搜档网
当前位置:搜档网 › 最短路径问题(定稿)

最短路径问题(定稿)

最短路径问题(定稿)
最短路径问题(定稿)

最短路径问题(导学案)

洪湖市龙口镇和里中学龚宝金

教学目标:

1知识与技能:理解和掌握解决最短距离问题的一般思想方法

2.过程与方法:培养学生转化思想和数形结合思想

3.情感态度与价值观:通过专项讲解,归纳出方法和规律,消除学生对此类问题的陌生感

和畏惧感,提高学生解决问题的信心和解决问题的能力。

教学重点:利用轴对称作图确定使距离最短的点

教学难点:数形结合思想与数学建模思想的培养

教学过程

一.温故而知新1.

在公路l 两侧有两村庄,现要在公路l 旁修建一所候车亭P,要使候车亭到两村庄的距离之和最短,试确定候车亭P 的位置。★思考:本题运用了。随堂练习一.

1.造桥选址问题:如图,A、B 两地在一条河的两岸,现要在河上造一座桥MN,桥造在何

处可使从A 到B 的路径AMNB 最短?(假定河的两岸是平行的直线,桥要与河垂直。)★思考:本题运用了。

二.温故而知新2.

如图,在河的同侧有两村庄,现要在河边L 建一泵站P 分别向A 、B 两村庄同时供水,要使泵站P 到A 村、B 村的距离之和最短,确定泵站P 的位置。★思考:本题运用了

A

B

随堂练习二:

1.如图,已知正方形ABCD,点M为BC边的中点,P为对角线BD上的一动点,要

使PM+PC的值最小,请确定点P的位置。

2.如图,已知菱形ABCD,M、N分别为AB、BC边的中点,P为对角线AC上的一

动点,要使PM+PN的值最小,试确定点P的位置。

三.合作探究——拓展与延伸.

1.如图,点P在∠AOB内部,问如何在射线OA、OB上分别找点C、D,

使PC+CD+DP之和最小?

2.饮马问题:如图牧马人从A地出发,先到草地边某一处牧马,再到河边饮马,然后回

到B处,请画出最短路径。

第1题图第2题图

M

N

C

A

B

P

B

A

四、中考链接

如图,以矩形OABC的顶点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系,已知OA=4,OC=2,点E、F分别是边AB、BC的中点,在x轴、y轴上是否分别存在点N、M,使得四边形MNEF的周长最小?如果存在,请在图中确定点M、N的位置,若不存在,请说明理由。

五课堂小结

谈谈你的收获………

考察知识点:两点之间线段最短,点关于直线对称,线段的平移等;

数学思想:数形结合思想,化归与转化思想,数学模型思想等;

原型:1.饮马问题, 2.建桥选址问题;

试题变式背景:角、三角形、菱形、矩形、正方形、梯形、坐标轴等。

数学模型:

1.实际问题:如图,在河的同侧有两村庄,现要在河边L建一泵站P分别向A、B两村庄同时供水,要使泵站P到A村、B村的距离之和最短,确定泵站P的位置,并在图中作出表示最短距离的线段。

2.数学问题

已知直线l和l的同侧两点A、B,在直线l上求作点P,使PA+PB的值最小.

六.巩固练习: 1.如图,已知菱形ABCD ,M 、N 分别为AB 、BC 边的中点,P 为对角线AC 上的

一动点,要使PM+PN 的值最小,试确定点P 的位置。

变式1.如图,已知菱形ABCD ,M 、N 分别为AB 、BC 边上的点,P 为对角线AC 上

的一动点,要使PM+PN 的值最小,试确定点P 的位置。

变式2.如图,已知菱形ABCD 的边长为6,面积为30,∠BAD=60°,点M 为AB 边

的中点,点P 为对角线AC 上的一动点,要使PM+PB 的值最小,试确定点P 的位置,并求出PM+PB 的最小值.

变式3.如图,已知菱形ABCD ,M 、N 分别为AB 、BC 边上的点,P 为对角线AC 上的一动点,要使△MPN 的周长最小,试确定点P 的位置.

2.如图,已知点P 是直线x =1上的一动点,点A 的坐标为(0,-2),

若△OPA 的周长最小,试在图中确定点P 的位置。

3.如图,点A、B 位于直线L 同侧,定长为a 的线段MN 在直线L 上滑动,

请问当MN 滑到何处时,折线AMNB 长度最短?。

变式3图

变式2图变式1图第1题图

专题训练之最短路径问题(最全面的经典例题)

最短路径问题 1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点面 爬到点B处,则它爬行的最短路径是 _______________ 。 ②如右图是一个长方体木块,已知AB=3,BC=4,CD=2假设一只蚂蚁在点A处, 它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是____________________ 。 2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。 *李庄 张村. ②如图,直线L同侧有两点A B,已知A、B到直线L的垂直距离分别为1和3, 两点的水平距离为3,要在直线L上找一个点P,使PA+PB勺和最小。请在图中找出点P的位置,并计算PA+P啲最小值。.B A■ _____________________ L ③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km和3Km张村与李庄的水平距离为3Km则所用水管最短长度为。 A沿木块侧 A B

是一个长方体木块,已知 AB=5,BC=3,CD=4假设一只蚂 蚁在点A D 处,则蚂蚁爬行的最短路径是2、 现要在如图所示的圆柱体侧面 A 点与B 点之间缠一条金丝带(金丝带的宽度 忽略不计),圆柱体高为6cm 底面圆周长为16cm ,则所缠金丝带长度的最小值 为 。 3、 如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从 A 点爬到点B 处吃到 食物,知圆柱体的高为5 cm ,底面圆的周长为24cm 则蚂蚁爬行的最短路径 为 。 5、 在菱形ABCD 中 AB=2 / BAD=60,点E 是AB 的中点,P 是对角线 AC 上 的一个动点,贝S PE+PB 勺最小值为 ___________ 。 6、 如图,在△ ABC 中, AC= BC= 2,Z ACB= 90°, D 是 BC 边的中点,E 是 AB 边 上一动点,则EO ED 的最小值为 ____________ 。 7、 AB 是OO 的直径,AB=2 OC 是O O 的半径,OCL AB,点 D 在 AC 上,AD 二 2CD 点P 是半径OC 上的一个动点,贝S AP+PD 勺最小值为 __________ 。 &如图,点P 关于OA OB 的对称点分别为 C D,连接CD 交OA 于M 交OB 于N 若CD= 18cm 则厶PMN 勺周长为 ___________ 。 9、已知,如图DE >^ ABC 的边AB 的垂直平分线,D 为垂足,DE 交BC 于 E ,且 AC= 5, BC= 8,则厶 AEC 的周长为 __________ 。 10、已知,如图,在△ ABC 中, AB

专题01 动点问题中的最值、最短路径问题(解析版)

专题01 动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法. 一、基础知识点综述 1. 两点之间,线段最短; 2. 垂线段最短; 3. 若A、B是平面直角坐标系内两定点,P是某直线上一动点,当P、A、B在一条直线上时,PA PB 最大,最大值为线段AB的长(如下图所示); (1)单动点模型 作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P是x轴上一动点,求P A+PB的最小值的作图.

P 是∠AOB 内一点,M 、N 分别是边OA 、OB 上动点,求作△PMN 周长最小值. 作图方法:作已知点P 关于动点所在直线OA 、OB 的对称点P ’、P ’’,连接P ’P ’’与动点所在直线的交点M 、N 即为所求. 5. 二次函数的最大(小)值 ()2 y a x h k =-+,当a >0时,y 有最小值k ;当a <0时,y 有最大值k . 二、主要思想方法 利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) 三、精品例题解析 例1. (2019·凉山州)如图,正方形ABCD 中,AB =12,AE =3,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 例2. (2019·凉山州)如图,已知A 、B 两点的坐标分别为(8,0),(0,8). 点C 、F 分别是直线x =-5和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取最小值时,tan ∠BAD =( ) O

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

算法设计与分析实验报告 实验名称 动态规划算法实现多段图的最短路径问题 评分 实验日期 年 月 日 指导教师 姓名 专业班级 学号 一.实验要求 1. 理解最优子结构的问题。 有一类问题的活动过程可以分成若干个阶段,而且在任一阶段后的行为依赖于该阶段的状态,与该阶段之前的过程如何达到这种状态的方式无关。这类问题的解决是多阶段的决策过程。在50年代,贝尔曼(Richard Bellman )等人提出了解决这类问题的“最优化原理”,从而创建了最优化问题的一种新的算法设计方法-动态规划。 对于一个多阶段过程问题,是否可以分段实现最优决策,依赖于该问题是否有最优子结构性质,能否采用动态规划的方法,还要看该问题的子问题是否具有重叠性质。 最优子结构性质:原问题的最优解包含了其子问题的最优解。 子问题重叠性质:每次产生的子问题并不总是新问题,有些子问题被反复计算多次。问题的最优子结构性质和子问题重叠性质是采用动态规划算法的两个基本要素。 2.理解分段决策Bellman 方程。 每一点最优都是上一点最优加上这段长度。即当前最优只与上一步有关。 U s 初始值,u j 第j 段的最优值。 ? ????+==≠}.{min , 0ij i j i j s w u u u

3.一般方法 1)找出最优解的性质,并刻画其结构特征;2)递归地定义最优值(写出动态规划方程);3)以自底向上的方式计算出最优值; 4)根据计算最优值时得到的信息,构造一个 最优解。 步骤1-3是动态规划算法的基本步骤。在只需要求出最优值的情形,步骤4可以省略,步骤3中记录的信息也较少;若需要求出问题的一个最优解,则必须执行步骤4,步骤3中记录的信息必须足够多以便构造最优解。 二.实验内容 1.编程实现多段图的最短路径问题的动态规 划算法。 2.图的数据结构采用邻接表。 3.要求用文件装入5个多段图数据,编写从文件到邻接表的函数。 4.验证算法的时间复杂性。 三.程序算法 多段图算法: Procedure FGRAPH(E,k,n,P) //输入是按段的顺序给结点编号的,有n个结点的k段图。E是边集,c(i,j)是边的成本。P(1:k)是最小成本路径。// real COST(n),integer(n-1),P(k),r,j,k,n COST(n)<-0 for j<-n-1 to 1 by -1 do //计算COST(j)// 设r是一个这样的结点,(j,r) E且使c(j,

分支限界法实现单源最短路径问题

实验五分支限界法实现单源最短路径 一实验题目:分支限界法实现单源最短路径问题 二实验要求:区分分支限界算法与回溯算法的区别,加深对分支限界法的理解。 三实验内容:解单源最短路径问题的优先队列式分支限界法用一极小堆来存储活结点表。其优先级是结点所对应的当前路长。算法从图G的源顶点s和空优先队列开始。 结点s被扩展后,它的儿子结点被依次插入堆中。此后,算法从堆中取出具有最小当前路长的结点作为当前扩展结点,并依次检查与当前扩展结点相邻的所有顶点。如果从当前扩展结点i到顶点j有边可达,且从源出发,途经顶点i再到顶点j的所相应的路径的长度小于当前最优路径长度,则将该顶点作为活结点插入到活结点优先队列中。这个结点的扩展过程一直继续到活结点优先队列为空时为止。 四实验代码 #include using namespace std; const int size = 100; const int inf = 5000; //两点距离上界 const int n = 6; //图顶点个数加1 int prev[n]; //图的前驱顶点 int dist[] = {0,0,5000,5000,5000,5000}; //最短距离数组 int c[n][n] = {{0,0,0,0,0,0},{0,0,2,3,5000,5000}, //图的邻接矩阵 {0,5000,0,1,2,5000},{0,5000,5000,0,9,2}, {0,5000,5000,5000,0,2},{0,5000,5000,5000,5000,0}}; const int n = 5; //图顶点个数加1 int prev[n]; //图的前驱顶点 int dist[] = {0,0,5000,5000,5000}; int c[][n] = {{0,0,0,0,0},{0,0,2,3,5000},{0,5000,0,1,2},{0,5000,5000,0,9}, {0,5000,5000,5000,0}};

排列组合中的最短路径问题

两个计数原理的应用 一、选择题 1.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为【答案】B (A)24 (B)18 (C)12 (D)9 【解析】 试题分析:由题意,小明从街道的E处出发到F处最短路径的条数为6,再从F处到G ?=,故处最短路径的条数为3,则小明到老年公寓可以选择的最短路径条数为6318 选B. 【考点】计数原理、组合 【名师点睛】分类加法计数原理在使用时易忽视每类中每一种方法都能完成这件事情,类与类之间是相互独立的;分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相互关联的. 2.如图,一只蚂蚁从点出发沿着水平面的线条爬行到点,再由点沿着置于水平面的长方体的棱爬行至顶点,则它可以爬行的不同的最短路径有( B )条

A. 40 B. 60 C. 80 D. 120 【解析】试题分析:蚂蚁从到需要走五段路,其中三纵二竖,共有条路径,从到共有条路径,根据分步计数乘法原理可知,蚂蚁从到可以爬行的不同的最短路径有条,故选B. 考点:分步计数乘法原理. 二、解答题 3.某城市有连接8个小区A、B、C、D、E、F、G、H和市中心O的整齐方格形道路网,每个小方格均为正方形,如图,某人从道路网中随机地选择一条最短路径,由小区A前往H. (1)列出此人从小区A到H的所有最短路径(自A至H依次用所经过的小区的字母表示); (2)求他经过市中心O的概率. 【答案】(1)见解析(2)2 3 【解析】 解:(1)此人从小区A前往H的所有最短路径为:

单源最短路径 贪心算法

实验三单源最短路径 一、实验目的及要求 掌握贪心算法的基本思想 用c程序实现单源最短路径的算法 二、实验环境 Window下的vc 2010 三、实验内容 1、有向图与单源点最短路径 2、按路径长度非降的次序依次求各节点到源点的最短路径 3、Dijkstra算法 四、算法描述及实验步骤 设给定源点为Vs,S为已求得最短路径的终点集,开始时令S={Vs} 。当求得第一条最短路径(Vs ,Vi)后,S为{Vs,Vi} 。根据以下结论可求下一条最短路径。 设下一条最短路径终点为Vj ,则Vj只有:源点到终点有直接的弧 ;从Vs 出发到Vj 的这条最短路径所经过的所有中间顶点必定在S中。即只有这条最短路径的最后一条弧才是从S内某个顶点连接到S外的顶点Vj 。 若定义一个数组dist[n],其每个dist[i]分量保存从Vs 出发中间只经过集合S中的顶点而到达Vi的所有路径中长度最小的路径长度值,则下一条最短路径的终点Vj必定是不在S中且值最小的顶点, 即:dist[i]=Min{ dist[k]| Vk∈V-S } 利用公式就可以依次找出下一条最短路径。 在程序中c[][]表示带权邻接矩阵, dist[]表示顶点到源点的最短路径, p[]记录顶点到源点最短路径的前驱节点, u源点,函数Way是递归的构造出最短路径的次序。 五、实验结果 程序执行的结果: 六、源代码 #include #include using namespace std;

#define MAX 999 void getdata(int **c,int n) { int i,j; int begin,end,weight; for (i=1;i<=n;i++) { for (j=1;j<=n;j++) { if(i==j) c[i][j]=0; else c[i][j]=MAX; } } do { cout<<"请输入起点终点权值(-1退出):"; cin>>begin; if(begin==-1) break; cin>>end>>weight; c[begin][end]=weight; } while(begin!=-1); } void Dijkstra(int n,int v ,int *dist,int *prev,int **c) { bool s[MAX]; int i,j; for (i=1;i<=n;i++) { dist[i]=c[v][i]; //从源点到各点的值 s[i]=false; if(dist[i]==MAX) prev[i]=0; //最大值没有路径 else prev[i]=v; //前驱为源点 } dist[v]=0;s[v]=true; for (i=1;i<=n;i++) { int temp=MAX; int u=v; for(j=1;j<=n;j++) if((!s[j])&&(dist[j]

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

算法设计与分析实验报告 实验名称 动态规划算法实现多段图的最短路径问题 评分 实验日期 年 月 日 指导教师 姓名 专业班级 学号 一.实验要求 1. 理解最优子结构的问题。 有一类问题的活动过程可以分成若干个阶段,而且在任一阶段后的行为依赖于该阶段的状态,与该阶段之前的过程如何达到这种状态的方式无关。这类问题的解决是多阶段的决策过程。在50年代,贝尔曼(Richard Bellman )等人提出了解决这类问题的“最优化原理”,从而创建了最优化问题的一种新的算法设计方法-动态规划。 对于一个多阶段过程问题,是否可以分段实现最优决策,依赖于该问题是否有最优子结构性质,能否采用动态规划的方法,还要看该问题的子问题是否具有重叠性质。 最优子结构性质:原问题的最优解包含了其子问题的最优解。 子问题重叠性质:每次产生的子问题并不总是新问题,有些子问题被反复计算多次。问题的最优子结构性质和子问题重叠性质是采用动态规划算法的两个基本要素。 2.理解分段决策Bellman 方程。 每一点最优都是上一点最优加上这段长度。即当前最优只与上一步有关。 U s 初始值,u j 第j 段的最优值。 3.一般方法 1) 找出最优解的性质,并刻画其结构特征; 2) 递归地定义最优值(写出动态规划方程); 3) 以自底向上的方式计算出最优值; 4) 根据计算最优值时得到的信息,构造一个最优解。 步骤1-3是动态规划算法的基本步骤。在只需要求出最优值的情形,步骤4可以省略,步骤3中记录的信息也较少;若需要求出问题的一个最优解,则必须执行步骤4,步骤3中记录的信息必须足够多以便构造最优解。 二.实验内容 1.编程实现多段图的最短路径问题的动态规划算法。 2.图的数据结构采用邻接表。 ?? ???+==≠}. {min , 0ij i j i j s w u u u

初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。考的较多的还是“饮马问题”。 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变 式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据:两点之间线 段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街 道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的 点. 三、一点在两相交直线部 例:已知:如图A是锐角∠MON部任意一点,在∠MON的两边OM,ON 上各取一点B,C,组成三角形,使三角形周长最小. 解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM, ON于点B、点C,则点B、点C即为所求 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周 长最小

单源最短路径问题

实验四单源最短路径问题 一、实验目的: 1、理解分支限界法的剪枝搜索策略; 2、掌握分支限界法的算法柜架; 3、掌握分支限界法的算法步骤; 4、通过应用范例学习动态规划算法的设计技巧与策略; 二、实验内容及要求: 1、使用分支限界法解决单源最短路径问题。 2、通过上机实验进行算法实现。 3、保存和打印出程序的运行结果,并结合程序进行分析,上交实验报告。 三、实验原理: 分支限界法的基本思想: 1、分支限界法与回溯法的不同: 1)求解目标:回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。 2)搜索方式的不同:回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。 2、分支限界法基本思想: 分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。 在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。

此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。 3、常见的两种分支限界法: 1)队列式(FIFO)分支限界法 按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。 2)优先队列式分支限界法 按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。 四、程序代码 #include using namespace std; int matrix[100][100]; // 邻接矩阵 bool visited[100]; // 标记数组 int dist[100]; // 源点到顶点i的最短距离 int path[100]; // 记录最短路的路径 int source; // 源点 int vertex_num; // 顶点数 int edge_num; // 边数 int destination; // 终结点 void Dijkstra(int source) { memset(visited, 0, sizeof(visited)); // 初始化标记数组 visited[source] = true; for (int i = 0; i < vertex_num; i++) { dist[i] = matrix[source][i]; path[i] = source; } int min_cost; // 权值最小 int min_cost_index; // 权值最小的下标 for (int i = 1; i < vertex_num; i++) // 找到源点到另外 vertex_num-1 个点的最短路径{ min_cost = INT_MAX;

(完整版)初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中, 关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短” ,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。考的较多的还是“饮马问题” 。 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题” ,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关于线的对称点实现“折”转“直” ,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。 解:连接AB,线段AB 与直线L 的交点P ,就是所求。(根据:两点之间线段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A、B 到它的距离之和最短. 解:只有A、C 、B在一直线上时,才能使AC +BC最小.作点A 关于 直线“街道”的对称点A′,然后连接A ′B,交“街道”于点C,则 点C 就是所求的点. 、一点在两相交直线内部 例:已知:如图A 是锐角∠ MON 内部任意一点,在∠ MON 的两边 OM ,ON 上各取一点B,C ,组成三角形,使三角形周长最小.

解:分别作点A 关于OM ,ON 的对称点A ′,A OM ,ON 于点B、点C ,则点B、点C 即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长 最小 例:如图,A.B 两地在一条河的两岸,现要在河 上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E, 2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE 中,∵ AC+CE >AE, ∴AC+CE+MN >AE+MN, 即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。 例:如图,A、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A、B 两地,问该站建在 连接A ′,A ″,分 别交 B

单源最短路径的Dijkstra算法

单源最短路径的Dijkstra算法: 问题描述: 给定一个带权有向图G=(V,E),其中每条边的权是非负实数。另外,还给定V中的一个顶点,称为源。现在要计算从源到所有其他各顶点的最短路长度。这里路的长度是指路上各边权之和。这个问题通常称为单源最短路径问题。 算法描述: Dijkstra算法是解单源最短路径的一个贪心算法。基本思想是:设置顶点集合S并不断地做贪心选择来扩充这个集合。一个顶点属于S当且仅当从源到该顶点的最短路径长度已知。初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist做必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其他顶点之间的最短路径长度。 源代码: #include #define MAX 1000 #define LEN 100 int k=0, b[LEN];

using namespace std; //-------------------------------------数据声明------------------------------------------------//c[i][j]表示边(i,j)的权 //dist[i]表示当前从源到顶点i的最短特殊路径长度 //prev[i]记录从源到顶点i的最短路径上的i的前一个顶点 //--------------------------------------------------------------------------------------------- void Dijkstra(int n, int v, int dist[], int prev[], int c[][LEN]) { bool s[LEN]; // 判断是否已存入该点到S集合中 for (int i = 1; i <= n; i++) { dist[i] = c[v][i]; s[i] = false; //初始都未用过该点 if (dist[i] == MAX) prev[i] = 0; //表示v到i前一顶点不存在 else prev[i] = v; } dist[v] = 0; s[v] = true;

最短路径问题总动员(含答案)

最短路径问题专题练习 1. 如图,长方体中,,,,一蚂蚁从点出发,沿长方 体表面爬到点处觅食,则蚂蚁所行路程的最小值为 A. B. C. D. 2. 如图是一个三级台阶,它的每一级的长、宽和高分别是,,,和是这个台 阶的两个相对的端点,点有一只壁虎,它想到点去吃可口的食物,请你想一想,这只壁虎从点出发,沿着台阶面爬到点,至少需爬 A. B. C. D. 3. 如图,个边长为的小正方形及其部分对角线所构成的图形中,如果从点到点只能沿图中 的线段走,那么从点到点的最短距离的走法共有 A. 种 B. 种 C. 种 D. 种 4. 如图所示,圆柱的底面周长为,是底面圆的直径,高,点是母线上一点且.一只蚂蚁从点出发沿着圆柱体的表面爬行到点的最短距离是

A. B. C. D. 5. 如图,是一个三级台阶,它的每一级的长、宽、高分别为,,,和是这个 台阶两个相对的端点,点有一只蚂蚁,想到点去吃可口的食物,则蚂蚁沿着台阶面爬到点的最短路程是. A. B. C. D. 6. 如图,已知,,,要在长方体上系一根绳子连接,绳子与交于点, 当所用绳子最短时,绳子的长为 A. B. C. D. 7. 已知蚂蚁从长、宽都是,高是的长方形纸箱的点沿纸箱爬到点,那么它所行的最短路线 的长是 A. B. C. D.

8. 如图所示,一圆柱高,底面半径长,一只蚂蚁从点爬到点处吃食,要爬行的最短 路程(取)是 A. B. C. D. 无法确定 9. 如图圆柱底面半径为 cm,高为 cm,点,分别是圆柱两底面圆周上的点,且,在同 一母线上,用一棉线从顶着圆柱侧面绕圈到,则棉线最短为 A. cm B. cm C. cm D. cm 10. 如图,点为正方体左侧面的中心,点是正方体的一个顶点,正方体的棱长为,一蚂蚁从 点沿其表面爬到点的最短路程是 A. B. C. D.

单源最短路径问题-Dijkstra

单源最短路径问题 所谓单源最短路径问题是指:已知图G=(V,E),我们希望找出从某给定的源结点S∈V 到V中的每个结点的最短路径。 首先,我们可以发现有这样一个事实:如果P是G中从vs到vj的最短路,vi是P中的一个点,那么,从vs沿P到vi的路是从vs到vi的最短路。 对于图G,如果所有Wij≥0的情形下,目前公认的最好的方法是由Dijkstra于1959年提出来的。 Dijkstra算法基本思想:设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。 (1)初始时,S中仅含有源节点。 (2)设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,用数组D[i]记录顶点i当前所对应的最短特殊路径长度。 (3)Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组D作必要的修改。 (4)一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。源程序1: //Dijkstra算法 #include #include using namespace std; #define VEX 5//定义结点的个数 #define maxpoint 100 double graph[][maxpoint]={ { 0 , 10 , -1 , 30 , 100 }, { -1 , 0 , 50 , -1 , -1 } , { -1 , -1 , 0 , -1 , 10 } , { -1 , -1 , 20 , 0 , 60 } , { -1 , -1 , -1 , -1 , 0 } }; //邻接矩阵 void main() {int R[maxpoint]={0},B[maxpoint]; int D[VEX],P[VEX];//定义数组D用来存放结点特殊距离,P数组存放父亲结点 //初始时,红点集中仅有源结点0 R[0]=1; B[0]=0; for(int i=1;i

最短路径问题专项练习

A B 最短路径问题专项练习 共 13页,全面复习与联系最短路径问题 一、具体内容包括: 蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题; 线段(之和)最短问题; 二、原理: 两点之间,线段最短;垂线段最短。(构建“对称模型”实现转化) 1.最短路径问题 (1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. 如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点. (2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点. 为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下: 证明:由作图可知,点B和B′关于直线l对称, 所以直线l是线段BB′的垂直平分线. 因为点C与C′在直线l上, 所以BC=B′C,BC′=B′C′. 在△AB′C′中,AB′<AC′+B′C′, 所以AC+B′C<AC′+B′C′, 所以AC+BC<AC′+C′B. 【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小. 分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点. 解:如图所示:(1)作点B关于直线l的对称点B′; (2)连接AB′交直线l于点M. (3)则点M即为所求的点. 点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.

八年级数学最短路径问题之欧阳数创编

八年级数学最短路径问题 时间:2021.03.02 创作:欧阳数 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上 求一点P, 使得PA+PB最小。 练习、如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 练习:如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,?可使所修的渠道最短,试在图中确定该点。

三、一点在两相交直线内部 例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC,使三角形周长最小. 练习1:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC周长最小值为OA.求∠MON的度数。 练习2:某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短? 提高训练 一、题中出现一个动点。 1.当题中只出现一个动点时,可作定点关于动点所在直线的对称点,利用两点之间线段最短,或三角形两边之和 小于第三边求出最值. 例:如图,在正方形ABCD中,点E为AB上一定 点, 且BE=10,CE=14,P为BD上一动点,求PE+PC最小 值。 二、题中出现两个动点。当题中出现两个定点和两个动点时,应作两次定点关于动点所在直线的对称点.利用两点之间线段最短求出最值。 例:如图,在直角坐标系中有四个点, A(8,3),B(4,5)C(0,n),D(m,0),当四边形ABCD周长最短时,

单源最短路径

单源最短路径问题 I 用贪心算法求解 贪心算法是一种经典的算法,通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。一般具有2个重要的性质:贪心选择性质和最优子结构性质。 一、问题描述与分析 单源最短路径问题是一个经典问题,给定带权有向图G =(V,E),其中每条边的权是非负实数。另外,还给定V中的一个顶点,称为源。现在要计算从源到所有其他各顶点的最短路长度。这里路的长度是指路上各边权之和。这个问题通常称为单源最短路径问题。 分析过程:运用Dijkstra算法来解决单源最短路径问题。 具备贪心选择性质 具有最优子结构性质 计算复杂性 二、算法设计(或算法步骤) 用贪心算法解单源最短路径问题: 1.算法思想: 设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其他顶点之间的最短路径长度。 2.算法步骤: (1) 用带权的邻接矩阵c来表示带权有向图, c[i][j]表示弧上的权值. 若?V,则置c[i][j]为∞。设S为已知最短路径的终点的集合,它的初始状态为空集。 从源点v到图上其余各点vi的当前最短路径长度的初值为:dist[i]=c[v][i] vi∈V。 (2) 选择vj, 使得dist[j]=Min{dist[i] | vi∈V-S},vj就是长度最短的最短路径的终点。令

八年级最短路径问题归纳小结

八年级数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.

【精品练习】 1.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为() A.B.C.3 D 2.如图,在边长为2的菱形ABCD中,∠ABC=60°,若将△ACD绕点A旋转,当AC′、AD′分别与BC、CD 交于点E、F,则△CEF的周长的最小值为() A.2 B.3 2 C.3 2+D.4 A D E P B C

3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为( ) A .120° B .130° C .110° D .140° 4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 . 5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重合), 且ED =AE ,则线段AE 的取值范围是 . 6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+) 7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为B (36,0). OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______. D E A B C B N

c++课设报告《基于Dijkstra算法的最短路径问题求解》[1]

课程设计任务书

目录 1 需求分析............................................................................................ - 1 - 2 算法基本原理 ................................................................................... - 2 - 3 类设计................................................................................................ - 3 - 4 详细设计............................................................................................ - 5 -4.1类的接口设计 . (5) 4.2类的实现 (5) 4.3主函数设计 (7) 5 DOS界面程序运行结果及分析 ....................................................... - 8 -5.1程序运行结果 . (8) 5.2运行结果分析 (9) 6 基于MFC的图形界面程序开发..................................................... - 9 -6.1基于MFC的图形界面程序设计.. (10) 6.2程序测试 (13) 6.3MFC程序编写总结 (14) 7 参考文献.......................................................................................... - 15 -

多种方法求多段图的最短路径问题 算法设计与分析课程设计

学号: 《算法设计与分析B》 大作业 题目多种方法解决多段图的最短 路径问题 学院计算机科学与技术学院专业软件工程 班级 姓名 指导教师 2014 年12 月26 日

多种方法解决多段图的最短路径问题 摘要 多段图的最短路径问题是求从源点到终点的最小代价路径。本文主要描述的是分别用动态规划法、贪心法和分支限界法来解决多段图最短路径问题时的情况。文章首先阐述了各个方法的原理,主要的思路是通过输入一组数据,比较三者的输出结果的准确性以及运行时间,以之为基础来分析、讨论三者的性能区别。文章最后讲述了若这几种方法运行到有向图中的情况,几种方法的对比和它们比较适应的使用情况的讨论,并给出了自己的建议。 关键字:多段图最短路径问题;动态规划法;分支限界法;贪心法

目录 摘要................................................................. II 1 引言 (1) 2 问题描述 (1) 3 贪心法求解 (2) 3.1 贪心法介绍 (2) 3.2 问题分析 (3) 4 动态规划法求解 (3) 4.1 动态规划法介绍 (3) 4.2 问题分析 (4) 5 分支限界法求解 (5) 5.1 分支限界法介绍 (5) 5.2 问题分析 (5) 6 程序清单 (6) 6.1 源代码 (6) 6.2 结果截图 (9) 7 结果分析 (9) 8 课程体会 (10) 9 参考文献 (10)

1引言 当前社会,关于最短路径的问题屡屡出现。例如在开车自驾游的一个过程中,排除其它影响因素,从一个地点到另一点,这个时候必然是希望有一条距离最短的路程来尽量减少消耗的时间以及花费的(它们在模型中被称为代价),市场上对该问题的解决有很大的需求,因此,这里我将讨论多段图的最短路径的问题。 大二开设的《数据结构》课程中就包括最短路径这方面问题的讨论。当时老师介绍了分别面向单源(Dijkstra算法)与非单源(Floyd算法)两种问题的算法——这是我们最早的对最短路径方面的理解,也是我们接触的比较早的关于图的问题。 在这学期的《算法设计与分析》课程中,我们学习了很多基本的算法设计技术,蛮力法、分治法、减治法、动态规划法、贪心法、回溯法、分支限界法等,它们把以前学习的诸多方法都命名并归纳分类起来,其中有多种算法都可以用来解决最短路径问题,并且该问题作为一个图的问题,对该问题的继续探讨优化的需求很大、本文将就不同算法在解决该最短路径问题时的不同方法进行对比并给出该问题在不同基础上不同的最终解决方案。由于时间的限制,本文将重点分析动态规划法下的情况,并会对图的情况加以简化、限制,最后会对其它的图做一些拓展。 2问题描述 设图G=(V, E)是一个带权有向连通图,如果把顶点集合V划分成k个互不相交的子集Vi(2≤k≤n, 1≤i≤k),使得E中的任何一条边(u, v),必有u∈Vi,v∈Vi+m(1≤i<k, 1<i+m≤k),则称图G为多段图,称s∈V1为源点,t∈Vk为终点。多段图的最短路径问题是求从源点到终点的最小代价路径。多段图的最短路径问题是求从源点到终点的最小代价路径。 由于多段图将顶点划分为k个互不相交的子集,所以,可以将多段图划分为k段,每一段包含顶点的一个子集。不失一般性,将多段图的顶点按照段的顺序进行编号,同一段内顶点的相互顺序无关紧要。假设图中的顶点个数为n,则源点s的编号为0,终点t的编号为n-1,并且,对图中的任何一条边(u, v),顶点u的编号小于顶点v的编号。 这里我们讨论的多段图是可以分段的,各段之间的关系最好是单向的,即对该有向图来说,图中是没有环的存在的。

相关主题