搜档网
当前位置:搜档网 › MB15镁合金板材的超塑性能研究

MB15镁合金板材的超塑性能研究

MB15镁合金板材的超塑性能研究
MB15镁合金板材的超塑性能研究

AZ31镁合金塑性变形不均匀性与变形机制的研究

AZ31镁合金塑性变形不均匀性与变形机制的研究镁合金性能优异、应用广泛,但较差的室温塑性及变形过程中的不均匀性极大地制约了它的生产应用。深入研究镁合金的变形不均匀性及内在塑性变形机制是理解镁合金变形行为的关键。 本文以商用轧制AZ31镁合金为初始材料,基于数字图像相关方法(DIC)、电子背散射衍射技术(EBSD),建立了微观尺度应变不均匀性及组织变形不均匀性的有效表征方法。在此基础上详细研究了晶粒尺度变形不均匀性与变形机制的内在联系,并深化了对不均匀变形条件下塑性变形机制的行为理解。 获得的主要研究结论如下:借助纳米级表面标记颗粒实现了试样表面高分辨应变场的分析,探索了晶粒以及晶内孪晶尺度的应变分布情况,证实了应变分布在微观尺度的不均匀性。同时结合微观组织结构及变形机制的研究解释了应变不均匀性的产生原因,研究表明晶体取向的自身软硬程度以及与相邻区域的相对软硬状态都会影响应变的分布,在某些界面处的应变累积是由于界面两侧缺乏有效的塑性变形机制以完成应变的传递。 为理解局部应变对塑性变形机制的行为影响,对晶界处的孪晶穿透行为进行了详细的统计研究。总结了孪晶穿透在小取向差角晶界处容易发生的规律,探究了Schmid因子对孪晶穿透的影响,并利用几何协调因子m’从应变协调角度解释了某些不遵循Schmid定律的孪晶行为。 分析表明m’可以较好地解释局部应变下的孪晶变体选择行为,但对于孪晶穿透在何处发生并没有良好的预测性。基于EBSD获得的取向数据,建立了晶粒尺度组织变形不均匀性的两种可视化表征方法。 验证了“晶内取向分散”方法表征晶粒分裂的有效性及优越性,并运用“晶

内取向发展”方法揭示了介观变形带的信息。研究表明晶粒分裂在低应变量下就已经发生,结合Sachs模型及低能位错结构(LEDS)理论分析得出晶内同一组滑移体系间相对开动量的不同会导致晶内各部分不同的转动行为。 利用上述表征方法能够帮助对热变形过程中组织的不均匀变化及动态再结晶形核机制的理解。研究表明在低应变阶段,晶粒长大可以降低体系能量从而弱化晶内变形的不均匀性,晶粒长大过程中晶界的迁移大多符合降低界面能量的要求。 随着应变量的增加,晶内变形的不均匀性迅速增加,并在不均匀变形组织中观察到晶界突出和应变诱发的矩形晶界迁移形貌。AZ31镁合金在200℃的热变形过程中同时存在着不连续动态再结晶(DDRX)及连续动态再结晶(CDRX)的形核机制。

镁及镁合金板材的生产工艺流程

镁及镁合金板材的生产工艺流程(一) 镁及镁合金板材的生产工艺流程为: 1、熔炼与铸锭 熔炼包括熔化、合金化、精炼、晶粒细化、过滤等冶金和物理化学过程,通常在反射炉或坩埚炉内进行。镁及镁合金的熔点都在650℃左右,它们极易氧化且随温度的升高而加剧。当温度超过约850℃时,熔体的表面立即燃烧,故熔炼时必须用熔剂覆盖或以保护性气体保护。镁及镁合金在熔融和燃烧状态下遇水、含水(包括结晶水)物质和液态防火介质都可能导致剧烈爆炸,因此,在生产的全过程中注意安全是至关重要的。以隔离空气为主的覆盖熔剂和以提高熔体质量为主的精炼熔剂都是碱金属或碱土金属的氯化物和氟化物。除气(主要是氢)随熔剂精炼进行,也可向熔体中通入活性气体(如氯气)。对凝固时的晶粒粗大倾向,据合金的不同可采取控制熔体温度、向熔体加入微量元素进行变质处理等加以抑制,即晶粒细化(见铸锭晶粒的细化处理)。铸锭通常采用半连续铸锭法。除封闭式铸锭外,流槽和结晶器中裸露的金属,必须用s0:或SF。等气体保护。要科学地确定和控制各项铸造参数,以防止铸锭发生热裂,并降低冷隔深度和减少金属间化合物的形成和聚集。除镁一钇系合金外,铸锭的冷裂倾向小。 2、加热与热轧 铸锭在加热前必须铣面(见有色金属合金锭坯铣面),彻底去除冷隔和偏析物等表面缺陷;合金元素含量高和含锆、钇等的合金还要经均匀化处理(见有色金属合金锭坯均匀化)。铸锭加热时应避免直接热辐射和避免火焰同铝接触,以防局部过热、熔化或燃烧。根据合金的不同加热温度控制在370~510℃范围内。除含锂高的超轻合金有晶型转变外,余者皆为密排六方晶型,塑性差,但变形能力随加热温度的提高和晶粒尺寸的减小而提高,并比立方晶型的金属提高得更快。热轧的总变形量可以达到96%。严格控制终轧温度是保证热加工状态成品板材的力学性能并防止板坯及薄板产生裂纹的重要途径。晶粒粗大的铸锭和厚度较小的热轧成品,有的要进行二

MB15超塑性镁合金扩散连接试验

第24卷第l期 焊接学报v01.24N。.12O03年2月TRANSACTl0NS0FTHECHINAWELDINGINSTITUTl0NFebruary2003 MBl5超塑性镁合金扩散连接试验 于彦东,张凯锋,蒋大鸣,韩文波 (哈尔滨工业大学材料科学与工程学院,哈尔滨150001) 摘要:根据原子扩散理论对MBl5超塑性镁合金进行了扩散连接工艺研究。扩散连 接试验前采用三种不同方法去除MBl5镁合金表面的氧化膜,从中选出最佳方法。在 Gleeble—1500型热/力模拟试验机上,对超塑性MBl5镁合金进行了在不同连接工艺条 件下的扩散连接,在电子万能试验机上对扩散连接接头进行了剪切强度试验,从而获得 了MBl5超塑性镁合金的最佳扩散连接工艺参数。利用金相显微镜、扫描电镜(sEM), 对扩散连接接头微观组织进行分析,得出了MBl5超塑性镁合金主要是通过原于扩散 和晶粒长大造成的原始焊接表面晶界的移动,促使接头表面原子充分扩散,形成牢固的 连接。 关键词:超塑性;扩散连接;镁合金;剪切强度 中圈分类号:TGl46.22文献标识码:A文章编号:0253—360x(2003)ol一“一05于彦东 0序言 超塑成形/扩散连接(sPF/DB)复合工艺是近年成形与连接中最先进的技术之一。用sPF/DB技术已成功地进行了钛合金及部分铝合金复杂多层结构件的成形,并广泛地用于航空航天结构器件的制造。目前,人们正在积极研究一些高强度铝合金、高强度镁合金等先进材料的sPF/DB成形技术。镁合金是常用的航空金属结构材料中最轻的一类。镁的密度只及铝的三分之二(约1.74×103kg/m),因此,尽管其强度和弹性模量低于铝,但仍能保持较高的比强度和比刚度。在航空工业中,镁合金可用于制作各种框架、机架等零件及仪表电机壳体和操纵系统中的支架、摇臂等零件;镁合金还在宇航工业、光学仪器、通讯技术、采矿工具、纺织机械和运输部门中获得应用,其主要优点在于减轻设备装置的重量+增加产品抗冲击性能…。 超塑性材料具有等轴细晶的显微组织,对扩散焊接很有利。用于超塑性铝合金的扩散连接工艺已经被概括出来了。这些方法包括表面无覆着物的静态压力连接,气压连接,含中间夹层的连接”“1等。至今.镁合金超塑性扩散连接的研究尚未见报道。因此,作者采用超塑性状态MBl5镁合金进行扩散焊接试验,探讨超塑性对扩散焊接的作用和超塑性镁合金扩散焊接的微观机理。 收稿日期:2002一07—191试验材料及方法 1.1试验材料 研究所用材料为MBl5镁合金。其主要化学成分见表l,力学性能见表2。该镁合金块厚为20mm,在轧制之前,将试件加热至330℃,保温1h,然后每一次都以5%一lO%的压下量进行轧制。反复进行加热和轧制,最后轧制成1.0mm厚的薄板。 表1镁合金lMBl5)的化学成分(质量分数,% T铀k1Ch唧l∞l洲po耐HonofMBl5 表2超塑性镁合盒板材常温下的力学性能T讪k2M∞hamd蛆pm畔ni靠atnomalt伽Ⅲ肼!tII砷 轧制后的镁合金薄板晶粒尺寸平均为5.9“m,超塑变形温度为380℃,应变速率为5.56×lo。/s的条件下,其应变速率敏感性指数m值可达O.48。对应的延伸率为420%.流动应力为8.8MPa。1.2试验方法 试验试样及扩散连接接头采用搭接形式如 图l和图2所示。  万方数据

镁合金塑性变形与断裂行为的研究

镁合金塑性变形与断裂行为的研究 刘天模,卢立伟,刘宇 重庆大学材料科学与工程学院,重庆(400030) E-mail: haonanwa@https://www.sodocs.net/doc/9e10678759.html, 摘要:通过室温压缩拉伸实验,研究了AZ31挤压镁合金的断裂失效机制。研究表明,在压缩破坏实验中有镦粗现象,金相显示沿粗大晶界处形成了大量的孪晶,部分孪晶界诱发裂纹源,裂纹沿晶界处传播,同时部分孪晶对裂纹起钝化阻碍作用,断口扫描表明属于韧脆混合断裂;在拉伸破坏实验中出现明显颈现象,金相显示沿拉长晶晶界处形成大量孪晶,孪晶和裂纹之间存在交互作用,断口扫描表明属于韧性断裂,同时显示出空洞形核诱发裂纹的机制。 关键词:压缩变形;拉伸变形;孪晶;断裂 中图分类号:TG 1. 引言 镁合金属于密排六方晶体结构,其轴比(c/a)值为1.623,接近理想的密排值1.633,室温滑移系少在室温塑性变形时,出现大量的孪晶协调其塑性变形,塑性变形能力差,容易断裂[1]。金属的断裂是指金属材料在变形超过其塑性极限而呈现完全分开的状态。因为材料受力时,原子相对位置发生了改变,当局部变形量超过一定限度时,原子间的结合力遭到破坏,便出现了裂纹,裂纹经过扩展而使金属断开。金属塑性的好坏表明了它抑制断裂能力的高低。在塑性加工生产中,尤其是对塑性较差的材料,断裂常常是引起人们极为关注的问题。加工材料的表面和内部的裂纹,以至于整体的断裂,都会使得成品率和生产率大大降低[2,13]。因此,研究镁合金塑性变形中的断裂行为和规律对于有效地防止金属成形过程中的断裂,充分发挥金属材料潜在的塑性有重要意义. 2. 实验内容 实验材料选用AZ31挤压材,挤压温度为300℃,挤压比为4.5,挤压速度为1mm/s,将挤压样加工成标准压缩样Φ7×14mm和标准拉伸样,并选此标准压缩样进行400℃保温2小时的退火,利用新三思万能电子试验机CMT-5150以1mm/min的速度沿挤压方向进行压缩和拉伸破坏实验;然后利用数码相机对失效后试样断口方向及断面进行拍照宏观分析;再对失效试样的压缩或拉伸方向进行金相显微组织分析;最后利用扫描电子显微镜对压缩和拉伸的断口形貌进行分析。 3.试验结果 3.1 挤压态压缩破坏样 3.1.1 断口宏观分析

镁合金板材各向异性实验研究

本科毕业设计(论文) 镁合金板材各向异性实验研究 刘阳 燕山大学 2014年6月

本科毕业设计(论文) 镁合金板材各向异性实验研究 学院:机械工程学院 专业:轧钢 学生姓名:刘阳 学号:100101010371 指导教师:石宝东 答辩日期:2014/6/20

燕山大学毕业设计(论文)任务书

摘要 摘要 由于具有密度低、比强度和比刚度高等特点,镁合金板日益广泛地应用于交通、家电和通讯领域。由轧制而导致的镁合金晶体的取向特征以及镁合金晶体自身对称性较差的特点,镁合金经常表现出较强的各向异性行为。本论文以此为研究对象,试验确定了三种不同厚度镁合金板材的各向异性行为,通过试验数据研究了AZ31型镁合金板材在室温下的各向异性屈服行为,从而为使用量大、具有良好应用前景的镁合金的各向异性唯象模型提供了大量的实验研究数据。 基于对三种不同厚度AZ31镁合金板材的基本力学性能的研究发现:镁合金板材在不同方向上力学性能不同,所研究的板材的力学性能都表现出了各向异性特征。 进一步研究表明,现有的金属塑性强化模型不能满足工程上的要求,畸变强化理论有利于弥补现有强化模型的缺陷。此外,通过多向单轴拉伸实验,测定了AZ31镁合金板材的初始屈服面和等塑性功面,系统的分析了等塑性功面的演变规律。 关键词AZ31镁合金板;各向异性;拉伸力学性能;屈服面

燕山大学本科生毕业设计(论文) Abstract Due to their good properties,such as low density,high specific strength and high specific stiffness , magnesium alloy sheets are widely applied in transportation , household appliance, communication and many other fields.Because of the orientations of magnesium alloy crystals by rolling and less symmetrical characteristics,magnesium alloys often show strong anisotropy behavior.In this paper, as a research object,Testing to determine the anisotropic behavior of three different thicknesses of magnesium alloy sheet,Through experimental data to study the anisotropic yield behavior of AZ31 magnesium alloy sheet type at room temperature,Anisotropic phenomenological model for the use of magnesium alloy so large,with good prospects of a large number of experimental studies provide data. Based on the basic mechanical properties of three different thicknesses AZ31 magnesium alloy sheet study found: magnesium alloy sheet in different directions different mechanical properties, the mechanical properties of the sheet are studied showed anisotropy. Further study showed that the existing metal plastic hardening model can not meet the requirements for building works,to compensate the distortion in favor of strengthening the existing theoretical models to strengthen the theoretical defects.In addition,multi-directional uniaxial tensile test and biaxial loading experiments,we measured the yield surface systems and functions such as shaping the surface of AZ31 magnesium alloy sheet, which systematically analyzes the evolution of the yield surface. Keywords AZ31 magnesium alloy plate anisotropy ; Anisotropy ;tensile mechanical properties ;yield surface;

镁合金的超塑性

镁合金的超塑性 梁冬梅周远富褚丙武 (中国铝业郑州研究院,郑州 450041) 摘要:综述了镁合金的超塑变形特点及晶粒细化对镁合金超塑性的影响,描述了镁合金的高应变速率超塑性和低温超塑性。指出镁合金超塑成形技术的发展将大大拓展其应用领域。 关键词:镁合金;超塑性;晶粒细化 The Deformation Mechanism and Superplasticity of Magnesium Alloys Liang Dong-mei Zhou Yuan-fu Chu Bing-wu (Zhengzhou Research Institute of Chalco,Zhengzhou 450041,China) Abstract:The characteritics of superplasticity and the effects of fine grain on superplasticity are described. High strain rate and low temperature superplasticity of magnesium alloys are reviewed. The developing of superplastic forming will enlarge the applications of magnesium alloys. Key words:magnesium alloys; deformation mechanism; superplasticity;fine grain 0 前言 镁是所有结构用金属及合金材料中密度最低的。与其他金属结构材料相比,镁及镁合金具有比强度、比刚度高,减振性、电磁屏蔽和抗辐射能力强,易切削加工,易回收等一系列优点,在汽车、电子、电器、航天、航空和国防军事工业领域具有极其重要的应用价值和广阔的应用前景,是继钢铁和铝合金之后发展起来的第三类金属结构材料,被誉为“2l世纪绿色工程金属结构材料”[1]。 由于镁晶体为密排六方结构,镁基体的独立滑移系比较少,因此,镁合金的塑性加工能力较差,在很大程度上限制了镁合金的应用。因此必须采用锻压、轧制、挤压等变形方式获得更高的强度,更好的延展性,以拓展镁合金的应用[2]。 开发镁合金塑性加工工艺,提高镁合金作为结构件的综合力学性能,成为镁合金的发展动力[2]。在镁合金的成形工艺中超塑成形对于这类强度高而塑性差的材料是一种非常有优势的成形方式。目前研究镁合金的超塑性及其成形工艺具有重要意义,是镁合金研究当中极具先进性与挑战性的研究重点。 1 镁合金的超塑性 超塑性特征不仅意味着非常大的伸长率,还表现出非常低的流变应力,可实现复杂工件的一次成形,大大降低材料及能源消耗[4]。自从20世纪50年代发现金属超塑性以来,其研究发展很快,各国都十分重视超塑性的研究和应用,力图拓展其应用领域。 一般金属材料在实现超塑性变形时,必须具有细小的等轴晶粒,晶粒尺寸在10μm以下,此外,还必须满足较高的超塑变形温度(≈0.7Tm,Tm为材料熔点)和较低的应变速率(小于10-3s-1)条件[5]。而对于镁合金,近期的研究结果表明[3]:镁合金在较大晶粒尺寸(可达100μm)、较快应变速率(1×10-2s-1)和较低温度下(300~400℃)也能实现较好的超塑性,

变形镁合金的基础介绍

变形镁合金的基础介绍 变形镁合金具有密度低、比强度和比刚度高、电磁屏蔽效果好、抗震减震能力强、易于机加工成形和易于回收再利用等优点,在航空工业、航天工业、汽车工业、3C产品,军工,装备制造,纺织机械,运动器材等领域的具有广泛的应用前景和巨大的应用潜力。 目前,镁合金的应用大多数是以模铸、压铸以及半固态成形等工艺来生产产品。这些镁合金工艺生产的产品,存在着组织部太致密、成分偏析,最小厚度偏大、力学性能偏低等缺憾,不能充分发挥镁合金的性能优势。塑性变形能够改善镁合金的组织和力学性能,大大提高镁合金的强度和塑性,同时,很多领域重要结构材料需要用的镁合金板材、镁合金棒材、镁合金管材和镁合金型材等只能用塑性成形工艺来制取,而不能利用铸造等工艺来生产。 由于镁合金晶体结构是密排六方(Hcp),塑性较差,成形困难,成材率低,加上人们对镁合金易燃、不耐腐蚀等缺点的过分夸张和错误的认识,导致变形镁合金没有得到大规模应用。 目前变形镁合金板材、型材以及锻件等生产仍集中在航空航天工业及军事工业等高端领域或部门,没有普及到民用工业领域。在当今社会节约资源和减少污染成为社会可持续发展战略的要求的背景下,急需加快研究步伐,转变观念,以推动变形镁合金在民用工业产品领域的应用。在此总结变形镁合金及成形工艺的成果,探讨变形镁合金及其成形工艺的研究方向和应用成果。 变形镁合金合金系 变形镁合金主要分为四个系列(美国标准):AZ系列(Mg-Al-Zn),AM系列(Mg-Al-Mn),MgZnZr系列,MgMnRe系列。中国变形镁合金牌号为MB系列。 变形镁合金以AZ系应用最为普遍,其中又以MB2应用最为广泛。变形镁合金MB2的合金成分与AZ31B不同,其力学和成形性能比AZ31B稍差些。 新近研究开发的镁合金如:Mg—Li系合金,由于锂的加入,Mg-Li系合金成为最轻的变形镁合金,金属Li的密度只有0.53g/cm3,用Li作合金元素,除降低密度外,Li的加入可以在合金中形成具有bcc结构的β相,显著改善变形镁合金的塑性,变形加工能力大大增强。在变形镁合金系中加入稀土元素后,如在Mg-Zn系合金中加入Y、Ce、Nd以及Re等元素,能够显著改善变形镁合金的耐蚀性和高温性能,形成新的合金牌号品种。 变形镁合金与铸造镁合金相比,变形镁合金具有更高的强度和塑性。 变形镁合金比重小、比刚度、比强度高的特点,广泛地应用在一些对重量特别敏感的手提工具、体育器材、航空航天、汽车等领域中。 随着新型镁合金及其成形工艺不断研究深入,变形镁合金的用途和应用范围将会不断扩大。

高塑性变形镁合金合金系简介

高塑性变形镁合金合金系简介 按成形工艺,镁合金可分为铸造镁合金和变形镁合金,两者在成分、组织性能上存在较大差异。 铸造镁合金主要用压铸工艺生产,其主要特点是生产效率高、可生产薄壁及形状复杂的构件,且铸态组织优良、铸件表面质量好、尺寸精度高。在合金中加入铝可强化镁合金并使其具有优异的铸造性能,为了便于压铸,铸造镁合金中的铝大于3%,同样为了降低热裂倾向,铸造镁合金中的锌含量不超过2%。铸造镁合金应用于汽车零件、机件罩壳和电器结构等。 与铸造镁合金相比,变形镁合金组织更细、成分更均匀、内部更致密,因此变形镁合金强度和延伸率均较高。第一次世界大战以来,变形镁合金获得了较系统地研究与发展,并形成系列的镁合金系。变形镁合金的板材、挤压材以及锻件等塑性加工产品在军用飞机、航空航天、赛车等领域得到了较多的应用。 目前镁合金形成了一个较完整的体系,但镁合金牌号还没有形成国际通用的标准。美国材料试验协会(ASTM)的命名方法应用更普遍一点,其命名方法是由“字母-数字-字母”三部分组成的命名系统。第一部分的二个字母表示两种主要两种合金元素,第二部分数字分别表示这两种元素含量的重量百分比,第三部分的字母是用来区分具有相同标称成分的不同合金。 暂不考虑镁锂合金,下面介绍具有密排六方结构的镁合金。 ①Mg-Al系 Mg-Al系合金一般属于中等强度、塑性较高的最常用合金系,它们具有良好的强度、塑性和耐腐蚀性等综合性能,而且价格较低。Mg-Al系合金中,部分AZ、AM、AE合金属于高塑性镁合金。Mg-Al-Zn系合金应用很广泛。它的主要特点是强度高,并具有良好的铸造性能。铝是该合金系中的主要元素,其主要作用是提高合金的室温强度,并赋于热处理强化效果。共晶温度(437℃)下,铝在镁中的溶解度为12.27%,100℃时溶解度为2.0%,因此可进行热处理强化。锌能提高合金的强度,改善合金的塑性,提高耐腐蚀性,但锌增加疏松和热裂纹的形成倾向。 AZ系中的AZ31、AZ61,具有良好的塑性、强度和耐腐蚀性等综合力学性能,AZ31和AZ61的延伸率能达到19%以上。常用Mg-Al合金铝含量小于10%,由于不平衡结晶,室温状态组织为α(Mg)+β(Mg17Al12),β相随铝含量的增加而增多。在铝含量小于10%时,随着铝含量增加,固溶条件下β相可全部溶入α基体中,随Al量增加抗拉强度不断提高;伸长率则在3~8%范围内达到最大值。AZ合金在固溶处理条件下塑性较好,细小晶粒组织的塑性较好。在研究AZ31B合金的轧制时,发交叉轧制板材的塑性较好。 AM系列镁合金具有优良的韧性,用于经受冲击载荷、安全性要求高的场合。AM20压铸态下延伸率可达20%,AM50和AM60压铸态延伸率可达到15%,塑性均较好。对Mg-Al-Mn 三元镁合金,当锰含量小于1%时,室温状态组织为α(Mg)+β(Mg17Al12)+MnAl,随着锰含量的增加,组织中将出现脆性的β-Mn相,使塑性降低。 AE系合金具有较好的抗蠕变和耐热性能,其中有些合金塑性亦较好。AE42合金具有优良的综合性能,同时其铸态延伸率能达到17%,属于高塑性镁合金。 ②Mg-Zn系

镁合金板材轧制技术

镁合金板材轧制技术 变形镁合金板材在电子、通讯、交通、航空航天等领域有着十分广泛的应用前景,但目前镁合金板材的应用仍然受到很大的限制,其产量及用量远不及钢铁及铝、铜等有色金属。制约镁合金板材发展的因素主要有两个:大部分的镁合金室温塑性变形能力较差,且轧制板材中存在严重的各向异性;镁合金板材制备工艺不够成熟,力学性能尚需进一步提高。 镁合金板材一般采用轧制的方法生产,因此了解镁合金轧制工艺流程、阐明轧制过程中组织性能的变化规律,对促进镁合金板材的轧制技术的发展是十分必要的。 1 镁合金轧制工艺流程 镁合金板材的轧制设备与铝合金相似,根据生产规模2、3或4辊轧机。镁合金轧制时所用的坯料可以是铸坯、挤压坯或锻坯。锭坯在轧制前需进行铣面,以除掉表面缺陷。塑性加工性能较好的镁合金如镁-锰(Mn<2.5%)和镁-锌-锆合金可直接用铸锭进行轧制,但铸锭轧制前一般应在高温下进行长时间的均匀化处理。对含铝量较高的镁-铝-锌系镁合金,用常规方法生产的铸锭轧制性能较差,因此常采用挤压坯进行轧制。镁合金轧制工艺流程如下:原料→熔炼→铸造→扁锭→锯切→铣面→一次加热→一次热轧→二次加热→二次热轧→剪切→三次加热→三次热轧→冷轧→酸洗→精轧→成品剪切→退火→涂漆→固化处理→检查→包装→运输。 1.1扁锭铸造 镁合金铸锭可用铁模铸造,也可用半连续或连续工艺铸造。铁模铸造时,铸锭厚度一般不大于60mm。而半连续或连续铸造时,铸锭厚度可达300mm以上,长度则可通过铸造井内安装的同步锯切设备锯切成所需尺寸。通常镁合金的注定尺寸为:(127~305)mm×(406~1041)mm×(914~2032)mm,宽度与厚度之比应控制在4.0左右为宜。铸锭的质量主要取决于冷却速度、金属凝固时结晶的方向性、熔体补给情况、铸造压力及铸造温度等工艺参数。 1.2铸锭加热 镁合金铸锭特别是含铝量较高的合金铸锭,在轧制前需要进行均匀化处理,以减小或消除成分偏析、提高铸锭的塑性成形能力。均匀化处理的温度范围为

异步轧制AZ31镁合金板材的超塑性工艺及变形机制

第43卷 2015年8月   第8期 第7-12页 材 料 工 程 JournalofMaterialsEngineering  Vol.43 Aug.2015  No.8 pp.7-12异步轧制AZ31镁合金板材的超塑性 工艺及变形机制 SuperplasticProcessandDeformationMechanismof AsymmetricallyRolledAZ31MagnesiumAlloy 江海涛,段晓鸽,蔡正旭,王 丹 (北京科技大学冶金工程研究院,北京100083) JIANGHai‐tao,DUANXiao‐ge,CAIZheng‐xu,WANGDan (MetallurgicalEngineeringResearchInstitute,Universityof ScienceandTechnologyBeijing,Beijing100083,China) 摘要:经过异步轧制工艺获得AZ31镁合金薄板。在300~450℃范围内,分别通过5×10-3,1×10-3s-1和5×10-4s-1不同应变速率进行高温拉伸实验研究其超塑性变形行为,计算应变速率敏感指数m值、超塑性变形激活能Q及门槛应力σ0值。通过EBSD分析和扫描电镜观察拉伸断裂后的断口形貌,分析AZ31镁合金的超塑性变形机制。结果表明:AZ31镁合金的塑性变形能力随着变形温度的升高及应变速率的降低而增强。当拉伸温度为400℃、m=0.72、应变速率为5×10-4s-1时,AZ31具有良好的超塑性,伸长率最大为206%。温度为400℃时,异步轧制AZ31镁合金的超塑性变形是以晶格扩散控制的晶界滑移和基面滑移共同完成的。 关键词:AZ31镁合金;晶粒细化;超塑性工艺;变形机制 doi:10.11868/j.issn.1001‐4381.2015.08.002 中图分类号:TG146.2 文献标识码:A 文章编号:1001‐4381(2015)08‐0007‐06 Abstract:AZ31magnesiumalloysheetwaspreparedbyasynchronousrollingprocess.From300℃to450℃,tensiletestwasconductedwithdifferentstrainratesof5×10-3,1×10-3s-1and5×10-4s-1respectivelytoinvestigatethesuperplasticdeformationbehaviorofAZ31magnesiumalloy.Thevalueofthestrainratesensitiveindexm,thesuperplasticdeformationactivationenergyQandthethresholdstressσ0werealsocalculated.ThesuperplasticdeformationmechanismofAZ31wasinvestigatedthroughobservationofthefracturemorphologyofthetensilespecimensbyEBSDandSEM.There‐sultsshowthattheplasticdeformationcapacityofAZ31magnesiumalloyenhanceswithincreasingde‐formationtemperatureanddecreasingstrainrate.AZ31magnesiumalloyexhibitsgoodsuperplastici‐ty,andmaximumelongation‐to‐failureof206%at400℃whenthestrainrateis5×10-4s-1,andthemvalueis0.72.Furthermore,thesuperplasticdeformationoftheasynchronousrolledAZ31magnesiumalloyat400℃reliesonthejointeffectsofgrainboundarysliding(GBS)controlledbylatticediffusionandbasalslip. Keywords:AZ31magnesiumalloy;grainrefinement;superplasticprocess;deformationmechanism 镁合金在汽车、通讯电子、航空航天等领域得到日益广泛的应用[1,2]。由于镁是密排六方结构,室温塑性变形能力较差,从而明显限制了其应用范围。高温下镁合金表现出良好的塑性,采用超塑性成形技术不仅可以解决镁合金室温加工成形过程中的一些难题,也扩大了应用范围,并且降低了镁合金的制造成本,具有较好的实用价值。目前,对镁合金的超塑性变形及组织性能研究较多[3-5],而通过ECAP、累积叠轧等[6-8]大塑性变形法制备超细晶镁合金的方法是使镁合金获得超塑性的一个重要方向。但因其工艺复杂、成本较高,且受到试样尺寸等方面的影响而在工业应用上受到限制。而异步轧制方法工艺简单,易于实现大批量生产,同时通过细化晶粒、弱化AZ31镁合金的{0002}织构,能够提高板材的室温成形性能,具有较好的前景。目前关于异步轧制AZ31镁合金超塑性研究的报道较少。 本实验通过异步轧制法制备出具有超细晶粒的镁合金薄板,分别在不同的温度和不同的应变速率下进

变形镁和镁合金牌号和化学成分

变形镁及镁合金牌号和化学成分 (送审稿)编制说明 1 工作简况 1.1任务来源 随着当今世界对结构材料轻量化、减重节能、环保以及可持续发展的要求日益提高,镁合金产品展现出广阔的应用前景。镁合金具有密度低,比强度和比刚度高,电磁屏蔽效果好,抗震减震能力强,易于机加工成形和易于回收再利用等优点,在航空、航天、汽车、3C产品以及军工等领域都具有巨大的应用潜力。尤其是近几年来,国家新材料产业规划中,镁合金以其自身的优点更是作为十二五期间重点推广和应用的金属材料。 随着镁合金应用领域的不断拓展,新型镁合金的研究与投入应用也是层出不穷。其中具有典型意义的产品包括3C行业用超轻镁锂系列合金的研发成功,更是突破了镁合金原有的合金系列;镁合金稀土系高强耐热镁合金的不断深入研究,更是将镁合金的品种和应用推向了更高更广的领域。GB/T 5153-2003国家标准中规定的原有的合金牌号和化学成分已经无法满足新型镁合金生产、使用与发展的要求,修订和完善本标准势在必行而且迫在眉睫,镁合金行业的蓬勃发展需要一部完善的统一的国家标准对镁合金牌号与化学成分进行统一和规范。 国标委综合[201×]×××号文件及中国有色金属工业协会中色协综字[201×]×××号文件,下达了编制《变形镁及镁合金牌号和化学成分》国家标准的任务,并确定了东北轻合金有限责任公司为编写单位。 1.2 起草单位 东北轻合金有限责任公司(原东北轻合金加工厂)简称东轻公司,是作为“一

五”期间原苏联援建的156项重点工程中的2项建设发展起来的新中国第一个铝镁合金加工企业。2008年被国家有关部委认定为国家级高新技术企业。 东北轻合金有限责任公司现生产能力8.25万吨,生产《天鹅》牌铝、镁及其合金板、带、箔、管、棒、型、线、锻件和深加工制品等18类产品,228种合金,公司每年有10%左右的产品远销美国、日本、新加坡等16个国家和地区。 东轻公司现已装备各类铝镁加工设备7000余台套,其中有2000mm四重可逆式热轧机、1700mm四重可逆式冷轧机、50MN卧式挤压机等,以及从美国、德国、意大利等国引进的1400mm薄板冷轧机、1200mm和1350mm箔材轧机、16MN油压机等先进设备,其中从美国引进的40MN拉伸机是我国第一台铝合金厚板拉伸机。 目前东轻公司投资40多亿元建设改造项目,包括年产5万吨中厚板项目与年产15万吨高精板带材项目,已全部投入生产,东轻公司在铝加工行业的地位与竞争优势将进一步得到巩固和增强。 1.3 主要工作过程 2014年3月主编单位根据标准的起草原则和企业的一些内控技术指标及检验数据毫无保留的撰写了标准的草案稿,2014年3月26日~29日在扬州会议中心召开《变形镁及镁合金牌号和化学成分》国标的讨论会,与会专家对标准的讨论稿进行了认真、热烈的讨论,撰写了会议纪要,形成了征求意见稿。5月广泛征求相关单位意见,对标准进行修订,形成标准的预审稿。2014年11月3日~6日在宜兴凯宾斯基饭店召开《变形镁及镁合金牌号和化学成分》国标的预审会,与会专家对本标准逐条进行了讨论,提出了宝贵意见,撰写了会议纪要,形成了标准的送审稿。 2 标准制定的主要原则和依据

镁合金的分类及特点

镁合金的分类及特点 镁合金的分类 镁合金是以金属镁为基体,通过添加一些其它的元素而形成的合金,镁合金中添加的合金元素主要有Al、Zn、Mn、Si、Zr、Ca、Li以及部分稀土族元素等[10],一般说来镁合金的分类依据有以下三种:合金化学成分、成形工艺和是否含锆。 镁合金按合金化组元数目可分为二元、三元和多元合金体系。常见的镁合金体系一般都含有不止一种合金元素。但在实际中,为了分析方便,简化和突出合金中主合金元素的作用,可以把镁合金分为Mg-Mn、Mg-Al、Mg-RE、Mg-Th、Mg-Li 和Mg-Ag 等合金系列[11]。 ' 按合金中是否含锆,镁合金可划分为含锆和不含锆两大类。最常见的含锆镁合金系列为:Mg-Zn-Zr、Mg-RE-Zr、Mg-Th-Zr、Mg-Ag-Zr 系列。不含锆镁合金有:Mg-Zn、Mg-Mn和Mg-Al 系列。目前应用最多的是不含锆压铸镁合金Mg-Al 系列。含锆和不含锆镁合金中均既包含着变形镁合金,又包含着铸造镁合金。锆在镁合金中的主要作用就是细化镁合金晶粒。含锆镁合金具有优良的室温性能和高温性能。遗憾的是Zr不能用于所有的工业合金中,对于Mg-Al 和Mg-Mn 合金,由于冶炼时Zr与Al及Mn形成稳定的化合物,并沉入坩埚底部,无法起到细化晶粒的作用[12]。 按成形工艺镁合金可分为两大类,即变形镁合金和铸造镁合金。变形镁合金是指可用挤压、轧制、锻造和冲压等塑性成形方法加工的镁合金。铸造镁合金是指适合采用铸造的方式进行制备和生产出铸件直接使用的镁合金[11]。变形镁合金和铸造镁合金在成分、组织和性能上存在着很大的差异。目前,铸造镁合金比变形镁合金的应用要广泛,但与铸造工艺相比,镁合金热变形后合金的组织得到细化,铸造缺陷消除,产品的综合机械性能大大提高,比铸造镁合金材料具有更高的强度、更好的延展性及更多样化的力学性能[13]。因此,变形镁合金具有更大的应用前景。 主合金元素的作用 根据镁合金的强化效果,其合金的元素可以分为三类[14,15]: 1)既提高强度又提高韧性的合金元素,按作用效果顺序为: ( 强度标准:Al、Cn、Ag、Ce、Ga、Ni、Cu、Th;韧性标准:Th、Ga、Zn、Ag、Ce、Ca、Al、Ni、Cu; 2)强化能力较低,提高韧性的元素:Cd,Ti和Li; 3)强化效果较好,但使韧性降低的元素:Sn、Pb、Bi和Sb。 Mg-Zn-RE系合金的研究现状 Mg-Zn系合金 》 纯粹的Mg-Zn二元合金在实际中几乎没有得到应用,因为该合金的铸造性差,合金组织粗大,容易出现偏析和热裂等铸造缺陷,对显微疏松非常敏感。但Mg-Zn合金有一个最为明显的优点,就是可以通过时效处理来提高合金的强度。所以该合金的进一步的发展就是寻找新的合金添加元素,达到细化晶粒,使组织均匀化,减少合金显微疏松[1,16,17]。在Mg-Zn 合金中加入Cu元素,会使合金的韧性和时效硬化明显增加,这是因为Cu元素能提高Mg-Zn 合金的共晶温度,因而可在较高的温度固溶,使更多的Zn、Cu溶于合金中,增加了合金随后的时效强化效果[16]。Mg-Zn合金中引入Cu元素的缺点是导致合金的耐蚀性降低;Zr是对

镁合金板材轧制

5.4镁合金板材轧制变形镁合金板材在电子、通汛、交通、航空航天等领域有着卜分J‘泛的血用前景,但目前镁合金板材的应用仍然受到很大限制.其产量和用量均远不及钢铁及铝.铜等有色金属。制约镁合金板材发展的因素主要有两个:①大部分镁合金的室温塑性变形能力较差,且轧制板材中存在严重的各向异性;②镁合金板材制备工艺不够成熟,力学性能尚需进一步提高。镁合金板材一般采用轧制方法生产.因此了解镁合金轧制工艺流程、阐明轧制过程中组织性能的变化规律,对促进镁合金板材轧制技术的发展是十分必要的,5.4.1镁合金轧制工艺流程·i””\,.镁合金板材的生产工艺流程如图5—76所示。轧制设备与铝合金相似,根据乍产规模可采用2,3或4辊轧机(批量较小时可采用2辊轧机,大批量生产时则常用3辊或4辊轧机)。镁合金轧制用的坯料可以是铸坯、挤压坯或锻坯,锭坯在轧制前需进行铣面,以除掉表面缺陷。塑性加工性能较好的镁合金如镁—锰(Mn<2.5%)和镁—锌—锆合金可直接用铸锭进行轧制,但铸锭轧制前一般应在高温下进行长时间的均匀化处理。对含铝量较高的镁—铝—锌系镁合金,用常规方法生产的铸锭轧制性能较差,因此常采用挤压坯进行轧制。际tl堉焯铸造扁锭锯切铣面。图。令。图。令。抖。图次bU热二次0U 热—二次热轧啊训-:次加热次坤轧寸轧酞f;《枯轧6《川,蓟川退火汁漆闹/t:处煅检古包装运输图5~76镁合金板材轧制工艺流程·:239 陈振华主编.变形镁合金.化学工业出版社,2005年06月. 常用的镁合金为密排六方晶格结构,塑性加工性能较差,因此不能像铝合金、铜合金等立方晶格结构金属那样以很大的道次变形率(可达50%一60%)进行轧制。镁合金在室温附近轧制时,一般应将道次变形率控制在10%一15%左右。道次变形率过大时易发生严重的裂边,甚至表面开裂而使轧制过程无法继续进行。在再结晶温度以上轧制时,镁合金的塑性因棱柱面及锥面等潜在滑移系的启动而大幅度提高,因而大部分镁合金板材生产均采用热轧的方式,且在热轧过程中应进行反复加热。在Mg—以合金中,当锂含量为5%一10%(质量)时可形成。十p相(密排六方与体心立方的混合相),因此塑性加工性能变好;当合金中锂含量大于11%(质量)时,全部转化为体心立方相,可使镁合金轧制性能得到大幅度改善。5.4.1.1

变形镁合金及其成形工艺

变形镁合金及其成形工艺 镁合金具有密度低、比强度和比刚度高、电磁屏蔽效果好、抗震减震能力强、易于机加工成形和易于回收再利用等优点,在航空、航天、汽车、3C产品以及军工等领域的具有广泛的应用前景和巨大的应用潜力。目前,镁合金的应用大多数是以模铸、压铸以及半固态成形等工艺来生产产品。这些工艺生产的产品,存在着组织部太致密、成分偏析,最小厚度偏大、力学性能偏低等缺憾,不能充分发挥镁合金的性能优势。研究和实践表明,塑性变形能够改善镁合金的组织和力学性能,大大提高镁合金的强度和塑性,同时,很多领域重要结构材料需要用的板材、棒材、管材和型材等只能用塑性成形工艺来制取,而不能利用铸造等工艺来生产,所以,变形镁合金及其成形工艺的研究越来越受到重视。 但是,由于镁合金晶体结构是密排六方(Hcp),塑性较差,成形困难,成材率低,加之人们对镁合金易燃、不耐腐蚀等缺点的过分夸张甚至是错误的认识,导致变形镁合金没有得到大规模应用,变形镁合金及成形工艺的研究没有引起足够的重视和深入的开展。目前变形镁合金的板材、型材以及锻件等生产仍集中在航空航天及军事等高端领域或部门,没有普及到一般民用领域。在当今社会节约资源和减少污染成为社会可持续发展战略的要求的背景下,急需加快研究步伐,转变观念,以推动变形镁合金镁在民用领域的应用。本文旨在总结变形镁合金及成形工艺的成果,探讨变形镁合金及其成形工艺的研究方向。 变形镁合金的合金系 变形镁合金主要分为四个系列(美国标准):AZ系列(Mg-Al-Zn),AM系列(Mg-Al-Mn),AS系列 (Mg-Al-Si),AE系列(Mg-Al-Re)。中国变形镁合金牌号为MB系列。几个主要工业发达国家的变形镁合金标准及牌号见表1所示。变形镁合金以AZ系应用最为普遍,其中又以MB2应用最为广泛。需要指出的是变形镁合金中MB2的合金成分与AZ31B不同,其力学和成形性能比AZ31B稍差些,介于AZ31B和AZ31C二者之间。 表1 变形镁合金牌号对照表

挤压态ZK60镁合金的高温力学性能及其超塑性

收稿日期:2003-12-12 作者简介:郝艳君(1979-),女,辽宁葫芦岛人,助教.文章编号:1000-1646(2004)03-0261-04 挤压态ZK60镁合金的高温力学性能及其超塑性 郝艳君1,陈立佳2,吴 伟2 (11沈阳工业大学信息科学与工程学院,辽宁沈阳110023;21沈阳工业大学材料科学与工程学院,辽宁沈阳110023) 摘 要:针对挤压态ZK60镁合金的高温力学性能及其超塑性行为进行了研究.结果表明,挤压态 ZK60镁合金的高温力学性能与试验温度、应变速率密切相关.通常,屈服强度和抗拉强度随试验 温度的降低和应变速率的增加而提高,而延伸率则随试验温度的升高和应变速率的降低而增大. 塑性变形流变应力与温度的倒数之间呈线性关系,而且在应变速率为5×10-4/s下的激活能为 9314kJ/mol. 关 键 词:镁合金;超塑性;高温力学性能 中图分类号:TG113125 文献标识码:A 镁合金作为结构材料得到了越来越广泛的重视,并将在今后发挥越来越重要的作用.这是由于镁合金具有一些优良性能,如密度小、具有抗震性,易于机械加工等[1~4].而镁合金的常温塑性变形能力较差,并常常用于精加工,所以研究其高温力学性能具有较大意义.本文研究了挤压态的镁合金的高温性能,其中主要对其超塑性进行研究.通过对其高温力学性能的研究,并对其在不同条件下所得数据进行对比分析,从而得到挤压态镁合金超塑变形特征及其影响因素. 1 试验材料及试验方法 111 试验材料 本试验所用材料是ZK60镁合金,其中Zn含量为6%,Zr含量≤017%,其余为Mg及Si、Cu 等杂质. 112 试样制备 将ZK60镁合金进行热挤压,具体工艺流程是:挤压锭→去皮→预热→热挤压→冷却→矫直→截成规定尺寸.挤压比是35∶1.挤压态ZK60镁合金的拉伸试样用线切割机床切取,试样的标距长度为5mm.为了减少应力集中、降低缺口敏感性,需将试样上的切割痕迹用砂纸打磨掉. 113 试验方法 拉伸试验温度范围为200~300℃,应变速率范围为(1~10)×10-4/s.试样在电阻炉中进行加热,加热到预定温度后保温10~20min,再进行拉伸试验,记录高温拉伸试验期间的工程应力及应变数据,据此确定试样在不同拉伸实验条件下的抗拉强度和屈服强度;量取断裂试样的最终长度,计算出延伸率. 2 试验结果及分析 211 挤压态ZK60镁合金的高温塑性 图1为挤压态ZK60镁合金在300℃温度下进行拉伸试验后所测得的延伸率与应变速率的关系曲线.由图可知,当应变速率为1×10-4/s时,挤压态ZK60镁合金延伸率达到195%左右;而在(1×10-4~1×10-3)/s的应变速率范围内,延伸率变化不大;其后,随初始应变速率的进一步增加,延伸率降低. 图2为挤压态ZK60镁合金在5×10-4/s的应变速率下拉伸试验后所测得的延伸率与温度之间的关系曲线.由图可知,随着试验温度由300℃降低至250℃时,延伸率由195%左右降低至12312%,当试验温度由250℃降至200℃时,挤压态ZK60镁合金的延伸率也有所降低,但降低幅度不大. 212 挤压态ZK60合金的强度 图3为300℃的试验温度下对挤压态ZK60镁合金进行拉伸试验时所获得的抗拉强度—初始应变速率曲线.由图中可以看出,同一试验温度 第26卷第3期2004年6月 沈 阳 工 业 大 学 学 报 Journal of Shenyang University of Technology Vol126No13 J un.2004

相关主题