充电:指蓄电池内所有得活性物质都转换成完全荷电得状态。 12、蓄电池得总能量:指蓄电池在其寿命周期内电能输出得总与. 13、蓄电池能量密度:指从蓄电池得单位质量或体积所获取得电能。 14、蓄电池功率密度:指从蓄电池得单位质量或单位体积所获取得输出功率. 15、蓄电池充电终止电压:指蓄电池标定停止充电时得电压. 16、蓄电池放电终止电压:指蓄电池标定停止放电时得电压。 17、蓄电池能量效率:指放电能量与充电能量之比值。 18、蓄电池自放电:指蓄电池内部自发得或者不期望得化学反应造成得电量自动减少得现象。 19、车载充电器:指固定安装在车上得充电器. 20、恒流充电:指以一个受控得恒定电流给蓄电池进行充电得方式。 21、感应式充电:指利用电磁感应给蓄电池进行充电得方式. 22、放电时率:电流放至规定终止电压所经历得时间。 23、连续放电时间:指蓄电池不间断放电至中止电压时,从开始放电到中止电压得时间。 24、记忆效应:指蓄电池经过长期充放电后显示出明显得容量损失与放电电压下降,经过数次完全充放电循环后可恢复得现象、

电动汽车的研究背景及现状

电动汽车的研究背景及现状 1.研究的背景 汽车的发展引起了地球资源的过大消耗。地球上的能源是有限的,能源紧缺是全人类面临的越来越严重的问题,是一个全球问题,关系到全球的经济与军事安全。我国的能源问题已经成为国民经济发展的战略问题,从国家安全角度出发,石油资源已经和国家安全、经济发展紧密的联系起来,能源的稳定供应是一个国家所关注的重点,也是我国能源安全战略的核心内容。如果继续按照传统的能源动力系统发展下去,将难以持续我国这个泱泱汽车大国的兴起。 汽车在给人们带来便利的同时也污染了环境。汽车尾气的排放引起了城市的温室效应,同时也引起了臭氧层的破坏,形成酸雨等大气环境问题,进而对动植物也产生了很大的危害。面对汽车造成的空气污染,人们可以直接闻到汽车尾气排放的带有刺鼻臭味的燃烧不完全的雾化混合气。随着生活水平的提高,人类对生存环境的要求越来越高,降低汽车的尾气排放的呼声也与日俱增。 面对资源紧缺与环境保护问题,发展电动汽车成为汽车工业发展的主流趋势。 1.1电动汽车的定义和分类 电动汽车是指用车载电源为动力,电动机驱动车轮行驶,符合道路交通、安全法规各项要求的汽车。电动汽车应具有汽车的性能和属性,但动力线路与原内燃机动力线路不同,又具有电力车辆的基本特征。电动汽车通常被分为蓄电池电动车(Battery Electric Vehicle,BEV)、混合动力电动汽车(Hybrid Electric Vehicle,HEV)和燃料电池电动汽车(Fuel Cell Electric Vehicle,FCEV)三大类。 1.2电动汽车的早期发展 尽管电动汽车技术目前看来还处于新兴发展时期,但它的产生却早于燃油车,并已经历了多个兴衰周期。以下是主要的时期: 1834年 Thomas Davenport 电动三轮车不可充电的干电池驱动 1881年法国古斯塔夫?特鲁夫电动三轮汽车以铅酸电池为动力 1882年英国人阿顿与培里三轮电动汽车以铅酸电池为动力 1890年美国电动汽车以蓄电池为动力 直到20世纪60年代后,由于能源、环境问题使人们对电动汽车又开始重新重视,世界各国政府与汽车制造商对电动汽车的研究开发均有不同程度的投入。但主要还是在近来十几年中,电动汽车的研究开发进入了高峰期,并在各项技术发展商开始取得了一定的成果和进步。 2.电动汽车在各国的发展现状 近几十年来,世界各国著名的汽车制造商都在加紧研制各类电动汽车,并取得了一定程度的进展和突破。 2.1日本 日本一直以来出于对能源危机和环境保护的关注及占领未来世界汽车市场的考虑,十分重视电动汽车的研制和开发。以下是日本研制电动汽车的进程: 1976年日本成立电动汽车协会 20世纪80年代本田公司开始研究开发电动汽车 1996年本田推出“PLUS”纯电动汽车 1997年本田的“PLUS”被推向了美国 1997年12月丰田公司推出第一款批量生产的混合动力轿车普锐斯

纯电动汽车动力性计算公式

纯电动汽车动力性计算公式

XXEV 动力性计算 1 初定部分参数如下 整车外廓(mm ) 11995×2550×3200(长×宽×高) 电机额定功率 100kw 满载重量 约18000kg 电机峰值功率 250kw 主减速器速比 6.295:1 电机额定电压 540V 最高车(km/h ) 60 电机最高转速 2400rpm 最大爬坡度 14% 电机最大转矩 2400Nm 2 最高行驶车速的计算 最高车速的计算式如下: mph h km i i r n V g 5.43/70295 .61487 .02400377.0.377.00 max ==??? =?= (2-1) 式中: n —电机转速(rpm ); r —车轮滚动半径(m ); g i —变速器速比;取五档,等于1; 0i —差速器速比。 所以,能达到的理论最高车速为70km/h 。 3 最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 00max 2.8)015.0487 .08.9180009 .0295.612400arcsin( ).....arcsin( =-?????=-=f r g m i i T d g tq ηα

kw 100w 5.8810)15.211016.86.08cos 016.08.9180008sin 8.918000(86.036001).15 .21..cos ...sin ..(36001 20 02 max <k V V A C f g m g m P slope slope D =???+???+???=++=ααη 从以上动力性校核分析可知,所选100kw/540V 交流感应电机的功率符合所设计的动力性参数要求。 5 动力蓄电池组的校核 5.1按功率需求来校核电池的个数 电池数量的选择需满足汽车行驶的功率要求,并且还需保证汽车在电池放电达到一定深度的情况下还能为汽车提供加速或爬坡的功率要求。 磷酸锂铁蓄电池的电压特性可表示为: bat bat bat bat I R U E .0+= (4-1) 式中: bat E —电池的电动势(V ); bat U —电池的工作电压(V ); 0bat R —电池的等效内阻(Ω); bat I —电池的工作电流(A )。 通常,bat E 、0bat R 均是电池工作电流bat I 以及电流电量状态值SOC (State Of Charge )的函数,进行电池计算时,要考虑电池工作最差的工作状态。假设SOC 为其设定的最小允许工作状态值(SOC low ),对应的电池电动势bat E 和电池等效内阻0bat R 来计算电池放电的最大功率,即可得到如下计算表达式: 铅酸电池放电功率: bat bat bat bat bat bat bd I I R E I U P )..(.0-== (4-2) 上式最大值,即铅酸蓄电池在SOC 设定为最小允许工作状态值时所能输出的最大功率为: 2 max 4bat bat bd R E P = (4-3)

电动汽车的结构原理

电动汽车的基本结构电动汽车的组成包括电力驱动及控制系统、驱动力传动等机械系统、完成既定任务的工作装置等。电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。电力驱动及控制系统由驱动电动机、电源和电动机的调速控制装置等组成。电动汽车的其他装置基本与内燃机汽车相同。 1.电源电源为电动汽车的驱动电动机提供电能,电动机将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。目前,电动汽车上应用最广泛的电源是铅酸蓄电池,但随着电动汽车技术的发展,铅酸蓄电池由于比能量较低,充电速度较慢,寿命较短,逐渐被其他蓄电池所取代。正在发展的电源主要有钠硫电池、镍铬电池、锂电池、燃料电池、飞轮电池等,这些新型电源的应用,为电动汽车的发展开辟了广阔的前景。 2.驱动电动机驱动电动机的作用是将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。目前电动汽车上广泛采用直流串激电动机,这种电机具有"软"的机械特性,与汽车的行驶特性非常相符。但直流电动机由于存在换向火花,比功率较小、效率较低,维护保养工作量大,随着电机技术和电机控制技术的发展,势必逐渐被直流无刷电动机(BCDM)、开关磁阻电动机(S R M)和交流异步电动机所取代。 3.电动机调速控制装置电动机调速控制装置是为电动汽车的变速和方向变换等设置的,其作用是控制电动机的电压或电流,完成电动机的驱动转矩和旋转方向的控制。 早期的电动汽车上,直流电动机的调速采用串接电阻或改变电动机磁场线圈的匝数来实现。因其调速是有级的,且会产生附加的能量消耗或使用电动机的结构复杂,现在已很少采用。目前电动汽车上应用较广泛的是晶闸管斩波调速,通过均匀地改变电动机的端电压,控制电动机的电流,来实现电动机的无级调速。在电子电力技术的不断发展中,它也逐渐被其他电

电动汽车文献综述

毕业设计(论文)文献综述 毕业设计(论文)题目电动汽车充电对配电系统的影响文献综述题目电动汽车充电对电网负荷的影响学院自动化学院 专业电气工程与自动化专业 姓名 班级 学号 指导教师

一、前言 随着时代的发展,汽车的普及,石油的消耗也日益增加,作为不可再生的石油资源,总有枯竭的一天,而且汽车尾气的排放对环境有很大的污染,所以利用电能替代石油,实现汽车尾气的零排放,将是未来汽车行业的发展趋势。截至2015年一月,从公开信息显示,目前杭州已经建成了70座充换电站、620个充电桩,其中杭州主城区投入运营的充换电站有27个。在杭州市区里,一辆新能源车要找到最近的充电站,只要开4.5公里。 2015年9月,关于充电桩的好消息频频传出,如国务院常务会议上提出加快电动汽车充电基础设施、电动汽车充电接口国家标准修订稿通过审查,以及国务院办公厅日前发布《关于加快电动汽车充电基础设施建设的指导意见》,到2020年,我国将基本建成适度超前、车桩相随、智能高效的充电基础设施体系,满足超过500万辆电动汽车的充电需求。尤为引人关注的是,北京通信展举行期间,国务院副总理马凯称:国家准备将充电桩普及的任务交由铁塔公司负责。 国内外电动汽车在近几年的发展情况如下:经过2012和2013年的缓慢起步,全球电动汽车销量终于在2014年下半年爆发,全年销售已超过30万辆大关,中国新能源汽车品牌突飞猛进,比亚迪从2013年的第40名跃升至第七位,康迪电动车也挤进第十名。在2015年,全球电动汽车销售量达到40万辆左右。 随着电动汽车规模化应用,电网原有装机和线路容量是否能应对新增充电负荷需求,即在不扩大规模的情况下,如何提高原有电网利用率,增加容纳能力,同时最大限度降低充电负荷对电网的负面影响,在分析充电负荷特性基础上,针对电动汽车充电对电网各方面的影响,提出相应对策,将对电动汽车产业化进程具有重要的研究意义。 二、主题 由于电动汽车使用一般不受季节变化的影响,并且其变化周期是以天为周期,因此采用典型电网日负荷曲线来分析电动汽车充电站大量接入对电网日负荷曲线的影响电网24小时负荷分布中,每天中有两个负荷局峰,分别是上午十点左右和夜间二十点左右。 我国电动汽车起步较发达国家晚,但研究发展快。各汽车生产商进入研发电动汽车的行列,已经在促进电动汽车各方面技术发展方面取得有益的成见。由于配套设施等主要原因,家用电动汽车并没有广泛的推广开来,现有的电动汽车充电站主要对电动公交车和工程车辆进行充电。同时针对电动汽车充电站运行和电动汽车充电对配电

纯电动汽车的基本结构和原理

纯电动汽车的基本结构和原理 与燃油汽车相比,纯电动汽车的结构特点是灵活,这种灵活性源于纯电动汽车具有以下几个独特的特点。首先,纯电动汽车的能量主要是通过柔性的电线而不是通过刚性联轴器和转动轴传递的,因此,纯电动汽车各部件的布置具有很大的灵活性。其次,纯电动汽车驱动系统的布置不同,如独立的四轮驱动系统和轮毂电动机驱动系统等,会使系统结构区别很大;采用不同类型的电动机,如直流电动机和交流电动机,会影响到纯电动汽车的重量、尺寸和形状;不同类型的储能装置,如蓄电池,也会影响纯电动汽车的重量、尺寸及形状。另外,不同的能源补充装置具有不同的硬件和机构,例如,蓄电池可通过感应式和接触式的充电机充电,或者采用更换蓄电池的方式,将替换下来的蓄电池再进行集中充电。 纯电动汽车的结构主要由电力驱动控制系统、汽车底盘、车身以及各种辅助装置等部分组成。除了电力驱动控制系统,其他部分的功能及其结构组成基本与传统汽车相同,不过有些部件根据所选的驱动方式不同,已被简化或省去了。所以电力驱动控制系统既决定了整个纯电动汽车的结构组成及其性能特征,也是纯电动汽车的核心,它相当于传统汽车中的发动机与其他功能以机电一体化方式相结合,这也是区别于传统内燃机汽车的最大不同点。 1、电力驱动控制系统 电力驱动控制系统的组成与工作原理如图5.1所示,按工作原理可划分为车载电源模块、电力驱动主模块和辅助模块三大部分。 1)车载电源模块 车载电源模块主要由蓄电池电源、能源管理系统和充电控制器三部分组成。

(1)蓄电池电源。蓄电池是纯电动汽车的唯一能源,它除了供给汽车驱动行驶所需的电能外,也是供应汽车上各种辅助装置的工作电源。蓄电池在车上安装前需要通过串并联的方式组合成所要求的电压一般为12V或24V的低压电源,而电动机驱动一般要求为高压电源,并且所采用的电动机类型不同,其要求的电压等级也不同。为满足该要求,可以用多个12V 或24V的蓄电池串联成96~384V高压直流电池组,再通过DC/DC转换器供给所需的不同电压。也可按所需要求的电压等级,直接由蓄电池组合成不同电压等级的电池组,不过这样会给充电和能源管理带来相应的麻烦。另外,由于制造工艺等因素,即使同一批量的蓄电池其电解液浓度和性能也会有所差异,所以在安装电池组之前,要求对各个蓄电池进行认真的检测并记录,尽可能把性能接近的蓄电池组合成同一组,这样有利于动力电池组性能的稳定和延长使用寿命。 (2)能源管理系统。能源管理系统的主要功能是在汽车行驶中进行能源分配,协调各功能部分工作的能量管理,使有限的能量源最大限度地得到利用。能源管理系统与电力驱动主模块的中央控制单元配合在一起控制发电回馈,使在纯电动汽车降速制动和下坡滑行时进行能量回收,从而有效地利用能源,提高纯电动汽车的续程能力。能源管理系统还需与充电控制器一同控制充电。为提高蓄电池性能的稳定性和延长使用寿命,需要实时监控电源的使用情况,对蓄电池的温度、电解液浓度、蓄电池内阻、电池端电压、当前电池剩余电量、放电时间、放电电流或放电深度等蓄电池状态参数进行检测,并按蓄电池对环境温度的要求进行调温控制,通过限流控制避免蓄电池过充、放电,对有关参数进行显示和报警,其信号流向辅助模块的驾驶室显示操纵台,以便驾驶员随时掌握并配合其操作,按需要及时对蓄电池充电并进行维护保养。 (3)充电控制器。充电控制器是把电网供电制式转换为对蓄电池充电要求的制式,即把交流电转换为相应电压的直流电,并按要求控制其充电电流。充电器开始时为恒流充电阶段。

世界电动车发展现状

世界电动车发展现状 一、产能分析 电动车是目前世界上唯一能达到零排放的机动车。由于环保的要求,加之新材料和新技术的发展,电动车进入了发展高-潮。电动汽车作为绿色交通工具,将在21世纪给人类社会带来巨大的变化。顺应当前国际科技发展的大趋势,将电动汽车作为中国进入21世纪汽 车工业的切人点,不仅是实现中国汽车工业技术跨越式发展的战略抉择,同时也是实现中国汽车工业可持续发展的重要选择。目前我国电动车研究已取得阶段性成果,完成了概念车车身设计构想书及界面设计,电池方面正在组织开发镍氢电池、锂离子电池、锌空气电池、燃料电池,有望取得突破。电动汽车的标准体系已经编制完成,同时建立了有关电动 汽车的数据库。电动汽车项目的国际合作正在按计划进行。 二、市场需求状况 近年来在全球范围内掀起了一股电动汽车热,世界各汽车工业强国从资金和政策上积极支 持电动汽车的研制工作。国际国内市场需求巨大。就国内而言,未来潜在的市场很诱人。2017年北京奥运会组委会已宣布,将投入20亿元左右确保奥运会期间接送运动员所使用的汽车,奥运场地使用的特种车辆和部分公交车辆采用电动汽车,使北京成为中国使用电动汽车的示范城市。杭州已决定投入一些电动公交车试运行;2017年的上海世博会同样会 有上千辆电动汽车投入运行。 三、主要产品分析 目前电动汽车分为三种:纯电动汽车、燃料电池电动汽车和混合动力电动汽车。纯电动汽车(ev)正向小型化和专用化方向发展,燃料电池电动汽车(fcev)成为跨国汽车集团联 合攻关相互竞争的焦点。从经济角度看,混合动力电动汽车为当前市场推崇的原因有:(1)在石油资源没有枯竭以前,汽车发展仍将主要以燃油汽车为主,但其总量不会增加,汽车保有量的增加将主要依赖于混合动力电动汽车,混合动力电动汽车是未来10年汽车 的发展的主要方向。据比较乐观的估计,混合动力电动汽车将在2017年实现商品化。(2)混合动力电动汽车可以实现单用发动机难以达到的下一代超低油耗汽车的目标。(3)混合动力燃料电池电动汽车成熟、成为主流方向的技术方案将在未来10年内形成,燃料 电池电动汽车将在2017年实现商品化。 电动汽车的成本构成及影响电动汽车推广因素的分析 电动汽车目前成本仍高居不下,究其原因是:电动汽车目前尚处于研发阶段,样车和试运行阶段,根本无批量可言,这是与流水线生产燃油汽车所不能比拟的。同时目前各式电动 汽车能示范运行的,都是在原燃油汽车的底盘、车厢之基础上改装而成的,即将发动机、 油箱等系统全数拆下,然后装上电动机,电池等相关配套设备就形成电动汽车,而混合动 力是在原然油系统基础上加装一套电池、电气驱动系统,形成了油、电混合驱动系统。那

电动汽车发展文献综述

电动汽车发展文献综述 摘要 本文从环境污染、能源短缺等问题对我国形成的挑战,指出我国汽车制造业发展电动汽车的必要性和重要性。阐述了电动汽车发展的技术问题及研究进展,探讨了国内电动汽车业存在的问题,提出了发展电动汽车是我国汽车制造企业实现跨越发展的必由之路,同时也是实现可持续发展的必经之路。 1.引言 汽车制造业是一个国家综合实力与科技水平的象征,近年来,在我国政府重点扶持与政策引导下,汽车制造行业成为了我国经济结构中的“支柱型产业”。至2013年,我国汽车销量已突破2000万辆,达2198万辆,在该年底,全国机动车数量突破2.5亿辆,其中,汽车达1.37亿辆。 汽车保有量的不断攀升,导致我国石油消耗量日益升高,石油对外依存度也不断升高。根据《能源发展“十二五”规划》的目标,至2015年我国石油对外依存度需要控制在61%以内,然而目前的数字正在逼近这一红线。数据显示,早在2009年,我国原油对外依存度就已突破50%的警戒线;至2012年,该数据升至56.4%,2013年更是高达58.1%。 汽车保有量的持续攀升,不仅给能源带来危机,同时传统汽车排放的尾气给环境带来了巨大的危害。去年及今年,全国大面积持续长时间被雾霾笼罩,空气质量已经达到了严重污染程度,如何控制和降低汽车尾气排放带来的污染也是亟需解决的一大课题[1]。 节能、环保、安全,是汽车发展的主要趋势,为此,我国提出了“发展清洁汽车、调整能源结构、减小环境污染、改善大气质量”的政策。电动汽车使用成本非常低,将其百公里的用电成本进行换算,电的成本仅是油的20%,即使用电动汽车仅需花1/5的钱就可以行驶与原来相当的公里数。普通汽车,不论是手动档还是自动档,都用变速器变速,电动车变速是电机驱动,没有变速器,而且非常强劲。此外,电动车的四轮驱动原理简单,且不用换机油。电动汽车的上述特点,决定了它具有强大的生命力和广阔的市场发展前景。发展电动汽车是降低环境污染的有效途径,是缓解石油短缺的重要措施。

电动汽车动力性能分析与计算

电动汽车与传统内燃机汽车之间的主要差别是采用了不同的动力源,它由蓄电池提供电能,经过驱动系统和电动机,驱动电动汽车行驶。电动汽车的能量供给和消耗,与蓄电池的性能密切相关,直接影响电动汽车的动力性和续驶里程,同时影响电动汽车行驶的成本效益。 电动汽车在行驶中,由蓄电池输出电能给电动机,用于克服电动汽车本身的机械装置的内阻力,以及由行驶条件决定的外阻力。电动汽车在运行过程中,行驶阻力不断变化,其主电路中传递的功率也在不断变化。对电动汽车行驶时的受力状况以及主电路中电流的变化进行分析,是研究电动汽车行驶性能和经济性能的基础。 1、电动汽车的动力性分析 1.1 电动汽车的驱动力 电动汽车的电动机输出轴输出转矩M,经过减速齿轮传动,传到驱动轴上的转矩Mt,使驱动轮与地面之间产生相互作用,车轮与地面作用一圆周力F0,同时,地面对驱动轮产生反作用力Ft.Ft 与F0大小相等方向相反,Ft方向与驱动轮前进方向一致,是推动汽车前进的外力,将其定义为电动汽车的驱动力。有: 电动汽车机械传动装置是指与电动机输出轴有运动学联系的减速齿轮传动箱或变速器、传动轴及主减速器等机械装置。机械传动链中的功率损失包括:齿轮啮合点处的摩擦损失、轴承中的摩擦

损失、旋转零件与密封装置之间的摩擦损失以及搅动润滑油的损失等。 1.2 电动汽车行驶方程式与功率平衡 电动汽车在上坡加速行驶时,作用于电动汽车的阻力与驱动力始终保持平衡,建立如下的汽车行驶方程式: 以电动汽车行驶速度va乘以(2)式两端,考虑机械损失,再经过单位换算之后可得: 或 由(4)、(5)两式可以看出,电动汽车在行驶时,电动机传递到驱动轮的输出功率与体现在驱动轮上的阻力功率始终保持平衡。将(4)变换可得: 式中PM为电动机的输出功率。 用曲线图表示上述功率关系,将电动机的输出功率、汽车经常遇到的阻力功率与对应车速的关系归置在x-y坐标图上得到电动汽车功率平衡图如图1所示。

美国电动汽车的现状及发展(二)

美国电动汽车的现状及发展(二)-汽车 美国电动汽车的现状及发展(二) Karen Fierst是美国事故车维修领域的知名人士,曾任职于美国汽车零部件认证协会(CAPA)。Karen女士自1998年成立KerenOr Consultants公司以来,为美国及其他海外客户提供了广泛的汽车后市场咨询服务,为客户建立行业关系提供了有力的指导和帮助。目前,她担任美国车身理事会(NABC)理事,是美国汽车服务协会(ASA)、美国汽车后市场行业协会(AAIA)、美国事故车维修专家学会(SCRS)、行业妇女组织(WIN)的成员,也是美国事故车行业会议(CIC)的联席会委员。 Karen女士在其职业生涯中获得过各种荣誉和奖励,其中阿克苏诺贝尔公司授予的“行业最具影响力女士”称号尤为珍贵。她编著、撰写的文章发表于行业内众多知名出版物。作为研究咨询顾问,她撰写的《事故车电子评估系统的发展和演变》等文章已在我刊发表。她也是知名的演讲者,在全球多个行业会议及高峰论坛,包括国际事故车行业高峰论坛(IBIS)、法兰克福展等场合发表演说。 KerenOr Consultants公司为事故车维修行业的相关领域及政府机构、律师事务所、软件公司及行业出版物提供各类咨询服务,致力于美国本土与外资企业间的战略规划、市场研究分析、公共关系、公开政策、结盟合作、项目管理以及跨文化间的交流与沟通,其客户资源来自于美国、英国、中国台湾、中国大陆、以色列等。 文/美国KerenOr咨询公司Karen Fierst 译/本刊记者张淑珍 (接上期) 从2000年初开始,美国汽车市场对混合动力汽车的需求出现了显著地 1

增长,而对纯电动汽车的需求则表现得相对缓慢一些。但是,目前很难预测在未来的一段时间里这两种车型市场占有率的变化及比例。另外,美国任何州政府及联邦政府也没有为替代燃料车设定具体的市场渗透目标。然而,现有的CAFE法律、政府的一些激励措施以及替代燃料车辆需求的增加等,都表明纯电动汽车及混合动力汽车将在美国市场中继续发展。实例研究 电动汽车技术的演变与改进,需要与之相配的远见性投资及发展。它不仅要求车辆本身的设计满足消费者的愿望和需求,同时也需要建立、建成与之相适应的配套充电设施系统。这里我简,单举出两个实例,说明在电动汽车发展过程中,有过失败,也有成功的例子。 1.Better Place 2010年夏天,茌以色列Better Place这家新公司的市场展示厅,我获得了在专业试车跑道驾驶电动汽车的机会,也有幸借此机会深入地了解这家公司。Better Place公司革命性的理念是,除了充电站外,还要建立更换汽车电池的基础设施。雷诺公司生产的Fluence Z.E.(零排放车),就是专为Better Place 公司设计的、具备可更换电池技术的车型。Better Place独特的理念是,不使用电线软管、不花费插入式的充电时间,在以色列全国建立起可更换电池的换电池网络。也就是说,在充电站只需花几分钟的时间,即可完成取出旧电池、更换新电池的作业任务,就像人们在加油站加油一样快捷。图1所示为本文作者在以色列Better Place展示中心为雷诺车充电。

电动汽车文献综述复习过程

2.1概述 随着未来电动汽车的普及,电动汽车大规模接入电网充电,将对电力系统的运行与规划产生不可忽视的影响。目前,对于电动汽车接入电网的研究可归结为以下几个方面: 1)研究电动汽车充电负荷特性和负荷需求计算。 电动汽车充电负荷研究涉及动力电池的充电特性、电动汽车用户的用车行为、充电方式等多种因素,是研究电动汽车对电网的影响和进行充放电调控的基础。 2)研究电动汽车接入对电力系统的影响。 电动汽车大规模接入对电力系统的直接影响是导致负荷的增长。目前的研究,包括对电动汽车发展的不同场景,分析电动汽车接入对电源建设、配电网的影响,以及电动汽车充电设施规划和电网规划。 3)研究电动汽车作为储能单元的充放电控制与利用 电动汽车用动力电池可作为分布式储能单元,具有一定的可控性并能够向电网反向馈电[1]。文献主要包括电动汽车有序充电控制和电动汽车与电网互动(V2G,vehicle to grid)方面。其中,动汽车与电网互动(V2G,vehicle to grid)主要包括削峰填谷和调频等。 2.2电动汽车充电负荷 1)电动汽车动力电池特性 动力电池作为连接电动汽车和电网的元件,其建模是研究充电负荷的基础。对动力电池的建模,在研究不同问题时,做一定程度的近似或简化。 基于对电池比能量、效率、比功率等方面的对比得出结论,文献[2] 得出结论,锂离子电池具备最佳的综合性能。文献[3-4]研究了动力电池的几种常用的电路模型,各种模型在精确性和复杂性上各有优劣。动力电池一般采用“先恒流、再恒压”的方式进行充电,恒流充电时间相对较长,在此期间电池端电压变化幅度很小。在分析电动汽车队配网影响时,也有采用恒功率负荷模型,如文献[5]将充电负荷作为恒功率负荷。 2)电动汽车运动规律 国内对于电动汽车运动规律的研究一般结合中国电动汽车发展路线,将电动汽车分为公交车、公务车、出租车和私家车4类。不同种类电动汽车的用户用车行为和充电行为差别较大。文献[6] 结合中国国内的实际情况对上述4 类电动汽车的充电时间进行了调研,采用蒙特卡罗模拟的方法对电动汽车充电负荷分布特性进行了分析。并概括了中国电动汽车的发展规划,分为2010—2015年(公交车、出租车、公务车示范运营)、2016—2020年(公交车、出租车、公务车规模化发展,少量私家车)、2021—2030年(私家车大规模发展)三个阶段。文献[7]从充电汽车电池的初始荷电状态(initial state-of-charge ,SOC0)和车辆到达充电站时间的随机分布为出发点,提出2阶段泊松分布的电动汽车充电站集聚模型进行充电站集聚特性的模拟,并提出基于充电站的日充电负荷曲线的电动汽车充电站负荷集聚模型的建模方法。 国外对电动汽车运动规律的研究偏重于研究用户驾驶行为,一般基于用户用

电动汽车结构与原理

1.纯电动汽车: 指由蓄电池或其他储能装置作为电源的汽车。 指将一部分动能转化为电能并储存在储能设备装置内的制动过程。 指电动汽车在动力蓄电池完全充电状态下,以一定的行驶工况,能连续行驶 的最大距离。 4. 逆变器:指将直流电转化为交流电的变换器。 5. 整流器:指将交流电变化为直流电的变换器。 DC 变换器:指将直流电源电压转换成任意直流电压的变换器。 7. 单体蓄电池:指构成蓄电池的最小单元,一般由正、负极及电解质组成。 8. 蓄电池放电深度: 指称为“DOD ,表示蓄电池的放电状态的参数,等于实际放电 量与额 定容量的百分比。 9. 蓄电池容量:指完全充电的电池在规定条件下所释放的总的电量,用 “SOC ,指蓄电池放电后剩余容量与全荷电容量的百分比。 15.蓄电池充电终止电压: 指蓄电池标定停止充电时的电压。 16.蓄电池放电终止电压: 指蓄电池标定停止放电时的电压。 17.蓄电池能量效率: 指放电能量与充电能量之比值。 18.蓄电池自放电: 指蓄电池内部自发的或者不期望的化学反应造成的电量自动减少的现 象。 19. 车载充电器:指固定安装在车上的充电器。 20. 恒流充电:指以一个受控的恒定电流给蓄电池进行充电的方式。 21. 感应式充电:指利用电磁感应给蓄电池进行充电的方式。 22. 放电时率:电流放至规定终止电压所经历的时间。 23. 连续放电时间:指蓄电池不间断放电至中止电压时,从开始放电到中止电压的时间。 24.记忆效应:指蓄电池经过长期充放电后显示出明显的容量损失和放电电压下降,经过数 2.再生制动: 3.续驶里程: 11.蓄电池完全充电: 指蓄电池内所有的活性物质都转换成完全荷电的状态。 12.蓄电池的总能量: 指蓄电池在其寿命周期内电能输出的总和。 13.蓄电池能量密度: 指从蓄电池的单位质量或体积所获取的电能。 14.蓄电池功率密度: 指从蓄电池的单位质量或单位体积所获取的输出功率。 C 表示。 10.荷电状态:称为

电动汽车动力电池研究综述

目录 1引言 (2) 2电动汽车对动力电池的发展及要求3? 2.1动力电池的发展 (3) 2.2?电动汽车对动力电池的要求 ............................................................. 43?铅蓄电池?4 3.1铅蓄电池工作原理 (4) 3.2铅蓄电池性能特点 (5) 3.3铅蓄电池应用范围5? 4?镍氢电池........................................................................................................... 6 4.1?镍氢电池工作原理 (6) 4.2镍氢电池性能特点.......................................................................... 6 4.3?镍氢电池应用范围 (7) 5?锂离子电池7? 5.1?锂离子电池工作原理?错误!未定义书签。 5.2?锂离子电池性能特点7? 5.3锂离子电池应用范围8? 6?电动汽车动力电池发展趋势?8 6.1铅蓄电池发展趋势.......................................................................... 8 6.2?镍氢电池发展趋势 (9) 6.3?锂离子电池发展趋势 ......................................................................... 9 7?结论................................................................................................................. 10参考文献11? ? 电动汽车动力电池研究综述

相关主题