搜档网
当前位置:搜档网 › 界面物理化学习题

界面物理化学习题

界面物理化学习题
界面物理化学习题

界面物理化学-习题

————————————————————————————————作者: ————————————————————————————————日期:

一、 选择题

1. 在相同的温度及压力下,把一定体积的水分散成许多小水滴经这一变化过程,以下性质保持不变的是(d )

(a )总表面能 (b )比表面 (c)液面下的附加压力 (d)表面张力

2. 直径为1×10-2m的球形肥皂泡所受的附加压力为(已知表面张力为0.025N?m -1

)(d ) (a)5 P a (b)10 P a (c)15 Pa (d)20 Pa

思路:因为肥皂泡有内、外两个表面,内面的附加压力是负值,外面的附加压力是正值,故

4'

s p R γ

=

,答案选d。

3. 已知水溶解某物质以后,其表面张力γ与溶质的活度a 呈如下关系:

()0ln 1A Ba γγ=-+

式中γ0为纯水的表面张力,A ,B 为常数,则溶液表面过剩Γ2为(c) (a)()21Aa RT Ba Γ=-

+ (b)()

21ABa

RT Ba Γ=-+

(c)()21ABa RT Ba Γ=

+ (d )()

21Ba

RT Ba Γ=-+

思路:()

211a d a B ABa

A RT da RT Ba RT Ba γ??Γ=-

=--= ?

++??,答案选c。

4. 298K 时,苯蒸汽在石墨上的吸附符合L angm uir 吸附等温式,在苯蒸汽压力为40Pa 时,覆盖率θ=0.05,当θ=0.5时,苯蒸汽的平衡压力为(b )

(a )400 Pa (b)760 P a (c)1000 Pa (d)200 Pa 思路:Langmu ir 公式1ap

ap

θ=

+ 将已知条件的压强和覆盖率代入公式,计算得到a 的值,然后根据新的覆盖度和a ,计算出平衡压力。答案为b 。(要求能够自己推导Lang muir 公式)

5. 在298K 时,已知A 液的表面张力是B 液的一半,其密度是B液的两倍。如果A,B 液分别用相同的毛细管产生大小相同的气泡时,A 液的最大气泡压力差等于B液的(a ) (a)0.5倍 (b )1倍 (c )2倍 (d)4倍 思路:2'

s p R γ

=

,代入该公式计算比值,答案选a 。

6. 将一毛细管插入水中,毛细管中水面上升5cm ,在3cm 处将毛细管折断,这时毛细管上端(c)

(a)水从上端溢出 (b)水面呈凸面 (c )水面呈凹形弯月面 (d )水面呈水平面

思路:液体具有流动性,Ya ng-La place 公式中的半径是可以变化的,不可能出现“井喷”的情

况。

7. 用同一滴管分别滴下1cm 3的NaOH 水溶液、水、乙醇水溶液,各自的滴数多少的次序为(c )

(a )三者一样多

(b)水>乙醇水溶液>N aOH水溶液 (c )乙醇水溶液>水>NaOH 水溶液 (d )N aOH 水溶液>水>乙醇水溶液

思路:乙醇对水而言是表面活性剂,NaOH 对水而言是非表面活性剂。

8. 当水中加入表面活性剂后,将发生(a )

(a )0d da γ< 正吸附 (b)0d da γ< 负吸附 (c )0d da γ> 正吸附 (d)0d da γ> 负吸附 思路:2a d RT da

γ

Γ=-

,表面活性剂在水面富集,可以减小表面张力,为正吸附。答案选a 。

9. 把细长不渗水的两张纸条平行地放在纯水面上,中间留少许举例,小心地在中间滴一滴肥皂水,则两纸条间距离将(a )

(a)增大 (b )缩小 (c )不变 (d)以上三种都有可能

思路:肥皂是表面活性剂,中间的界面张力减小,因此在两侧的水的界面张力作用下,距离增大。答案选a 。

10. 水不能润湿荷叶表面,接触角大于90o ,当水中加入皂素后,接触角将(b ) (a )变大 (b)变小 (c)不变 (d)无法判断 思路:接触角为锐角,表明是可以润湿。答案选b 。

11. 多孔硅胶有强烈的吸水性能,硅胶吸水后其表面Gibbs 自由能将(b ) (a)升高 (b )降低 (c)不变 (d)无法比较 思路:自发过程,故吉布斯自由能减小。答案选b 。

12. 某气体A 2在表面均匀的催化剂(K )表面发生解离反应,生成产物B+C,其反应机理为

()2222a d

k k

k A g K

AK B C K +??→++

已知第二步为决速步,当A 2(g)压力较高时,反应表现的级数为(d )

(a)一级 (b)二级 (c)0.5级 (d)零级 思路:

因为第二步是决速步,所以速率方程写为:[][]2

12d AK r k AK dt

=-

=

[]AK 是中间吸附态,根据稳态近似法,

[][][][]222

2220a

d d AK p k K k AK k AK dt

p Θ

=--= [][][][]{}

[][]{

}

2

2

02

2

0a

a d d p p k K k K AK p

p p

AK m

K AK k k k k

p ΘΘΘ

-=

=

=-++

求解A K的平衡浓度,

[][]0.5

0.51p m K p AK p m p ΘΘ??

???=??+ ???

代入上面的速率方程表达式,得

[]

[]2

0.502

0.51p m K p r k AK k p m p ΘΘ??????

???

??==??

????+ ??

????

? 当初始压强很大的时候,上式简化为[]2

0r k K =,反应速率为一恒定值,所以为0级反应。

13. 恒温恒压下,将一液体分散成小颗粒液滴,该过程液体的熵值将(a ) (a)增大 (b )减小 (c )不变 (d)无法判定

思路:表面积增大,是混乱度增加的过程,所以熵增。答案选a。

14. 微小晶体与普通晶体相比较,性质不正确的是(d )

(a)微小晶体的饱和蒸汽压大 (b )微小晶体的溶解度大

(c )微小晶体的熔点较低 (d )微小晶体的溶解度较小 思路:考察Kelv in 公式。

15. 气相中的大小相邻液泡相碰,两泡将发生的变化是(a ) (a)大泡变大,小泡变小 (b)大泡变小,小泡变大 (c)大泡、小泡均不变 (d)两泡将分离开

思路:根据Yang-Laplace 公式,气泡越小,所受的附加压力越大。小的变小,大的变大。答案选a 。

16. 表面活性剂具有增溶作用,对增溶作用说法不正确的是(c ) (a)增溶作用可以是被溶物的化学势大大降低; (b )增溶作用是一个可逆的平衡过程; (c)增溶作用也就是溶解作用; (d)增溶作用与乳化作用不同

思路:增溶的原理是,被溶物被包裹在胶束内,该过程不是溶解过程,而是自发的包裹聚集。

17. Langmui r吸附等温式满足的条件下,下列不恰当的是(c )

(a)固体表面是均匀的 (b )吸附质分子之间相互作用可以忽略不计 (c )吸附是多分子层的 (d )吸附热不随吸附量改变 思路:L ang mui r吸附是单分子层吸附。

18. 对于物理吸附的描述中,不正确的是(d )

(a )吸附力来源于Van Der W aals 力,其吸附一般不具有选择性 (b )吸附层可以是单分子层或多分子层 (c)吸附热较小 (d)吸附速率较小

思路:物理吸附,吸附的快,脱附也容易。

19. 已知H 2的解离能为436kJ?m ol -1,用气态H原子在清洁的W表面上进行化学吸附时放热293kJ?mol -1。若用1mol H 2在W 表面上全部进行解离吸附,估计其吸附热约为(c)

(a)-150kJ?mol -1 (b)586kJ?mo l-

1 (c)150k J?mo l-1 (d )-143k J?m ol -1

思路:吸热取正号,放热取负号。

20. 称为催化剂毒物的主要行为是(d )

(a)和反应物之一发生化学反应 (b)增加逆反应的速率

(c )使产物变得不活泼 (d)占据催化剂的活性中心 思路:毒化的机理是催化剂表面的活性中心被毒物占领。

二、 填空题

1. 20o C,101.325kP a下,把一半径R1=5mm 的水珠分散成R 2=10-3mm 的小水滴,则小水滴的数目为1.25×1011个,此过程系统ΔG=0.1143J。已知20o C 时,水的表面张力γ=7.275×10-2

N?m -1。 思路:31143V R π=

3

22

43

V R π= 12V nV =,计算得,n =1.25×1011。

S dG SdT VdP dA γ=-++,在恒温、恒压条件下,()

2

22144S G A n R R γγππ?=?=?-,计算

得0.1143J。

2. 20o

C,101.325kPa 的标准大气压力下,在液体水中距液面0.01m 处形成半径为1mm 的小气泡时,气泡内气体的压力为p =1.0157×105Pa 。 思路:因为凹液面的附加压力是负值,所以当形成这个气泡时,为了抵消这个负的附加压力,其内部压强应该是

3500.07275

10132510100.01 1.0157100.001

s p p p gh Pa Pa Pa Pa ρ=-+=-

+??=?-

3. 同种液体,在一定温度下形成液滴、气泡和平面液体,对应的饱和蒸汽压分别是p 滴,p泡和

p 平,若将三者按大小顺序排列应为p 滴>p 平>p 泡。 思路:考察Ya ng-Lap la ce 公式。

4. 液态汞的表面张力γ=[0.4636+8.32×10-3T/K-3.13×10-

7(T/K)2]N?m -1,在400K时,汞的,S T V

U A ???=

????0.5137J?m -2

。 思路:s dU TdS pdV dA γ=-+,,,s A V s T V

S A T γ??????

=- ? ???????

将上述两个等式联立,有,

,,s A V s T V

U T A T γγ??????

=- ? ???????(参看教材316页)

5. T =298K 时,水-空气表面张力γ=7.17×10-

2N?m -1,411, 1.5710s

p A N m K T γ---???

=-???

?

???。在T ,p ?时,可逆地增加2×10-4

m 2

表面,对系统所做的功W=1.434×10-5J,熵变ΔS=3.14×10-8J 。 思路:

2457.1710210 1.43410s W A N m J γ---=?=????=?

因为,,,,s B B

A p n s T p n S A T γ??????

=- ? ?

?????? 所以411428,, 1.5710210 3.1410s B

s A p n S A N m K m J T γ-----???

?=-?=?????=?

?

???

6. 300K 时,水的表面张力γ=0.0728N?m -

1,密度ρ=0.9965×103k g?m -3。在该温度下,一个球形水滴的饱和蒸汽压是相同温度平面水饱和蒸汽压的2倍,这个小水滴的半径是

1.52×10-9

m 。 思路:Kelvin 公式:02ln

'r p M

RT p R γρ

= 131

33

20.07281810ln 2'0.996510N m kg mol RT R kg m

----?????=?? 解得9

' 1.5210R m -=?

7. 从吸附的角度考虑,催化剂的活性取决于吸附强度,一个良好的催化剂应是中等吸附强度。

8. 一般来说,物理吸附的吸附量随温度增高而降低,化学吸附的吸附量随温度增高而先增加,后降低。 三、计算题

1. 在一封闭容器底部钻一个小孔,将容器浸入水中至深度0.40m 处,恰可使水不浸入孔中。已知298K 时水的表面张力为7.2×10-2N?m -1,密度为1.0×103kg?m -3,求孔的半径。

解:容器浸入水中,小孔的地方必然形成凸面液滴。平衡时,其表面的附加压力应等于外面液体的压强,即

2'

s gh p R γρ==

计算得,R’=3.6×10-

5m。

2. 室温时,将半径为1×10-4m 的毛细管插入水与苯的两层液体之间,水在毛细管内上升的

高度为0.04m,玻璃-水-苯的接触角为40o ,已知水和苯的密度分别为1×103kg?m -

3和8×1

02kg?m-

3,求水与苯间的界面张力。 解:根据公式:

-2cos gh R

γθ

ρ=?水苯

计算得,-2

1

-=5.1210N m γ-??水苯

3. 已知水在293K时的表面张力为0.072N?m-1,摩尔质量为0.018kg?mo l-1

,密度为

1×103kg?m -

3,273K 时水的饱和蒸汽压为610.5Pa,在273~293K 温度区间内的水的摩尔汽

化热为40.67k J?mol -1

,求在293K 时,半径为10-9m 水滴的饱和蒸汽压。

解:用Kelvin 公式计算液滴的饱和蒸汽压,但是题目中没有告诉298K 时,液体平面对应的饱和蒸汽压。题目中给出了摩尔汽化热,所以可以用克-克方程来计算293K对应的液体平面上的饱和蒸汽压。

29327311ln 273293vap m K K H p p R K K ???=- ???

解得,3

293 2.07410K p Pa =? 再代入Ke lvin 公式:02ln

'r p M

RT p R γρ

= 解得,293K下,半径为1nm的液滴表面的饱和蒸汽压为6011r p Pa =

4. 291K时,各种饱和脂肪酸水溶液的表面张力γ与其活度a 的关系式可表示为

()01lg 1b a A γγ=-+

0γ是纯水的表面张力,该温度下为0.07286N?m -1,常数A 因酸不同而异,b=0.411,试求:

(1) 该脂肪酸的Gibbs 吸附等温式;

(2) 当a >>A时,在表面的紧密层中,每个脂肪酸分子的截面积。

解:(1)Gibbs 吸附等温式公式:a d RT da

γ

Γ=-

先把表面张力的公式进行变换,得

()

00ln 1ln10

a A b

γγγ+=-

00111=ln101ln10b b d da a A A a A

γγγ=--++ 因此,表面超量为()

ln10ab RT a A γΓ=

+

(2)当a>>A 时,620

5.3810ln10

b mol m RT γ--Γ=

=??

因此,单个脂肪酸分子的截面积为1Γ

,即3.09×10

-19

m 2。

5. 用活性炭吸附CHCl 3,符合L angmuir 吸附等温式,在273K时饱和吸附量为0.0938m 3?kg -1。已知CH Cl 3的分压为13.4kP a时的平衡吸附量为0.0825m3?kg -1。试求: (1)L an gmuir 吸附等温式中的常数a。

(2)当C HC l3的分压为6.67k Pa 时的平衡吸附量。 解:

(1)Lan gmuir 吸附等温式1ap

ap

θ=

+ 将已知条件代入公式,计算得4

5.44810a -=?

(2)根据上述a的值,计算得出分压为6.67kPa 时的覆盖度为0.7842。因为饱和吸附

量已知,所以用饱和吸附量乘以覆盖度即得在该分压下的平衡吸附量,为0.0736m 3?k g-1

6. 在正常沸点时,如果水中仅含有直径为10-

6m 的空气泡,问这样的水开始沸腾,需过热多

少度?已知水在373K时的表面张力γ=0.05890N?m -1

,摩尔蒸发焓Δvap H m =4065

6J?mol -1

解:因为凹面气泡的附加压力是负值,所以尽管达到了沸点,但是气泡内部的实际压强仍小于这个值。为了沸腾,需要继续吸收热量,直至抵这部分取负号的附加压力。又已知水的摩尔蒸发焓,可以用克-克方程求解需要升高的温度。

0011ln

373vap m s H p p p R T ?-??

=- ???

代入数据,解得T =411K,因此,需要继续升高38K。

(完整版)物理化学界面现象知识点

279 界面现象 1. 表面张力、表面功及表面吉布斯函数 表面张力γ:引起液体或固体表面收缩的单位长度上的力,单位为N·m -1。 表面功:'δ/d r s W A ,使系统增加单位表面所需的可逆功,单位为J·m -2。 表面吉布斯函数:B ,,()(/)s T p n G A α??,恒温恒压下系统增加单位表面时所增加的吉布斯 函数,单位为J·m -2。 表面吉布斯函数的广义定义: B()B()B()B(),,,,,,,,( )()()()S V n S p n T V n T p n s s s s U H A G A A A A ααααγ????====???? ',r s T p s W dA dG dA γδ== 表面张力是从力的角度描述系统表面的某强度性质,而表面功及表面吉布斯函数则是从能量角度和热力学角度描述系统表面的某一性质。三者虽为不同的物理量,但它们的数值及量纲等同的,均可化为N·m -1。 在一定温度、压力下,若系统有多个界面,其总界面吉布斯函数: s i i s i G A γ=∑ 2. 弯曲液面的附加压力、拉普拉斯方程 附加压力:Δp =p 内-p 外 拉普拉斯方程:2p r γ?= 规定弯曲液面凹面一侧压力位p 内,凸面一侧压力位p 外;γ为表面张力;r 为弯曲液面的曲率半径,△p 一律取正值;附加压力方向总指向凹面曲率半径中心。 3. 毛细现象 毛细管内液体上升或下降的高度 2cos h r g γθρ= 式中:γ为表面张力;ρ为液体密度;g 为重力加速度;θ为接触角;r 为毛细管半径。当液体不能润湿管壁,θ>90°即0cos θ<时,h 为负值,表示管内凸液体下降的深度。 4. 微小液滴的饱和蒸汽压——开尔文公式

界面物理化学习题

选 择 题 1. 在相同的温度及压力下,把一定体积的水分散成许多小水滴经这一变化过程,以下性质保持不变 的是( d ) (a )总表面能 (b )比表面 ( c )液面下的附加压力 ( d )表面张力 2. 直径为 1×10 -2 m 的球形肥皂泡所受的附加压力为(已知表面张力为 ?m -1 )( d ) (a )5 Pa (b )10 Pa (c )15 Pa (d )20 Pa 思路:因为肥皂泡有内、外两个表面,内面的附加压力是负值,外面的附加压力是正值,故 4 p s ,答案选 d 。 R' 4. 298K 时,苯蒸汽在石墨上的吸附符合 Langmuir 吸附等温式, 在苯蒸汽压力为 40Pa 时,覆盖率 θ=, 当 θ =时,苯蒸汽的平衡压力为( b ) (a )400 Pa (b )760 Pa (c )1000 Pa ( d ) 200 Pa 思路: Langmuir 公式 1 ap 将已知条件的压强和覆盖率代入公式, 计算得到 a 的值,然后根据新的覆盖度和 a ,计算出平衡压力。 答案为 b 。(要求能够自己推导 Langmuir 公式) 5. 在 298K 时,已知 A 液的表面张力是 B 液的一半,其密度是 B 液的两倍。如果 A , B 液分别用相同 的毛细管产生大小相同的气泡时, A 液的最大气泡压力差等于 B 液的( a ) (a )倍 (b )1倍 (c )2倍 (d )4 倍 2 思路: p s ,代入该公式计算比值,答案选 a 。 s R' 6. 将一毛细管插入水中,毛细管中水面上升 5cm ,在 3cm 处将毛细管折断,这时毛细管上端( c ) (a )水从上端溢出 (b )水面呈凸面 (c )水面呈凹形弯月面 ( d )水面呈水平面 思路:液体具有流动性, Yang-Laplace 公式中的半径是可以变化的,不可能出现“井喷”的情况。 7. 用同一滴管分别滴下 1cm 3 的 NaOH 水溶液、水、乙醇水溶液,各自的滴数多少的次序为( c ) (a )三者一样多 (b )水 >乙醇水溶液 >NaOH 水溶液 (c )乙醇水溶液 >水 >NaOH 水溶液 (d )NaOH 水溶液 >水>乙醇水溶液 思路:乙醇对水而言是表面活性剂, NaOH 对水而言是非表面活性3. 已知水溶解某物质以后,其表面张力 γ0 为纯水的表面张力, 式中 A , γ 与溶质的活度 a 呈如下关系: B 为常 数,则溶液表面过剩 Γ2为( c ) a ) Aa RT 1 Ba b ) ABa RT 1 Ba c ) ABa RT 1 Ba d ) Ba RT 1 Ba 思路: ad RT da RT A B 1 Ba ABa ,答案选 c 。 RT 1 Ba

固体界面物理化学

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:固体界面物理与化学 学生所在院(系):化工学院 学生所在学科:化学工程与技术 学生姓名: 学号: 学生类别: 考核结果阅卷人 第 1 页(共7 页)

吸附等温线及其应用 1 吸附等温线的定义 吸附等温曲线是指在一定温度下溶质分子在两相界面上进行的吸附过程达到平衡时它们在两相中浓度之问的关系曲线。在一定温度下.分离物质在液相和固相中的浓度关系可用吸附方程式来表示。作为吸附现象方面的特性有吸附量、吸附强度、吸附状态等,而宏观地总括这些特性的是吸附等温线,也就是说吸附等温线是吸附研究中最重要的关系曲线。 2吸附等温线的分类 2.1 气体吸附等温线 文献中曾报道过许多不同形状的气体吸附等温线,但由国际纯粹与应用化学联合会(IUPAC)提出的物理吸附等温线分类可以归纳为如图1所示的六类吸附等温线:分别是I型、II型、III型、IV型和VI型吸附等温线。图中纵坐标表示吸附量,横坐标为相对压力P/P0,P0表示气体在吸附温时的饱和蒸汽压,P表示吸附平衡时气相的压力。各种吸附等温线对应着吸附时气体在固体表面上的排列形式,固体的孔、表面积、孔径分布以及孔容积等有关信息。 图1 六类气体吸附等温线 I型等温线的特点是,在低相对压力区域,气体吸附量有一个快速增长。这是由于发生了微孔填充过程。随后的水平或近水平平台表明,微孔已经充满,没

有或几乎没有进一步的吸附发生。达到饱和压力时,可能出现吸附质凝聚。外表面相对较小的微孔固体,如活性炭、分子筛沸石和某些多孔氧化物,表现出这种等温线。II型等温线一般由非孔或宏孔固体产生。B点通常被作为单层吸附容量结束的标志。III型等温线以向相对压力轴凸出为特征。这种等温线在非孔或宏孔固体上发生弱的气-固相互作用时出现,而且不常见。IV型等温线由介孔固体产生。一个典型特征是等温线的吸附分支与等温线的脱附分支不一致,可以观察到迟滞回线。在P/P0值更高的区域可观察到一个平台,有时以等温线的最终转而向上结束。V型等温线的特征是向相对压力轴凸起。与III型等温线不同,在更高相对压力下存在一个拐点。V型等温线来源于微孔和介孔固体上的弱气-固相互作用,微孔材料的水蒸汽吸附常见此类线型。VI型等温线以其吸附过程的台阶状特性而著称。这些台阶来源于均匀非孔表面的依次多层吸附。液氮温度下的氮气吸附不能获得这种等温线的完整形式,而液氩下的氩吸附则可以实现。 在这些等温线类型中,已发现存在多种迟滞回线。虽然影响吸附迟滞的不同原因尚未完全清晰,但其存在4种特征,并已由国际纯粹与应用化学联合会(IUPAC)划分出了4种特征类型。迟滞回线的标准类型如图2所示。 图2 迟滞回线的标准类型 H1型迟滞回线可在孔径分布相对较窄的介孔材料,和尺寸较均匀的球形颗粒聚集体中观察到。H2型迟滞回线由有些固体,如某些二氧化硅凝胶给出。其中孔径分布和孔形状可能不好确定,比如,孔径分布比H1型回线更宽。H3型迟

物理化学论 界面现象习题

第十章界面现象 10.1在293.15 K及101.325kPa下,把半径为1×10-3m的汞滴分散成半径为1×10-9m小汞滴,试求此过程系统的表面吉布斯函数变为多少?已知汞的表面张力为0.4865N·m-1。 10.2计算373.15K时,下列情况下弯曲液面承受的附加压。已知373.15K时水的表面张力为58.91×10-3 N·m-1。 (1)水中存在的半径为0.1μm的小气泡; (2)空气中存在的半径为0.1μm的小液滴; (3)空气中存在的半径为0.1μm的小气泡。 10.3 293.15K时,将直径为0.1mm的玻璃毛细管插入乙醇中。问需要在管内加入多大的压力才能防止液面上升?如不加任何压力,平衡后毛细管内液面高度为多少?已知该温度下乙醇的表面张力为22.3×10-3 N·m-1,密度为789.4kg·m-3,重力加速度为9.8m·s-2。设乙醇能很好地润湿玻璃。 10.4水蒸气迅速冷却至298.15K时可达过饱和状态。已知该温度下的表面张力为71.97×10-3 N·m-1,密度为997kg·m-3。当过饱和水蒸气压力为平液面水的饱和蒸汽压的4倍时,计算。 (1)开始形成水滴的半径; (2)每个水滴中所含水分子的个数。 10.5已知CaCO3(s)在773.15K时的密度3900kg·m-3,表面张力为1210×10-3 N·m-1,分解压力为101.325Pa。若将CaCO3(s)研磨成半径为30nm(1nm=10-9m)的粉末,求其在773.15K时的分解压力。 10.6已知273.15K时,用活性炭吸附CHCl3,其饱和吸附量为93.8dm3·kg-1,若CHCl3的分压为13.375kPa,其平衡吸附量为82.5 dm3·kg-1。试求:(1)朗缪尔吸附等温的b值; (2)CHCl3的分压为6.6672 kPa时,平衡吸附量为若干? 10.7在1373.15K时向某固体表面涂银。已知该温度下固体材料的表面张力γs =9 65 mN·m-1,Ag(l)的表面张力γl = 878.5 mN·m-1,固体材料与Ag(l)的表面张力γsl = 1364mN·m-1。计算接触角,并判断液体银能否润湿该材料表面。 10.8 293.15K时,水的表面张力为72.75mN·m-1,汞的表面张力486.5 mN·m-1,而汞和水之间的表面张力为375 mN·m-1,试判断:

物理化学第十章界面现象

第十章界面现象 10.1 界面张力 界面:两相的接触面。 五种界面:气—液、气—固、液—液、液—固、固—固界面。(一般常把与气体接触的界面称为表面,气—液界面=液体表面,气—固界面=固体表面。) 界面不是接触两相间的几何平面!界面有一定的厚度, 有时又称界面为界面相(层)。 特征:几个分子厚,结构与性质与两侧体相均不同 比表面积:αs=A s/m(单位:㎡·㎏-1) 对于一定量的物质而言,分散度越高,其表面积就越大,表面效应也就越明显,物质的分散度可用比表面积αs来表示。 与一般体系相比,小颗粒的分散体系有很大的表面积,它对系统性质的影响不可忽略。 1. 表面张力,比表面功及比表面吉布斯函数 物质表面层的分子与体相中分子所处的力场是不同的——所有表面现象的根本原因! 表面的分子总是趋向移往内部,力图缩小表面积。液体表面如同一层绷紧了的富有弹性的橡皮膜。 称为表面张力:作用于单位界面长度上的紧缩力。单位:N/m, 方向:表面(平面、曲面)的切线方向 γ可理解为:增加单位表面时环境所需作的可逆功,称比表面功。单位:

J · m-2。 恒温恒压: 所以: γ等于恒温、恒压下系统可逆增加单位面积时,吉布斯函数的增加,所以,γ也称为比表面吉布斯函数或比表面能。单位J · m-2 表面张力、比表面功、比表面吉布斯函数三者的数值、量纲和符号等同,但物理意义不同,是从不同角度说明同一问题。(1J=1N·m故1J·m-2=1N·m-1,三者单位皆可化成N·m-1) 推论:所有界面——液体表面、固体表面、液-液界面、液-固界面等,由于界面层分子受力不对称,都存在界面张力。 2. 不同体系的热力学公式 对一般多组分体系,未考虑相界面面积时:

物理化学界面第9章 表面现象总结

第9章表面现象和胶体化学 1 基本概念 1.1界面和表面 不同物质或同种物质的密切接触的两个相之间的过渡区叫界面,如液态水和冰的接触面,水蒸气和玻璃的接触面等等。 表面是指固体对真空或固体和液体物质与其自身的蒸气相接触的面。显然,表面包括在界面的概念之内,但通常并没严格区别两者,“表面”和“界面”互相通用。 1.2 表面能、表面函数和表面功 表面上的物质微粒比他们处于体相内部时多出的能量叫表面能或总表面能。 由于表面的变化通常在等温等压条件下进行,因此这时的表面能实际上就是表面吉布斯函数。 在等温等压下且组成不变的条件下以可逆方式增加体系的表面积时所做的非体积功叫表面功,它在量值上等于表面吉布斯函数。 1.03 表面张力(比表面能) 简单的说,表面张力就是单位面积上的表面能量,即比表面能,因为它与力有相同的量纲,故叫表面张力。实际上,表面张力是表面层的分子垂直作用在单位长度的线段或边界上且与表面平行或相切的收缩力。 1.04 附加压力 弯曲液面下的附加压力是指液面内部承受的压力与外界压力之差,其方向指向曲面球心。 1.5 铺展和铺展系数 某一种液滴在另一种不相溶的液体表面上自行展开形成一层液膜的现象叫铺展,也叫展开。 铺展系数就是某液滴B在液体A的表面上铺展时比表面吉布斯函数的变化值,常用符号为S B/A 1.6 湿润 凡是液体沾湿在固体表面上的现象都叫润湿,其中又分为铺展润湿(液体在固体表面上完全展开),沾湿湿润(液体在固体表面形成平凹透镜)和浸没湿润(固体完全浸渍在液体中),三种湿润程度的差别是:浸没湿润〉铺展湿润〉沾湿湿润 1.7 沾湿功和湿润功 在定温定压下,将单位面积的固-液界面分开时外界所做的可逆功叫沾湿功。这一概念对完全不相溶的两种液体间的界面也适用。 结合功是指定温定压下,将单位面积的液柱拉开时外界所做的可逆功,又叫内聚功。它是同种分子相互吸引能力的量度。 1.08 接触角 液体在固体表面达到平衡时,过三相接触点的切线与固-液界面所夹的最大角叫平衡接触角或润湿角,常用符号θ。例如, 1.09 表面活性物质(表面活性剂) 由亲水的极性基团和亲油的非极性基团组成的能显著降低表面张力的物质叫表面活性物质,又叫表面活性剂,它分离子型和非离子型两大类型,其中离子型表面活性剂又分阴离子型、阳离子型、和两性型三种。1.10 增溶作用 在一种溶剂中加入表面活性物质后,能明显增加原来不溶或微溶于该溶剂的物质的溶解度,这种现象叫增溶作用。如苯不溶于水,加入肥皂后,苯的溶解度大大增加。增溶不同于真正的溶解,主要是促进胶束形成。这种体系是热力学稳定体系。 1.11 乳化作用

物理化学下册总结

第七章 1. 法拉第定律:Q =zFξ 2. 迁移数计算++++-+- = = ++I Q t I I Q Q 【例】用铜电极电解CuSO 4溶液,通电一定时间后测得银电量计中析出0.7512g 银,并测得阳极区溶液中CuSO 4质量增加0.3948g 。试求CuSO 4溶液中离子的迁移数t(Cu 2+)和t(SO 42- )。 (已知摩尔质量M (Ag) = 107.868 g·mol -1,M (CuSO 4) =159.604 g·mol -1。) 解:电量计中析出银的物质的量即为通过总电量:n (电) =0.7512g/M(Ag)= 6.964×10-3 mol 阳极区对Cu 2+ 进行物料衡算:n (原) + n (电)-n (迁出) = n (后) n (迁出) = n (原) -n (后) + n (电) n (迁出) =-+0394812 07512.().()g C u S O g A g 4M M =-?+?-(...)0394821596046964103mol =2.017× 10- 3 mol t (Cu 2+ ) = ()() n n 迁出电=??--201710 6 9641033 .. =0.2896 t (SO 42- ) =1-t (Cu 2+) = 0.7164 3. 电导(G ):=1G /R ,电导率1l G A R =?=?cell s κK ,摩尔电导率:/m m V c κκΛ== 【例】已知25℃时 KCl 溶液的电导率为0.2768 S·m -1。一电导池中充以此溶 液,在25 ℃时测得其电阻为453Ω。在同一电导池中装入同样体积的质量浓度为0.555g.dm -3的CaCl 2溶液,测得电阻为1050Ω。计算(1)电导池系数;(2)CaCl 2溶液的电导率;(3)CaCl 2溶液的摩尔电导率。 解:(1)电导池系数为 (2)CaCl 2溶液的电导率 (3)CaCl 2溶液的摩尔电导 4. 离子独立运动定律∞ ∞ ∞ ++--=+m m m ,,ΛνΛνΛ 【例】已知25℃时0.05mol.dm -3CH 3COOH 溶液的电导率为3.8?10-2S.m -1。计算CH 3COOH 的解离度α及解离常数K θ。4 2 1 ()349.8210..,m H S m mol ∞ + --Λ=? 4213-(CH COO )40.910..m S m mol ∞--Λ=?

关于界面物理化学习题

一、选择题 1. 在相同的温度及压力下,把一定体积的水分散成许多小水滴经这一变化过程,以下性质保持不变的是(d ) (a )总表面能 (b )比表面 (c )液面下的附加压力 (d )表面张力 2. 直径为1×10-2m 的球形肥皂泡所受的附加压力为(已知表面张力为0.025N?m -1)(d ) (a )5 Pa (b )10 Pa (c )15 Pa (d )20 Pa 思路:因为肥皂泡有内、外两个表面,内面的附加压力是负值,外面的附加压力是正值,故 4' s p R γ=,答案选d 。 3. 已知水溶解某物质以后,其表面张力γ与溶质的活度a 呈如下关系: ()0ln 1A Ba γγ=-+ 式中γ0为纯水的表面张力,A ,B 为常数,则溶液表面过剩Γ2为(c ) (a )()21Aa RT Ba Γ=-+ (b )() 21ABa RT Ba Γ=-+ (c )()21ABa RT Ba Γ=+ (d )() 21Ba RT Ba Γ=-+ 思路:() 211a d a B ABa A RT da RT Ba RT Ba γ??Γ=-=--= ?++??,答案选c 。 4. 298K 时,苯蒸汽在石墨上的吸附符合Langmuir 吸附等温式,在苯蒸汽压力为40Pa 时,覆盖率θ=0.05,当θ=0.5时,苯蒸汽的平衡压力为(b ) (a )400 Pa (b )760 Pa (c )1000 Pa (d )200 Pa 思路:Langmuir 公式1ap ap θ=+ 将已知条件的压强和覆盖率代入公式,计算得到a 的值,然后根据新的覆盖度和a ,计算出平衡压力。答案为b 。(要求能够自己推导Langmuir 公式) 5. 在298K 时,已知A 液的表面张力是B 液的一半,其密度是B 液的两倍。如果A ,B 液分别用相同的毛细管产生大小相同的气泡时,A 液的最大气泡压力差等于B 液的(a ) (a )0.5倍 (b )1倍 (c )2倍 (d )4倍 思路:2' s p R γ=,代入该公式计算比值,答案选a 。 6. 将一毛细管插入水中,毛细管中水面上升5cm ,在3cm 处将毛细管折断,这时毛细管上端(c ) (a )水从上端溢出 (b )水面呈凸面 (c )水面呈凹形弯月面 (d )水面呈水平面

物理化学判断过程总结

物理化学判断过程总结 您需要登录后才可以回帖登录 | 注册发布 在这一学期的学习中,我们主要学习到了物理化学中的电化学,量子力学,统计热力学,界面现象与化学动力学的一些基础知识,这其中我个人还有许多地方存在问题,包括一些基础概念,公式,还有解题思路,都有些欠缺。这更能说明这是一门需要我们用心才能学好的课程,在这里请允许我自我检讨一下: 在这一学期的学习生活中,我并没有尽到一个好学生应尽的义务去认真负责的完成本学期的学习任务,导致在临近期末的时候脑海中实在搜刮不出一些讲得出口,拿得出手,上得了台面的知识与技巧,又实际上没有没什么可说的,没什么能说的出口的,可以说是虚度好一段大好时光。学习本如逆水行舟,不进则退。但学期末的总结也只能说是反省一下自我过失,谈不上后悔,和如果当初了......为了期末考试对于我来说我还是要好好复习。以弥补我在这个学期中对物理化学学习的不用功。 但是,这学期的课程中有很多我感兴趣的部分知识点,仍然学了些可以总结的东西,比如电化学。 电化学学习伊始,老师就提点了我们几点基本的学习要求:①理解原电池与电解池的异同点;理解电导‘电导率’摩尔电导率的定义及其应用。②掌握电解质的活度‘离子平均活度和离子平均活动系数的定义及计算。③掌握离子迁移数,离子电迁移率的定义了解迁移数的测定方法。掌握离子独立运动定律和德拜休克尔极限定律。④掌

握电池反应和电极反应的能斯特方程,会利用能斯特方程计算电池电动势和电极电动势。⑤了解浓差电池的原理,了解液接电势的计算。 ⑥了解分解电压和极化的概念以及极化的结果。 学习中我了解到电化学是研究化学能和电能相之间相互转化规律的科学。其中电解质的导电任务是由正,负离子共同承担,向阴,阳两极迁移的正负离子物质的量总和恰好等于通入溶液的总电量,等类似的基本概念。还学会了希托夫法测量离子迁移数的测定方法,电导定义,德拜休克极限公式和有关电池热力学方面的计算与测定。当然不能不提的还有电池的原设计,其中有氧化还原反应的,中和反应的,沉淀反应的以及浓差电池——扩散过程。 窥一斑而见全豹,从本学期的电电化学的学习中,我更加深了了解物理化学这门课的含义:即物理化学是在物理和化学两大学科基础上发展起来的。它以丰富的化学现象和体系为对象,大量采纳物理学的理论成就与实验技术,探索、归纳和研究化学的基本规律和理论,构成化学科学的理论基础。也更加明白了问什么说“物理化学的水平在相当大程度上反映了化学发展的深度”。 最后我想说的是物理化学是一门值得我们学生努力学习的一门课,它相对而言更难,更精,是我们化学专业领域的一块好工具,傻傻的我一开始并不清楚,只有失去才懂得追悔莫及。 经过对物理化学的学习,感觉很系统,很科学,我对这门课程有了进一步的了解与熟悉。物理化学的研究内容是:热力学、动力学、和电化学等,它是化学中的数学、哲学,学好它必须用心、用脑,

物理化学习题6-界面现象

物理化学测验题(六) 一、选择题。在题后括号内,填上正确答案代号。 1、接触角是指: (1)g/l界面经过液体至l/s界面间的夹角; (2)l/g界面经过气相至g/s界面间的夹角; (3)g/s界面经过固相至s/l界面间的夹角; (4)l/g界面经过气相和固相至s/l界面间的夹角; 2、朗缪尔公式克描述为:( )。 (1)五类吸附等温线; (2)三类吸附等温线; (3)两类吸附等温线; (4)化学吸附等温线。 3、化学吸附的吸附力是:( )。 (1)化学键力;(2)范德华力; (3)库仑力。 4、温度与表面张力的关系是: ( )。 (1)温度升高表面张力降低; (2)温度升高表面张力增加; (3)温度对表面张力没有影响; (4)不能确定。 5、液体表面分子所受合力的方向总是:( ),液体表面张力的方向总是:( )。 (1)沿液体表面的法线方向,指向液体内部; (2)沿液体表面的法线方向,指向气相; (3)沿液体的切线方向; (4)无确定的方向。 6、下列各式中,不属于纯液体表面张力的定义式的是: ( ); (1); (2) ; (3) 。 7、气体在固体表面上吸附的吸附等温线可分为:( )。 (1)两类; (2)三类; (3)四类; (4)五类。 8、今有一球形肥皂泡,半径为r ,肥皂水溶液的表面张力为σ,则肥皂泡内附加压力是:( )。 (1) ;(2);(3)。 9、若某液体能在某固体表面铺展,则铺展系数?一定:( )。 (1)< 0; (2)> 0;(3)= 0。 10、等温等压条件下的润湿过程是:( )。 (1)表面吉布斯自由能降低的过程; (2)表面吉布斯自由能增加的过程; (3)表面吉布斯自由能不变的过程; p T A G ,??? ????p T A H ,??? ????V T A F ,? ?? ????r p σ2 =?r p 2σ=?r p σ4=?

界面物理化学习题.docx

感谢你的观看 感谢你的观看 一、 选择题 1. 在相同的温度及压力下,把一定体积的水分散成许多小水滴经这一变化过程,以下性质保持不变的是(d ) (a )总表面能 (b )比表面 (c )液面下的附加压力 (d )表面张力 2. 直径为1×10-2m 的球形肥皂泡所受的附加压力为(已知表面张力为0.025N?m -1)(d ) (a )5 Pa (b )10 Pa (c )15 Pa (d )20 Pa 思路:因为肥皂泡有内、外两个表面,内面的附加压力是负值,外面的附加压力是正值,故 4's p R γ =,答案选d 。 3. 已知水溶解某物质以后,其表面张力γ与溶质的活度a 呈如下关系: 式中γ0为纯水的表面张力,A ,B 为常数,则溶液表面过剩Γ2为(c ) (a )()21Aa RT Ba Γ=- + (b )() 21ABa RT Ba Γ=- + (c )()21ABa RT Ba Γ= + (d )()21Ba RT Ba Γ=- + 思路:()211a d a B ABa A RT da RT Ba RT Ba γ??Γ=- =--= ?++??,答案选c 。 4. 298K 时,苯蒸汽在石墨上的吸附符合Langmuir 吸附等温式,在苯蒸汽压力为40Pa 时,覆盖率θ=0.05,当θ=0.5时,苯蒸汽的平衡压力为(b ) (a )400 Pa (b )760 Pa (c )1000 Pa (d )200 Pa 思路:Langmuir 公式1ap ap θ= + 将已知条件的压强和覆盖率代入公式,计算得到a 的值,然后根据新的覆盖度和a ,计算出平衡压力。答案为b 。(要求能够自己推导Langmuir 公式) 5. 在298K 时,已知A 液的表面张力是B 液的一半,其密度是B 液的两倍。如果A ,B 液分别用相同的毛细管产生大小相同的气泡时,A 液的最大气泡压力差等于B 液的(a ) (a )0.5倍 (b )1倍 (c )2倍 (d )4倍 思路:2's p R γ =,代入该公式计算比值,答案选a 。 6. 将一毛细管插入水中,毛细管中水面上升5cm ,在3cm 处将毛细管折断,这时毛细管上端(c ) (a )水从上端溢出 (b )水面呈凸面 (c )水面呈凹形弯月面 (d )水面呈水平面 思路:液体具有流动性,Yang-Laplace 公式中的半径是可以变化的,不可能出现“井喷”的情况。 7. 用同一滴管分别滴下1cm 3的NaOH 水溶液、水、乙醇水溶液,各自的滴数多少的次序为(c )

界面物理化学复习知识点

界面物理化学复习知识点 绪论 1、界面定义 界面:物体与物体之间的接触面,也称两种物质之间的接触面、连接层和分界层。 复合材料的界面是指基体与增强物之间化学成分有显著变化的、构成彼此结合的、能起载荷传递作用的微小区域。界面通常包含以下几个部分:基体和增强物的部分原始接触面;基体与增强物相互作用生成的反应产物,此产物与基体及增强物的接触面; 2、复合材料定义:用经过选择的、含一定数量比的两种或两种以上的组分(或称组元),通过人工复合、组成多相、三维结合且各相之间有明显界面的、具有特殊性能的材料。 外加颗粒增强和内生颗粒增强复合材料的比较 3、界面连接情况 根据界面的连接紧密程度,界面连接有两种情况:物质之间无相互渗透和物质之间有相互渗透 4、界面所起的作用 界面的效应 (1)传递效应界面能传递力,即将外力传递给增强物,起到基体和增强物之间的桥梁作用。 (2)阻断效应结合适当的界面有阻止裂纹扩展、中断材料破坏、减缓应力集中的作用。

(3)不连续效应在界面上产生物理性能的不连续性和界面摩擦出现的现象,如抗电性、电感应性、磁性、耐热性、尺寸稳定性等。(4)散射和吸收效应光波、声波、热弹性波、冲击波等在界面产生散射和吸收,如透光性、隔热性、隔音性、耐机械冲击及耐热冲击性等。 (5)诱导效应一种物质(通常是增强物)的表面结构使另一种(通常是聚合物基体)与之接触的物质的结构由于诱导作用而发生改变,由此产生一些现象,如强的弹性、低的膨胀性、耐冲击性和耐热性等 界面效应是任何一种单一材料所没有的特性,它对复合材料具有重要的作用。界面效应既与界面结合状态、形态和物理-化学性质有关,也与复合材料各组分的浸润性、相容性、扩散性等密切相关。 5、物质固液气态,表现出的界面种类,举例说明 气—液界面:蒸发、蒸馏、表面张力、泡沫。蒸发——部分液相分子在一定温度下转换为气相分子;蒸馏——液体分子蒸发后,部分气相分子凝结为液相分子。 液—液界面:乳液、界面张力。乳液——两不互溶液体相互接触时,一相的微滴分散在另一项的液体内,微滴对光线发生漫射反射;界面张力——互不相溶的两相液体接触界面上所特有的一种力。 气/固界面:气体吸附、气蚀、升华、灰尘、催化反应、固体的分解。气体吸附——吸附剂吸收气体的一种作用;气蚀——如汽轮机的叶片,长期受喷射气体的冲刷所发生的腐蚀;升华——固体直接气化的现象;灰尘——固体的微粒悬浮于空气中。

界面物理化学-习题

界面物理化学-习题

一、 选择题 1. 在相同的温度及压力下,把一定体积的水分散成许多小水滴经这一变化过程,以下性质保持不变的是(d ) (a )总表面能 (b )比表面 (c )液面下的附加压力 (d )表面张力 2. 直径为1×10-2m 的球形肥皂泡所受的附加压力为(已知表面张力为0.025N?m -1)(d ) (a )5 Pa (b )10 Pa (c )15 Pa (d )20 Pa 思路:因为肥皂泡有内、外两个表面,内面的附加压力是负值,外面的附加压力是正值,故 4's p R γ =,答案选d 。 3. 已知水溶解某物质以后,其表面张力γ与溶质的活度a 呈如下关系: ()0 ln 1A Ba γγ=-+ 式中γ0为纯水的表面张力,A ,B 为常数,则溶液表面过剩Γ2为(c ) (a )()21Aa RT Ba Γ=-+ (b )()21ABa RT Ba Γ=-+

4倍 思路:2's p R γ=,代入该公式计算比值,答案选a 。 6. 将一毛细管插入水中,毛细管中水面上升5cm ,在3cm 处将毛细管折断,这时毛细管上端(c ) (a )水从上端溢出 (b )水面呈凸面 (c )水面呈凹形弯月面 (d )水面呈水平面 思路:液体具有流动性,Yang-Laplace 公式中的半径是可以变化的,不可能出现“井喷”的情况。 7. 用同一滴管分别滴下1cm 3的NaOH 水溶液、水、乙醇水溶液,各自的滴数多少的次序为(c ) (a )三者一样多 (b )水>乙醇水溶液>NaOH 水溶液 (c )乙醇水溶液>水>NaOH 水溶液 (d )NaOH 水溶液>水>乙醇水溶液 思路:乙醇对水而言是表面活性剂,NaOH 对水而言是非表面活性剂。 8. 当水中加入表面活性剂后,将发生(a )

物理化学界面现象知识点

界面现象 1. 表面张力、表面功及表面吉布斯函数 表面张力γ:引起液体或固体表面收缩的单位长度上的力,单位为N·m -1。 表面功:'δ/d r s W A ,使系统增加单位表面所需的可逆功,单位为J·m -2。 表面吉布斯函数:B ,,()(/)s T p n G A α??,恒温恒压下系统增加单位表面时所增加的吉布斯 函数,单位为J·m -2。 表面吉布斯函数的广义定义: B()B()B()B(),,,,,,,,( )()()()S V n S p n T V n T p n s s s s U H A G A A A A ααααγ????====???? ',r s T p s W dA dG dA γδ== 表面张力是从力的角度描述系统表面的某强度性质,而表面功及表面吉布斯函数则是从能量角度和热力学角度描述系统表面的某一性质。三者虽为不同的物理量,但它们的数值及量纲等同的,均可化为N·m -1。 在一定温度、压力下,若系统有多个界面,其总界面吉布斯函数: s i i s i G A γ=∑ 2. 弯曲液面的附加压力、拉普拉斯方程 附加压力:Δp =p 内-p 外 拉普拉斯方程:2p r γ?= 规定弯曲液面凹面一侧压力位p 内,凸面一侧压力位p 外;γ为表面张力;r 为弯曲液面的曲率半径,△p 一律取正值;附加压力方向总指向凹面曲率半径中心。 3. 毛细现象 毛细管内液体上升或下降的高度 2cos h r g γθρ= 式中:γ为表面张力;ρ为液体密度;g 为重力加速度;θ为接触角;r 为毛细管半径。当液体不能润湿管壁,θ>90°即0cos θ<时,h 为负值,表示管内凸液体下降的深度。 4. 微小液滴的饱和蒸汽压——开尔文公式

完整版物理化学界面现象知识点.doc

第九章界面现象 界面现象 1.表面张力、表面功及表面吉布斯函数 表面张力γ:引起液体或固体表面收缩的单位长度上的力,单位为N·m 1。 表面功:' 2。 W A ,使系统增加单位表面所需的可逆功,单位为J·m δ r / d s 表面吉布斯函数:( G / A s ) T , p,n B ( ) ,恒温恒压下系统增加单位表面时所增加的吉布斯 函数,单位为 J·m 2。 表面吉布斯函数的广义定义: ( U )S ,V , n B( H ) S, p,n B( ) ( A G A s ) ( ) T,V ,n B( ) ( )T ,p ,n B( ) A s A s A s ' dA s dG T , p dA s W r 表面张力是从力的角度描述系统表面的某强度性质,而表面功及表面吉布斯函数则是 从能量角度和热力学角度描述系统表面的某一性质。三者虽为不同的物理量,但它们的数 值及量纲等同的,均可化为N·m 1。 在一定温度、压力下,若系统有多个界面,其总界面吉布斯函数: G s i A s i i 2.弯曲液面的附加压力、拉普拉斯方程 附加压力:p=p 内 p 外 2 拉普拉斯方程:p r 规定弯曲液面凹面一侧压力位 p 内,凸面一侧压力位 p 外;γ为表面张力; r 为弯曲液面的曲率半径,△ p 一律取正值;附加压力方向总指向凹面曲率半径中心。 3.毛细现象 毛细管内液体上升或下降的高度 2 cos h g r 式中:γ为表面张力;ρ为液体密度; g 为重力加速度;θ为接触角;r为毛细管半径。当液体不能润湿管壁,θ>90°即cos0 时,h为负值,表示管内凸液体下降的深度。 4.微小液滴的饱和蒸汽压——开尔文公式

界面物理化学(完整版)

硕士研究生课程论文(或读书报告) 课程名称:界面物理化学 题目:讨论空气中微小分散粒子对环境的影响题目类型(课程论文或读书报告):读书报告 学院:化学工程学院 专业名称: 姓名: 学号: 任课教师: 授课时间:2013年11月13日~2014年01月08日提交时间: 2014年01月13日

背景:在工业化时代,人类对能量资源的开发利用极度丰富了人类自身生活,促进了人类发展。然而对资源的过度开发以及对环境的忽视,人类居住的空间愈发混沌。40年代美国洛杉矶光化学烟雾事件;1952年伦敦毒雾事件;1989年希腊雅典二氧化碳超标接近60%全国进入紧急状态事件;2013年年初,我国中东部地区雾霾久久不能散去,一条巨大的深褐色的污染带横扫华夏,北京地区PM2.5检测值接近1000等等。环境污染事件层出不穷,触目惊心。对空气监测刻不容缓,研究和掌握空气中微小分散粒子的性质意义重大。 空气中微小分散粒子对环境的影响 分散质即分散介质是由物质分散成微小的离子而分布在另一种物质中所组成的物系。通常根据分散介质为气液固得到气溶胶液溶胶和固溶胶。由各种固体或液体微粒均匀地分散在空气中形成一个庞大的分散体系,称为气溶胶体系。气溶胶体系中分散的各种粒子称为大气颗粒物。从城市空气质量评价标准的角度考虑,有总悬浮颗粒物、二氧化硫、氮氧化物三大指标。其中,总悬浮颗粒物按粒径分为动力学直径小于10μm不能被人的上呼吸道所阻挡的可吸入性颗粒PM10;动力学直径小于2.5μm的可吸入性气溶胶PM2.5,这种气溶胶微粒被吸入人体后,会渗透到肺部组织的深处,可引起支气管炎和肺癌等病变。从颗粒状态分成8类,如图1。 图1 大气颗粒物分类及其粒径

物理化学总结

第二章 热力学第一定律 一、基本概念 系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。 二、基本定律 热力学第一定律:ΔU =Q +W 。 焦耳实验:ΔU =f (T ) ; ΔH =f (T ) 三、基本关系式 1、体积功的计算 δW = -p e d V 恒外压过程:W = -p e ΔV 可逆过程:12 21ln ln p p nRT V V nRT W == 2、热效应、焓 等容热:Q V =ΔU (封闭系统不作其他功) 等压热:Q p =ΔH (封闭系统不作其他功) 焓的定义:H =U +pV ; d H =d U +d(pV ) 焓与温度的关系:ΔH =?2 1 d p T T T C 3、等压热容与等容热容 热容定义:V V )(T U C ??=;p p )(T H C ??=

定压热容与定容热容的关系:nR C C =-V p 热容与温度的关系:C p =a +bT +c’T 2 四、第一定律的应用 1、理想气体状态变化 等温过程:ΔU =0 ; ΔH =0 ; W =-Q =?-p e d V 等容过程:W =0 ; Q =ΔU =?T C d V ; ΔH =?T C d p 等压过程:W =-p e ΔV ; Q =ΔH =?T C d p ; ΔU =?T C d V 可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ 求出T 2, W =ΔU =?T C d V ;ΔH =?T C d p 不可逆绝热过程: Q =0 ; 利用C V (T 2-T 1)=-p e (V 2-V 1)求出T 2, W =ΔU =?T C d V ;ΔH =?T C d p 2、相变化 可逆相变化:ΔH =Q =n Δ_H ; W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W 3、热化学 物质的标准态;热化学方程式;盖斯定律;标准摩尔生成焓。 摩尔反应热的求算:)298,()298(B H H m f B m r θθν?=?∑

界面物理化学 习题

一、 选择题 1、 在相同的温度及压力下,把一定体积的水分散成许多小水滴经这一变化过程,以下性质保持不变的就是(d ) (a)总表面能 (b)比表面 (c)液面下的附加压力 (d)表面张力 2、 直径为1×10-2m 的球形肥皂泡所受的附加压力为(已知表面张力为0、025N?m -1)(d ) (a)5 Pa (b)10 Pa (c)15 Pa (d)20 Pa 思路:因为肥皂泡有内、外两个表面,内面的附加压力就是负值,外面的附加压力就是正值,故 4' s p R γ=,答案选d 。 3、 已知水溶解某物质以后,其表面张力γ与溶质的活度a 呈如下关系: ()0ln 1A Ba γγ=-+ 式中γ0为纯水的表面张力,A,B 为常数,则溶液表面过剩Γ2为(c ) (a)()21Aa RT Ba Γ=-+ (b)() 21ABa RT Ba Γ=-+ (c)()21ABa RT Ba Γ=+ (d)() 21Ba RT Ba Γ=-+ 思路:() 211a d a B ABa A RT da RT Ba RT Ba γ??Γ=-=--= ?++??,答案选c 。 4、 298K 时,苯蒸汽在石墨上的吸附符合Langmuir 吸附等温式,在苯蒸汽压力为40Pa 时,覆盖率θ=0、05,当θ=0、5时,苯蒸汽的平衡压力为(b ) (a)400 Pa (b)760 Pa (c)1000 Pa (d)200 Pa 思路:Langmuir 公式1ap ap θ=+ 将已知条件的压强与覆盖率代入公式,计算得到a 的值,然后根据新的覆盖度与a,计算出平衡压力。答案为b 。(要求能够自己推导Langmuir 公式) 5、 在298K 时,已知A 液的表面张力就是B 液的一半,其密度就是B 液的两倍。如果A,B 液分别用相同的毛细管产生大小相同的气泡时,A 液的最大气泡压力差等于B 液的(a ) (a)0、5倍 (b)1倍 (c)2倍 (d)4倍 思路:2' s p R γ=,代入该公式计算比值,答案选a 。 6、 将一毛细管插入水中,毛细管中水面上升5cm,在3cm 处将毛细管折断,这时毛细管上端(c ) (a)水从上端溢出 (b)水面呈凸面 (c)水面呈凹形弯月面 (d)水面呈水平面 思路:液体具有流动性,Yang-Laplace 公式中的半径就是可以变化的,不可能出现“井喷”的情况。 7、 用同一滴管分别滴下1cm 3的NaOH 水溶液、水、乙醇水溶液,各自的滴数多少的次序为(c ) (a)三者一样多 (b)水>乙醇水溶液>NaOH 水溶液 (c)乙醇水溶液>水>NaOH 水溶液

第十二章界面现象

第十二章界面现象 12.1 表面吉布斯自由能和表面张力 12.1.1 表面和界面(surface and interface) 界面是指两相接触的约几个分子厚度的过渡区,若其中一相为气体,这种界面通常称为表面。 严格讲表面应是液体和固体与其饱和蒸气之间的界面,但习惯上把液体或固体与空气的界面称为液体或固体的表面。常见的界面有:1.气-液界面,2.气-固界面,3.液-液界面,4.液-固界面,5. 固-固界面。 12.1.2 界面现象的本质 表面层分子与内部分子相比,它们所处的环境不同。 体相内部分子所受四周邻近相同分子的作用力是对称的,各个方向的力彼此抵销; 但是处在界面层的分子,一方面受到体相内相同物质分子的作用,另一方面受到性质不同的另一相中物质分子的作用,其作用力未必能相互抵销,因此,界面层会显示出一些独特的性质。 对于单组分体系,这种特性主要来自于同一物质在不同相中的密度不同;对于多组分体系,则特性来自于界面层的组成与任一相的组成均不相同。 最简单的例子是液体及其蒸气组成的表面。 液体内部分子所受的力可以彼此抵销,但表面分子受到体相分子的拉力大,受到气相分子的拉力小(因为气相密度低),所以表面分子受到被拉入体相的作用力。 这种作用力使表面有自动收缩到最小的趋势,并使表面层显示出一些独特性质,如表面张力、表面吸附、毛细现象、过饱和状态等。 12.1.3 比表面(specific surface area) 比表面通常用来表示物质分散的程度,有两种常用的表示方法:一种是单位质量的固体所具有的表面积;另一种是单位体积固体所具有的表面积。即:

/ m V A A m A A V ==或 式中,m 和V 分别为固体的质量和体积,A 为其表面积。目前常用的测定表面积的方法有BET 法和色谱法。 12.1.4 分散度与比表面 把物质分散成细小微粒的程度称为分散度。把一定大小的物质分割得越小,则分散度越高,比表面也越大。例如,把边长为1cm 的立方体1cm 3逐渐分割成小立方体时,比表面增长情况列于下表: 边长l/m 立方体数 比表面A v /(m 2/m 3) 1×10-2 1 6 ×102 1×10-3 103 6 ×103 1×10-5 109 6 ×105 1×10-7 1015 6 ×107 1×10-9 1021 6 ×109 12.1.5 表面功(surface work ) 由于表面层分子的受力情况与本体中不同,因此如果要把分子从内部移到界面,或可逆的增加表面积,就必须克服体系内部分子之间的作用力,对体系做功温度、压力和组成恒定时,可逆使表面积增加d A 所需要对体系作的功,称为表面功。用公式表示为: 'd W A δγ= 式中γ为比例系数,它在数值上等于当T ,P 及组成恒定的条件下,增加单位表面积时所必须对体系做的可逆非膨胀功。 12.1.6 表面自由能(surface free energy) 考虑了表面功,热力学基本公式中应相应增加γd A 一项,即: B B B d d d d U T S P V A dn γμ=-++∑ B B B d d d d H T S V P A dn γμ=+++∑ B B B d d d d F S T P V A dn γμ=--++∑

相关主题