搜档网
当前位置:搜档网 › 艾默生Jaure 鼓形齿式联轴器

艾默生Jaure 鼓形齿式联轴器

艾默生Jaure 鼓形齿式联轴器
艾默生Jaure 鼓形齿式联轴器

CLZ 型齿式联轴器基本参数和主要尺寸 mm

CLZ 型齿式联轴器基本参数和主要尺寸mm

鼓形齿式联轴器属于刚挠性联轴器,齿式联轴器是由齿数相同的内齿圈和带外齿的凸缘半联轴器等零件组成。外齿分为直齿和鼓形齿两种齿形,所谓鼓形齿即为将外齿制成球面,球面中心在齿轮轴线上,齿侧间隙较一般齿轮大,鼓形齿联轴器可允许较大的角位移(相对于直齿联轴器),可改善齿的接触条件,提高传递转矩的能力,延长使用寿命。有角位移时沿齿宽的接触状态。具有径向、轴向和角向等轴线偏差补偿能力,具有结构紧凑、回转半径小、承载能力大、传动效率高、噪声低及维修周期长等优点,特别适用于低速重载工况,如冶金、矿山、起重运输等行业、也适用于石油、化工、通用机械等各类机械的轴系传动齿式联轴器在工作时,两轴产生相对角位移,内外齿的齿面周期性作轴向相对滑动,必然形成齿面磨损和功率消耗,因此,齿式联轴器需在有良好和密封的状态下工作。齿式联轴器径向尺寸小,承载能力大,常用于低速重载工况条件的轴系传动,高精度并经动平衡的齿式联轴器可用于高速传动,如燃汽轮机的轴系传动。由于鼓形齿式联轴器角向补偿大于直齿式联轴器,国内外均广泛采用鼓形齿式联轴器,直齿式联轴器属于被淘汰的产品,选用者应尽量不选用。 鼓形齿式联轴器的特点(与直齿式联轴器相比有以下特点) :

1、承载能力强。在相同的内齿套外径和联轴器最大外径下,鼓形齿式联轴器的承载能力平均比直齿式联轴器提高15~20% 2、角位移补偿量大。当径向位移等于零时,直齿式联轴器的许用角位移为1o,而鼓形齿式联轴器的许用角位移为1o30',提高50%。在相同的模数、齿数、齿宽下,鼓形齿比直齿允许的角位移大, 3、鼓形齿面使内、外齿的接触条件得到改善,避免了在角位移条件下直齿齿端棱边挤压,应力集中的弊端,同时改善了齿面摩擦、磨损状况,降低了噪声,维修周期长。 4、外齿套齿端呈喇叭形状,使内、外齿装拆十分方便。 5、传动效率高达99.7%。 基于经上特点,目前,国内外已普遍以鼓形齿替代直齿式联轴器。

TGL 型鼓形齿式联轴器(尼龙套)

TGL 型鼓形齿式联轴器■结构特点:●具有较高的缓冲减振性能,并有较大幅度的轴向、角向、径向位移偏差的补偿能力。●由于工程塑料与金属件的配合,具有良好的自润滑性能,是十分理想的近似万向弹性联轴器。●外壳模具成型简化了加工工艺,成本低。使用环境温度-20oC 80oC。●装配维修特别简单。广泛用于各种液压泵、润滑泵、气动泵、压缩机,纺织机等机械上。●本联轴器外壳可制成钢件(B型或C型),以传递更大的扭矩。 A 型(基本型) B型(内挡圈型) C型(外挡圈型)注意:1、设计选型时,要作扭矩的计算,并考虑转矩变化,起动频繁,环境条件、合理的选择工况系数。2、灰尘较大的场地,用C型结构较好。3、装配时勿将杂物留在腔内。4、装配好后,内齿圈应能用手自由滑动。5、小规格可采用螺钉拧紧。■标记方法:选用B型TGL6鼓形齿式联轴器主动端:J1型轴孔,A型键槽 d=22, L=38 从动端:J1型轴孔,A型键槽 d=32, L=60标记:联轴器 TGL6BJ122×38JB/T5514-91J132×60 如选用TGL6A型联轴器“A”可不标 注 TGL鼓形齿式联轴器基本性能参数和主要尺寸(JB/TB5514-91)型号主要尺寸轴孔直径轴孔长度公称扭矩许用转速转动惯量重量许用补偿 量 DBSdLN.mrpmKg.m2kg径向轴向角向 A、B型C型A、B型C型mmA、B型C型A、B型C型 mm(oC) TGL140-38-46、 71610100000.00003-0.20-0.3±1±1 8、920 10、1122 12、1427 TGL248-38-48、9201690000.00006-0.278-0.3±1±1 10、1122 12、1427 16、18、 1930 TGL356584252410、 112231.585000.000120.000150.4820.5330.4±1±1 12、1427 16、18、1930 20、22、2438 TGL466704656412、

联轴器工艺规程设计说明书

湖南理工学院 课程设计报告书题目:从动半联轴器机械加工工艺设计 系部:机械工程学院 专业:机械设计制造及其自动化 班级:机自09-1BF 姓名:刘勋 学号:14091900502

序言 机械制造技术基础是一门专业技术基础课程,涵盖内容非常广泛,包括机械加工工艺装备、金属切削基本原理、工艺规程设计、机械加工质量分析控制等。本次课程设计由于时间有限主要是对加工工艺规程的设计且由于是首次设计和对实际过程的孤陋寡闻对于其中的加工工时和夹具部分不做设计。 课程设计作为一种学习和融合各种知识的手段我认为是必不可少的,我们必须亲力亲为的走完这完整的过程才能对机械加工窥的一斑。这其中我们会学习设计工艺规程怎么确定锻造、铸造、机加工等工艺内容和参数,怎么查各种手册和国标。 首次设计工艺规程不当之处请各位老师指教。 1.零件的分析 1.1 零件的作用 联轴器是用来连接不同机构中的两根轴(主动轴和从动轴)使其共同旋转以专递转矩的机械零件。在高速重载的动力传动中,有些联轴器还有缓冲,减振和提高轴系动态性能的作用。联轴器是由两部分组成的,分别与主动轴和从动轴连接。一般动力机大都借于联轴器与工作机相连接。但联轴器在机器运转时不能分离,只有当机器停止运转才能将两轴分离。联轴器有时候可以作为安全装置。其分类主要有刚性联轴器和挠性联轴器两大类。 1.2零件的工艺分析 零件的材料为45钢,下面从动半联轴器需要加工的表面以及加工表面之间的位置要求: 1、柱销孔8—Φ23,柱销孔8—2×45°,8—M8螺纹孔; 2、主轴孔Φ28,主轴孔1×45°倒角,键槽,键槽的平行度误差为0.01mm; 3、外圆表面直径为Φ28; 4、从动半联轴器底面,顶面,Φ76与Φ194外圆2×45°倒角,主轴孔与底面的圆跳动误差为0.03mm.

齿式联轴器安装规程

齿式联轴器安装规程 齿轮联轴器的装配,在机械设备检修中属于比较常见的检修工艺。在齿式联轴器装配中关键要掌握轮毂在轴上的装配、联轴器所联接两轴的对中、零部件的检查及按图纸要求装配联轴器等环节。齿式联轴器是由齿数相同的内齿圈和带外齿的凸缘半联轴器等零件组成。外齿分为直齿和鼓形齿两种齿形,所谓鼓形齿即为将外齿制成球面,球面中心在齿轮轴线上,齿侧间隙较一般齿轮大,鼓形齿联轴器可允许较大的角位移(相对于直齿联轴器),可改善齿的接触条件,提高传递转矩的能力,延长使用寿命。 齿式联轴器在工作时,两轴产生相对位移,内外齿的齿面周期性作轴向相对滑动,必然形成齿面磨损和功率损耗,因此齿式联轴器需在良好润滑和密封的状态下工作。齿式联轴器径向尺寸小,承载能力大,长用于低速重载工况条件的轴系传动,高精度并经动平衡的齿式联轴器可用于高速传动。 1:联轴器的安装 齿式联轴器装配方法有静力压入法、动力压入法、温差装配法及液压装配法等。装配前一定要按照图纸仔细测量轴和齿套的实际数据看看是否符合要求,对于不符合要求的一定不能装配! (1)静力压入法 这种方法是根据轮毂项轴上装配时所需压入力的大小不同、采用夹

钳、千斤顶、手动或机动的压力机进行,静力压入法一般用于锥形轴孔。由于静力压入法收到压力机械的限制,在过盈较大时,施加很大的力比较困难。同时,在压入过程中会切去轮毂与轴之间配合面上不平的微小的凸峰,使配合面受到损坏。因此,这种方法一般应用不多。压入装配法多用于轻型和中型静配合,而且需要压力机等机械设备,故一般仅在制造厂采用 (2)动力压入法 这种方法是指采用冲击工具或机械来完成轮毂向轴上的装配过程,一般用于轮毂与轴之间的配合使过渡配合或过盈不大的场合。装配现场通常用手锤敲打的方法,方法是在轮毂的端面上垫放木块、铅块或其他软材料作缓冲件,依靠手锤的冲击力,把轮毂敲入。这种方法对用铸铁、淬过火的钢、铸造合金等脆性材料制造的轮毂,有局部损伤的危险,不宜采用。这种方法同样会损伤配合表面,故经常用于低速和小型联轴器的装配。 (3)温差装配法 用加热的方法是轮毂受热膨胀或用冷却的方法使轴端受冷收缩,从而使轮毂轴孔的内径略大于轴端直径,亦即达到所谓的"容易装配值",不需要施加很大的力,就能方便地把轮毂套装到轴上。这种方法比静力压入法、动力压入法有较多的优点,对于用脆性材料制造的轮毂,采用温差装配法是十分合适的。 温差装配法大多采用加热的方法,冷却的方法用的比较少。加热的方法有多种,有的将轮毂放入高闪点的油中进行油浴加热或焊枪烘烤,

联轴器新旧标准表

1.联轴器命名原则 a 联轴器名称应具有科学性、准确性; b 联轴器名称应简短易记; c 按联轴器的结构特点命名,但要与现有其它类似联轴器有所区别; d 按联轴器中具有特征的主要零件(形状、特点等)命名; e 按联轴器中主要零件特殊材料命名; f 按传统习惯命名; g 按上述综合因素命名; h联轴器品种名称不得重复是联轴器命名最基本的原则。 2.联轴器型号 联轴器的型号由组别代号、品种代号、型式代号、规格代号组成。 联轴器的组别代号、品种代号、型式代号,取其名称的第一汉语拼音字母代号,如有重复时,则取第二个字母,或名称中第二、三个字母的第一、第二汉语拼音字母,或选其名称中具有特点字的第一、第二汉语拼音字母,以在同一组别、品种、型式中相互之间不得重复为原则。 联轴器的主参数为公称转矩Tn,单位为N·m。公称转矩系列顺序号,为联轴器规格代号。

联轴器新旧标准对照表 序号现行标准号产品型号旧标准号 1 JB/T8854.1-2001 GCLD JB/T8854.1-1999 ZBJ19012-89 JB/ZQ4380-86 2 JB/T8854.2-2001 GⅠCL JB/T8854.2-1999 ZBJ19013-89 JB/ZQ4378-86 GⅡCLZ JB/T8854.3-1999

ZBJ19014-89 JB/ZQ4379-86 3 JB/T8854.3-2001 GⅠCL JB/T8854.2-1999 ZBJ19013-89 JB/ZQ4222-86 GⅠCLZ JB/T8854.3-1999 ZBJ19014-89 JB/ZQ4223-86 4 JB/ZQ4644-1997 NGCL JB/ZQ4644-86 5 JB/ZQ4645-1997 NGCLZ JB/ZQ4645-86 6 JB/ZQ4186-199 7 WG / 7 JB/T7001-1993 WGP / 8 JB/T7002-1993 WGC / 9 JB/T7003-1993 WGZ / 10 JB/T7004-1993 WGT / 11 JB/ZQ4218-86 CL Q/ZB104-73 12 JB/ZQ4219-86 CLZ Q/ZB105-73 13 GB/T5272-2002 LM LMD LMS LMZ-Ⅰ LMZ-Ⅱ GB5272-85 ML M 14 GB/T4323-2002 LT LTZ GB4323-84 15 GB/T5014-2003 LX LXZ GB5014-85 16 GB/T515-2003 LZ LZJ LZD LZZ GB5015-85 ZL 17 GB/T6069-2002 GL GB6069-86 18 GB/T5843-2003 GY GYS GYH GB5843-86 19 GB/T5844-2002 UL GB5844-86 20 JB/ZQ4376-1997 YL JB/ZQ4376-86 21 JB/ZQ4384-1997 WHL JB/ZQ4384-86 22 JB/ZQ4018-1997 LLA LLB JB/ZQ4018-86 23 JB/T5514-1991 TGL / 24 JB/ZQ4389-1997 制动轮JB/ZQ4389-86

鼓形齿联轴器分析

冷轧机板形辊鼓形齿联轴器分析 1.引言 因轧机厚度波动限制轧机产能且经常引发断带问题,经驻北京西马克技术有限公司的技术人员现场诊断处理,确定故障原因为:板形辊与驱动电机之间的鼓形齿联轴器的齿间隙过大引起。 在更换齿间隙较小的鼓形齿联轴器后,通过电气作业区、轧钢作业区反馈的情况看轧机厚度波动状况明显减小。由此,鼓形齿联轴器侧间隙达到多大值时会影响板形辊的转速测定、联轴器侧间隙如何影响板形辊转速,成为需要进一步分析探讨的问题。 2.鼓形齿联轴器的结构及特点 鼓形齿联轴器形状尺寸小、承载能力大、在高速下工作可靠。鼓形齿联轴器广泛应用于冶金、化工、印刷、水泵、风机、运输等机械领域。其显著特点是:一是补偿机能好,因为外齿轴套为鼓形齿,联轴器工作时可避免内外齿棱角接触,两轴轴线角位移在2~3°时也能可靠的工作。二是能承受重载及冲击载荷,在相同角位移情况下能承受更大载荷。三是效率高,可达0.99。四是密封性好,使用可靠,装卸、维护利便。 鼓形齿联轴器由内齿套、外齿轴套、护盖、油封、润滑油孔等组成。见下图:

3.鼓形齿联轴器侧间隙实测 经过详细了解西马克现场服务人员故障排查处理的过程,得知测量辊的鼓形齿联轴器的主要用途是用于传递速度,并非像一般机械设备上的联轴器用于传递扭矩,此处使用的鼓形齿联轴器传递的扭矩在高速稳态时只有0.04kNm,其设计制造精度要求高于普通传递扭矩的联轴器。冷轧机投用以来,由于机械维护人员不了解其它专业相关精度控制的要求,此前机械人员均按传递扭矩联轴器的使用要求和标准进行维护保养。 鼓形齿联轴器的内外齿啮合后必须留有一定的侧间隙,以保证齿轮副的正常工作,避免因安装误差和工作温度升高引起热膨胀变形卡死。同时需要控制其最大侧间隙,以避免变速转动时齿间产生撞击,增大噪音,加剧齿面磨损,影响其寿命。 由于西马克在图纸中没有给出鼓形齿联轴器的齿侧间隙允许误差,也没有给出极限使用侧间隙的值。国内文献检索不到

联轴器加工工艺与工装设计说明

第一章绪论 1.1 多轴加工应用 一个零件的同一个面上,往往有多个孔,如果在普通钻床上加工,通常要一个孔一个孔的钻削,生产效率低。要是在普通立式钻床的主轴上装一个多轴头,利用多轴头,可分别进行钻、扩、铰孔及攻丝等加工,也可同时进行钻、扩、铰孔或钻扩、攻丝等多工序加工。就可以同时钻削多个孔,使加工件的孔位能够保证较高的位置精度。大大提高了生产效率。一台普通的多轴器配上一台普通的钻床就能一次性把几个乃至十几二十个孔或螺纹加工出来。实现用立钻床代替摇臂钻床的多孔加工。灵活方便,能大大节省加工时间和辅助时间,提离劳动生产率。不同的加工方法有不同的特点,就钻削加工而言,多轴加工是一种通过少量投资来提高生产率的有效措施。 1.1.1 多轴加工优势 多轴加工是在一次进给中同时加工工件上多个孔,可缩短加工时间,提高度,减少装夹与定位时间;不必像在数控机床加工中计算坐标等,简化了编程;它可以采用通用设备(如立式或摇臂钻床)进行加工;节省了专用设备的投资。钻孔这道工序,在传统的机械加工中,在中小批量的生产中,一般是采用立式钻床,一次只钻一个孔,然后移位钻头钻下一个孔。这种加工方法生产效率地下,而且难以保证孔的位置精度。为了解决这一问题,经过近年来的不断摸索和改进,在立式钻床上,利用多轴钻头加工多孔件,扩大了立式钻的适用范围,其具有结构简单,制造方便,投资少,见效快的特点。生产工人在实际操作过程中,工件安装简单,工作方便,减少了工序数目,缩短了工艺路线,简化了生产计划和生产组织工作。而且能较好的保证连轴器多孔的同时加工的精度要求。 1.2 多轴加工的设备 多轴加工是在一次进给中同时加工许多孔或同时在许多相同或不同工件上各加工一个孔。这不仅缩短切削时间,提高精度,减少装夹或定位时间,并且在数控机床中不必计算坐标,减少字块数而简化编程。它可以采用以下一些设备进行加工:立钻或摇臂钻上装多轴头、多轴钻床、多轴组合机床心及自动更换主轴箱机床。甚至可以通过二个能自动调节轴距的主轴或多轴箱,结合数控工作台纵横二个方向的运动,加工各种圆形或椭圆形孔组的一个或几个工序。

联轴器对轮找中心

联轴器对轮找中心 1、联轴器找中心的目的 找中心的目的是使一转子轴中心线与另一转子轴中心线重合,即要使联轴器两对轮的中心线重合,即第一:在水平与竖直两个方向上使两联轴器对轮的外圆面同心;第二:在水平与竖直两个方向上使两对轮端面平行。 2、联轴器找中心的任务 ①测量两对轮的外圆和端面的偏差情况; ②根据测得的偏差值,对电机作相应调整,使两对轮中心同心,端面平行。 3、联轴器找中心的原理 联轴器找中心主要就是针对两方面对地脚螺栓进行调整。一方面是针对存在张口的情况;另一方面是针对外圆情况。下面就针对这两方面进行说明。 ①存在张口情况 张口是由于两圆盘面不平行所造成的。张口开口方向向上为上张口,反之为下张口。如图3-1即为下张口示意图: 图3-1下张口示意图 如图所示,将此图中下张口去除的方式就是使地脚螺栓前脚下降FD 的长度,后脚下降HM 的长度。而我们需要做的就是通过计算来确定FD 、HM 的各自高度,然后由计算高度来相应地降低各自前后脚螺栓垫片高度。 由上图不难看出∠DEC=∠ECB ,所以∠FED=∠BAC ,∠BCA=∠DFE ,ΔABC ∽ΔE DF 。两三角形相似即可得出DF BC EF AC =,所以EF AC BC DF ?=,同 理可知EH AC BC HM ?=。 ②存在外圆的情况 外圆是由于联轴器两轴线不同心所造成的。如图3-2所示: 图3-2外圆示意图 由上图不难看出,只需使前脚下降AC ,后脚下降BD 的距离即可,且 AC =BD ,大小即为两轴线的间距,通过测量即可得到无需计算。 ③张口与外圆均存在情况 若张口、外圆均存在则将上述两种情况下计算出的结果合成即可。需要注意的是:若外圆偏离方向与张口方向相同,则应外圆值减去张口的计算调整值,计算结果为正则地脚螺栓调整方向与外圆调整方向相同,为负则相反;若外圆偏离方向与张口方向相反,则应外圆值加上张口的计算调整值,地脚螺栓调整方向与外圆调整方向相同。 4、联轴器找中心的方法及步骤 ※找中心前的准备工作 准备好三付磁性表座、三只百分表、塞尺、圈尺、游标卡尺、千分尺等测量工具及其它工具。 ※找中心的具体步骤 ⑴检查并消除可能影响对轮找中心的各种因素。如清理对轮上油污、锈斑及电机底脚、基础,然后连接对轮,保证两对轮距离在标准范围内; ⑵用塞尺检查电机的底脚是否平整,有无虚脚,如果有用塞尺测出数值,用铜皮垫实; ⑶安装磁性表座及百分表。装百分表时要固定牢,但要保证测量杆活动自如。测量径向的百分表测量杆要尽量垂直轴线,其中心要通过轴心;测量轴向的二个百分表应在同一直径上,并离中心距离相等。装好后试转一周。并回到原位,此时测量径向的百分表应复原。为测记方便,将百分表的小表指针调到量程的中间位置,并最好调到整位数。大针对零; ⑷把径向表盘到最上面,百分表对零,慢慢地转动转子,每隔90度测量一组数据记下,测出上、下、左、右四处的径向b 、轴向A 、a 四组数据,将数据记录在右图4-1内。径向的记在圆外面,轴向数据记录在圆里面。注意:拿到一组数据你要会判断它的正确性,你从那里开始对零的,盘一周后到原来位置径向表应该为0,径向表读数上下之和与左右之和应相差不多,两只轴向表数据相同。否则的话要检查磁性表座和百分表装得是否牢固。 ⑸间隙测量,记录及计算: (百分表安装在电机侧)端面不平行值(张口)的计算,(要考虑轴向窜轴),轴 向装两只百分表,计算公式上下张口为BC=(A 1+ a 1-A 3- a 3)/2,正的为上张口,负的为下张口。左右张口为bc=(A 2+ a 2-A 4- a 4)/2,正的为a2那边张口,负的为a4那边张口。 上下径向偏差的上下外圆计算公式为AC= (b 1- b 3)/2,正的为电机偏高,负的为电机偏低。左右径向偏差的左右外圆计算公式为ac= (b 2- b 4)/2正的为电机偏右,负的为电机偏左。 所以,在竖直方向上前脚调整:L=(b 1- b 3)/2±[(A 1+ a 1-A 3- a 3)/2]×EF/AC ,后脚调整:L ′= (b 1- b 3)/2±[(A 1+ a 1-A 3- a 3)/2]×EH/AC ;而水平方向上前脚调整:l=(b 2- b 4)/2±[(A 2+ a 2-A 4- a 4)/2]×EF/AC ,后脚调整:l ′=(b 2- b 4)/2±[(A 2+ a 2-A 4- a 4)/2]×EH/AC 。 注意:1、百分表的位置,安装在电机对轮上和安装在泵体对轮上径向的中心状态正好相反,注意判断清楚谁高谁低,轴向则不变; 2、 左右不要搞错; 3、上下表不要读错。 5、联轴器找中心实例计算 例:在一泵组找中心中,水泵不动,要求动电机底脚来调整。已知联轴器 对轮直径为200mm ,联轴器端面距电机前脚为500mm ,电机后脚距前脚距离为1000mm ,经测得在竖直方向上电机低1mm ,下张口0.5mm ,在水平方向上电机偏右2mm ,左张口0.8mm 请计算电机如何调整找正? 解:设对轮直径为d , 联轴器端面距电机前脚为L 1,前后脚间距为L 2,竖直方向上电机外圆为a 1,张口为λ1,水平方向上电机外圆为a 2,张口为λ1,则 在竖直方向上方需调整 前脚螺栓:L= a 1±λ1×L 1/d 因为竖直方向上外圆朝下且张口也朝下, 方向相同,所以取“-”号。 即 L= a 1-λ1×L1/d =1-0.5×500/200=-0.25 结果为负值,所以前脚应下降0.25mm 。 后脚螺栓:L ′= a 1-λ1×(L 1+ L 2)/d =1-0.5×(500+1000)/200=-2.75为负值,所以后脚下降2.75mm 。 在水平方向上方需调整 前脚螺栓:l= a 2±λ2×L 1/d 因为水平方向上外圆朝右而张口朝左,方向 相反,所以取“+”号。 即 l= a 2+λ2×L 1/d =2+0.8×500/200=4 结果为正值,所以前脚应向左偏移4mm 。 后脚螺栓:l ′= a 2+λ2×(L 1+ L 2)/d =2+0.8×(500+1000)/200=8 后脚也应向左偏移8mm 。

鼓形齿联轴器的设计

本科毕业设计(论文)通过答辩 目录 前言……………………………………………………………………………绪论……………………………………………………………………………第一章概述………………………………………………………………… 1.1联轴器的功用………………………………………………………………………… 1.2联轴器的特点…………………………………………………………………………第二章选择联轴器的类型………………………………………………… 2.1联轴器的分类………………………………………………………………………… 2.2 选择联轴器应考虑的因素…………………………………………………………2.3鼓形齿联轴器的特点………………………………………………………………… 2.4 ZWG型鼓形齿联轴器…………………………………………………………………第三章 ZWG型鼓形齿联轴器的尺寸给定………………………………………… 3.1型式、基本参数和主要尺寸………………………………………………………… 3.2 其型式、基本参数和主要尺寸应符合规定………………………………………………第四章鼓形齿联轴器的强度…………………………………………………第五章 CAD/CAM建模及数控编程…………………………………………… 5.1走刀轨迹及程序………………………………………………………………………第六章结论与展望…………………………………………………………… 参考文献………………………………………………………………………致谢…………………………………………………………………………… 33 37 35 30 26 26 14 14 11 4 6 3 3 3 4 16 2 20 18 18 18 32 3 34

联轴器的对中

联轴器的装配及调整 1.对中的要点 联轴器的对中主要包括以下几点: 1)确定基准轴。 找正两轴时要确定一个基准轴,以此为准调整另一根轴使之达到允许的偏差。 2)轴的攀动 为消除联轴器的误差应当同时攀动两轴,并在两联轴器上划上对准基线,每转至一个角度,基线应重合。根据实际情况,如果联釉器自身误差在允许范围内(业好检查)也可只攀动一根轴。 3)简化计算。 联轴器每转—个角度要测出两个轴向测量值(b1-b n)。为了简化也可每次只测定一个轴向测量值,但是要控制联轴器不能有轴向串动。 4)要注意测量工具的自重使附件产生挠角对测量数据的影响。 5)在测定转速高的弹性轴或有扬度要求的轴时,注意轴的扬度, 对找正的影响及负荷的合理分配。 6)找正时应调整轴向数值,纠正倾斜,然后再调整径向偏差。在 调整倾斜时,将会影响到径向偏差数值,经过计算,逐渐调整到允许范围内。 2.联轴器轴线的测量

1)在两半联轴器相对应的两点P、Q上,装设专用工具并在联轴器外圆上作四等分记号。百分表b1和b2测量同一直径两端的轴向间隙,百分表a测量径向间隙。 2)以P点对正Q点,使两半联轴器以相同的方向一起转动(即P点与Q点之间不要产生相对的角位移,否则影响测量的准确性),每转90。测量一次并记录测量值,包括起点0。即有5个位置的径向间隙值和轴向间隙值。将测得的数值记录成如图的形式。 3)对所测得的数值进行复核。将联轴器再向前转,核对各位置的测量数值有无变动。如无变动,可用a1+a5及b1I-b1II=b5I-b5II两恒等式加以判别。如实例数值代入恒等式后不等,而有较大的偏差

(大于0.02mm),那就可以肯定测量的数值是错误的,需找出产生错误的原因。纠正后再重新测量,直至符合两恒等式后为止。 3.联轴器的对中 1)先校正轴垂直方向倾斜 支座2移动量: 1D bL x= 式中 x---支座2移动数值,mm b---垂直方向倾斜值,mm b=b3-b4 D---联轴节直径,mm L 1---1、2基座间距离,mm 2)因校正倾斜而造成联釉器端面上移y 值: 12L xL y= 式中 L2---支座1至联轴器端面间距离。 3)由于联轴器上移y 值,则联轴器上、下部a 位变化如下 a 4(新值)= a 4(原值)-y a 3(新值)= a 3(原值)+y

鼓形齿联轴器的正确安装方法范本

工作行为规范系列 鼓形齿联轴器的正确安装 方法 (标准、完整、实用、可修改)

编号:FS-QG-21691鼓形齿联轴器的正确安装方法Correct installation method of drum tooth coupling 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 联轴器是企业机械传动中重要的部件,广泛应用设备与减速器或电机的联接中。联轴器的装配与找正在设备安装中是一项非常重要、精度要求很高的工作,若装配与找正的结果不精确,会造成设备的振动值超标,严重威胁设备的正常运行,尤其是高转速设备,所以在安装联轴器的过程应特别注意一些细节。 对于联轴器与轴有相应间隙的配合可在清理干净配合表面后,涂抹润滑油脂直接安装。对于过渡配合和过盈量不是很大的配合,或者有特殊要求的配合(如保护已装精密另部件)可采用压入法,但需要压入设备。联轴节的热装配工作常用于大型电机、压缩机和轧钢机等重型设备的安装中,因为这类设备中的联轴节与轴通常是采用过盈配合联接在一起的。过盈联接件的装配方法有:压入装配、低温冷装配和

热套装配等数种。冷缩装配法一般用液氮等作为冷源,且需有一定的绝热容器,故也只能在有条件时才采用。 热套装配的本质原理是加热包容件(孔),使其直径膨胀一个配合过盈值,然后装入被包容件(轴),待冷却后,机件便达到所需结合强度。实际上,加热膨胀值必须比配合过盈值大,才能保证顺利安装而不致于在安装过程中因包容件的冷却收缩,出现轴与孔卡住的严重事故。同时,为了保证具有较大的啮合力――结合强度,热套装配的结合面要经过加工,但不要过分光洁,因为一定的表面粗糙度,不受轴向移动而被压平,冷却以后,将使内外机件的结合强度较大,所能传递的扭距也较大。 1、弹性联轴器可传递扭矩和回转角度,同时吸收轴的安全偏差,当安装偏差超过容许值时,可能会产生振动或导致联轴器的寿命缩短,因此要确保偏差的调整适当。 2、轴的偏差有三种,分别是径向偏差、角向偏差和轴向偏差。请调整偏差,使其低于各产品规格表中列出的容许值。 3、各产品所列之最大偏差容许值是指只有一种偏差存在的情况下,当两种或更多种偏差同时存在时,容许值应低

机械毕业设计749鼓形齿联轴器的设计

目录 前言……………………………………………………………………………绪论……………………………………………………………………………第一章概述………………………………………………………………… 1.1联轴器的功用………………………………………………………………………… 1.2联轴器的特点…………………………………………………………………………第二章选择联轴器的类型………………………………………………… 2.1联轴器的分类………………………………………………………………………… 2.2 选择联轴器应考虑的因素…………………………………………………………2.3鼓形齿联轴器的特点………………………………………………………………… 2.4 ZWG型鼓形齿联轴器…………………………………………………………………第三章 ZWG型鼓形齿联轴器的尺寸给定………………………………………… 3.1型式、基本参数和主要尺寸………………………………………………………… 3.2 其型式、基本参数和主要尺寸应符合规定………………………………………………第四章鼓形齿联轴器的强度…………………………………………………第五章 CAD/CAM建模及数控编程…………………………………………… 5.1走刀轨迹及程序………………………………………………………………………第六章结论与展望…………………………………………………………… 参考文献………………………………………………………………………致谢…………………………………………………………………………… 33 37 35 30 26 26 14 14 11 4 6 3 3 3 4 16 2 20 18 18 18 32 3 34

联轴器的应用

国产化联轴器在风力机组中的应用 一.前言 任何设备,在设计过程中,都要根据设备实际的运行工作环境,考虑设备使用寿命,但设备实际的运行寿命与设计寿命,存在很大差距,作为风力发电机组一般设计寿命为20年,是一个比较笼统的设计概念,一九八九年在我场安装的BOUNS150千瓦风机,至今已经运行15年,整机运行良好,但是,许多机械及电气零部件已经趋于老化,需要定期检查、更换,增加了运行维护费用,因此,为了保证机组正常运行并尽可能较长的延长机组的寿命,除了考虑整机设计达到比较高的可靠度外,风力机组其它机械零部件的设计同样也要可靠,特别是在能量传递过程中起到主要作用传动部件。 在风力发电初期,我国主要是引进国外风力机组,风机运行至今,部分零部件已经趋于老化,需要更换,如果继续使用国外生产的零部件,首先,国外厂家对有些零部件已经停止生产,其次,购买费用较贵,因此,用国产化风力机组零部件代替国外风力机组零部件,不仅,可以对我们进一步掌握老外在设计风力机组时的设计理念有帮助,而且,可以节省购买费用。 二.联轴器在风力发电机组中的主要应用形式 风力机组在传递能量工程中,由于叶轮吸收的能量是随着风能的大小在时刻改变,因此经常会产生不稳定的力作用在齿轮箱和发电机上,一部分能量被齿轮箱和发电机支撑底座吸收,另一部分,则被连接齿轮箱和发电机的联轴器吸收,因此风力机组联轴器不仅可以实现

能量传递,而且可以起到减震作用。 在风力发电机组中,联轴器应用较为广泛,它主要作用是联接两轴或回转件,在传递运动和转矩过程中一同回转而不脱开的一种装置,在传动过程中不改变转动方向和转矩的大小,这是各类联轴器的共性功能,风力发电机组中常采用刚性联轴器、扰性联轴器和安全联轴器(或万向联轴器)三种方式。 ?刚性联轴器是由刚性传动件构成,各联接件之间不能相对运动,因此不具备补偿两轴线相对偏移的能力,只适用于被联接的两轴在安装时对中性好工作时不产生两轴相对偏移的场合,刚性联轴器无弹性元件,不具备减震和缓冲功能,一般只适用于载荷平稳并无冲击振动的工况条件。 ?扰性联轴器根据所用材料不同分为无弹性元件、金属弹性元件和非金属弹性元件三种。风力发电机组常用非金属弹性元件扰性联轴器,它具有弹性模量变化范围大,容易得到不同的刚度,可用硫化方法使橡胶与金属表面牢固地粘结,能用小型、形状简单的弹性元件构成大型扰性联轴器;内摩擦大、质量小、单位体积储存的变形能大,阻尼性能好,因此可以补偿两轴相对偏移,不同程度的减震和缓冲,更重要的是弹性联轴器可以吸收轴系回外部负载的波动而产生的额外能量,另外应用于风力发电机组的扰性弹性联轴器还应该具备以下几点: ?强度高,承载能力大。由于风力发电机组的传动轴系有可能发 生瞬时尖峰载荷,故要求联轴器的许用瞬时最大转矩为许用长

联轴器校正

联轴器对中调整 一、联轴器装配的技术要求 联轴器装配的主要技术要求是保证两轴线的同轴度。过大的同轴度误差将使联轴器、传动轴及其轴承产生附加载荷,其结果会引起机器的振动、轴承的过早磨损、机械密封的失效,甚至发生疲劳断裂事故。 二、联轴器在装配中偏差情况分析 1、两半联轴器及平行又同心 2、两半联轴器及平行,但不同心 3、两半联轴器虽然同心,但不平行 4、两半联轴器既不同心,也不平行 联轴器处于第一种情况是正确的,不需要调整。后三种情况是不正确的,均需要调整。实际装配中常遇到的是第四种情况。 三、联轴器找正的方法 常用的有以下几种: 1、直尺塞规法 利用直尺测量联轴器的同轴度误差,利用塞规测量联轴器的平行度误差。这种方法简单,但误差大。一般用于转速较低、精度要求不高的机器。 2、外圆、端面双表法 用两个千分表分别测量联轴器轮毂的外圆和端面上的数值,对测得的数值进行计算分析,确定两轴在空间的位置,最后得出调整量和调整方向。这种方法应用比较广泛。其主要缺点是对于有轴向窜动的机器,在盘车时端面测量读数会产生误

差。它一般用于采用滚动轴承、轴向窜动较小的中小型机器。 3、外圆、端面三表法 此法是在端面上用两个千分表,两个千分表与轴中心等距离对称设置,以消除轴向窜动对端面测量读数的影响,这种方法的精度很高,适用于需要精确对中的精密机器和高速机器。如:汽轮机、离心式压缩机等。 4、外圆双表法 用两个千分表测量外圆,其原理是通过相隔一定间距的两组外圆测量读数确定两轴的相对位置,以此得知调整量和调整方向,从而达到对中的目的。此方法的缺点是计算较复杂。 5、单表法 此方法只测定轮毂的外圆读数,不需要测定端面读数。此方法对中精度高,不但能用于轮毂直径小且轴端距比较大的机器轴找正,而且又适用于多轴的大型机组(如高速轴、大功率的离心式压缩机组)的轴找正。用这种方法进行轴找正还可以消除轴向窜动对找正精度的影响。 四、 联轴器装配误差的测量和求解调整量 使用不同找正方法时的测量和求解调整量大体相同,下面以外圆、端面双表法为例,说明联轴器装配误差的测量和求解调整量的过程。 一般在安装机械设备时,先安装好从动机,再安装主动机,找正时只需调整主动机。主动机调整是通过对两轴心线同轴度的测量结果分析计算而进行的。 1、装表时的注意事项:核对各位置的测量数值有无变动。可用式 4231a a a a +=+;4231S S S S +=+检查测量结果是否正确。一般误差控制在≤0.02mm 。

常用联轴器分类及性能介绍

常用联轴器分类及性能介绍 一、凸缘联轴器 凸缘联轴器(亦称法兰联轴器)是利用螺栓联接两凸缘盘式半联轴器,两个半联轴器分别用键与两轴联接,以实现两轴连接,传递转矩和运动。凸缘联轴器结构简单,制造方便,成本较低,工作可靠,装拆、维护均较方便,传递转矩较大,能保证两轴具有较高的对中精度,一般常用于载荷平稳,高速或传动精度要求较高的轴系传动。凸缘联轴器不具有径向、轴向和角向补偿的性能,使用时如果不能保证被联接两轴对中精度,将会降低联轴器的使用寿命,传动精度和传动效率,并引起振动和躁声。 凸缘联轴器分为:YL型——基本型、YLD型——对中型。 二、滑块联轴器 滑块联轴器与十字滑块联轴器结构相似,不同之处在于中间十字滑块为方形,利用中间滑块在其两侧半联轴器端面的相应径向槽内滑动,以实现两半联轴器联接。滑块联轴器躁声大,效率低,磨损快,一般尽量不选用,只有转速很低的场合使用。其型号为:WH型。 三、链条联轴器 链条联轴器利用公用的链条,同时与两个齿数相同的并列链轮啮合,不同结构形式的链条联轴器主要区别是采用不同的链条,常见的有双排滚子链联轴器,单排滚子链联轴器,齿形链联轴器,尼龙链联轴器等。双排滚子链联轴器的性能优于其他结构形式的联轴器,他具有结构简单,装拆方便,拆卸时不用移动被联接的两轴,尺寸紧凑,质量轻,有一定补偿能力,对安装精度要求不高,工作可靠,寿命较长,成本较低等优点。主要型号有:GL型(不带罩壳)、GLF型(带罩壳)。 四、齿式联轴器 齿式联轴器是有齿数相同的内齿圈和带外齿的凸缘半联轴器等零件组成。外齿分为直齿和鼓形齿两种,所谓鼓形齿即为将外齿制作成球面,球面中心在齿轮轴线上,齿侧间隙较一般齿轮大,鼓形齿联轴器可允许较大的角位移(相对直齿联轴器),可改善齿的接触条件,提高传递转矩的能力,延长使用寿命。 齿式联轴器在工作时,两轴产生相对角位移,内外齿的齿面周期性作轴向相对滑动,必然形成齿面磨损和功率消耗,因此,齿式联轴器需要良好的润滑和密封的状态。齿式联轴器的径向尺寸小,承载能力大,常用于低速重载工况条件的轴系传动,高精度并经动平衡的齿式联轴器可用于高速传动。由于鼓形齿式联轴器角向补偿大于直齿联轴器,被广泛选用。 鼓形齿式联轴器形式有: GICL型——宽型基本型,内齿圈较宽,能补偿较大的轴线偏移,适用于连接水平两同轴线轴系传动。 GIICL型——窄型基本型,齿间距小,允许相对径向位移小,结构紧凑,传动惯量小。GICLZ型——宽型接中间轴型 GIICLZ型——窄型接中间轴型 GCLD型——接电机轴型,适用于与电机配套的场合。 WGP型——带制动盘型,适用于与盘式制动器配套的场合。 WGC型——垂直安装型,适用于垂直两轴线轴系传动。 WGZ型——带制动轮型,适用于与闸瓦式制动器配套的场合。 WGT型——接中间套型,适用于长距离联接的场合。 TGL型——尼龙内齿圈型,适用于2500N。M以下中小扭矩,联接两同轴线的传动。WGJ型——接中间轴型, NGCL型——带制动轮型 NGCLZ型——带制动轮型

最新联轴器找中心计算实例整理

联轴器找中心计算实例 已知联轴器结构如图所示,可调式轴承两侧垫铁与水平方向的夹角α为17°30′。找联轴器中心时,测量结果如图( a )所示。试判断联轴器的中心状态,且计算出找好中心所 需的轴承垫片调整量。解: (1)根据记录图算出对轮偏差总结图,如图( b )所示。(2)根据对轮偏差总结图及测量方法 (桥规固定方式、测量的量具),绘制中心状态图,如图(c )所示,并经校无误。 (3)解决端面不平行的问题,计算轴瓦为消除上张口 a 值的调整量。两轴承x 、y 上下移动量: x 轴承上移 1.025050005.0x mm y 轴承上移3.0250 1500 05.0y mm 两轴承x 、y 左右移动量:x 轴承右移 12.025050006.0'x mm y 轴承右移36.02501500 06.0'y mm (4)解决端面错位问题,两轴瓦应向下移动0.03mm ;向左移动0.07mm 。 (5)综合x 、y 上下和左右移动的情况, x 、y 轴瓦最终调整结果如下:x 轴瓦应垫高 0.1-0.03=0.07mm y 轴瓦应垫高0.3-0.03=0.27mm

x轴瓦应向右移动(左加右减)0.12-0.07=0.05mm y轴瓦应向右移动(左加右减)0.36-0.07=0.29mm (6)x轴瓦两侧及底部垫片的调整情况如下: 由于x轴瓦应垫高0.07mm,得: 底部垫片增加0.07mm 两侧垫片各增加0.07sinα=0.070.3=0.02mm 由于x轴瓦向右移动0.05mm,得: 底部垫片不需调整 左侧垫片增加及右侧垫片减少均为0.05cosα=0.050.95=0.048mm 综合调整为: 左侧垫片0.02+0.048=0.068mm 右侧垫片0.02-0.048=-0.028mm 底部垫片0.07mm (7)y轴瓦两侧及底部垫片的调整情况如下: 由于y轴瓦应垫高0.27mm,得: 底部垫片增加0.27mm 两侧垫片各增加0.27sinα=0.270.3=0.081mm 由于y轴瓦向右移动0.29mm,得: 底部垫片不需调整 左侧垫片增加及右侧垫片减少均为0.29cosα=0.290.95=0.276mm 综合调整为: 左侧垫片0.081+0.275=0.356mm 右侧垫片0.081-0.275= -0.194mm 底部垫片0.27mm

深入鼓形齿式卷筒联轴器故障分析与维护措施

深入鼓形齿式卷筒联轴器故障分析与维护措施 发表时间:2020-04-02T07:14:26.510Z 来源:《建筑学研究前沿》2019年24期作者:马亚涛[导读] 在角向得补充和抗冲击等几个方面具有非常好的综合性能,当前被广泛的使用在大型起重机上。 山东正泰工业设备安装有限公司 252000 摘要:分析起重机鼓形齿式卷筒联轴器其相关的结构原理以及具体的特点,将某桥式抓斗卸船机现场的实际使用作为例子,对于卷筒联轴器使用过程中经常会出现的问题进行分析,通知针对联轴器故障的处置措施,给出了设备安装和使用以及维护的相关建议。 关键词:鼓形齿;卷筒联轴器;维护 1 引言 起重机卷筒联轴器是起升机构中不能够缺少的一个主要的传动部件,其自身的稳定性以及可靠性在设备安全使用中起到举足轻重的作用。卷筒联轴器按照结构的形式,通常能够被分成直接啮合式和球铰式以及球面滚子与鼓形齿等形式。球面滚子还有鼓形齿两种方式的结构非常的紧凑,传递之间的扭矩也非常大,当前也被广泛的进行使用。球面滚子得联轴器其本身的补偿量非常大,可是滚珠和滚道磨损还有对于传动系统起到的冲击是需要关注的问题同时之后对其进行维护的量也是相对较大的。对比来说,鼓形齿式联轴器结构其自身较为紧凑和运行上十分稳定,在角向得补充和抗冲击等几个方面具有非常好的综合性能,当前被广泛的使用在大型起重机上。 2 鼓形齿式卷筒联轴器结构原理与特点 外齿轴套其使用内圈以及减速器输出轴过盈配并且还配备了键连接,法兰内齿圈的法兰盘圆周方向均匀的完成螺栓孔的分布,和分布在卷筒端面板上的螺孔能够一一的相对,同时使用螺栓能够完成和卷筒之间的可靠性和固定性,并且还能够把减速器输出扭矩以及转速传递至卷筒。承载环主要是在外齿轴套上进行安装,其自身承担的是源自于卷筒的径向载荷;内外端盖和密封圈其自身起到的是一种轴向固定和密封作用;指针其不但能够被使用在进行定位的安装,同时也是实际运行中对于齿面磨损进行检查的一个不可忽视的工具。 3 鼓形齿式卷筒联轴器故障分析 3.1 外盖螺栓断裂问题 将某一轧机卷筒联轴设备作为案例,其在使用时间超过了三个月之后,外端盖的螺栓则开始产生断裂的情况,通过对于螺栓断口其外部形貌给予相关分析可以得出其断裂问题非常的明星突出,按照联轴器实际的安装工作以及设备结构自身的原理进行分析,能够看出外端盖在实际进行运行的时候其本身并不会受到联轴器的运输荷载产生的影响,通过相关的分析定位指针去确定最终安装的位置,这样的一种方式能够判定是安装不适宜而产生的一种问题。基于这样的一种情况可以把外端盖打开对其给予详细的分析并且给予最终的确认,可以找出外端盖以及承载环其相对端面里出现的比显著的接触挤压等相关问题。通过对于以上情况进行分析系,可以判断出外端盖与联轴器之间是因为存在的间隙相对较小而导致的问题出现,这样的一种情况也让法兰外齿圈有关外端盖承受了承载环所带来的轴向冲击的压力,外端盖所进行安装的螺栓因为得到附加负载冲击下而产生一种拉伸和断裂的问题。对于出现的这些问题,要求采取对于垫片给予调整的方式,去使得承载环和外端盖彼此之间的轴向间隙能够得到调整,从而减少外端盖螺栓其产生的附加荷载。 3.2 连接卷筒螺栓断裂问題 首先是卷筒联轴器其内外齿圈之间产生的冲击。螺栓组可以精卷筒以及法兰内部齿圈对其起到有效的固定和连接作用,可是同时其自身也会因内外齿两部分对其起到的回转冲击,按照其相关的结构特点我们不难看出,其主要是因为被出现的剪切力所影响。因此在螺栓其自身承担的回转冲击荷载剪切力在超出螺栓自身承载制约的时候,就会使得螺栓产生断裂和松动额情况,基于这样的一种条件下,驱动部件便则会出现一种并不是十分稳定和正常的运行情况,最后会产生不断过载的问题,如果联轴器其本身使用的时间不断的提升,那么就要求肩擦齿面磨损有是不是超过了自身的应用限制。除此之外则是联轴器所处在的位置产生偏差的问题,维护替换以及安装过程中经常会因为卷筒和加速器以及联轴器的替换并未满足其提出的标准要求,从而产生径向偏差以及轴向偏差两种问题,这样的一种问题也使其出现了允许的偏差,附加负荷也让螺栓是产生了剪切的断裂,可以说这也是其中比较常会出现的一种螺栓断裂的原因。 3.3 轴向载荷问题 卷筒联轴器在实际进行使用和进行安装的时候,其自身的偏角最大不可以超过0.5至1度,并且鼓形齿式其卷筒联轴器在实际进行安装和使用过程中仍然不能够承担轴向的荷载,卷筒联轴器在实际进行运行过程中所出现的轴向力其需要落在卷筒的轴承座上,并使用这样的一种承担轴向压力,否则则会使得卷筒联轴器整体的运行效果受到影响。因此在对于鼓形齿卷筒联轴器进行安装的时候,要求对其给予一个精准的定位,不然在具体进行运行的时候卷筒就会产生弹性水平的位移,这样的一种情况也会使得卷筒联轴器其周向限位产生很大的威胁,最终会使得联接出现失效的问题,严重的还会出现非常严重的一种事故问题。

相关主题