搜档网
当前位置:搜档网 › Simultaneous Electric and Magnetic two-dimensionally tuned parameters-agile siw device

Simultaneous Electric and Magnetic two-dimensionally tuned parameters-agile siw device

Simultaneous Electric and Magnetic two-dimensionally tuned parameters-agile siw device
Simultaneous Electric and Magnetic two-dimensionally tuned parameters-agile siw device

Simultaneous Electric and Magnetic

Two-Dimensionally Tuned

Parameter-Agile SIW Devices

Sulav Adhikari,Student Member,IEEE,Anthony Ghiotto,Member,IEEE,and Ke Wu,Fellow,IEEE

Abstract—A concept of simultaneous electric()and magnetic ()2-D tuning is presented,demonstrated,and applied for the ?rst time through the theoretical and experimental studies of parameter-agile substrated integrated waveguide(SIW)devices. First of all,a two-dimensionally tuned SIW cavity is introduced as a building block.Considering only electric tuning with varactor diodes,no more than1.3%of total tuning range is accomplished, while for simultaneous electric and magnetic tuning,it is extended to7.9%with an unloaded factor of better https://www.sodocs.net/doc/9c17404354.html,ing 0.05–0.1-pF surface mount capacitors,a total tuning range of as much as20%is experimentally achieved at12GHz.Another characteristic of signi?cant interest is that the proposed2-D tuning not only allows changing frequency,but also simultaneously opti-mizing other key parameters such as the return loss or unloaded factor.Second,the dual-tuned SIW cavity resonator is further accommodated to demonstrate parameter agile two-dimensionally tuned bandpass?lter at12GHz.The proposed concept of2-D tuning theoretically and experimentally demonstrates a simulta-neous frequency and bandwidth tuning of bandpass?lter.This ?lter can perform both frequency-tunable constant bandwidth, and constant-frequency variable-bandwidth operations.Third, a cavity backed slot antenna using the proposed dual tuning is demonstrated.The tuning not only achieves a higher frequency range,but the antenna return loss is optimized to improve the overall ef?ciency.

Index Terms—Electric and magnetic tuning,ferrite,frequency and bandwidth tunable?lter,substrate integrated waveguide (SIW),tunable antenna,tunable cavity resonator,varactor diode.

I.I NTRODUCTION

F REQUENCY-AGILE RF and microwave devices have

gained much attention from growing demands for dynamic spectrum management in cognitive and software-de-?ne-radio designed platforms and phase-controlled systems

Manuscript received July11,2012;revised September28,2012;accepted September28,2012.Date of publication November27,2012;date of current version January17,2013.This work was supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)under grants.This paper is an expanded paper from the IEEE MTT-S International Microwave Sympo-sium,Montreal,QC,Canada,June17–22,2012.

S.Adhikari and K.Wu are with the Poly-Grames Research Center,école Polytechnique de Montréal,Montréal,QC,Canada H3V1A2(e-mail:sulav. adhikari@polymtl.ca;ke.wu@polymtl.ca).

A.Ghiotto was with the Poly-Grames Research Center,école Polytechnique de Montréal,Montréal,QC,Canada H3V1A2.He is now with the University of Bordeaux,IMS Laboratory,CNRS UMR5218,IPB,33405Talence,France (e-mail:anthony.ghiotto@ims-bordeaux.fr).

Color versions of one or more of the?gures in this paper are available online at https://www.sodocs.net/doc/9c17404354.html,.

Digital Object Identi?er10.1109/TMTT.2012.2226058for both military and civilian applications.A large number of previous papers have suggested different types of recon?g-urable devices to solve this challenging topic[1]–[3].Most reported recon?gurable devices have addressed frequency tuning issues utilizing various tuning techniques.Among them are four typical tuning methods magnetic materials such as yttrium–iron–garnet(YIG)[4],[5],semiconductor varactor [6]–[8],ferroelectric(e.g.,BST)[9],and microelectrome-chanical systems(MEMS)[10]–[12].With a limited degree of freedom,those devices,however,can achieve a limited tuning range and do not provide an optimal design regarding the other key parameters over the whole tuning range,which are generally interplayed with each other in the design.In this paper,a novel approach is proposed to design outstandingly parameter-agile devices.This approach consists in simulta-neous electric()and magnetic()2-D tuning allowing an increased tuning range,and at the same time optimizing other key design parameters.

The proposed approach that is demonstrated in this paper makes use of substrate integrated waveguide(SIW)technology [13].In order to achieve the best possible RF performance,it is important to have a circuit that has high value and wide fre-quency tunability.SIW is a promising technology that inherits almost all the characteristics of a rectangular waveguide and planar https://www.sodocs.net/doc/9c17404354.html,pared to conventional planar transmission lines,it is lower in loss,lower in cost,and can handle more power.Most importantly,it can also be easily integrated with other planar circuits.Therefore,designing tunable resonators and?lters based on SIW technology is very advantageous [14]–[17].

In Section II,a two-dimensionally tuned cavity resonator is theoretically and experimentally studied.The frequency tunable resonator is a key building block component in designing tun-able bandpass?lters,oscillators,mixers,and antennas that can ?nally make up the whole cognitive system.In[6],an electri-cally tunable SIW cavity resonator was presented,where the resonant frequency of the cavity was tuned by a dc-voltage bias over a varactor coupled to the cavity.A magnetically tunable SIW cavity resonator realized by loading planar ferrite slabs along the sidewall slots of the cavity was presented in[4].In [6],the limited capacitance variation of the varactor diode had set an upper limit in the total tuning range of the cavity res-onator.While in[4],high magnetic loss near the ferromagnetic resonance region and the requirement of a high external mag-netic bias limited the total frequency tuning range.It is thus a purpose of this paper to increase the frequency tunability by

0018-9480/$31.00?2012IEEE

incorporating both electric and magnetic tuning in the same cavity.It is also a purpose to study theoretically and experi-mentally if the limitation due to electric frequency tuning can be compensated by magnetic manner and vice-versa.In[18], results of dual-and-?eld tunable bandpass?lter at2GHz are presented,where-?eld tunability was achieved by using single-crystal YIG?lm and-?eld tunability was achieved by bonding YIG?lm to a piezoelectric substrate.The preliminary result presented in[18]depicts that it requires approximately 8kV/cm of electric?eld to achieve the tuning of200MHz.In this paper,the2-D electric and magnetic tuning is achieved by using commercially available low-cost bulk ferrite material and a surface mount(SM)capacitor/varactor diode,which require low values of magnetic and voltage bias to achieve the desired tuning at12GHz.

Based on the two-dimensionally tuned cavity,a parameter-agile second-order bandpass?lter achieving simultaneous fre-quency and bandwidth tuning is introduced in Section III with theoretical and experimental results.In the literature,a large number of papers presented tunable?lters only dealing with frequency tuning[19]–[24]due to the lack of methods to con-trol inter-resonator coupling coef?cients[25],but recent work have concentrated on bandwidth tunability at?xed frequency [26]–[31]and some others on simultaneous frequency and band-width tuning[32]–[40].Compared to what were reported in lit-erature,this study shows a distinct design method based on the simultaneous control of the-and-?eld of an SIW cavity. The dual tuning allows tuning of the cavity frequency along with inter-resonator coupling control.

In Section IV,the concept of simultaneous electric()and magnetic()2-D tuning is again applied to the design of a tunable cavity-backed slot https://www.sodocs.net/doc/9c17404354.html,ing the proposed dual-tuned cavity,the tuning range is signi?cantly increased and the antenna return loss optimized to increase the antenna overall ef?ciency.

II.E LECTRICALLY AND M AGNETICALLY T UNABLE

SIW C A VITY R ESONATOR

A.Theory of SIW Cavity Resonator

In this section,a theoretical analysis of a SIW cavity resonator loaded with both electric and magnetic tuning elements is pre-sented.The thorough understanding of such a building block element is critical for the development of any further circuits and structures based on such2-D tuning scheme.The magnetic tuning element is a planar ferrite slab,which is loaded along one of the electrically shorted end-walls of the cavity,while the elec-tric tuning element is a lumped capacitor connected between the upper and lower conductor at the central region of the cavity where the electric?elds are maximally con?ned.The use of lumped capacitors can be replaced by a continuously tuning ca-pacitive element such as varactor.In this paper,the investigation of electrical tuning is done with lumped capacitors to simplify our theoretical and experimental studies as the capacitors can be accurately determined.Continuous tuning is accommodated in the late stage for our design demonstrations.At the cavity res-onance frequency,a simple transmission line theory is used

to Fig.1.Simultaneous electrically and magnetically tunable cavity resonator.

(a)SIW cavity resonator loaded with a lumped capacitor and a ferrite slab.

(b)Equivalent transmission-line model.

derive a characteristic equation of the cavity loaded with dual tuning elements for which higher order modes and parasitic ef-fects are ignored.The solution of the characteristic equation, gives a relationship between the cavity resonant frequency and its variation with electric and magnetic tuning element values. Fig.1(a)represents a SIW cavity resonator loaded with a fer-rite slab along its end-wall and a surface mounted capacitor at the central region of the cavity.Fig.1(b)is the equivalent trans-mission-line model of the cavity,where a short-circuited section of a ferrite slab is represented by a transmission line of length ,substrate section between the lumped capacitor and the ferrite slab is represented by,and a short-circuited substrate section is represented by.

From the transmission-line theory,the equivalent impedance seen looking from reference plane toward the short-circuited SIW section of length is

(1) where is the guide impedance and is the propagation constant of the SIW transmission-line section.Similarly,the impedance seen looking toward the short-circuited ferrite sec-tion of length and substrate section of length is[4]

(2) where and are the guide impedance and the propagation constant of the ferrite loaded cavity section of length.The propagation constant of the ferrite loaded cavity section is given by

(3) In(3),is the cutoff wavelength,is the relative permit-tivity of the ferrite material,and is the effective permeability of the ferrite material given by

(4) where and are the components of the Polder tensor that describe the permeability of the ferrite material[5].At the cavity resonance frequency,seen from the reference plane,the

ADHIKARI et al.:SIMULTANEOUS ELECTRIC AND MAGNETIC TWO-DIMENSIONALLY TUNED PARAMETER-AGILE SIW DEVICES

425

Fig.2.Fabricated SIW cavity resonator with mm,mm, mm,mm,and mm.

sum of the imaginary parts of(1)and(2)should be equal to0, thus the following characteristic equation is obtained:

(5) In(5),represents the imaginary part of the terms written inside the parenthesis,and is the reactance of the capacitor at a given frequency.The solution of(5)yields a theoretical frequency tuning curve of the cavity resonator in relation to the applied magnetic bias on ferrite material and the capacitance values.

B.Calculation and Measurement Results

In this section,calculated and measurement results of the SIW cavity resonator of Fig.1,are presented.Fig.2illustrates the fabricated prototype,

The SIW cavity resonator is fabricated on a Rogers RT/Duroid6002substrate,whose dielectric constant value is,loss tangent is,and thickness is mm.The planar ferrite slab placed at the end-wall of the cavity,as shown in Fig.2,is YIG,whose saturation magnetization value is G,and line width is Oe.The thickness of the YIG slab is equal to the thickness of the substrate.For the dimensions given in Fig.2, the resonant frequency of a cavity having a dimension of

mm without ferrite slab and varactor/capacitor surface mounted is approximately12.6GHz.A current probe consisting of a50-conductor backed coplanar waveguide (CBCPW)is used to feed the cavity.The resonance frequency is measured by connecting the output of CBCPW current probe directly to the vector network analyzer(VNA).The thru-re-?ect-line(TRL)method is used to calibrate the CBCPW feed line.

For the given cavity dimensions,substrate,and YIG ferrite materials,the characteristic equation given by(5)is solved using the Newton–Raphson method of root?nding[41]to theoretically determine the cavity resonance frequency versus applied magnetic bias on ferrite slabs and capacitance values.

In(5),the impedance is dependent upon the effective per-meability value

of the ferrite material,as given by(3)and (4).In Fig.3,calculated permeability components of a given in?nite YIG ferrite material are plotted as a function of internal Fig.3.Calculated permeability components of YIG ferrite material as a func-tion of internal magnetic bias at12.6GHz.

magnetic bias at12.6GHz.As can be seen,at below ferro-magnetic resonance region,progressively reduces from an initial value of approximately1to a value of0at0.27T of. Since the ferrite loaded SIW cavity resonator will be operated in a region below the ferromagnetic resonance,the resonant fre-quency of the SIW cavity is expected to follow the inverse vari-ation of curve for the applied values of transverse magnetic bias.

In Fig.3,the permeability components are plotted against the internal magnetic?eld of the ferrite material.In practice, usually a Gauss meter is used to measure the amount of mag-netic bias,but it can only measure the?eld external to the ferrite material.For the orthogonally biased rectangular ferrite slab of Fig.2,a relationship between external and internal magnetic ?eld is given by[41]

(6) where is the internal magnetic?eld,is the external mag-netic?eld applied perpendicularly to the ferrite material,is the magnetization value of the ferrite material,and is the demagnetization factor.The value of is dependent on the direction of the applied external magnetic?eld and the shape of the ferrite material.In[43],a closed-form relation of a demag-netization factor of a rectangular prism biased in the-direction is derived.Based on the closed-form relation,for a YIG ferrite of Fig.2with length mm,width mm and thick-ness mm,the calculated value of the demagnetization factor is.

From(6),if the values of and are known,then for the given value of,the magnetization value can be easily cal-culated.A cavity resonator of Fig.2loaded with a single ferrite slab at the end-wall and without a capacitive loading is consid-ered.The characteristic equation of a single ferrite loaded cavity [4]is solved to obtain the desired theoretical frequency tuning curve.The measurement tuning curve is obtained by measuring the resonant frequency of the cavity for increasing values of ex-ternally applied magnetic?eld.In Fig.4,the measured and calculated frequency tuning curves of an SIW cavity resonator loaded with single ferrite slab is presented.

In Fig.4,the calculated tuning curve is plotted against, while the measured tuning curve is plotted against values.

426IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,VOL.61,NO.1,JANUARY

2013

Fig.4.Measured and calculated frequency tuning curves of SIW cavity res-onator loaded with a single ferrite

slab.

Fig.5.Calculated magnetization values of YIG ferrite slab.

Once the values of and are known from Fig.4,(6)can

be used to determine the magnetization value of the ferrite ma-terial.For the calculation of magnetization values,the values of

and ,corresponding to the same resonant frequency,is considered.

In Fig.5,calculated values of YIG ferrite are plotted against the externally applied magnetic ?eld values.The calculated value of is due to the property of the ferrite mate-rial.Therefore,for a given direction of magnetic bias,its values are independent of the shape and sizes of the ferrite material.Thus,for a given YIG ferrite,with the calculated values from Fig.5,and the calculated value,a relationship between and can be easily established.

In Fig.6,a theoretically calculated frequency tuning curve of SIW cavity resonator of Figs.1and 2is presented.The fre-quency tuning curve is obtained from the solution of (5).In Fig.6,the cavity resonant frequency decreases linearly with the increase in the lumped capacitor value from 0.05to 0.3pF,while it increases when the ferrite internal magnetic ?eld is increased from 0to 0.3T.It can be noted that,keeping the ca-pacitance value constant at 0.3pF,and increasing the magnetic ?eld from 0to 0.3T,the resonant frequency value increases from 10.73to 11.6GHz.Therefore,the tuning frequency range is 7%at 12GHz.At the same time,however,if the capacitance value is reduced to 0.05pF,the maximum frequency that can be attained with 0.3T would be 12.98GHz,which is approximately 18%of tuning range.Thus,theoretically,it can be observed that,for the same value of applied internal magnetic ?eld ,the fre-quency tuning range can be increased by 2.5times if the lumped capacitor value is changed in a suitable way.Therefore,it

rules Fig.6.Theoretically calculated resonant frequency curve of YIG planar slab and capacitor loaded SIW cavity

resonator.

Fig.7.Measurement results for different lumped capacitor

and external ap-

plied magnetic ?eld

values.out a possibility that a higher frequency tuning range can be ob-tained for lower values of applied magnetic ?eld .

After the determination of the theoretical frequency tuning curve,measurement of a single-port SIW cavity resonator of Fig.2is performed for the proof of concept.The ?rst mea-surement consists of SIW cavity resonator loaded with a single planar ferrite slab and high-UQCL2AXXXBAT2A series ce-ramic capacitors from the A VX Corporation,Fountain Inn,SC.The measurement is performed to determine the change in the resonant frequency of the cavity for the given value of applied magnetic bias and capacitance values .The applied mag-netic bias in this case is the external magnetic ?eld measured outside the ferrite slab using a Gauss meter.

In Fig.7,it can be seen that the use of capacitor has re-duced the resonant frequency from the initial value of 11.98to 11.48GHz for 0.1pF and 11.1GHz for 0.05pF,thus sig-ni ?cantly expanding the total tuning range.When no capacitors are mounted,the frequency range only due to externally applied magnetic ?eld is from 11.98to 13.49GHz,which is 12%at 12GHz.With the capacitor mounted into the structure,however,the total frequency range is signi ?cantly increased to 20%.To perform the electrical tuning of the cavity,a varactor diode MSV34060-0805-2from Aero ?ex,Sunnyvale,CA,is used.For an applied bias voltage in the range of V to V ,the vari-ation of the nominal capacitance is between 0.5–0.3pF.How-ever,it was found that these values of capacitance are too high to obtain a good matching for the cavity.Therefore,in order to reduce the total capacitance value,two varactor diodes and a ca-pacitor of value 0.05pF are connected in series to get the total capacitance range of fF.

ADHIKARI et al.:SIMULTANEOUS ELECTRIC AND MAGNETIC TWO-DIMENSIONALLY TUNED PARAMETER-AGILE SIW DEVICES

427

Fig.8.Measurement results of a2-D tuned SIW cavity resonator using a single ferrite slab and a varactor diode.

Fig.8illustrates the measurement results,for the2-D tuned cavity of Fig.2using a varactor diode and ferrite.Since the equivalent capacitance tuning range is limited to fF, the electric frequency tuning range is limited to about170MHz. Ferromagnetic resonance of the ferrite and limited capacitance variability of the varactor diode have set an upper limit in the total tuning range.In Fig.8,measurement results for simulta-neous electric and magnetic tuning are presented.The resonant frequency increases nonlinearly with increased value of and due to the nonlinear change of effective permeability value of YIG ferrite[4]and the capacitance value of the varactor diode. In Fig.9(a)and(b),measured frequency tuning curves of the two-dimensionally tuned cavity resonator are presented.It can be seen in Fig.9(a),at lower values of T,the fre-quency tuning curve changes linearly with the increase in var-actor diode voltage.As the applied magnetic?eld in-creases toward higher values T,the variation of the resonant frequency with also reduces.This behavior is related due to the frequency limited operation of MSV34060-0805-2varactor diode.A similar variation of the resonant fre-quency can also be observed in Fig.8,where the rate of increase of cavity resonant frequency at lower frequency values is higher. Similarly in Fig.9(b),measured frequency tuning curve of the cavity resonator plotted against is presented.As predicted theoretically in Fig.6,the variation of the resonant frequency exhibits as a nonlinear function of the applied magnetic bias .

In Fig.10,isofrequency curves are plotted together with and.As different biasing point allows achieving the same resonant frequency,it is possible to optimize either,, the required tuning energy or a function of those parameters.

III.E LECTRICALLY AND M AGNETICALLY T UNABLE

SIW B ANDPASS F ILTER

With the concept of simultaneous electric and magnetic tuning,a simultaneous frequency and bandwidth tunable band-pass?lter is theoretically and experimentally demonstrated. The designed bandpass?lter can

achieve frequency tunable constant-bandwidth and constant-frequency variable-band-width operations at the same time.Fig.9.2-D measured results showing

variation of resonant frequency:(a) versus and(b)versus.

Fig.10.Measured results.(a)(dB).(b).

Fig.11.Fabricated SIW second-order Chebyshev bandpass?lter with:(a)top view mm,mm,mm,mm, mm,and mm and(b)bottom view with two0.1-pF capacitors connected in series.

A.Filter Topology

Fig.11illustrates the fabricated bandpass?lter based on SIW technology.It consists of two SIW cavities(1)and(2)cascaded to form a second-order Chebyshev bandpass?lter.The?lter is fabricated on a Rogers RT/Duroid6002substrate.The ferrite material used in the design is YIG with G and Oe.The thickness of the YIG slab is equal to the thickness of the substrate mm.

428IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,VOL.61,NO.1,JANUARY2013

The principal mode of operation of the?lter is dominant .SIW transmission lines support only the TE mode.Since

is the dominant mode of operation,the valid frequency range of operation of the?lter presented in Fig.11is up to the cutoff frequency of the mode.Similar to the SIW cavity resonator presented in Section II,simultaneous electric and magnetic tuning is achieved by loading ferrite slabs and capacitors/varactor diodes along the sidewalls and at the center of the cavity,respectively.Unlike in the case of an SIW cavity resonator of Fig.2,each cavity of the bandpass?lter of Fig.11 is loaded with two ferrite slabs instead of one.It is apparent [4]that,by increasing the volume of the ferrite material in-side a cavity,the frequency tuning range of the cavity also increases.Therefore,to increase the frequency tunability of the whole?lter,two ferrite slabs are loaded along the sidewalls of each cavity.Moreover,with two ferrite slabs,the?lter structure becomes symmetric in a given plane,which will keep the theoretical analysis using the transmission-line method straightforward.

In Fig.11,in order to measure the?lter response, CBCPW-SIW transitions are used to facilitate the input and output connections.In the measurement,the CBCPW-SIW transitions are de-embedded using the TRL calibration tech-nique.In Fig.11,when the signal is fed into the SIW from the CBCPW,the?eld gradually extends into that of SIW due to a linearly tapered central strip.A good?eld matching can be obtained by tuning the angle and the length of the tapered central strip[44].

B.Theory of Dual Electric and Magnetic Tunable Filter

In this section,the concept of simultaneous electric and magnetic tuning is further exploited to realize both fre-quency-tunable constant bandwidth and a constant-frequency variable-bandwidth bandpass?lter.A theoretical analysis is performed to lay out a design guideline,which shows an ideal relationship between magnetic bias applied to the ferrite material and change in the values of varactor capacitance in order to realize a tunable?lter with a constant?lter shape and bandwidth and vice-versa.

In the design of a simultaneous electric and magnetic tunable ?lter,the following two design steps are followed.

1)For given?lter speci?cations,the low-pass prototype

parameters are obtained[45]and the corresponding impedance-invert values are calculated from the following relations:

(7)

where are low-pass prototype parameters and is the guide wavelength fractional bandwidth.The inverters of the bandpass?lter presented in Fig.11are

a shunt-inductance type and the structure operates like a

?lter with series resonators.The equivalent circuit for a

shunt-inductance-coupled?lter is a T-network consisting of a shunt-inductance and series capacitances.

After the calculation of impedance-invert values,they are physically realized by the simulation of metallic via window indicated by,,and in Fig.11using Ansoft HFSS version13.From the-parameters obtained from the simulation,the following parameters are calculated

[46]:

(8)

The impedance-inverter value of the metallic-via window and the length of the SIW cavity are obtained using

(9)

Finally,the size of the metallic via window is varied until the impedance-inverter value obtained from(9)is close to the calculated value given by(7).Based on the above cal-culation and simulation results a second-order Chebyshev ?lter with a0.1-dB ripple is designed and fabricated and it is presented in Fig.11.The?lter is designed at the center frequency of12GHz.The design does not include ferrite slabs and capacitance loading,which are later added.

2)After the initial design of the SIW cavity based?lter,it

is made and tunable by loading it with planar fer-rite slabs along its end-wall and varactor/capacitance at the center of each cavity.The next step is to then determine a design guide line in order to maintain the constant band-width over the whole frequency range and variable-band-width at one particular frequency.In order to maintain con-stant?lter response and shape,the resonator slope parame-ters of the?lter’s end resonators(1)and(2)of Fig.11take the following forms[45]:

(10)

(11)

where and are the slope parameters of end-resonators(1)and(2)at the cavity’s mean tuning frequency ,and is the cavity resonant frequency.The SIW cavity resonator exhibits series type resonance,and its re-actance slope parameter is given by

(12)

ADHIKARI et al.:SIMULTANEOUS ELECTRIC AND MAGNETIC TWO-DIMENSIONALLY TUNED PARAMETER-AGILE SIW DEVICES

429

Fig.12.SIW cavity resonator loaded with ferrite slabs along the two sidewalls and a capacitor at the center of the cavity.(a)Cross-sectional view.(b)Equiv-alent transmission-line model.

where is the reactance of the resonator .Based on the cavity resonator and ferrite slabs dimension,and loaded capacitance value,the cavity’s resonator slope param-eter for resonators (1)and (2)given by (12)is separately calculated.At a selected value of ,and for a given values of and ,the calculated values from (12)are compared with the ideal slope parameters values given by (10)and (11).At a given frequency of resonance,the ap-plied magnetic ?eld ,and the value of are changed until the two resonator slope parameter values are in close agreement with one another.

In order to determine the reactance slope parameter given by (10)–(12),the cavity resonant frequency and slope

are ?rst determined.Fig.12(a)and (b)illustrates the representa-tion of a SIW cavity resonator loaded with two ferrite slabs and its equivalent transmission-line model.Similar to the theoret-ical analysis of the single-cavity resonator presented in Section III-A,the sum of the reactance at the cavity resonance frequency is equal to 0.Hence,seen from the reference plane de ?ned by ,the characteristic equation from Fig.12is

(13)

where

(14)

In (13),

represents the imaginary part of the term inside the bracket and and are the guide impedance and propaga-tion constant of the mode,respectively.In order to de-termine the value of ,a characteristic equation of twin ferrite slabs loaded SIW transmission line is considered,which is given by [47],[48]

(15)

where

(16)

(17)

Fig.13.Calculated propagation

constant of a SIW transmission line loaded

with ferrite slabs along its sidewalls.

Fig.14.Calculated resonator slope parameter values versus applied magnetic

bias

.and

(18)(19)(20)

In (17)and (18),and

are the effective permittivity and ef-fective permeability of the host substrate,respectively.and are the effective permittivity and effective permeability of the ferrite material,respectively.The solution of (15)yields propagation constant value of the SIW transmission line loaded with reciprocally biased twin ferrite slabs along its side-walls.

In Fig.13,the plot of propagation constant values of an SIW transmission line loaded with two ferrite slabs along its sidewalls is presented.The values are plotted for increasing values of applied magnetic ?eld on ferrite slabs.In Fig.13,the cutoff frequency increases toward higher frequen-cies as the values of increases.The increase in the cutoff frequency is nonlinear for a linear increase in the value of .This nonlinear behavior is also displayed by and resonant frequency curves in Figs.3and 4,respectively.

In Fig.14,of the cavity resonators given by (12)are plotted.The plotted values correspond to those of resonators (1)and (2)of the ?lter illustrated in Fig.11.Since the two cavities are identical,both of them will exhibit the same curves.For dif-ferent capacitance values,values are also different.The values for fF is higher than the values for

fF.In Fig.14,plotted are also the ideal curves from (10)

430IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,VOL.61,NO.1,JANUARY

2013

Fig.15.Calculated results of resonator slope parameter values and constant frequency and constant bandwidths isofrequency curves.

and(11)for different mean tuning frequencies.The values obtained from(10)and(11)leads to the development of a?lter with constant response shape over the tuning range. Therefore,it is an objective to bring the curves obtained from (12)as close as possible to those obtained from(10)and(11). In Fig.14,assuming the initial value of mounted on the cavity to be80fF,and selected to be12.1GHz.It can be seen that at lower value of(up to0.062T),curves obtained for GHz and fF are closer to one another.As value increases beyond0.062T,the difference between the two curves also increases.However,at this value of,the curve corresponding to fF is in close agreement to the GHz curve.Hence,in order to maintain constant?lter response shape,the value of must be changed from80to65fF.Similarly,for value higher than0.093T,the difference between curves corresponding to GHz and fF is increasing.Thus,in order to reduce the difference,the value of is again reduced to fF.In this way,in order to realize a constant response ?lter,the value of the capacitance mounted on the cavity is reduced toward the lower values for a progressive increase in the value of applied magnetic?eld.

In Fig.15,a3-D plot of the resonator slope parameter is illustrated to obtain a design guideline in realizing a simulta-neous bandwidth and frequency tuning of the?lter.It is there-fore possible to realize either a constant-bandwidth variable fre-quency or a constant-frequency variable-bandwidth tuning.In Fig.15,values from(12)are plotted against and values. Ideal values obtained from(10)and(11)are also plotted as overlapping isobandwith curves,in red(in online version),to-gether with isofrequency curves,in black,obtained from(13). The constant-bandwidth curves are calculated for different pairs of and values.Tuning the cavities in accordance to the red curves(in online verison)change and of the cavities according to the relation given by(10)and(11)pro-vide a constant bandwidth tuning.In Fig.14,they are repre-sented as BW1,BW2,and so on,while the constant frequency curves corresponds to the cavity resonant frequency for a given value of and and obtained from the solution of (13).Fig.15provides a possibility to realize either a frequency tunable constant-bandwidth?lter

or a constant-frequency tun-able-bandwidth?lter.For example,tuning the and values Fig.16.Measurement results of magnetically tuned(1-D)SIW cavity?lter loaded with fF capacitor at its center.(a)Measured-and-pa-rameters.(b)Enlarged-parameters.

along black curves,a constant-frequency variable-bandwidth tuning of the cavity is achieved,and tuning the and values along red curves(in online version),a constant-bandwidth vari-able-frequency tuning of the cavity is achieved.

C.Measurement Results

In this section,measurement results of an electric and a mag-netic two-dimensionally tuned SIW bandpass?lter of Fig.11 are presented.

In Fig.16,measurement results of a magnetically tuned SIW bandpass?lter are presented.A capacitance value of80fF is mounted at the central region of the cavity.It can be seen that, keeping the capacitance value?xed and increasing only the ex-ternally applied magnetic bias(1-D tuning),eventually de-teriorates the?lter response.It can be observed that from the enlarged-parameter curve images from Fig.16(b),as the magnetic?eld is increased from T to T,the insertion loss is also increased from1.7to5.4dB.Moreover, the?lter3-dB bandwidth is reduced from4%at T to 2.4%at T.

In Fig.17,a?lter response of-and-?eld two-dimen-sionally tuned bandpass?lter is presented.It can be seen with the increase in values,the?lter response has not been dete-riorated as it was in the case of one-dimensionally tuned?lter response presented in Fig.16.A key difference in these two tuning methods is the value of the surface mounted capacitor ,as shown in Fig.11,is no longer?xed at80fF.Instead,its value is reduced as the magnetic bias is increased.In Fig.17, as the external magnetic bias is increased from0to0.28T,

ADHIKARI et al.:SIMULTANEOUS ELECTRIC AND MAGNETIC TWO-DIMENSIONALLY TUNED PARAMETER-AGILE SIW DEVICES

431

Fig.17.Measurement results of2-D tuned SIW cavity?lter loaded with: (a)measured-and-parameters.(b)Enlarged-parameters.

the capacitance value is also changed from the initial value of 80to50fF.The reduction in the value of the capacitance as the frequency tuning progresses toward the higher frequency value has enabled preserving the same?lter response.It can be noted from Fig.17(b),for T,T,and T,the3-dB bandwidth of the?lter is maintained approximately at a constant value of4%,but for each values of,capacitance values are different,which are fF,fF,and fF,respec-tively.It can also be observed theoretically from Fig.15that, in order to maintain a constant bandwidth at higher frequen-cies,the value of the capacitance needs to get reduced while the amount of magnetic bias is increased.Moreover,the amount of magnetic?eld required to achieve the same amount of frequency tuning range has also reduced.It can be observed from Fig.16(b)that,keeping constant at80fF,it requires T to change the?lter center frequency from10.8 to11.86GHz.While in Fig.17(b),only0.28T of the magnetic ?eld produces a frequency shift from10.8to11.95GHz.

In Fig.18,the measurement results of a SIW bandpass?lter with variable bandwidth is presented.It can be seen from Fig.18 that the center frequency of the?lter for all three?lter responses is?xed at11.4GHz.By a suitable variation of magnetic bias applied on ferrite slabs and capacitor values,a variable band-width of5%,4%,and3%is,respectively,achieved at the same center frequency.In Fig.15,a constant frequency curve indi-cated by the color black should be followed in order to realize a variable bandwidth?lter.With a

suitable combination of and values,a variable bandwidth performance can be achieved at a desired frequency of operation.Fig.18.Measurement results of variable bandwidth SIW bandpass?lter.

(a)Measured-and-parameters.(b)Enlarged-parameters.

It can be seen from Fig.18(b)that the insertion loss of the ?lter increases as the?lter response becomes narrower.For T and fF,the insertion loss is approximately 1dB,while for T and fF,the insertion loss has increased to2dB.

Figs.16–18present the measurements that were performed using high-UQCL2AXXXBAT2A series ceramic capacitors from the A VX Corporation.The capacitors were used for the proof of concept and to know its effect on frequency response shape and bandwidth of the?lter for a given value of capaci-tance.In order to achieve a continuously-and-?eld tuned bandpass?lter,the ceramic capacitor is now replaced by a var-actor diode MSV34060-0805-2from Aero?ex.

In Fig.19,the measurement result of a magnetically tuned varactor loaded bandpass?lter is presented.In this measure-ment,the varactor diode biasing voltage is kept constant at0V. Similar to only the one-dimensionally tuned bandpass?lter of Fig.16,with the increase of magnetic bias,the?lter response gets narrower and the insertion loss seems to increase.At T,the?lter3-dB bandwidth has reduced from4.7%to 3.1%.

In Fig.20,the measurement results of two-dimensionally tuned bandpass?lter using a YIG ferrite and varactor diode are presented.For an applied bias voltage in the range from V to V,the variation of the nominal capacitance is between0.3–0.5pF.However,this range of capacitance is too high to realize a good matching condition for the?lter. Therefore,a capacitance value of0.1pF is added in series to the varactor diode in order to reduce the total capacitance value to80fF.However,in Fig.19,with80fF of net capacitance,

432IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,VOL.61,NO.1,JANUARY

2013

Fig.19.Measurement results of1-D tuned SIW cavity?lter using ferrite slabs.

(a)Measured-and-parameters.(b)Enlarged-parameters.

the center frequency is approximately at12.1GHz,unlike Figs.16and17,where the?lter center frequency for T is at10.8GHz.This could be caused by the parasitic effects coming from the series connection of a varactor diode and the capacitor.This is illustrated in Fig.11(b),where a bottom view of the bandpass?lter is presented.Two0.1-pF capacitors in series are connected to a via island at the bottom surface of the ?lter.The top and bottom surfaces of each cavities of the?lter are connected by a via-hole.The varactor diode mounted on the top surface will therefore be connected with the bottom surface capacitors in series.As can be seen from Fig.20,by changing the varactor voltage to20V,the3-dB bandwidth of the?lter has been reduced only to4.2%,unlike in Fig.19,where it has been reduced to3.1%at the highest value of applied magnetic ?eld.

IV.E LECTRICALLY AND M AGNETICALLY T UNABLE

C A VITY B ACKE

D S LOT A NTENNA

As shown in Section II,the dual tuning of the cavity can be advantageously used to both increase the frequency tuning range,and at the same time,optimize the matching condition [see Fig.10(a)].Based on the cavity introduced in Section II and on previous study reporting a?xed frequency SIW cavity backed antenna[49],an electrically and magnetically tuned cavity backed slot antenna is presented in this section.As expected,it is experimentally demonstrated that the concept of

simultaneous electric and magnetic tuning increases the total frequency tuning range of the antenna and improves the matching at the same time.Fig.20.Measurement results of2-D tuned SIW cavity?lter using

varactor diode and ferrite slabs.(a)Measured-and-parameters.(b)Enlarged -parameters.

Fig.21.Fabricated SIW cavity backed antenna loaded with capacitor and fer-rite slab mm,mm.

A.Structural Topology

Similar to SIW cavity resonator presented in Section III,the cavity-backed antenna also operates with the dominant mode.The ferrite slab is loaded at an end-wall of the cavity and a capacitor is loaded at the center.The SIW cavity contains a CBCPW current probe on one side for the feeding purpose and a rectangular slot on the other side,as illustrated in Fig.21.

ADHIKARI et al.:SIMULTANEOUS ELECTRIC AND MAGNETIC TWO-DIMENSIONALLY TUNED PARAMETER-AGILE SIW DEVICES

433

Fig.22.Measured -parameter of cavity backed antenna with only 1-D mag-

netic

tuning.

Fig.23.Measured -parameter of cavity-backed antenna with 2-D electric

and magnetic tuning.

B.Measurement Results

In Fig.22,a one-port measurement result of 1-D magnetic tuning of the cavity-backed slot antenna is presented.In this measurement,the value of the capacitance mounted on the cavity is ?xed at 80fF.The external magnetic bias is increased from initial value of 0to 0.36T.With the increase in the value of applied magnetic bias,the resonant frequency shifts toward higher frequency values.At T,the return loss becomes signi ?cant.This loss increase at higher value of magnetic bias is also reported in [4].A total frequency tuning range considering up to the frequency point where the return loss is better than 10dB is equal to 590MHz,i.e.,for the applied magnetic bias from T to T.In Fig.23,a one-port measurement result of a 2-D electric and magnetic tuned cavity-backed slot antenna is presented.It can be seen by replacing the 80-fF capacitor value with 67and 50fF,the total frequency tuning range has signi ?cantly increased from 0.59to 1.4GHz.

From Figs.22and 23,it is clear that the losses arising at the higher frequency value is not related to the magnetic loss due to its operation near the ferromagnetic resonance region [4],but it is related to the mismatch produced at the cavity feeding.Re-ducing the value of capacitance also improves the mismatch;thereby increasing the total frequency tuning range and opti-mizing the antenna return loss and overall ef ?ciency.

In Figs.24and 25,the measured radiation patterns of the cavity backed slot antenna are presented,respectively,for

1-D

Fig.24.Measured radiation pattern

(in dBi)of 1-D magnetic tuned cavity backed slot antenna.(a)-plane.(b)-plane.

Fig.25.Measured radiation pattern (in dBi)of 2-D electric and magnetic tuned cavity backed slot antenna.(a)-plane.(b)-plane.

and 2-D tuning.In Fig.24,the -and -plane radiation pat-terns are plotted for a magnetically tuned cavity-backed slot an-tenna with a value of the capacitance mounted on the cavity ?xed at 80fF,while Fig.25presents the radiation pattern where the antenna is tuned by changing the value of capacitor and the applied magnetic bias.It can be observed that there is no

434IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,VOL.61,NO.1,JANUARY2013

signi?cant difference in radiation patterns shapes.The un-sym-metricity in the-plane pattern is caused by the unequal ground plane length between the cavity feeding side and the side where the ferrite slab is loaded.

V.C ONCLUSION

A concept of simultaneous electric and magnetic two-di-mensionally tuning has been presented and demonstrated with a number of theoretical and experimental cases studies. SIW-based devices including a cavity resonator,bandpass ?lter,and cavity-backed slot-antenna employing the proposed 2-D tuning concept have been successfully designed and fab-ricated.It can be seen theoretically and experimentally that simultaneous electric and magnetic2-D tuning signi?cantly not only increases the total frequency tuning range compared to sole electric or magnetic tuning,but it is also useful in tuning other key design parameters including the factor,input matching,and bandwidth.A?lter with simultaneous frequency and bandwidth tuning has been successfully demonstrated.As a matter of fact,the2-D tuning is related to the resonant mode tuning in our cavity case studies.This mechanism may be of interest to be extended into other structures.

A CKNOWLEDGMENT

The authors would like to thank T.Antonescu,S.Dubé, M.Thibault,and J.Gauthier,all with the Poly-Grames Re-search Center,école Polytechnique de Montréal,Montréal,QC, Canada,for their support in the realization of the prototypes.

R EFERENCES

[1]E. E.Djoumessi,S.O.Tatu,and K.Wu,“Frequency-agile

dual-band direct conversion receiver for cognitive radio systems,”

IEEE Trans.Microw.Theory Techn.,vol.58,no.1,pp.87–94,

Jan.2010.

[2]X.Y.Zhang,C.H.Chan,Q.Xue,and B.-J.Hu,“RF tunable band-

stop?lters with constant bandwidth on a doublet con?guration,”IEEE

Trans.Microw.Theory Techn.,vol.59,no.2,pp.1257–1265,Feb.

2012.

[3]A.Fukuda,K.Kawai,T.Furuta,and S.Narahashi,“MEMS-based re-

con?gurable RF circuits for future mobile terminals,”in Asia–Paci?c

Microw.Conf.,Dec.2007,pp.1–4.

[4]S.Adhikari,Y.-J.Ban,and K.Wu,“Magnetically tunable ferrite loaded

substrate integrated waveguide cavity resonator,”IEEE Microw.Wire-

less Compon.Lett.,vol.21,no.3,pp.139–141,Mar.2011.

[5]C.E.Fay,“Ferrite tuned resonant cavities,”Proc.IRE.,vol.44,no.10,

pp.1446–1449,Oct.1956.

[6]F.F.He,K.Wu,W.Hong,L.Han,and X.Chen,“A low phase-noise

VCO using an electronically tunable substrate integrated waveguide

resonator,”IEEE Trans.Microw.Theory Tech,vol.58,no.12,pp.

3452–3458,Oct.2010.

[7]A.R.Brown and G.M.Rebeiz,“A varactor-tuned RF?lter,”

IEEE Trans.Microw.Theory Techn.,vol.48,no.7,pp.1157–1160,

Jul.2000.

[8]B.W.Kim and S.W.Yun,“Varactor-tuned combline bandpass?lter

using step-impedance microstrip lines,”IEEE Trans.Microw.Theory

Techn.,vol.52,no.4,pp.1279–1283,Apr.2004.

[9]J.Nath,D.Ghosh,J.-P.Maria,A.I.Kingon,W.Fathelbab,P.D.

Franzon,and M.B.Steer,“An electronically tunable microstrip band-

pass using thin-?lm barium-strontium-titanate(BST)varactors,”IEEE

Trans.Microw.Theory Techn.,vol.53,no.9,pp.2707–2712,Sep.

2005.

[10]A.Pothier,J.-C.Orlianges,G.Zheng,C.Champeaux,A.Catherinot,D.

Cros,P.Blondy,and J.Papapolymerou,“Low-loss2-bit tunable band-

pass?lters using MEMS DC contact switches,”IEEE Trans.Microw.

Theory Techn.,vol.53,no.1,pp.354–360,Jan.2005.[11]I. C.Reines, C.L.Goldsmith, C. D.Nordquist, C.W.Dyck,

G.M.Kraus,T. A.Plut,P.S.Finnegan, F.Austin,IV,and

C.T.Sullivan,“A low loss RF MEMS-band integrated

switched?lter bank,”IEEE Microw.Wireless Compon.Lett., vol.15,no.2,pp.74–76,Feb.2005.

[12]K.Entesari and G.M.Rebeiz,“A12–18GHz three-pole RF MEMS

tunable?lter,”IEEE Trans.Microw.Theory Techn.,vol.53,no.8,pp.

2566–2571,Aug.2005.

[13]D.Deslandes and K.Wu,“Single-substrate integration technique of

planar circuits and waveguide?lters,”IEEE Trans.Microw.Theory Techn.,vol.51,no.2,pp.593–596,Feb.2003.

[14]J.C.Bohorquez,B.Potelon,C.Person,E.Rius,C.Quendo,G.

Tanne,and E.Fourn,“Recon?gurable planar SIW cavity resonator and?lter,”in IEEE MTT-S Int.Microw.Symp.Dig.,Jun.11–16,2006, pp.947–950.

[15]M.Armendariz,V.Sekar,and K.Entesari,“Tunable SIW bandpass

?lters using PIN diodes,”in Eur.Microw.Conf.,Sep.28–30,2010,pp.

830–833.

[16]V.Sekar,M.Armendariz,and K.Entesari,“A 1.2–1.6-GHz

substrate-integrated-waveguide RF MEMS tunable?lter,”IEEE Trans.Microw.Theory Techn.,vol.59,no.4,pp.866–876, Apr.2011.

[17]S.Sirci,J.D.Martinez,M.Taroncher,and V.E.Boria,“Varactor-loaded

continuously tunable SIW resonator for recon?gurable?lter design,”

in Eur.Microw.Conf.,Oct.10–13,2011,pp.436–439. [18]G.-M.Yang,J.Lou,J.Wu,M.Liu,G.Wen,Y.Jin,and N.X.Sun,

“Dual-and-?eld tunable multiferroic bandpass?lters with yttrium iron garnet?lm,”in IEEE MTT-S Int.Microw.Symp.Dig.,Jun.2011, pp.1–4.

[19]I.C.Hunter and J.D.Rhodes,“Electronically tunable microwave band-

pass?lters,”IEEE Trans.Microw.Theory Techn.,vol.MTT-30,no.9, pp.1353–1360,Sep.1980.

[20]G.Torregrosa-Penalva,G.Lopez-Risueno,and J.I.Alonso,“A simple

method to design wideband electronically tunable combline?lters,”

IEEE Trans.Microw.Theory Techn.,vol.50,no.1,pp.172–177,Jan.

2002.

[21]Y.-H.Shu,J.A.Navarro,and K.Chang,“Electronically switchable

and tunable coplanar waveguide-slotline bandpass?lters,”IEEE Trans.Microw.Theory Techn.,vol.39,no.3,pp.548–554, Mar.1991.

[22]E.Fourn,A.Pothier,C.Champeaux,P.Tristant,A.Catherinot,P.

Blondy,G.Tanne,E.Ruis,C.Peron,and F.Huret,“MEMS switch-able interdigital coplanar?lter,”IEEE Trans.Microw.Theory Techn., vol.51,no.1,pp.320–324,Jan.2003.

[23]A.Abbaspour-Tamijani,L.Dussopt,and G.M.Rebeiz,“Miniature and

tunable?lters using MEMS capacitors,”IEEE Trans.Microw.Theory Techn.,vol.51,no.7,pp.1878–1885,Jul.2003.

[24]Y.-H.Chun and J.-S.Hong,“Electronically recon?gurable dual-mode

microstrip open-loop resonator?lter,”IEEE Microw.Wireless Compon.Lett.,vol.18,no.7,pp.449–451,Jul.2008.

[25]M.S.Renedo,R.G.García,J.I.Alonso,and C.B.Rodríguez,“Tun-

able combline?lter with continuous control of center frequency and bandwidth,”IEEE Trans.Microw.Theory Techn.,vol.53,no.1,pp.

191–199,Jan.2005.

[26]C.Rauscher,“Recon?gurable bandpass?lter with a three-to-one

switchable passband width,”IEEE Trans.Microw.Theory Techn.,vol.

51,no.2,pp.573–577,Feb.2003.

[27]L.Zhu,V.Devabhaktuni,C.Wang,and M.Yu,“Adjustable bandwidth

?lter design based on interdigital capacitors,”IEEE Microw.Wireless Compon.Lett.,vol.18,no.1,pp.16–18,Jan.2008.

[28]https://www.sodocs.net/doc/9c17404354.html,ler and J.Hong,“Wideband bandpass?lter with recon?gurable

bandwidth,”IEEE Microw.Wireless Compon.Lett.,vol.19,no.1,pp.

28–30,Jan.2010.

[29]https://www.sodocs.net/doc/9c17404354.html,ler and J.Hong,“Wideband bandpass?lter with multiple recon-

?gurable bandwidth states,”in Proc.Eur.Microw.Conf.,Sep.2010, pp.1273–1276.

[30]https://www.sodocs.net/doc/9c17404354.html,ler and J.Hong,“Recon?gurable cascaded coupled line?lter

with four distinct bandwidth states,”IET Microw.Antennas Propag., vol.5,no.14,pp.1730–1737,2011.

[31]https://www.sodocs.net/doc/9c17404354.html,ler and J.Hong,“Cascaded coupled line?lter with recon?g-

urable bandwidths using LCP multilayer circuit technology,”IEEE Trans.Microw.Theory Techn.,vol.60,no.6,pp.1577–1586,Jan.

2003.

[32]E.Pistono,M.Robert,L.Duvillaret,J.-M.Duchamp,A.Vilcot,and

P.Ferrari,“A compact tune-all bandpass?lter based on coupled slowwave resonators,”IEEE Trans.Microw.Theory Techn.,vol.54, no.6,pp.2790–2799,Jun.2006.

ADHIKARI et al.:SIMULTANEOUS ELECTRIC AND MAGNETIC TWO-DIMENSIONALLY TUNED PARAMETER-AGILE SIW DEVICES435

[33]D.Mercier,J.-C.Orlianges,T.Delage,C.Champeaux,A.Catherinot,

D.Cros,and P.Blondy,“Millimetre-wave tune-all bandpass?lters,”

IEEE Trans.Microw.Theory Techn.,vol.52,no.4,pp.1175–1181,

Apr.2004.

[34]B.E.Carey Smith,P.A.Warr,M.A.Beach,and T.Nesimoglu,

“Wide tuning-range planar?lters using lumped-distributed coupled

resonators,”IEEE Trans.Microw.Theory Techn.,vol.53,no.2,pp.

777–785,Feb.2005.

[35]Y.-C.Chiou and G.M.Rebeiz,“Quasi elliptic function1.75–2.25GHz

3-pole bandpass?lter with recon?gurable bandwidth,”IEEE Trans.

Microw.Theory Techn.,vol.60,no.2,pp.244–249,Feb.2012.

[36]Y.B.Zhang,L.Feng,and X.Y.Zhang,“Design of center frequency

and bandwidth tunable bandpass?lter,”in https://www.sodocs.net/doc/9c17404354.html,limeter

Wave Technol.Conf.,May5–8,2012,vol.5,pp.1–4.

[37]H.Joshi,Sigmarsson,H.H.Sungwook Moon,D.Peroulis,and W.J.

Chappell,“High narrowband tunable?lters with controllable band-

width,”in IEEE MTT-S Int.Microw.Symp.Dig.,Jun.7–12,2009,pp.

629–632.

[38]C.C.Yi and G.M.Rebeiz,“A tunable three-pole1.5–2.2-GHz band-

pass?lter with bandwidth and transmission zero control,”IEEE Trans.

Microw.Theory Techn.,vol.59,no.11,pp.2872–2878,Nov.2011.

[39]H.-U.Moon,S.-U.Choi,Y.-H.Cho,and S.-W.Yun,“Size-reduced tun-

able hairpin bandpass?lter using aperture coupling with enhanced se-

lectivity and constant bandwidth,”in IEEE MTT-S Int.Microw.Symp.

Dig.,Jun.15–20,2008,pp.747–750.

[40]K.Kawai,H.Okazaki,and S.Narahashi,“Ring resonators for band-

width and center frequency tunable?lter,”in Eur.Microw.Conf.,Oct.

9–12,2007,pp.298–301.

[41]D.M.Pozar,Microwave Engineering,3rd ed.New York:Wiley,

2005,ch.3,pp.136–137.

[42]D.M.Pozar,Microwave Engineering,3rd ed.New York:Wiley,

2005,ch.9,pp.451–452.

[43]A.Aharoni,“Demagnetizing factors for rectangular ferromagnetic

prisms,”J.Appl.Phys.,vol.83,no.6,pp.3432–3434,Mar.1998.

[44]X.-P.Chen and K.Wu,“Low-loss ultra-wideband transition between

conductors-backed coplanar waveguide and substrate integrated wave-

guide,”in IEEE MTT-S Int.Microw.Symp.Dig.,Jun.7–12,2009,pp.

349–352.

[45]G.L.Matthaei,L.Young,and E.M.T.Jones,Microwave Filters,

Impedance-Matching Networks,Coupling Structures.Norwood,

MA:Artech House,pp.1001–1014.

[46]J.Uher and W.J.R.Hoefer,“Tunable microwave and millimeter-wave

bandpass?lter,”IEEE Trans.Microw.Theory Techn.,vol.39,no.4,pp.

643–653,Apr.1991.

[47]K.J.Button and https://www.sodocs.net/doc/9c17404354.html,x,“Theory of ferrites in rectangular waveg-

uides,”IRE Trans.Antennas Propag.,vol.4,no.7,pp.531–537,Jul.

1956.

[48]A.Ghiotto,S.Adhikari,and K.Wu,“Ferrite-loaded substrate inte-

grated waveguide switch,”IEEE Microw.Wireless Compon.Lett.,vol.

22,no.3,pp.120–122,Mar.2012.

[49]G.Q.Luo,Z.F.Hu,L.X.Dong,and L.L.Sun,“Planar slot antenna

backed by substrate integrated waveguide cavity,”IEEE

Antennas

Wireless Propag.Lett.,vol.7,no.8,pp.236–239,Aug.2008.

Sulav Adhikari(S’07)received the Bachelor degree

in electrical and electronics engineering from Kath-

mandu University,Kathmandu,Nepal,in2002,the

Master degree in microwave engineering from the

Technical University of Munich(TUM),Munich,

Germany,in2005,and is currently working toward

the Ph.D.degree in electrical engineering at the

école Polytechnique de Montréal,Montréal,QC,

Canada.

From2005to2007,he was an RF Application En-

gineer with In?neon Technologies AG,Munich,Ger-many,where he was responsible for complete characterization and measurement of WCDMA RF transceiver chips.From2007to2009,he was with the Insti-tute for Communications Engineering and RF-Systems,Johannes Kepler Uni-versity(JKU),Linz,Austria,where he characterized and designed low-temper-ature co-?red ceramic(LTCC)components and devices up to100GHz.This work was in collaboration between JKU and EPCOS OHG Deutschlandesberg, Austria.His research interests are in the design of multiband and recon?gurable microwave components and systems based on ferromagnetic material and sil-icon varactor diodes for communication and radar applications.

Mr.Adhikari was a?nalist in the2012IEEE Microwave Theory and Tech-niques Society(IEEE MTT-S)International Microwave Symposium(IMS)Stu-dent Paper Competition.He was also a winner of the Student Design

Compe-tition“Development of a large-signal-network-analyzer round robin artifact,”IEEE MTT-S IMS2012.

Anthony Ghiotto(SM’05–M’09)received the M.Sc.

and Ph.D.degrees in electrical engineering from the

Grenoble Institute of Technology,Grenoble,France,

in2005and2008,respectively.

From2009to2011,he was a Post-Doctoral Fellow,

and from2011to2012,a Research Associate with the

Poly-Grames Research Center,école Polytechnique

de Montréal,Montréal,QC,Canada.

Since September2012,he has been an Assistant

Professor with the ENSEIRB-MATMECA Engi-

neering School,Bordeaux Institute of Technlogy, and the Laboratory of Integration from Materials to Systems(IMS),University of Bordeaux,Talence,France.His current research interests include the anal-ysis,design,and integration of passive and active components for microwave and millimeter-wave systems.

Dr.Ghiotto is a technical reviewer for the IEEE M ICROWA VE AND W IRELESS C OMPONENTS L ETTERS and the IEEE A NTENNAS AND W IRELESS P ROPAGATION L ETTERS.He was the recipient of the Young Scientist Award of the International Union of Radio Science(URSI)in2008,and the2009Postdoctoral Fellowship from the Merit Scholarship Program for Foreign Students of the Fonds Québé-cois

de la Recherche sur la Nature et les Technologies(FQRNT),Québec,QC, Canada.

Ke Wu(M’87–SM’92–F’01)is Professor of elec-

trical engineering and Tier-I Canada Research Chair

in RF and millimeter-wave engineering with the

école Polytechnique de Montréal,Montréal,QC,

Canada.He holds the?rst Cheung Kong endowed

chair professorship(visiting)with Southeast Univer-

sity,the?rst Sir Yue-Kong Pao chair professorship

(visiting)with Ningbo University,and an honorary

professorship with the Nanjing University of Sci-

ence and Technology,Nanjing University of Post

Telecommunication,and City University of Hong Kong.He has been the Director of the Poly-Grames Research Center,and the Founding Director of the Center for Radiofrequency Electronics Research of Quebec(Regroupement stratégique of FRQNT).He has also been a Guest and Visiting Professor with many universities around the world.He has authored or coauthored over860referred papers and a number of books/book chapters.He has?led over30patents.His current research interests involve substrate inte-grated circuits(SICs),antenna arrays,advanced computer-aided design(CAD) and modeling techniques,wireless power transmission,and development of low-cost RF and millimeter-wave transceivers and sensors for wireless systems and biomedical applications.He is also interested in the modeling and design of microwave photonic circuits and systems.

Dr.Wu is a Fellow of the Canadian Academy of Engineering(CAE)and the Royal Society of Canada(The Canadian Academy of the Sciences and Human-ities).He is a member of Electromagnetics Academy,Sigma Xi,and URSI. He was an IEEE Microwave Theory and Techniques Society(MTT-S)Dis-tinguished Microwave Lecturer(January2009–December2011).He has held key positions in and has served on various panels and international committees, including the chair of Technical Program Committees,International Steering Committees,and international conferences/symposia.In particular,he was the general chair of the2012MTT-S International Microwave Symposium(IMS). He has served on the Editorial/Review Boards of many technical journals,trans-actions,proceedings,and letters,as well as scienti?c encyclopedia as an ed-itor and a guest editor.He is currently the chair of the joint IEEE chapters of MTT-S/AP-S/LEOS,Montréal,QC,Canada.He is an elected IEEE MTT-S Administrative Committee(AdCom)member(2006–2015)and is chair of the IEEE MTT-S Transnational Committee and Member and Geographic Activities (MGA)Committee.He was the recipient of many awards and prizes including the?rst IEEE MTT-S Outstanding Young Engineer Award,the2004Fessenden Medal of the IEEE Canada,and the2009Thomas W.Eadie Medal of the Royal Society of Canada.

旧版《标准日本语》初级下 单词

《标准日本语》初级下册 第26课 词汇Ⅰ 空港 (くうこう) (0) [名] 机场 両替する (りょうがえする) (0) [动3] 换钱,兑换 忘れる (わすれる) (0) [动2] 忘记 出迎える (でむかえる) (0) [动2] 迎接 全部 (ぜんぶ) (1) [名] 一共 出迎え (でむかえ) (0) [名] 来迎接 見つける (みつける) (0) [动2] 找,找到 歓迎 (かんげい) (0) [名] 欢迎 訪日 (ほうにち) (0) [名] 访日,访问日本 出口 (でぐち) (1) [名] 出口 背 (せ) (1) [名] 个子 ほか (0) [名] 以外 紹介する (しょうかいする) (0) [动3] 介绍 よろしくお願いします (よろしくおねがいします) (0 + 6) [寒暄] 请多关照楽しみ (たのしみ) (4) [名] 盼望,期待,乐于 言葉 (ことば) (3) [名] 语言,词,话语,词语 覚える (おぼえる) (3) [动2] 记住,学会 来日 (らいにち) (0) [名] 来日,来到日本 目的 (もくてき) (0) [名] 目的 展示場 (てんじじょう) (0) [名] 展览会,展览现场 自動車 (じどうしゃ) (2) [名] 汽车 見学 (けんがく) (0) [名] 参观 ホテル (1) [名] 饭店,旅馆 だいじょうぶだ (3) [形动] 不要紧,没关系 李 (り) (1) [专] 李 ~団 (だん) ~目 (め) ~場 (じょう) 词汇Ⅱ おもしろさ (3) [名] 趣味,乐趣 おもしろみ (0) [名] 趣味,妙趣 苦しい (くるしい) (3) [形] 苦 苦しさ (くるしさ) (3) [名] 痛苦 苦しみ (くるしみ) (0) [名] 痛苦 甘さ (あまさ) (0) [名] 甜味,甜头 甘み (あまみ) (0) [名] 甜味 片づける (かたづける) (4) [动2] 收拾,整理 酒 (さけ) (0) [名] 酒 結婚する (けっこんする) (0) [动3] 结婚 火事 (かじ) (1) [名] 着火,火灾 ストーブ (2) [名] 炉子 消す (けす) (0) [动1] 熄,灭

公路电动栏杆机控制模块维修简述

公路电动栏杆机控制模块维修简述 目前,公路自动栏杆机控制模块主要是Magnetic的自动栏杆机控制模块,这种控制模块采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足公路环境下的应用。 下面简单介绍栏杆机控制模块面板的功能与接线,栏杆机控制模块中的数字代表意义和接法如下: “1”表示接电源L(火线)220V AC; “2”表示接电源N(零线); “3”表示电源线地线; “4”表示电机接地线PE; “5”表示电机公共绕组U,接电机公共绕组U; “6”表示电机落杆绕组V,接电机绕组V; “7”表示电机升杆绕组W,接电机绕组W; “8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联); “10、11”表示电机运行电容(4uF/AC450V); “17”表示电源输出24VDC接地线; “18”表示电源输出 24VDC正极; “19”表示控制信号共用线(+24VDC); “20”表示开脉冲,和控制信号共用线(+24VDC)短接有效; “21”表示环路感应器2输入(用于车辆到时自动抬杆,用于6、8模式); “22”表示关脉冲,和控制信号共用线(+24VDC)短接有效; “23”表示抬杆、落杆限位开关输入信号; “24”表示安全开关,接常闭触点;断开时,系统不会执行落杆动作; “25”表示控制信号共用线(+24VDC),同“19”功能一样; “26”表示档杆状态输出公共触点; “27、28”完全等同于“20、22”,常开触点(300ms); “29”表示抬杆状态输出触点; “30”表示落杆状态输出触点; “31、32”表示报警输出,为常开触点。 栏杆机控制模块长期处于工作状态,每天控制栏杆上下达几千次以上,是栏杆机易损元件之一,下面简单介绍几点常见的故障和维修方法,供大家参考: 首先,在维修栏杆机控制模块之前,务必将故障设备的灰尘清除干净,养成这个习惯可以让你检查和维修故障更快速、准确。 故障一控制模块无电现象 控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件(如变压器、电容、电阻等)有无出现变形、断裂、松动、磨损、冒烟、腐蚀等情况。 其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动,以确定设备运行状况以及发生故障的性质和程度。 如某站01#车道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。在更换前

(完整版)初级语法总结(标准日本语初级上下册)

1.名[场所]名[物/人]力*笳◎去歹/「仮歹 名[物/人]总名[场所]笳◎去歹/「仮歹 意思:“ ~有~ ”“~在~”,此语法句型重点在于助词“心‘ 例:部屋忙机力?笳◎去歹。 机总部屋 2.疑问词+哲+动(否定) 意思:表示全面否定 例:教室忙疋沁o 3?“壁①上”意思是墙壁上方的天棚,“壁才是指墙壁上 例:壁 4. ( 1)名[时间]动 表示动作发生的时间时,要在具体的时间词语后面加上助词“V”,这个一个时间点 例:森总心比7時V 起吉去To 注意:只有在包含具体数字的时间时后续助词“V”,比如“ 3月14 日V, 2008年V”;星期后面可加V,比如“月曜日V” ,也可以不加V;但是“今年、今、昨日、明日、来年、去年”等词后面不能加V。 此外:表示一定时间内进行若干次动作时,使用句型“名[时间]V 名[次数]+动” 例:李1週間V2回7°-^^行吉去T。 (2)名[时间段]动:说明动作、状态的持续时间,不能加“ V” 例:李毎日7時間働^^L^o (PS: “V”的更多用法总结请看初级上第15课) ( 3)名V 【用途】【基准】 表示用途时,前接说明用途的名词,后面一般是使"去T等动词 表示基准时,前名词是基准,后面一般是表示评价的形容词。 例:--乙①写真总何V使"去T力、。「用途」 --申請V使"去T。「用途」 乙①本总大人V易L^^ToL力'L、子供V总難L^^To 「基准」 X —X—力*近乙買⑴物V便利^To 「基准」 (4)动(基本形) OV 【用途】【基准】:使用与上述( 3)一样 例:乙O写真求一卜总申請T^OV 使"去T。 ^OV>^3>^ 買“物T^OV 便利^To (5)小句1 (简体形)OV,小句2:名/形動+肚+OV 表示在“小句1 ”的情况下发生“小句2”的情况不符合常识常理,翻译为“尽管…还是…,虽

栏杆机说明书

MAGSTOP MIB 2O/3O/40 栏杆机 及MAGTRONIC MLC 控制器 操作指导 @1999年马格内梯克控制系统(上海)有限公司 地址:上海浦东新区宁桥路999号二幢底西层邮编:201206 电话:(21)58341717 传真:(21)58991233

目录 1. 系统概述 2 1.1 停车场系统的布局 2 1. 2 系统组件概述 2 2 安全 3 2.1一般安全信息3 2.2 建议用途 3 2.3 本手册中使用的安全标志3 2.4 操作安全 4 2.5 技术发展 4 2.6 质量保证 4 3. 装配及安装 5 3.1 构筑安装地基 5 3.2 安装感应线圈 6 3.3 安装机箱 8 3.4 安装栏杆机臂 8 3.5 基本机械结构 9 3.6 设置及校准弹簧 9 3.7 校准栏杆机臂位置 10 4. 电源连接 10 5. MLC控制器 11 5.1 命令发生器:在不同操作模式下的连接及功能 12 5.2 MLC控制器的操作 14 5.3 MLC控制器显示信息的解释 14 5.4 MLC控制器的复位 14 5.5 栏杆机的操作 15 5.6 编制及读取操作数据 16 5.7 校准感应线圈 18 6. 初始化操作 19 6.1 委托程序 19 6.2 在启动过程中显示的信息 19 7. 技术数据 21 7.1 栏杆机 21 7.2 控制器 21 8. 附录 22 8.1校准角度传感器及优化栏杆机的动作22 8.2 校准安全设备的角度 24 8.3 读取时间计数器 25 8.4 读取操作循环计数器 25 8.5 读取制动设置 25 8.6 复位情况的说明 26 8.7 测试模式 27 8.8 校准传感器 28 9. 技术支持 28 10. 备用零部件 29

新版标准日本语初级下册语法总结

▲ cn^明日会議疋使刁資料(这是明天会议要用的资料) ▲b^L^明日乗召飛行機总中国航空^To (我明天乘坐的飞机是中国航空公司的) ▲中国買二尢CD总友達忙貸L^L^o (我把在中国买的CD借给朋友了)操作力?簡単欲LUPT。(我想要操作简单的个人电脑) ▲自転車忙2人疋乗危肚S^To (骑自行车带人很危险) ▲李絵总力y①力*好吉^T相。(小李你喜欢画画啊) ▲手紙总出TO^忘n去L尢。(我忘了寄信) ▲明日①朝总大雨(明天早晨会下大雨吧) ▲森今日会社总休住力、哲Ln去乜人。(森先生今天也许不来公司上班了) ▲子供O時,大吉肚地震力?笳◎去L尢。(我小的时候,发生过大地震。) ▲李亍"丄总見肚力食事^LT^^To (小李边看电视边吃饭) ▲李^人,明日八一亍彳一忙行(小李,你明天参加联欢会吧。) 森^人、昨日駅前O喫茶店森先生,昨天你在车站附近的咖啡店来着吧? 2.映画总見召時後30席忙座◎去To 看电影时,(我)经常坐在最后 的座位。 ▲馬尢LQ地図^

电源磁芯尺寸功率参数.doc

电源磁芯尺寸功率参数

常用电源磁芯参数 MnZn 功率铁氧体 EPC 功率磁芯 特点:具有热阻小、衰耗小、功率大、工作频率宽、重量 轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热 性能稍差。 用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要 求的变压器,如精密仪器、程控交换机模块电源、导航设 备等。 EPC型功率磁芯尺寸规格 磁芯型号Type 尺寸Dimensions(mm) A B C D Emin F G Hmin EPC10/8 10.20±0.20 4.05±0.30 3.40±0.20 5.00±0.20 7.60 2.65±0.20 1.90±0.20 5.30 EPC13/13 13.30±0.30 6.60±0.30 4.60±0.20 5.60±0.20 10.50 4.50±0.30 2.05±0.20 8.30 EPC17/17 17.60±0.50 8.55±0.30 6.00±0.30 7.70±0.30 14.30 6.05±0.30 2.80±0.20 11.50 EPC19/20 19.60±0.50 9.75±0.30 6.00±0.30 8.50±0.30 15.80 7.25±0.30 2.50±0.20 13.10 EPC25/25 25.10±0.50 12.50±0.30 8.00±0.30 11.50±0.30 20.65 9.00±0.30 4.00±0.20 17.00 EPC27/32 27.10±0.50 16.00±0.30 8.00±0.30 13.00±0.30 21.60 12.00±0.30 4.00±0.20 18.50 EPC30/35 30.10±0.50 17.50±0.30 8.00±0.30 15.00±0.30 23.60 13.00±0.30 4.00±0.20 19.50 EPC39/39 39.00±0.50 19.60±0.30 15.60±0.30 18.00±0.30 30.70 14.00±0.30 10.00±0.30 24.50 EPC42/44 42.40±1.00 22.00±0.30 15.00±0.40 17.00±0.30 33.50 16.00±0.30 7.40±0.30 26.50

高速公路自动栏杆机控制模块维修

高速公路自动栏杆机控制模块维修实例【转贴】 本人在成绵高速公路长期的维护工作中收集、总结的一些关于自动栏杆机控制模块的维护心得,供大家参考。成绵高速公路自动栏杆机控制模块主要是恒富威和magnetic专业设计的自动栏杆机控制模块,主要用于栏杆机的控制。采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足高速公路环境下的应用。下面我介绍下栏杆机控制模块面板的功能与接线栏杆机控制模块中的数字代表意义货接法如 下:“1”表示接电源L(火线)220V。“2”表示接电源N (零线)。“3”表示电源线地线。“4”表示电机接地线PE。“5”表示电机公共绕组U;接电机公共绕组U。“6”表示电机落杆绕组V;接电机绕组V。“7”表示电机升杆绕组W;接电机绕组W。“8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联)。“10、11”表示电机运行电容 (4uF/AC450V)。“17”表示24V接地线。“18”表示表示电源+24V。“19”表示控制信号共用线(+24V)。“20”表示开脉冲,和控制信号共用线(+24V)短接有效。“21”表示环路感应器2输入(用于车辆到时自动提杆,用于6、8模式)。“22”表示关脉冲,和控制信号共用线(+24V)短接有效。“23”表示抬杆、落杆限位开关输入信号。“24”示安全开关,接常闭触点;断开时,系统不会执行落杆动作。“25”表示控制信号共用线(+24V),同“19”功能一样。“26”表示档杆状态输出公共触点。“27、28”完全等同于“20、22”表示计数输出,常开触点 (300ms)。“29”表示抬杆状态输出触点。“30”表示落杆状态输出触点。“30、31”表示报警输出,常开触点。栏杆机控制模块长期处于工作状态,每天控制栏杆上下达千次以上;是栏杆机易坏元件之一,下面我介绍常见几点常见的故障和实用的维修方法,供大家参 考。首先,维修设备之前,务必将故障设备的灰尘清除掉,养成这个习惯可以让你维修和检查故障起来轻松、准确许多。 故障一控制模块无电现象控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件,如变压器,电容,电阻等有无出现变形,断裂,松动,磨损,冒烟,腐蚀等情况。其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动;以确定设备运行状况以及发生故障的性质和程度。如某站一道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。我在更换前观察其他元件外表是否变形断裂,用手触摸电容、电感等接头有无松动。其次我就用万用表跑线,看是否有短路现象。经我检查后初步判定为保险丝被击穿,准备替换。替换前应认清被替换元器件的型号和规格。(同时替换某些元件时还应该注意方向。)最后我将同一型号的保险丝替换上并加电,控制模块工作灯亮起,用外用表测试控制模块,修复。有时,无电现象还由变压器(PIN9 0-115V PIN16 115V-0)损坏造成的。控制模块

新标准日本语初级下册25-48课单词中文对照默写版

1 25 [名]数学 [名]专门 [名]女演员 [名]营业科 [名]市内,市街,繁华街道 [名]道路,马路 [名]交通流量,通行量 [名]机场 [名]高速公路 [名]零件制造厂 [名]电梯 [名]图画书,连环画 [名]大自然 [名]工资 [名]今天晚上 [名]伤 [动1]住,过夜,住宿 [动1]连接,系 [动1]印,记下 [动2]出生,诞生 [动3]倒闭,破产 [动3]堵车,停滞 [动3]确认 [形2]充裕,丰富 [连体]大的 [连体]小的 [副]并不 [专]戴 [专]周 [专]唐 [专]中国航空 [专]天安饭店 [专]三环路 _____________________________________________ 这一带,这附近 26 [名]大雨 [名]樱花 [名]风 [名]月亮 [名]表 [名]握手 [名]习惯 [名]鞠躬 [名]寒暄 [名]手 [名]顾客,客人 [名]一般,普通 [名]这回,下面,下回 [名]超市 [名]费用 [名]会费 [名]降价出售 [名]信用卡 [名]彩色铅笔 [名]丰收 [名]关系,友情,友谊 [名]忘记的东西,遗忘的物品 [动1]防御,防备,防守 [动1]走访;转;绕弯 [动1]跑,奔跑 [动1]吹 [动2]举,举起 [动2]足,够 [动3]素描,写生 [动3]发言 [动3]得冠军 [动3]及格,合格 [副]也许 [动3]约定 [副]不知不觉地,无意中 [副]就要,立刻,马上 [副]大部分,几乎 [连]因此 [专]铃木 [专]杨 [专]加藤 [专]叶子 [专]阳光百货商店 [专]北京猛虎队<棒球队名称> _________________________________________ 寒暄拜访 不行,不好,不可以 社 27 [名]经济 [名]国际关系学 [名]许多,众多 [名]高中

Magnetic TOLL栏杆机中文说明书

9 电气连接 9.1 安全 请参照18页,第2.6节“专业安全和特殊危险”中的安全注意事项。 电压 危险 一般 警告

热的表面 小心 电磁干扰 个人保护装备

在施工过程中,必须穿戴以下几种保护装备: ■工作服 ■保护手套 ■安全鞋 ■保护头盔。 9.2安装电保护设备 根据地区或当地的规定,安全设备需要提供给客户。通常有以下几种:■漏电保护器 ■断路器 ■ EN 60947-3的可锁定的2极开关。 9.3连接电源线 电压 危险 注意! 电源线的导线截面在1.5到4mm2 之间。要遵守国家关于 导线长度和相关电缆截面积的规定.

危险! 电压有致命的危险! 1.断开栏杆机系统电源。确保系统断电。确保机器不会再启动。 接线的准备—剥电缆外皮和铁芯绝缘 2.照下图剥开电源线和磁芯 图37:剥电源供应线。 1 电位 2 零线 3 地线 安置电源线 3.照下图,把电源线正确安装在相应的终端线夹上。也可参照,163页,第17.1节的“接线图”。 ■在机箱中正确安装电源线。此电源线不可连接移动部件。 ■用两个束线带固定电源线。 图38 安置电源线 1 电源线

2 束线带 3 束线带的金属突出物 连接电源线 图39:连接电源线 1 电源线的终端线夹 2 电位L 3 零线 N 4 地线 PE 9.4连接控制线路(信号设备) 以下连接对控制和反馈端有效: ■控制栏杆机的8个数码输入 ■反馈信息的4个数码输出 ■反馈信息的6个继电器输出。3个常开,3个转换触点。 危险! 电压有致命危险! 1.断开栏杆机系统电源。确保系统断电并不会重启。 连接控制线 2.将控制线穿过穿线孔。 ■在机箱中合理的放置控制线。控制线不可进入可移动部件。 ■安装控制线夹和绑线。通过轻微按压或移动,线夹可以在轨道上移动到预期的位置。绑线可以绑扎在金属突出物上。 3. 根据接线图连接控制线。请参照163页,第17.1节的“接线图”。

新版中日交流标准日本语初级上下册

新版中日交流标准日本语初级上下册单词测试

初级上册 第1课 〔名〕中国人〔名〕日本人〔名〕韩国人〔名〕美国人〔名〕法国人〔名〕(大)学生 〔名〕老师〔名〕留学生〔名〕教授〔名〕职员〔名〕公司职员 〔名〕店员〔名〕进修生〔名〕企业〔名〕大学(我)父亲〔名〕科长〔名〕总经理,社长 〔名〕迎接〔名〕那个人〔代〕我〔代〕你〔副〕非常,很 〔叹〕哎,是(应答);是的〔叹〕不,不是 〔叹〕哎,哎 呀 〔专〕李 〔专〕王 〔专〕张 〔专〕森 〔专〕林 〔专〕小野 〔专〕吉田 〔专〕田中 〔专〕中村 〔专〕太郎 〔专〕金 〔专〕迪蓬 〔专〕史密斯 〔专〕约翰逊 〔专〕中国 〔专〕东京大 学 〔专〕北京大 学 〔专〕日中商 社 --------------- ------ 你好 对不起,请问 请 请多关照 初次见面 我才要(请您 ~) 是(这样) 不是 不知道 实在对不起 ~さん∕~ち ゅん∕~君く ん 第2课 〔名〕书 〔名〕包,公 文包 〔名〕笔记本, 本子 〔名〕铅笔 〔名〕伞 〔名〕鞋 〔名〕报纸 〔名〕杂志 〔名〕词典 〔名〕照相机 〔名〕电视机 〔名〕个人电 脑 〔名〕收音机 〔名〕电话 〔名〕桌子, 书桌 〔名〕椅子 〔名〕钥匙, 锁 新版中日交流标准日本语初级上、下册单词汇总

〔名〕钟,表〔名〕记事本〔名〕照片〔名〕车〔名〕自行车〔名〕礼物〔名〕特产,名产 〔名〕丝绸〔名〕手绢〔名〕公司〔名〕(敬称)位,人 〔名〕人〔名〕家人,家属 〔名〕(我)母亲 〔名〕母亲〔名〕日语〔名〕汉语,中文 〔代〕这,这个 〔代〕那,那个 〔代〕那,那个 〔疑〕哪个〔疑〕什么〔疑〕谁〔疑〕哪位〔连体〕这,这个〔连体〕那, 那个 〔连体〕那, 那个 〔连体〕哪个 〔叹〕啊 〔叹〕哇 〔叹〕(应答) 嗯,是 〔专〕长岛 〔专〕日本 〔专〕汕头 〔专〕伦敦 --------------- ------ 谢谢 多大 何なん~∕~ 歳さい 第3课 〔名〕百货商 店 〔名〕食堂 〔名〕邮局 〔名〕银行 〔名〕图书馆 〔名〕(高级) 公寓 〔名〕宾馆 〔名〕便利店 〔名〕咖啡馆 〔名〕医院 〔名〕书店 〔名〕餐馆, 西餐馆 〔名〕大楼, 大厦 〔名〕大楼, 建筑物 〔名〕柜台, 出售处 〔名〕厕所, 盥洗室 〔名〕入口 〔名〕事务所, 办事处 〔名〕接待处 〔名〕降价处 理大卖场 〔名〕自动扶 梯 〔名〕衣服 〔名〕风衣, 大衣 〔名〕数码相 机 〔名〕国,国 家 〔名〕地图 〔名〕旁边 〔名〕附近,

(完整版)《中日交流标准日本语》初级下册_所有课文译文1

《中日交流标准日本语》初级下册所有课文译文 第26课学日语很愉快 (1) 小李说:" 学日语很愉快。" 小李日语说得好。 小李忘记在飞机场换钱了。 (2) 今天,田中在机场迎接中国来的代表团。代表团一共5人。机场里人多而且拥挤。抵达机场的人要马上找到来迎接的人很不容易。田中拿着写有"欢迎中国访日代表团"的大纸,在出口等候。 一位高个子的男人说道:"您是田中先生吗回?我是代表团的,姓李。"小李日语说得好。他用汉语向其他4人介绍了田中。小李用日语对田中说:"请多关照。我们期望学到日本的"先进科学技术." (3) 田中:您日语讲得不错啊,来日本几次了? 李:第一次,是听广播学的日语,学会外语很愉快。 田中:是吗?这次来日本的目的是参观机器人展览会和汽车制造厂吧。 李:对。我们期望学到先进的科学技术。 田中:从明天开始就忙了。今天在饭店好好休息吧。 李:在机场忘了兑换日元,不要紧吧? 田中:不要紧,在饭店也能换。

第27课日本人吃饭时用筷子 (1) 日本人吃饭时用筷子。进屋时脱鞋。 田中说:"边吃边谈好不好,大家肚子都饿了吧。" (2) 今晚,田中领小李一行人去饭店附近的一家日本餐馆。小李还一次也没吃过日本饭菜。 田中说:"这是家有名的餐馆,顾客总是很多。今天大概也很拥挤吧"。 餐馆的服务员一面上菜,一面逐个说明菜的名称和吃法。小李他们边喝啤酒边吃饭。 日本人吃饭前要说:"那我吃了",吃完后说:"我吃好了"。小李他们也按照日本的习惯那样说了。 (3) 田中:饭菜怎么样? 李:很好吃。代表团的各位大概都很满意的。 田中:那太好了。 李:而且餐具非常雅致。 田中:是的,日本饭菜很讲究餐具和装盘。有人说:"是用眼睛欣赏的饭菜。" 李:哎,日本人吃饭时不怎么说话啊。田中:是的,中国的情况如何? 李:平时安安静静地吃。不过,喜庆的时候很热闹。吃饭时大家有说有笑。

标准日本语旧版 初级上册课文

第一課私は田中です 私は田中です。 田中さんは日本人です。 田中さんは会社員です。 私は王です。 王さんは日本人ではありません。 王さんは中国人です。 王さんは会社員ではありません。 王さんは学生です。 王さんは東京大学の留学生です。 田中:初めまして。 王:初めまして。わたしは王です。 田中:わはしは田中です。 王:田中さんは会社員です。 田中:はい,そうです。会社員です。旅行社の社員です。 あなたは会社員ですか? 王:いいえ、そうではありません。

第二課これは本です (1) これは本です。 これは雑誌ではありません。 それは王さんの万年筆です。 それは私の万年筆ではありませうん。 あれは中国語の辞書です。 あれは日本語の辞書ではありません。 (2) この新聞は日本の新聞ですか。 はい、それは日本の新聞です。 その本は科学の本ですか。 いいえ、これは科学の本はありません。歴史の本です。あの人はだれでうか。 あの人は私の友達です。 あの人は張さんです。 (3) 田中:こんにちは。 王:こんにちは。 田中:それは何ですか。 王:これは辞書です。 田中:それは英語の辞書ですか

王:いいえ、英語の辞書ではありません。これはフランス語の辞書です。 田中:その辞書は王さんのですか。 王:いいえ、そうではありません。友達のです。これは張さんの辞書です。 第三課ここは学校です (1) ここは学校です。 ここは王さんの学校です。 そこは教室です。 そこは日本語の教室です。 あそこは体育館です。 あそこは図書館です。 (2) 郵便局はここです。 映画館はそこです。 駅はあそこです。 デパートはどこですか。 デパートはあそこです。 デパートは駅の前です。

标准日本语初级总结下册

1、動詞ます形去ます+ ①方~的方法この漢字の読み方を教えてください。「2」 ②やすい易于~ 秋は天気が変わりやすいです。「2」 ③にくい难于~ 法律の文章はわかりにくいです。「2」 ④すぎます做··过头昨日食べ過ぎて、お腹が痛くなりました。「9」 ⑤出します·出来/·起来 テーブルにぶつけたので、拓哉は泣き出しました。「13」 ⑥始めます开始做··田中さんはスポーツジムに通い始めました。「16」 ⑦続けます坚持做··田中さんは学生のときから日記を書き続けています。「16」 ⑧終わります做完·· 張さんはやっと新製品のマニュアルを書き終わりました。「16」 2、動詞て形+ ①てもいい表示许可,可以··明日の試験は辞書を使ってもいいです。「3」てもかまいません表示许可,·也没关系 わたしのパソコンでゲームをしてもかまいません。「3」②てはいけません 不准··不行··不许テスト中は、話してはいけません。「3」③ても/でも 名词+でも表示同类相中列举出的一项 二次会はカラオケでも行きませんか。「2」 動詞て形+も い形形容詞去い变くて+も な形形容詞詞干でも 名詞でも 表示“即使··也··” 雨が降っても、試合は中止しません。「8」疑问词+でも 无论· 席はどこでもいいです。「7」④てみます。 试着做·· 上海に行ったら、リニアモーターカーに乗ってみます。「9」⑤ておきます 事先做某事或暂且防止不管 友達が来るので、部屋を掃除しておきます。「9」⑥てきます 某动作由远及近会議のとき、虫が会議室に飛んできました。「12」做完某事再回来今からさっそく10箱を買ってきます。「12」某状态从过去发展到现在 最近、中国へ留学に来る外国人留学生がだんだん増えてきました。「12」⑦ていきます 某动作由近及远子供が走っていきました。「12」做完某事再离开毎朝、わたしは駅でサンドイッチを買っていきます。「12」

磁芯参数表

常用磁芯参数表 【EER磁芯】 ■ 用途:高频开关电源变压器、匹配变压器、扼流变压器等。 【EE磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器、电感器及扼流圈、脉冲变压器等。

【ETD磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器。 【EI 磁芯】 ■ 用途:高频开关电源变压器、功率变压器、整流变压器、电压互感器等。 【ET 磁芯】 ■ 用途:滤波变压器 【EFD 磁芯】 ■ 用途:高频开关电源变压器器、整流变压器、开关变压器等。

【UF 磁芯】 ■ 用途:整流变压器、脉冲变压器、扼流变压器、电源变压器等。 【PQ 磁芯】 ■ 用途高频开关电源变压器、整流变压器等。 【RM 磁芯】 ■ 用途:高频开关电源变压器、整流变压器、屏蔽变压器、脉冲变压器、脉冲功率变压器、扼流变压器、滤波变压器。 【EP 磁芯】 ■ 用途:功率变压器、宽频变压器、屏蔽变压器、脉冲变压器等。

【H 磁芯】 ■ 用途:宽带变压器、脉冲变压器、脉冲功率变压器、隔离变压器、滤波变压器、扼流变压器、匹配变压器等。 软磁铁氧体磁芯形状与尺寸标准(一) 软磁铁氧体磁芯形状 软磁铁氧体是软磁铁氧体材料和软磁铁氧体磁芯的总称。软磁铁氧体磁芯是用软磁铁氧体材料制成的元件或零件,或是由软磁铁氧体材料根据不同形式组成的磁路。磁芯的形状基本上由成型(形)模具决定,而成型(形)模具又根据磁芯的形状进行设计与制造。 磁芯按磁力线的路径大致可分两大类;磁芯按具体形状分,有各种各样: 磁芯按磁力线路径分类 磁芯按使用时磁化过程所产生磁力线的路径可分为开路磁芯和闭路磁芯两类。 第一类为开路磁芯。这类磁芯的磁路是开启的(open magnetic circuits),通过磁芯的磁通同时要通过周围空间(气隙)才能形成闭合磁路。开路磁芯的气隙占磁路总长度的相当部分,磁阻很大,磁路中的部分磁通在达到气隙以前就已离开磁芯形成漏磁通。因而,开路磁芯在磁路各个截面上的磁通不相等,这是开路磁芯的特点。由于开路磁芯存在大的气隙,磁路受到退磁场作用,使磁芯的有效磁导率μe比材料的磁导率μi有所降低,降低的程度决定于磁芯的几何形状及尺寸。 开路磁芯有棒形、螺纹形、管形、片形、轴向引线磁芯等等。IEC 1332《软磁铁氧体材料分类》标准中称开路磁芯为OP类磁芯。 第二类磁芯为闭路磁芯。这类磁芯的磁路是闭合的(closed magnetic circuits),或基本上是闭合的。IEC 1332称闭路磁芯为CL类磁芯。磁路完全闭合的磁芯最典型的是环形磁芯。此外,还有双孔磁芯、多孔磁芯等等。

栏杆机控制器

MLC 580C N ,5131/04.02Phone:+49 7622/695-5Fax:+49 7622/695-602 e-mail:info@ac-magnetic.de https://www.sodocs.net/doc/9c17404354.html,

Magnetic Control Systems Sdn.Bhd.No.16, Jalan Kartunis U1/47Temasya Ind.Park, Section U140150 Shah Alam, Selangor Darul Ehsan, Malaysia Phone:(+60) 3 / 55691718eMail: info@https://www.sodocs.net/doc/9c17404354.html,.my Magnetic Control Systems (Shanghai) Co. Ltd.999 Ning-qiao Road, Bldg. 2W/1F Pudong New Area Shanghai 201206, China Phone:(+86) 21/ 58 341717eMail: magnetic@https://www.sodocs.net/doc/9c17404354.html, Magnetic Automation Pty. Ltd.19 Beverage Drive Tullamarine, Victoria 3043, Australia Phone:(+61) 3 / 93 30 10 33eMail: info@https://www.sodocs.net/doc/9c17404354.html, Magnetic Automation Corp.3160 Murrell Road Rockledge, FL 32955, USA Phone:(+1) 321/ 635 85 85eMail: info@https://www.sodocs.net/doc/9c17404354.html, Magnetic Autocontrol Pvt.Ltd.Calve Chateau, 2B, IInd Floor Kilpauk 322 Poonamallee High Road IND Chennai, 600010 / India Phone:(+91) 44 6400 443eMail: magneticsales@https://www.sodocs.net/doc/9c17404354.html,

【默写版】新版标准日本语单词表

第1课〔名〕中国人 〔名〕日本人 〔名〕韩国人 〔名〕美国人 〔名〕法国人 〔名〕(大)学生 〔名〕老师 〔名〕留学生 〔名〕教授 〔名〕职员 〔名〕公司职员 〔名〕店员 〔名〕进修生 〔名〕企业 〔名〕大学 (我)父亲 〔名〕科长 〔名〕总经理,社长 〔名〕迎接 〔名〕那个人 〔代〕我 〔代〕你 〔副〕非常,很 〔叹〕哎,是(应答);是的〔叹〕不,不是 〔叹〕哎,哎呀〔专〕王 〔专〕张 〔专〕森 〔专〕林 〔专〕小野 〔专〕吉田 〔专〕田中 〔专〕中村 〔专〕太郎 〔专〕金 〔专〕迪蓬 〔专〕史密斯 〔专〕约翰逊 〔专〕中国 〔专〕东京大学 〔专〕北京大学 〔专〕 JC策划公司 〔专〕北京旅行社 〔专〕日中商社 _____________________________________ 你好 对不起,请问 请 请多关照 初次见面 (请您~) (这样)

不知道 实在对不起 ~さん∕~ちゃん∕~君くん 第2课〔名〕书 〔名〕包,公文包 〔名〕笔记本,本子 〔名〕铅笔 〔名〕伞 〔名〕鞋 〔名〕报纸 〔名〕杂志 〔名〕词典 〔名〕照相机 〔名〕电视机 〔名〕个人电脑 〔名〕收音机 〔名〕电话 〔名〕桌子,书桌 〔名〕椅子 〔名〕钥匙,锁 〔名〕钟,表 〔名〕记事本 〔名〕照片 〔名〕车 〔名〕自行车〔名〕特产,名产〔名〕丝绸 〔名〕手绢 〔名〕公司 〔名〕(敬称)位,人〔名〕人 〔名〕家人,家属〔名〕(我)母亲〔名〕母亲 〔名〕日语 〔名〕汉语,中文〔代〕这,这个〔代〕那,那个〔代〕那,那个〔疑〕哪个 〔疑〕什么 〔疑〕谁 〔疑〕哪位 〔连体〕这,这个〔连体〕那,那个〔连体〕那,那个〔连体〕哪个 〔叹〕啊 〔叹〕哇 〔叹〕(应答)嗯,是〔专〕长岛 〔专〕日本

标准日本语初级单词(下册)

标准日本语初级单词(下册) 第25课 すうがく(数学)[名] 数学 せんもん(専門)[名] 专门 じょゆう(女優)[名] 女演员 えいぎょうか(営業課)[名]营业科 しがい(市街)[名]市内,市街,繁华街道 どうろ(道路)[名]道路,马路 こうつうりょう(交通量)[名]交通流量,通行量くうこう(空港)[名]机场 こうそくどうろ(高速道路)[名]高速公路 ぶひんこうじょう(部品工場)[名]零件制造厂エレベーター[名]电梯 えほん(絵本)[名]图画书,连环画 しぜん(自然)[名]大自然 きゅうりょう(給料)[名]工资 こんや(今夜)[名]今天晚上 けが[名]伤 とまります(泊まります)[动1]住,过夜,住宿むすびます(結びます) [动1]连接,系 とります(取ります)[动1]印,记下 うまれます(生まれます)[动2]出生,诞生

とうさんします(倒産~)[动3]倒闭,破产 じゅうたいします(渋滞~)[动3]堵车,停滞チエックします[动3]确认 ゆたか(豊か)[形2]充裕,丰富 おおきな(大きな)[连体]大的 ちいさな(小さな)[连体]小的 べつに(別に)[副]并不 たい(戴)[专]戴 しゅう(周)[专]周 とう(唐)[专]唐 ちゅうごくこうくう(中国航空)[专]中国航空てんあんはんてん(天安飯店)[专]天安饭店さんかんろ(三環路)[专]三环路 このあたり这一带,这附近 第26课 おおあめ(大雨)[名]大雨 さくら(桜)[名]樱花 かぜ(風)[名]风 つき(月)[名]月亮 ひょう(表)[名]表 あくしゅ(握手)[名]握手 しゅうかん(習慣)[名]习惯 おじぎ(お辞儀)[名]鞠躬

德国magnetic栏杆机常见故障分析

德国Magnetic栏杆机的常见故障分析德国Magnetic自动栏杆机的核心部分是MLC控制器,控制器设置的正确与否直接影响栏杆机的正常工作。当栏杆机工作不正常时,请先确认是否是栏杆机的问题,是栏杆机哪个部分出现问题(如机械部分或控制部分),建议先将其他车道工作正常栏杆机控制器换到本车道,以确认是否是控制器出现问题;如果互换控制器后栏杆机工作正常,那么就确认本车道控制器有问题,请参照工作正常的控制器设置即可;如控制器重新设置后仍不能解决问题,请将控制器返回厂家维修。 以下是德国Magnetic自动栏杆机控制器的几种常见设置,可供参考。 1、控制器黑色按键和白色按键的作用: ?黑键:1)、手动控制抬杆; 2)、控制器编程时改变数值; 3)、控制器编程完毕后保存 ?白键:1)、手动控制落杆; 2)、控制器编程时确认数值; 3)、控制器编程完毕后不保存。 ?编程时,同时按下黑键和白键后数值下边出现光标。 ?同时按下黑键和白键持续四秒钟,控制器重启。 2、MLC控制器复位: ?同时按下黑键和白键持续四秒钟; ?将圆盘转至F,确认后可恢复到出厂设置; ?详见中文说明书第14页。 3、控制器圆盘开关各位置的功能 位置0:普通操作模式 位置1:程序代码 1—8

位置2:转矩时间 1—30秒 位置3:栏杆机开启时间 1—255秒 位置4:感应线圈A灵敏度 O一9 (0最小,9最大) 位置5:感应线圈B灵敏度 0—9(0最小,9最大) 位置6:检测器模式A0—8(见功能说明表) 位置7:检测器模式B0—8(见功能说明表) 位置8:感应线圈A/B频率 1 0,000Hz一90,000Hz 位置9:备用 位置A:计数模式 位置B:备用 位置C:备用 位置D:硬件错误控制器 16进制错误代码 位置E:语种选择德、英、法、西 位置F:出厂设置重设所有操作数据 4、模式设置: 将圆盘转至1,控制器有8种操作模式可供选择;详见中文说明书第16页。 5、控制器编程过程: (1)将圆盘开关转到所需位置; (2)同时按下黑色按键和白色按键; (3)使用黑色按键将数字滚动显示为所需的数值(光标位于正在变化的数字下方); (4)按下白色按键存储选中的数值或者将光标移到右边的一格; (5)按下黑色按键确认最终的数值或者按下白色按键取消输入的数值。 注意:完成编程后,请将圆盘开关转回到“0”位置(即普通操作模式) 6、感应线圈灵敏度设置: 将圆盘转至4或5(设置线圈A转至4,线圈B转至5);一般情况下灵敏度选择4-6,不宜太高或太低。详见中文说明书第16页。 7、检测器A、B的开启和关闭 将圆盘开关转至6和7分别设置检测器A、B的状态,如果A、B线圈都没有使用或只使用了一个检测器,那么就要关闭没有使用的检测器(将检测器A、B的数值设置为0,是关闭状态;检测器开启时数值是应该是1或2,一般用2。) 8、校准传感器/优化栏杆机动作

新版标准日本语

新版标准日本语 《新版中日交流标准日本语初级上、下》(以下简称"新版")于2005年4月出版,是1988年出版的《中日交流标准日本语初级上、下》(以下简称"旧版")的修订本。旧版自发行以来受到了广大读者的喜爱,发行量已逾500万套。为了使这套教材能够充分地体现日语教育以及社会、文化等方面的发展、变化,人民教育出版社与日本光村图书出版株式会社经过3年的努力,策划、编写了这套"新版",此次推出的是初级上、下。 1.李りさんは中国人ちゅうごくじんです。 2.森もりさんは学生がくせいではありません。 3.林はやしさんは日本人にほんじんですか。 4.李りさんはJCジェーシー企画きかくの社員しゃいんです。解析 1.李りさんは中国人ちゅうごくじんです。【名词】は【名词】です。は提示主题,做助词、读作わ。です前为谓语。….是…..。小李是中国人。 2.森もりさんは学生がくせいではありません。【名词】は【名词】ではありません。は同1 。ではありません是です的否定。..不是..。森不是学生。 3.林はやしさんは日本人にほんじんですか。~ですか。~か表示疑问,读作がga 。日语中完整疑问句不用“?”而是用“。”,以“か”表示疑问。は同1 。….吗?小林是日本人吗?3-2疑问句的应答。肯定回复。はい、そうです。(そうです可省略)否定回复。いいえ、ちがいます。(ちがいます可省略)不知道:分かりません。 4.李りさんはJC

ジェーシー企画きかくの社員しゃいんです。は同1(此后不再赘述)【名词】の【名词】表从属,后面的名词是从属于前面机构、国家或者属性的。…的…。小李是JC策划的员工。A甲:わたしは李りです。小野おのさんですか乙:はい、そうです。小野おのです。 B 甲:森もりさんは学生がくせいですか乙:いいえ、学生がくせいではありません。会社員かいしゃいんです。 C 甲:吉田よしださんですか。乙:いいえ、ちがいます。森もりです。 D 甲:李りさんはJCジェーシー企画きかくの社員しゃいんですか。乙:はい、そうです。解析:ABCD四组练习是上述几个基本句子的拓展。重复内容就不赘述了。Aわたしは李りです。小野おのさんですかはい、そうです。小野おのです。【わたし】第一人称,【あなた】第二人称,【あの人】第三人称小野おのさんですか这里省略了主语“あなた”,在日语中可以通过上下文了解到主语,或者出现过一次的内容,为了避免句子累赘,往往会被省略。另外日语中的“あなた”有亲爱的意思,还有直接用“あなた”来称呼对方有时不太礼貌,所以一般不怎么使用这个“あなた”【你】来称呼第二人称,可以用【姓+さん】来表示。在职场也可以用职位来称呼别人。比如課長かちょう、社長しゃちょう。在日语中称呼别人无论男女都用さん,而且只能用于别人名字后面表礼貌,不可用于自己名字后面,所以出现了はい、そうです。小野おのです。(称呼小孩子可以在名字后面+ちゃん。与自己年龄相当、或比自己年轻

标准日本语初级课文词汇(上下册)

第1课 ちゅうごくじん(中国人)〔名〕中国人 にほんじん(日本人)〔名〕日本人 かんこくじん(韓国人)〔名〕韩国人 アメリカじん(~人)〔名〕美国人 フランスじん(~人)〔名〕法国人 がくせい(学生)〔名〕(大)学生 せんせい(先生)〔名〕老师 りゅうがくせい(留学生)〔名〕留学生 きょうじゅ(教授)〔名〕教授 しゃいん(社員)〔名〕职员 かいしゃいん(会社員)〔名〕公司职员 てんいん(店員)〔名〕店员 けんしゅうせい(研修生)〔名〕进修生 きぎょう(企業)〔名〕企业 だいがく(大学)〔名〕大学 ちち(父)〔名〕(我)父亲 かちょう(課長)〔名〕科长 しゃちょう(社長)〔名〕总经理,社长 でむかえ(出迎え)〔名〕迎接 あのひと(あの人)〔名〕那个人 をたし〔代〕我 あなた〔代〕你 どうも〔副〕非常,很 はい〔叹〕哎,是(应答);是的 いいえ〔叹〕不,不是 あっ〔叹〕哎,哎呀 り(李)〔专〕李 おう(王)〔专〕王 ちょう(張)〔专〕张 もり(森)〔专〕森 はやし(林)〔专〕林 おの(小野)〔专〕小野 よしだ(吉田)〔专〕吉田 たなか(田中)〔专〕田中 なかむら(中村)〔专〕中村 たろう(太郎)〔专〕太郎 キム(金)〔专〕金 デュポン〔专〕迪蓬 スミス〔专〕史密斯 ジョンソン〔专〕约翰逊 ちゅうごく(中国)〔专〕中国 とうきょうだいがく(東京大学)〔专〕东京大学ペキンだいがく(北京大学)〔专〕北京大学 ジェーシーきかく(JC企画)〔专〕JC策划公司 ペキンりょこうしゃ(北京旅行社) 〔专〕北京旅行社 にっちゅうしょうじ(日中商事)〔专〕日中商社-------------------------------------------- こんにちは你好 すみません对不起,请问 どうぞ请 よろしくおねがいします(~お願いします) 请多关照はじめまして初次见面 こちらこそ我才要(请您~) そうてす是(这样) ちがいます不是 わかりません(分かりません)不知道 どうもすみません实在对不起 ~さん∕~ちゅん∕~君くん 第2课 ほん(本)〔名〕书 かばん〔名〕包,公文包 ノート〔名〕笔记本,本子 えんぴつ(鉛筆)〔名〕铅笔 かさ(傘)〔名〕伞 くつ(靴)〔名〕鞋 しんぶん(新聞)〔名〕报纸 ざっし(雑誌)〔名〕杂志 じしょ(辞書)〔名〕词典 カメラ〔名〕照相机 テレビ〔名〕电视机 パソコン〔名〕个人电脑 ラジオ〔名〕收音机 でんわ(電話)〔名〕电话 つくえ(机)〔名〕桌子,书桌 いす〔名〕椅子 かぎ〔名〕钥匙,锁 とけい(時計)〔名〕钟,表 てちょう(手帳)〔名〕记事本 しゃしん(写真)〔名〕照片 くるま(車)〔名〕车 じてんしゃ(自転車)〔名〕自行车 おみやげ(お土産)〔名〕礼物 めいさんひん(名産品)〔名〕特产,名产シルク〔名〕丝绸 ハンカチ〔名〕手绢 かいしゃ(会社)〔名〕公司 かた(方)〔名〕(敬称)位,人 ひと(人)〔名〕人 かぞく(家族)〔名〕家人,家属 はは(母)〔名〕(我)母亲 おかあさん(お母さん)〔名〕母亲 にほんご(日本語)〔名〕日语 ちゅうごくご(中国語)〔名〕汉语,中文これ〔代〕这,这个 それ〔代〕那,那个 あれ〔代〕那,那个 どれ〔疑〕哪个 なん(何)〔疑〕什么 だれ〔疑〕谁 どなた〔疑〕哪位 この〔连体〕这,这个 その〔连体〕那,那个 あの〔连体〕那,那个 どの〔连体〕哪个 えっ〔叹〕啊

相关主题