搜档网
当前位置:搜档网 › 石墨烯graphene与光电发展

石墨烯graphene与光电发展

石墨烯graphene与光电发展
石墨烯graphene与光电发展

石墨烯与光电发展

摘要:

石墨烯是材料物理和半导体物理中一颗新星,它具有很多独特的性质使得它引起业界的广泛重视。随着半导体物理的发展,半导体Si制成尺度不断缩小,也将达到一个难以逾越的瓶颈。但是,石墨烯以它的高传导速度和轻薄的特点,赢得人们的青睐。可以设想,不远的将来,石墨烯很有可能取代Si而成为下一代集成电路的主要材料。而石墨烯在光调制方面也有着很大的优势,在光纤通信中,优良的调制器可以很大的提高通信速度和质量。

介绍:

石墨烯是一种由一系列碳原子排列成六边形的网格状二维结构(图1)。它的一个很明显的优点就是:在这种二维晶格结构中,由于晶体能量和动量线性的分布,电子可以在期中几乎无阻力的穿梭。

图1 石墨烯的球棍结构图图2石墨烯的一种可能的结构图,可以看到一些微小尺

度下的起伏另外,单层的石墨烯可以吸收范围很大的电磁波普(从红外光到紫外区),并且,单层石墨烯对白光的吸收比例可以用一个简单的公式来计算

其中 为精细结构常数这个结果已经被实验所证明:在白光波段,吸收与波长基本无关,且与层数成正比,显示了石墨烯独特的性质。(见图3)

在石墨烯中,它的载流子运动非常快,所以载流子行为更接近相对论粒子,所以,需要用狄拉克方程来描述,而不是薛定谔方程。在研究石墨烯的量子霍尔效应中,出现了一件很吸引人的现象:在狄拉克点附近的态密度接近于0。这个特性使得石墨烯可以在光强很小的

时候吸收光,并且十分灵敏。

图3(a )白光通过空气、单层石墨烯、双层石墨烯的透射

率 图3( b )透射率与波长及石墨烯层数的关系

石墨烯在广泛地吸收光时,可以通过电机控制其吸收:通过转换电子费米能级有效的改变石墨烯的光跃迁。还没有在大块的材料上发现的强烈的电吸附现象,可以由石墨烯独特的性质和二维结构特征来产生,这一点说明石墨烯有机会成为一个活跃的光电吸附调制器的媒介材料。也就是说石墨烯可以用来做优质的光电调制器。当然这里也会有挑战,比如直接的石墨烯调制器手单层光吸收的限制。这样点可以通过光的波导来积分来大大增强相互作用的长度。

下面说一下波导积分电吸附调制器的几个优点:

1、 光和石墨烯的相互作用强烈。与其他复合物半导体相比,单层石墨烯拥有更强的光

字跃迁的间带,这样就可以应用在新奇的光电子装置上,比如光电探测器。

2、 宽带运用上的优势。由于狄拉克费米子的高频动态电导是一个常数,石墨烯的光跃

迁与波长无关,可以覆盖所有的通信带宽和中频和远红外线波段。

3、 高速的运算能力。凭借载流子超越性的移动速率(室温下200,000cm 2V -1s -1)费米能

级和光吸收可以被快速的调制。并且,石墨烯受限于速度的进程可以在picoseconds 单位时间尺度上进行。这样说明基于石墨烯上的电子产品有能力达到500GHz 的速度。

4、 和用CMOS 处理的兼容性很好。石墨烯无热的光电特性和它的CMOS 兼容性使得它成为

一个CMOS 之后一个优良的继承者,尤其是在高频设计上的应用将十分广泛。

由于以上这些优点,整体的石墨烯积分调制器的可以开启一个新的光学积分时代。这里,也介绍一个石墨烯调光电制器的例子。

电子吸附调制器(Electro-absorption modulator )

这种调制器的结构如图4、图5所示。主要结构有:1)50奈米厚的Si 层,用来连接250nm 厚的Si 传导波导和一个金电极。两个Si 层和波导都稍微参杂了一些硼元素来降低表面电阻。2)7nm 厚的Al 2O 3均匀的分布在波导的表面。3)一薄层石墨烯,通过化学蒸汽法沉降生长出来,并附着在Si 波导上面。

图4 调制器的三维视图

图5 调制器的剖视图

图6展示出1.53μm的光子在不同驱动电压时通过波导的传送衰减。驱动电压V D的范围:-1V

E F(V D)

并且间带跃迁发生在电子被特定频率(hν0)入射光子激发时。石墨烯的光吸收取决于费米能级的位置。通过调整石墨烯的驱动电压和波导,我们可以使费米能级与石墨烯相匹配,达到调制所有的传输。

图6 传输衰减和驱动电压的关系图

通过这些方法,已经设计出了基于石墨烯的调制器,其具有较宽的带宽(1.35—1.6μm),很小的设备占用(25 μm2)还有超高的运算速度(1.2GHz,3dB)。这些对于今后的光电连接系统都有着很重要的意义。

总结石墨烯在光电方面应用

调制器:在外场作用下,石墨烯表现出较高的电致电阻和磁致电阻,可以用来改变红外光或太赫兹在石墨烯器件中透射率或反射率,从而实现光学调制器。可以做成可调谐的石墨烯滤波器,其透射率可以调节,且滤波器的频率范围也可调。

波导:石墨烯优良的导电率和二维平面性质使其成为长波导材料的自然选择,而且作为波导材料,其反射率可以调节。

起偏器:石墨烯可以很容易地长在硅片或碳化硅衬底上,窄带的石墨烯阵列对红外光或太赫兹光具有各向异性的透射率,从而可以作为起偏器使用。

分光器:多层石墨烯可以用作红外光或太赫兹光的分光器,而且其透射光与分射光的比

例可以通过石墨烯的层数及外加电场的大小进行调节,使得连续可调的分光器成为可能。

另外,石墨烯的高电导率和一定的光透明度,使其成为制作透明导电电极的有力候选者,可以应用在触摸屏、液晶显示器、有机光电池和有机发光二极管等方面,尤其是和脆弱的铟锡氧化物相比,石墨烯的机械强度和韧性都具有很大的优越性,而且石墨烯薄膜可以通过溶液进行大面积淀积。

参考文献

【1】Ming Liu ,Xiaobo Yin,Erick Ulin-Avila,Baisong Geng,Thomas Zentgraf, Long Ju, Feng Wang

& Xiang Zhang. “A graphene-based broadband optical modulator”Nature 10067 【2】 C.-C. Lee, S. Suzuki, W. Xie, and T. R. Schibli.“Broadband graphene electro-optic modulators with sub-wavelength thickness”2012 Optical Society of America. 27 February 2012 / Vol. 20, No. 5 / OPTICS EXPRESS 5264

【3】韩鹏昱,刘伟谢亚红张希成. 《石墨烯与太赫兹科学》物理·38卷(2009 年)6期【4】V. Ryzhii, M. Ryzhii, S.O.Yurchenko, M.S.Shur. “Graphene-Based Electro-Optical Modulator Concept and Analysis”978-1-4673-0836-6/12/$31.00 ?2012 IEEE

石墨烯调研报告

石墨烯报告 一、石墨烯定义、性质 (一)石墨烯定义 “中国石墨烯产业技术创新战略联盟”发布的1号标准文件中,对石墨烯的定义如下:石墨烯是一种二维碳材料,是单层石墨烯、双层石墨烯、和少层石墨烯的统称。 单层石墨烯是指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯是指由两层以苯环结构周期性紧密堆积的碳原子层以不同堆垛方式(包括AB堆垛,AA堆垛,AA堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯是指由3-10层以苯环结构周期性紧密堆积的碳原子层以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 图1 石墨烯的分类 石墨烯发展历史。石墨烯作为当下最热门的新材料之一,其经历了如下的发展历程: 图2 石墨烯的发展历程 (二)石墨烯性质

石墨烯的出现,有望在构造材料、电子器件功能性材料等诸多领域引发材料革命。由于其具有许多特殊性质,有日本的研究人员惊呼石墨烯是“神仙创造” 的材料。许多学者称石墨烯为“改变21世纪的材料”,并预测“21世纪将是碳(C)的时代”。 相比于现有材料,石墨烯拥有众多“史上最强”性能。 超强导电性:由于石墨烯拥有完美的“二维”平面晶格结构,因此电子在晶格中移动时,不会因为晶格缺陷或引入外来原子而发生散射。另外,由于石墨烯中碳原子之间作用力很强,使得运动中的电子受到的干扰极小,即使在周围碳原子发生碰撞时也是如此,因此电子具有非常快的运动速度(能够达到光速1/300),远远超过了电子在其他金属导体或半导体中的运动速度,正因如此,石墨烯拥有超强的导电性能。 超高强度:石墨烯的硬度高于金刚石,是目前为止人类已知的硬度最高的物质。由于高的硬度,石墨烯拥有很高的强度,其强度比世界上最好的钢铁还要高上100倍。而同时它又拥有很好的韧性,且可以弯曲。 导热性能:石墨烯的导热性能优于碳纳米管。普通碳纳米管的导热系数可3500w/m·k,各种金属中导热系数相对较高的有银、金、铜、铝。而单层石墨烯的导热系数可达5300w/m·k。优异的导热性能使得石墨烯有望作为未来超大规模纳米集成电路的散热材料。 超大比表面积:由于单层石墨烯只有一个碳原子厚(0.335nm),所以石墨烯拥有超大的比表面积。在理想情况下,单层石墨烯的比表面积能够达2630m2/g,而目前普通的活性炭的比表面积为1500 m2/g,石墨烯这种比表面积超大的特性使它在储能领域的应用潜力巨大。 图3 石墨烯史上最强性能 除此之外,石墨烯还有众多“独特”的特点: 图4 石墨烯独特性质

对石墨烯产业化现状和未来趋势的认识

对石墨烯产业化现状和未来趋势的认识 ■ 文/姚 磊 北京碳世纪科技有限公司 近几年,石墨烯学术和产业界的许多专家学者已经针对石墨烯卓越的特性及广阔的应用前景,进行了细致、精彩的研究和解读。在此,笔者仅就北京碳世纪科技有限公司(以下简称“碳世纪”)在石墨烯产业化进程中遇到的机会和挑战进行分析。碳世纪主要采用化学法制备石墨烯,笔者本文所谈对石墨烯的认识和理解,也是基于化学法制备的石墨烯而言。另外,笔者在此声明,碳世纪有其特殊性,所遇到的问题不一定具备普遍性。 一、对石墨烯产业化的认识 1.现阶段石墨烯产业化需要的人才 自2004年石墨烯被发现到现在,科学界和产业界对这一新材料的研究已有近10年时间,但石墨烯产业真正的爆发是在近几年,特别是2010年石墨烯发明者获得诺贝尔奖以后。目前,在石墨烯领域还有大量相关工作需要突破,但同时也有大量应用研究成果随之而出,初步具备了产业化的可能性。 现阶段,在技术研发方面需要一 批具备“科学家的头脑、工程师的双 手”、既对石墨烯的性质有着深刻认 识,又对下游应用产品有着良好感觉 的人来完成开创期最关键、最艰难的 几步。 与此同时,产业还需要一些非技 术人员配合技术团队工作。目前,石墨 烯企业还没有发展到靠优厚的薪资来 吸引高素质管理人才加盟的程度。此 时,石墨烯行业的非技术团队更需要 一群乐观、对未来充满希望、不安于现 状、愿意为明天赌一把的人来支撑。 2.石墨烯的界定问题 石墨烯毕竟是微观世界中的纳 米材料。目前,业界还没有一个统一的 标准来界定什么是“石墨烯”。而且,估 计在很长一段时期内这样的标准也难 以出台。科研领域,讲究的是严谨和准 确;产业领域,讲究的是效率和结果。 如何抚平科学和技术之间的鸿 沟?现阶段,不必过多争论什么是石 墨烯。当下的重点工作是在保证能大 规模制备出高质量石墨烯的前提下, 将精力更多地向应用开发倾斜。石墨 烯具备能够很好促进其他材料提升性 能的纳米结构,可以在不破坏材料原 有基础性能的前提下,极大程度提升 该材料某些特殊性能。这一过程,主要 是通过对石墨烯和其他材料复合的方 式及对石墨烯片径的控制来实现。 “要做有用的石墨烯,而不是纯粹 的石墨烯。”化学法制备的石墨烯具备 上述特质。 3.石墨烯产业化过程中遇到的问题 目前,碳世纪已经有3款石墨烯 应用产品走出了实验室,开始进入示 范生产阶段。这3款产品分别是石墨 烯改性超级电容器用储能活性碳、石 墨烯改性高密度聚乙烯(H D P E),以 及一款目前还属保密阶段的产品。现 仅就石墨烯改性超级电容器用活性碳 为例,谈谈碳世纪对石墨烯应用的认 识和在产业化过程中遇到的问题。 活性炭是超级电容器电级材料的 主要组成部分。目前,应用在储能方面 新材料产业NO.11 201429

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽

石墨烯的制作工艺方法是什么

石墨烯的制作工艺方法是什么 石墨烯的制作工艺方法是什么?提到石墨烯,大部分人可能都不陌生,因为这是近两年在网络和报刊杂志上经常出现的词汇——一种功能十分强大的新型材料。不过它的制备却一直成为了阻碍的发展的重要因素。今天我们就一起来看看石墨烯的制作方法是什么。 化学气相沉积法 化学气相沉积法(Chemical Vapor Deposition,CVD)在规模化制备石墨烯的问题方面有了新的突破(参考化学气相沉积法制备高质量石墨烯)。CVD法是指反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。 麻省理工学院的Kong等、韩国成均馆大学的Hong等和普渡大学的Chen等在利用CVD法制备石墨烯。他们使用的是一种以镍为基片的管状简易沉积炉,通入含碳气体,如:碳氢化合物,它在高温下分解成碳原子沉积在镍的表面,形成石墨烯,通过轻微的化学刻蚀,使石墨烯薄膜和镍片分离得到石墨烯薄膜。这种薄膜在透光率为80%时电导率即可达到1.1×106S/m,成为透明导电薄膜的潜在替代品。用CVD法可以制备出高质量大面积的石墨烯,

但是理想的基片材料单晶镍的价格太昂贵,这可能是影响石墨烯工业化生产的重要因素。CVD法可以满足规模化制备高质量石墨烯的要求,但成本较高,工艺复杂。 先进纳米材料制造商和技术服务商——江苏先丰纳米材料科技有限公司,2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看~

氧化石墨烯薄膜的光电化学性质

2011年第69卷化学学报V ol. 69, 2011第21期, 2539~2542 ACTA CHIMICA SINICA No. 21, 2539~2542 * E-mail: kzwang@https://www.sodocs.net/doc/9e10096186.html, Received April 2, 2011; revised May 25, 2011; accepted June 3, 2011. 国家自然科学基金(Nos. 90922004, 20971016)、中央高校基本科研业务费专项资金、北京市大学生科学研究与创业行动计划和北京师范大学分析测试

2540化学学报V ol. 69, 2011 器有限责任公司); 冷场发射扫描电镜(S-4800 日立高新技术株式会社); FZ-A型辐照计(北京师范大学光电仪器厂); KQ-50B型超声波清洗器(昆山市超声仪器有限公司); 采用三电极系统, 覆盖有自组装膜的氧化铟-氧化硒(ITO)玻璃为工作电极, 铂片为对电极, 饱和甘汞电极为参比电极, 0.1 mol?L-1的Na2SO4溶液为支持电解质; 配有红外和紫外截止滤光片的500 W高压氙灯光源系统(北京畅拓科技有限公司). 试剂均为分析纯. 1.2 GO及其静电自组装薄膜的制备 在傅玲等[9]将Hummers法制备氧化石墨分为低温、中温、高温反应三个阶段的基础上, 延长中温反应时间至8 h; 充分超声剥离后, 通过脱脂棉抽滤和渗析的方法除去少量沉淀和杂质离子, 得到均一稳定的GO水溶胶, 放置7个月后无沉淀. GO的静电自组装薄膜的制备: 将按文献[10]报道的方法清洗和表面硅烷化的石英和ITO导电玻璃放入pH 3的HCl溶液中质子化处理, 使基片表面带有正电荷. 然后此基片浸入GO溶液中(1 mg?mL-1) 10 min, 取出并用去离子水清洗, 空气吹干. 1.3 光电化学性质 所有光电化学研究均以GO膜修饰的电极为工作电极, 其有效光照面积为0.28 cm2. 光电流的测量在电化学工作站上进行, 入射光的强度用辐照计测定. 不同波长的入射光是在氙灯光路上加具有所需带宽的滤光片得到. 2 结果与讨论 2.1 紫外-可见吸收光谱 图1为GO水溶液(a)和石英基片上单层薄膜(b)的紫外-可见光谱图的对比. GO在231 nm处有1个C—C键上的π-π*跃迁吸收峰, 在298 nm处有1个C=O键上的n-π* 跃迁肩峰[11], 这与在石英片上单层薄膜在30 nm 处的吸收峰吻合, 表明GO已成功组装到基片上. 处理后的基片浸泡在1 mg?mL-1 GO溶液, 利用紫外-可见光谱对浸泡时间进行了监测(图2). 结果表明: 当在GO水溶液的浸泡时间达10 min时, 吸光度基本达最大值. 2.2 冷场发射扫描电镜 我们制备的GO水溶液具有明显的丁达尔效应, 与文献[12]报道的结果吻合. GO水溶液在铝箔上流沿. 待液体干燥后, 剪取部分于样品台上经磁控溅射镀膜(喷金)处理后, 用冷场发射扫描电镜研究其形貌(图 3). 氧化石墨因超声剥离, 脱落成许多大小为几十纳米的片状GO. 这与氧化石墨烯是一种二维结构材料及其水溶液具有明显的丁达尔效应吻合 . 图1 (a) GO水溶液和(b)石英片上GO薄膜的紫外-可见光谱Figure 1 UV-Vis spectra of (a) GO aqueous solution and (b) GO film on quartz substrate 图2基片在230 nm处的吸光度随其在GO溶胶中浸泡不同时间的变化图 Figure 2Changes in absorbance at 230 nm of protonated quartz substrate at varied immersion time in GO aqueous solution 图3GO冷场发射扫描电镜图 Figure 3 Cold-field emission scanning electron microscope image of GO 2.3 GO修饰的ITO电极的光电响应 在0.1 mol?L-1的Na2SO4溶液中, 当用100 mW/cm2的白光照射GO膜修饰的ITO电极时, 所得光电流随偏

石墨烯技术产业发展现状与趋势

摘要:2013年1月,石墨烯入选欧盟两项“未来和新兴技术旗舰项目”之一(另一项为“人类大脑工程”),欧盟委员会计划在未来十年投入10亿欧元开展石墨烯应用技术研发与产业化,再一次激起了各界对这一革命性材料的关注。 关键字:石墨烯;态势;趋势;技术转移;石墨烯;态势;趋势;技术转移;石墨烯;技术转化;产业化 石墨烯(Graphene)又称单层墨,是一种新型的二维纳米材料,也是目前发现的硬度最高、韧性最强的纳米材料。因其特殊纳米结构和优异的物理化学性能,石墨烯在电子学、光学、磁学、生物医学、催化、储能和传感器等领域应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。英国两位科学家因发现从石墨中有效分离石墨烯的方法而获得2010年诺贝尔奖,引起了科学界和产业界的高度关注,石墨烯相关专利开始呈现爆发式增长(2010年353件,2012年达1829件)。世界各国纷纷将石墨烯及其应用技术研发作为长期战略予以重点关注,美国、欧盟各国和日本等国家相继开展了大量石墨烯研发计划和项目。总体看来,石墨烯技术开始进入快速成长期,并迅速向技术成熟期跨越。全球石墨烯技术研发布局竞争日趋激烈,各国的技术优势正在逐步形成,但总体竞争格局还未完全形成。具体发展态势如下: 态势一:制备与改性的突破为产业化提供了技术支撑 一方面,石墨烯制备技术取得突破。石墨烯制备技术与设备是石墨烯生产的基础。一直以来,石墨烯大规模制备技术是阻碍其产业化的最重要因素。近来,石墨烯制备技术取得了若干突破,目前已形成自上而下(Top-Down)和自下而上(Bottom-Up)两种途径,开发出了从简易低成本制造到大面积量产工艺的多种方法,包括:机械剥离、氧化还原法、化学气象沉积(CVD)、外延生长、有机合成、液相剥离等。这些方法各有优缺点,需要根据不同的需求进行选择(表1)。其中,氧化还原法因成本低且易实现,有望成为最具发展前景的制备方法之一。同时,各种方法

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

多孔石墨烯技术调研及研发方案

多孔石墨烯制备技术调研

1.光蚀刻法 利用高能的电子束、离子束或光子束轰击石墨烯片层,把碳原子从晶格中轰击出来,形成孔洞缺陷的方法。 缺点:操作成本高,高能粒子会破坏周围碳原子的排列,影响其对导电离子的运输能力。 有研究将石墨粉在异丙醇里超声处理48h,然后离心去上层清液在微珊上自然晾干,通过扫描电子显微镜对石墨烯进行蚀刻,可在石墨烯表面形成直径小于10nm的孔。

其中:1.常规石墨烯造孔条件苛刻(高温、高压、催化剂)且常涉及强氧化剂(HNO 3和KMnO 4),后续处理仍高温退火或还原剂(N 2H 4、H 2、NH 3、NaBH 4 等),制备效率低下,且对环境造成严重污染。 2.制备一种硼氮共掺杂多孔石墨烯的制备方法,水蒸气的弱氧化性对孔 边缘进行功能化修饰,从而制备多孔石墨烯,可实现精准的孔调控和规 模化制备。丰富的纳米孔结构能够提供大量活性位点,促进B、N双原子 掺杂的同时提高电解液离子(H +/SO 42-)和溶解小分子(N 2/NH 3)的传递, 从而制备出高效的硼氮掺杂多孔石墨烯催化剂用于N 2 还原催化。 3.国家纳米科学中心的韩宝航研究员课题组将石墨烯氧化物和金属氧酸 盐或多金属氧酸盐在高温条件下产生石墨烯与金属氧化物纳米颗粒,两 者之间发生类似于焦炭高炉炼铁过程中的碳热还原反应,金属氧化物被 石墨烯上的碳还原成金属或形成金属碳化物,而参与碳热还原反应的碳 原子以二氧化碳或一氧化碳形式离开石墨烯片层,从而在石墨烯片层上 刻蚀出纳米级的孔隙,即形成多孔石墨烯 2.碳热还原法 将氧化石墨烯中的碳作为还原剂,还原金属氧化物的 到金属单质,而碳原子被蚀刻。

石墨烯结构

关于材料破坏方式 材料破坏是一种材料疲劳后的结果。 人类所知的所有材料形形色色千奇百怪,从各个方面可以分类成各种不同的种类。比如:固体、液体、液晶体;固体、乳浊液、清浊液、液体;金属、非金属;诸如此类的高分子材料,纳米材料,有机材料,无机材料,生物材料,非生物材料 作为材料科学,材料的物理性质按照性质大体分为韧性材料、脆性材料;材料学上,人们用几个特定的物理量来定义显示材料的各项性能指标,如:弹性模量、泊松比、密度、屈服模量、剪切模量、摩擦系数、膨胀系数、热应变、阻尼系数、比热容、热焓等等。然后进行一定的理想假设根据材料的具体特性和结构得到比较符合实际的理想材料模型,比如,双线性随动强化模型、双线性等向强化模型、多线性随动强化模型、多线性等向强化模型;材料结构性质性质模型,比如,杆件、梁、壳、体、管道、弹簧。 在宏观上,材料发生破坏的原因大体上归结为四个破坏准则。在微观上的破坏归结为共价键或者其他的键得到能量断裂从而发生破坏。本篇文章主要从微观入手一直到宏观结束,构想材料的破坏历程顺序。 目前来讲,构成物质的最基本粒子是夸克(如果考虑反物质会存在反夸克,此不赘述)。夸克构成质子、电子、中子。质子、电子、中子构成原子。原子组成单质物质以及分子物质。物质分为晶体、非晶体、液晶体。对于晶体大体分为离子晶体、分子晶体、原子晶体、金属晶体。晶体的粒子规则整齐地排列。 离子晶体之间存在较强的离子键,离子晶体的硬度比较大、难于压缩;分子晶体存在分子之间作用力(范德华力),一般来说分子量越大范德华力越大。但是分子间的作用力比起化学键弱得多。但是有些氢化物(HF、冰、氨)通过氢键的作用,发生破坏的能量就要消耗的多一些;原子晶体(二氧化硅、金刚石)通过共价键结合生成空间规则的网状结构具有非常大的硬度;金属晶体(除汞以外)中,金属原子好像许多硬球一层一层紧密的堆积着,原子周围有许多的电子围绕。金属离子与自由电子存在较强作用。金属存在不同程度的延展性。 石墨晶体(下图左)是一种层状结构,每层原子是整六边形的碳原子排列而成。层与层之间以范德华力结合。 对于单层石墨晶体就成为石墨烯(上图右)。石墨烯是以三个碳原子SP2杂化而成的正六边形二维结构。剩余一个电子与其他电子形成类似于骈苯的大π键。如此结构造就了石墨烯当前最强的度(111Gpa抗压、0.5tpa的弹性模量)。 对于材料破坏的大体过程大致可分为:键长变化、分子(原子)滑移、共价键重组、断裂四个阶段。不同属性的材料有着不同的过程。比如钢,在受到外拉力作用时,金属晶体内部原子核与电子之间的距离在平行与拉力方向加长,库仑力减小。去掉外力,在库伦力下重新回到原来位置。当某两个原子之间的距离增加到一定距离而其中一个与另外一个的距离逐渐逼近时,原子就会滑落到新的位置达到平衡,即原子滑移。材料不断承受外力载荷下不断滑移,在材料面积较小的部分原子滑移的速度快,从而在滑移过程中原子试图以滑移产生位移来满足外力。有些高分子合成材料(如橡胶)受到外力是的第一反应是发生翘曲。过程如下:

2018年石墨烯产业发展现状分析报告

2018年石墨烯产业发展现状分析报告

目录 一 产业概况 (一)产业规模 (二)产业链分析 1. 产业链上游 2. 产业链中游 3. 产业链下游 (三)石墨烯产业区域分布 1. 石墨烯产业全球分布 2. 我国石墨烯产业区域分布 (四)国内外重点企业动态 二 产业技术进展 (一)国外技术进展 (二)国内技术进展 三 产业发展问题及对策建议 (一)石墨烯产业发展存在的问题 (二)政策建议 图表目录 表1 石墨烯制备方法 表2 石墨烯应用产品及相关企业 表3 我国石墨烯主要产区企业分布 表4 国内主要石墨烯企业动态 表5 各国石墨烯技术动态 表6 我国石墨烯技术动态 图1 2011-2017年我国石墨烯企业增长情况 图2 石墨烯技术专利申请数量的年度分析 图3 我国受理的石墨烯专利公开数量年度变化趋势图4 全球石墨烯专利受理地区及机构分析 图5 我国新注册石墨烯企业地区分布

摘 要:一石墨烯作为最受关注的新材料,2017年产业化进程不断加快,但受制于制备技术工艺不成熟二应用市场缺少实质性产 品,石墨烯突破产业化瓶颈尚需时日三与此同时,我国石墨 烯产业在发展过程中逐渐显现出同质化发展的苗头三未来, 需要进一步优化石墨烯产业市场环境,加强政策支撑二服务 支撑二产业支撑,提高石墨烯市场集中度和产业竞争力,以 推动石墨烯产业持续健康发展三 一 产业概况 总体来看,2017年石墨烯产业延续了近几年火热的势头,依然是社会关注度最高的新材料,产业规模不断扩大呈爆发式增长势头,技术专利数量快速增长,正在接近实现产业化三但是,从产业生命周期的角度看,石墨烯产业仍处在导入期:大量企业进入二中小企业为主二中上游产业发展速度相对较快二产业下游缺乏具有实质性应用产品,石墨烯产业化道路任重而道远三

最新石墨烯基础知识简介

1.石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。

图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少

“石墨烯电池”技术

传说中的“石墨烯电池”技术,难道是一场弥天大谎? 近几年来,石墨烯这种获过诺奖的材料一直广受社会关注,在相关媒体上也充满了各种“石墨烯电池”等方面的新闻。 广大群众此时可能会好奇:石墨烯这种材料到底有多少用处,能不能依靠它来解决目前材料、电池等方面遇到的一系列技术瓶颈,帮助电动汽车、储能等行业实现飞跃? 首先上一下结论:“石墨烯电池”这个技术接近于不存在,石墨烯只有在理论上能够提高充放电速率,而对于容(能)量的提升基本没有任何帮助(期望“石墨烯电池”可以解决手机/电动汽车续航的人要失望了),其噱头意义远大于实用价值。 而且石墨烯材料本身纳米材料的高比表面积等性质与现在的锂离子电池工业的技术体系是不兼容的,应用的希望十分渺茫。

在本文中,笔者将结合石墨烯的具体特性,来重点分析石墨烯相关技术,即所谓的“石墨烯电池”在锂电池/储能行业中的发展情况和应用前景。 定义问题:“石墨烯电池”是否存在? 此处,首先援引知乎用户@土豆泥同学的一篇关于石墨烯的文章,其中对于“石墨烯”电池的定义介绍如下: “事实上,国际锂电学术界和产业界并没有“石墨烯电池”这个提法。维基百科里也没有发现“graphene battery”或者“graphene Li-ion battery”这两个词条的解释。根据美国Graphene-info这个比较权威的石墨烯网站的介绍,“石墨烯电池”的定义是在电极材料中添加了石墨烯材料的电池。这个解释显然是误导。 根据经典的电化学命名法,一般智能手机使用的锂离子电池应该命名为“钴酸锂-石墨电池”。之所以称为“锂离子电池”,是因为SONY在1991年将锂离子电池投放市场的时候,考虑到经典命名法太过复杂一般人记不住,并且充放电过程是通过锂离子的迁移来实现的,体系中并不含金属锂,因此就称为“Lithium ion battery”。最终“锂离子电池”这个名称被全世界广泛接受,这也体现了SONY在锂电领域的特殊贡献。 目前,几乎所有的商品锂离子电池都采用石墨类负极材料,在负极性能相似的情况下,锂离子电池的性能很大程度上取决于正极材料,所以现在锂离子电池也有按照正极来称呼的习惯。比如,磷酸铁锂电池(BYD所谓的“铁电池”不在笔者讨论范畴)、钴酸锂电池、锰酸锂电池、三元电池等,都是针对正极而言的。那么以后如果负极用硅材料会不会叫做硅电池?也许可能吧。但不管怎么样,谁起主要作用就用谁命名。” 从此文可以看出,在电池中,以主要作用的成分(磷酸铁锂锂电池)、机理(液流电池等)来命名是一般通用的规则,那么对于“石墨烯电池”呢?

石墨烯产业发展现状分析及未来发展建议

石墨烯产业发展现状分析及未来发展建议 一、石墨烯的发展现状 石墨烯是一种具有优异的力学、热学和电学性能的新型碳材料。石墨烯材料的研发涉及国家高新技术材料的产业基础,产业关联涉及新材料、能源、环境、航空航天、国防等领域,对国家的发展起着重要作用,因此,各国政府积极支持石墨烯研发:欧洲联盟2013年启动10亿欧元石墨烯旗舰计划;韩国和英国分别投入3.5亿美元、5000万英镑进行商业化计划;中国已将石墨烯写进《新材料产业“十三五”发展规化》中。 济宁利特纳米技术有限责任公司生产的石墨烯采用改良的HUMMERS法制备,产品测试结果如下: 厚度:0.7-4nm,粒径0.2-50μm,单层率≥99%,纯度≥99%,电导率≥200S/m,比表面积为200-1000m2/g 石墨烯原材料的规模化制备是构筑石墨烯产业链的基础,对开发下游产品有着根本性的作用,对石墨烯的产业化发展起着承上启下的作用。石墨烯行业近两年呈井喷式发展态势,企业和产品已经雨后春笋般大量出现。其中涉足石墨烯下游应用的企业逐渐增多,包括电子领域的高性能芯片、LED、柔性显示屏;能源领域的静电喷漆系统、高性能电池、超级电容器、太阳能电池;航空航天、海洋领域的防护涂料、复合材料、电磁屏蔽材料、隐型材料;环境领域的污水处理、海水淡化、大气污染治理;高强度橡胶、塑料,医药领域的药物输送、临床检测等。 截至2012年石墨烯获得诺贝尔物理学奖后已有2年时间,石墨烯规模化制备的技术瓶颈已逐渐突破,限制石墨烯行业发展的不再是石墨烯的规模性制备,而是如何让制备的石墨烯满足不同应用领域的需求,如何使石墨烯的高性能如高导电性、高导热性、高透光性在应用领域充分发挥。这是目前从事石墨烯材料的研究机构和企业共同面临一个关键性技术问题,同时也是石墨烯行业未来2-3年内需要突破的关键性瓶颈。 目前,国内各石墨烯相关企业纷纷在自身技术优势的基础上,开展石墨烯的下游应用,涉及的领域主要集中在锂离子电池、超级电容器、柔性显示屏、防护涂料、污水处理等几个方面。在这些应用领域中,水污染处理、功能性涂料、锂离子电池三方面的研究最多,也是目前石墨烯应用中较为成熟的。 (一)水污染处理 中国600多个城市都不同程度面临着水源地突发污染事件的威胁,存在水源地安全隐患。近期不断发生的重金属污染突发事件,如2005年珠江支流北江镉污染事故、2006年湖南岳阳砷污染事件、2010年福建紫金矿业重大污染事件、2011年匈牙利铝厂毒泥浆对多瑙

2021石墨烯行业现状及前景趋势

2021年石墨烯行业现状 及前景趋势

目录 1.石墨烯行业现状 (5) 1.1石墨烯行业定义及产业链分析 (5) 1.2石墨烯市场规模分析 (7) 1.3石墨烯市场运营情况分析 (7) 2.石墨烯行业存在的问题 (10) 2.1技术问题趋势 (10) 2.2市场问题趋势 (10) 2.3成本问题趋势 (11) 2.4应用市场有待拓展 (11) 2.5标准体系有待完善 (11) 2.6行业服务无序化 (12) 2.7供应链整合度低 (12) 2.8产业结构调整进展缓慢 (13) 2.9供给不足,产业化程度较低 (13) 3.石墨烯行业前景趋势 (14) 3.1石墨烯复合材料种类多样 (14) 3.2性能优良且应用前景广阔 (14) 3.3石墨烯的应用领域十分广泛 (15) 3.4产业资源加速整合 (15) 3.5政策利好 (15)

3.6延伸产业链 (15) 3.7行业协同整合成为趋势 (16) 3.8生态化建设进一步开放 (16) 3.9服务模式多元化 (17) 3.10呈现集群化分布 (17) 3.11需求开拓 (18) 3.12行业发展需突破创新瓶颈 (18) 4.石墨烯行业政策环境分析 (20) 4.1石墨烯行业政策环境分析 (20) 4.2石墨烯行业经济环境分析 (20) 4.3石墨烯行业社会环境分析 (20) 4.4石墨烯行业技术环境分析 (21) 5.石墨烯行业竞争分析 (22) 5.1石墨烯行业竞争分析 (22) 5.1.1对上游议价能力分析 (22) 5.1.2对下游议价能力分析 (22) 5.1.3潜在进入者分析 (23) 5.1.4替代品或替代服务分析 (23) 5.2中国石墨烯行业品牌竞争格局分析 (24) 5.3中国石墨烯行业竞争强度分析 (24) 6.石墨烯产业投资分析 (25)

与石墨烯相关的特征

1 拓扑绝缘体 自然界的材料根据其电学输运性质,可分为导体,半导体和绝缘体。一般的导体中存在着费米面(如图a所示),半导体和绝缘体的费米面存在于禁带之中(如图b所示)。拓扑绝缘体在边界上存在着受到拓扑保护的稳定的低维金属态,这些无能隙的边缘激发处在禁带之中,并且连接价带顶和导带底(如图c,d所示)。从这个意义上讲,拓扑绝缘体是介于普通绝缘体和低维金属之间的一种新物态。根据能带理论,费米能落在晶体材料的带隙中时,材料表现为绝缘体。拓扑绝缘体的材料的能带结构类似于一般绝缘体,存在全局的能隙。但不同于一般的绝缘体,当考虑存在边界的拓扑绝缘体时,将出现贯穿整个能隙的边界态,这些特殊的边界态和体系的拓扑性质(由体系的拓扑数决定)严格对应,因而只要不改变体系的拓扑性质,这些边界态就不会被破坏。 拓扑绝缘体的典型特征是体内元激发存在能隙,但边界上或表面具有受拓扑保护的无能隙边缘激发。拓扑绝缘体的内部的电子能带结构和一般绝缘体相似,它的费米能级位于导带和价带之间,而在其表面存在一些特殊量子态,这些量子态位于块体能带结构的带隙之中,从而允许导电。拓扑绝缘体表面或边界导电是有材料电子态的拓扑结构决定,与表面的具体结构无关。也正是因为其表面金属态的出现由拓扑结构对称性所决定,所以它的存在非常稳定,基本不会受到杂志与无序的影响。 从广义上讲,可分为两大类:一类是破坏时间反演的量子霍尔体系;另一类是最近发现的时间反演不变的拓扑绝缘体。 2半金属 semimetal halfmetal 半金属:介于金属和非金属之间的物质。从能带结构来看,金属中被电子填充的最高能带是半满的或部分填充的,电子能自由运动,有较高的电导率。绝缘体中被电子填充的最高能带是满带(又称价带),价带与导带之间的禁带宽度较大。

石墨烯及其掺杂技术研究

摘要 石墨烯是由sp2杂化碳原子构成的一种具有蜂窝状六方点阵结构的二维纳米材料,独特的结构使其具有优异的热学、机械和电学等性能。因此,研究者对石墨烯未来在纳米电子学、材料科学、凝聚态物理以及低维物理方面的应用产生了广泛的兴趣,但本征石墨烯在电子领域的应用受限于它的零带隙特性,获得带隙在一定范围内可调节的石墨烯显得尤为重要。为了打开石墨烯的带隙,研究者探索了许多方法,比如剪裁石墨成量子点、纳米带、纳米网格或者把石墨烯铺到特殊的衬底上,其中一个最可行的方法就是通过掺杂来调控石墨烯的电学性质。 本文从石墨烯的结构特性出发,综述了石墨烯的各种制备、表征方法以及应用情况,特别是对石墨烯的制备方法进行了详细的阐述,因为石墨烯的制备质量与产量对其后续的性能研究与应用进展有着直接的影响。在全面了解了石墨烯的制备、表征和应用之后,本文对石墨烯掺杂的研究进行了分析,重点对氮掺杂石墨烯的制备和应用进展进行了探讨。最后指出了石墨烯在制备和掺杂方面存在的一些问题和以后的发展方向。 关键词:石墨烯,带隙,掺杂

Abstract Graphene, a two-dimensional (2D) network of sp2hybridized carbon atom spacked into hexagonal structure, is a basic building block for graphitic materials of all other dimensionalities. The unique structure yields extraordinary thermal, mechanical, and electrical properties, an enormous effort has been devoted to exploration of its many applications in nanoelectronics, materials science, condensed-matter physics, and low-dimensional physics. However, most electronic applications are handicapped by the absence of a bandgap in the intrinsic material. In the quest to opening and tuning an energy gap in graphene, various approaches have been developed to improve the semiconducting properties, exemplified by forming confined geometries of quantum dots, nanoribbons, and nanomesh, or binding graphene to particular substrates. One of the most feasible methods to control the semiconducting properties of graphene is by doping,which is a process intentionally used to tailor the electrical properties of intrinsic semiconductors. Based on the structure and characteristics of graphene, this paper summarized the preparation, characterization methods and applications of graphene, especially the preparation of graphene is carried on the detailed elaboration, for the quality and yield of graphene on its subsequent performance has a direct influence on its research and application progress. In a comprehensive understanding of the preparation, characterization and application of graphene, in this paper, the graphene doped are analyzed, focusing on preparation and application progress of nitrogen doped graphene. Finally,we points out some problems in preparation and doping of graphene and the development direction of graphene. Key Words: graphene, energy gap, Doping

石墨烯在光电子器件中的应用

石墨烯在光电子器件中的应用 摘要:石墨烯是目前发现的唯一存在的二维自由态原子晶体,有着优异的机械性能、超高的热导率和载流子迁移率、超宽带的光学响应谱,以及极强的非线性光学特性。且因其卓越的光学与电学性能及其与硅基半导体工艺的兼容性,石墨烯受到了各领域学科的高度关注。本文重点综述了石墨烯在超快脉冲激光器、光调制器、光探测器、表面等离子体等光电子器件领域的应用研究进展,并对其未来发展趋势进行了进一步的分析。 关键字:石墨烯;光调制器;光探测器;超快脉冲激光器;表面等离子体; 1、前言 石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,具有独特的零带隙能带结构,是一种半金属薄膜材料。石墨烯不仅有特殊的二维平面结构,还有着优良的力学、热学、电学、光学性质。其机械强度很大,断裂强度比优质的钢材还要高,同时又具备良好的弹性、高效的导热性以及超强的导电性。石墨烯又是一种禁带宽度几乎为零的特殊材料,其电子迁移速率达到了1/300光速。由于石墨烯几乎是透明的,因此光的透过率可高97.7%。此外,石墨烯的加工制备可与现有的半导体CMOS(Complementary metal-oxide-semiconductor transistor)工艺兼容,器件的构筑、加工、集成简单易行,在新型光电器件的应用方面具有得天独厚的优势。 目前,人们已利用石墨烯开发出一系列新型光电器件,并显示出优异的性能和良好的应用前景。 2、石墨烯的基本性质 石墨烯具有独特的二维结构,并且能分解为零维富勒烯,也可以卷曲成一维碳纳米管,或堆积成为三维石墨。石墨烯力学性质高度稳定,碳原子连接比较柔韧,当施加外力时,碳原子面就会发生弯曲形变。 在理想的自由状态下,单层石墨烯并非完美的平面结构,表面不完全平整,在薄膜边缘处出现明显的波纹状褶皱,而在薄膜内部褶皱并不显,多层石墨烯边缘处的起伏幅度要比单层石墨烯稍小。这也说明了石墨烯在受到拉伸、弯曲等外力作用时仍能保持高效的力学稳定性。 在一定能量范围内,石墨烯中的电子能量与动量呈线性关系,所以电子可视为无质量的相对论粒子即狄拉克费米子。通过化学掺杂或电学调控的手段,可以有效地调节石墨烯的化学势,使得石墨烯的光学透过性由“介质态”向“金属态”转变。 石墨烯的功函数与铝的功函数相近,约为4.3eV,因此在有机光电器件中有望取代铝来做透明电极。近年来所观测到的显著的量子霍尔效应和分数量子霍尔效应,证实了石墨烯是未来纳米光电器件领域极有前景的材料。 3、基于石墨烯的光调制器 3.1 直波导结构石墨烯光调制器 光学调制是改变光的一个或多个特征参数,并通过外界各种能量形式实现编码光学信号的过程。对光学调制器件的评价有调制带宽、调制深度、插入损耗、比特能耗以及器件尺寸等性能指标。大多数情况下,光在

相关主题