搜档网
当前位置:搜档网 › 解一元二次方程

解一元二次方程

解一元二次方程
解一元二次方程

一元二次方程

(1)一元二次方程的概念

1.已知关于x的方程(m﹣1)+2x﹣3=0是一元二次方程,则m的值为()A.1 B.﹣1 C.±1 D.不能确定

2.有下列关于x的方程:①ax2+bx+c=0,②3x(x﹣4)=0,③x2+y﹣3=0,④+x=2,⑤x3﹣3x+8=0,⑥x2﹣5x+7=0,⑦(x﹣2)(x+5)=x2﹣1.其中是一元二次方程的有()A.2 B.3 C.4 D.5

3.一元二次方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.5,﹣1 B.5,4 C.5,﹣4 D.5x2,﹣4x

(2)一元二次方程的根

1.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.

2.已知3是方程x2﹣mx+n=0的一个根,则3﹣m+n=()

A.2 B.3 C.4 D.5

3.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为()A.﹣1 B.1 C.﹣2 D.2

(3)解一元二次方程-直接开平方,配方法,公式法,因式分解法

1.一元二次方程x2﹣16=0的根是()

A.x=2 B.x=4 C.x1=2,x2=﹣2 D.x1=4,x2=﹣4

2.方程(x﹣1)2=2的根是()

A.﹣1,3 B.1,﹣3 C.,D.,3.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()

A.(x+3)2=14 B.(x﹣3)2=14 C.(x+3)2=4 D.(x﹣3)2=4 4.把一元二次方程x2﹣4x+1=0,配成(x+p)2=q的形式,则p、q的值是()A.p=﹣2,q=5 B.p=﹣2,q=3 C.p=2,q=5 D.p=2,q=3

5.用配方法解方程x2﹣4x﹣1=0,方程应变形为()

A.(x+2)2=3 B.(x+2)2=5 C.(x﹣2)2=3 D.(x﹣2)2=5

6.方程x2+x﹣1=0的根是()

A.1﹣B.C.﹣1+D.

7.方程x2+x﹣12=0的两个根为()

A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3 8.方程x2﹣2x=0的根是()

A.x1=x2=0 B.x1=x2=2 C.x1=0,x2=2 D.x1=0,x2=﹣29 9.方程2x2=3x的解为()

A.0 B.C.D.0,

10.方程x2+2x﹣3=0的解是()

A.1 B.3 C.﹣3 D.1或﹣3

11.一元二次方程x2﹣2x﹣3=0的解是()

A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=﹣3 D.x1=1,x2=3 12.方程(x+1)(x﹣2)=x+1的解是()

A.2 B.3 C.﹣1,2 D.﹣1,3

13.解下列方程

(1)(x﹣5)2=16.(2):(x﹣4)2=(5﹣2x)2.

(3)x2﹣2x﹣4=0.(4)x2﹣6x+6=0.

(5)4x2﹣3=12x (6)x2+5x﹣2=0.

(7)解方程:x2﹣10x+9=0.

(4)根的判别式

1.若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是()A.0 B.﹣1 C.2 D.﹣3

2.一元二次方程4x2﹣2x+=0的根的情况是()

A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断

3.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥4

(5)根与系数的关系

1.关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或0

2.已知关于x的方程x2+x﹣a=0的一个根为2,则另一个根是()

A.﹣3 B.﹣2 C.3 D.6

3.已知x1,x2是一元二次方程x2+2x﹣k﹣1=0的两根,且x1x2=﹣3,则k的值为()A.1 B.2 C.3 D.4

4.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣2

5.若关于x的一元二次方程ax2+bx+6=0的一个根为x=2,则代数式2a+b+6的值为.

6.已知方程x2+5x+1=0的两个实数根分别为x1、x2,则x12+x22=.

7.已知关于x的方程x2+px+q=0的两根为﹣3和﹣1,则p=,q=.8.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为.9.已知x1,x2是方程x2﹣3x﹣1=0的两根,则

答案

1.B;2.A;3.C;

1.B;2.A;3.B

1.D;2.C;3.A;4.B;5.D;6.D;7.D;8.C;9.D;10.D;11.A;12.D;

1.D;2.B;3.A;

1.B2.A;3.B;4.D;

5.3;6.23;7.4;3;8.5;9.﹣3;

27.一元二次方程x2﹣3=0的两个根是.

28.一元二次方程x2+x﹣1=0的解是.

29.方程2x2+5x﹣3=0的解是.

27.x1=3,x2=﹣3;28.x1=,x2=;29.;

一元二次方程的解法详细解析

一元二次方程的解法详细解析 【一元二次方程要点综述】:【要点综述】:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是学生今后学习数学的基础。在没讲一元二次方程的解法之前,先说明一下它与一元一次方程区别。根据定义可知,只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程,一般式为:。一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程。因此判断一个方程是否为一元二次方程,要先看它是否为整式方程,若是,再对它进行整理,如能整理为的形式,那么这个方程就是一元二次方程。下面再讲一元二次方程的解法。解一元二次方程的基本思想方法是通过“降次”,将它化为两个一元一次方程。一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。如下表:方法适合方程类型注意事项直接开平方法≥0时有解,<0时无解。配方法二次项系数若不为1,必须先把系数化为1,再进行配方。公式法≥0时,方程有解;<0时,方程无解。先化为一般形式再用公式。因式分解法方程的一边为0,另一边分解成两个一次因式的积。方程的一边必须是0,另一边可用任何方法分解因式。【举例解析】例1:已知,解关于的方程。分析:注意满足的的值将使原方程成为哪一类方程。解:由得:或,当时,原方程为,即,解得.当时,原方程为,即,解得,.说明:由本题可见,只有项系数不为0,且为最高次项时,方程才

是一元二次方程,才能使用一元二次方程的解法,题中对一元二次方程的描述是不完整的,应该说明最高次项系数不为0。通常用一般形式描述的一元二次方程更为简明,即形如的方程叫作关于的一元二次方程。若本题不给出条件,就必须在整理后对项的字母系数分情况进行讨论。例2:用开平方法解下面的一元二次方程。(1);(2)(3);(4)分析:直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如的方程,其解为。通过观察不难发现第(1)、(2)两小题中的方程显然用直接开平方法好做;第(3)题因方程左边可变为完全平方式,右边的121>0,所以此方程也可用直接开平方法解;第(4)小题,方程左边可利用平方差公式,然后把常数移到右边,即可利用直接开平方法进行解答了。解:(1)∴(注意不要丢解)由得,由得,∴原方程的解为:,(2)由得,由得∴原方程的解为:,(3)∴∴∴,∴原方程的解为:,(4)∴,即∴,∴,∴原方程的解为:,说明:解一元二次方程时,通常先把方程化为一般式,但如果不要求化为一般式,像本题要求用开平方法直接求解,就不必化成一般式。用开平方法直接求解,应注意方程两边同时开方时,只需在一边取正负号,还应注意不要丢解。例3:用配方法解下列一元二次方程。(1);(2)分析:用配方法解方程,应先将常数移到方程右边,再将二次项系数化为1,变为的形式。第(1)题可变为,然后在方程两边同时加上一次项系数的一半的平方,即:,方程左边构成一个完全平方式,右边是一个不小于0的常数,即:,接下去即可利用直接开平方法解答了。第(2)题在配方时应特别注意在方程两边同时加上一次项系数的一半的平方。解:(1)二

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根 即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式 一、 用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 2. 配方法解一元二次方程的步骤:(1) (2) (3) 4) (5) 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) 解:二次项系数化为1,得 , 移项 ,得 , 配方, 得 , 方程左边写成平方式 , ∵a ≠0,∴4a 2 0,有以下三种情况: (1)当b 2-4ac>0时,=1x , =2x (2)当b 2-4ac=0时,==21x x 。 (3)b 2-4ac<0时,方程根的情况为 。 3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因 (1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。 (2)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c = 0,当ac b 42-≥0时,?将a 、b 、c 代入式子=x 就得到方程的根.这个式子叫做一元二次方程的求根公式,利用求根公式解一元二次方程的方法叫公式法. 4.公式法解一元二次方程的步骤:(1) (2) (3) (4) (5) 二、用公式解法解下列方程。 1、0822=--x x 2、22 314y y -= 3、y y 32132=+

一元二次方程及解法经典习题及解析

一元二次方程及解法经典习题及解析 知识技能: 一、填空题: 1.下列方程中是一元二次方程的序号是 . 42=x ① 522=+y x ② ③01332=-+x x 052=x ④ 5232=+x x ⑤ 412=+x x ⑥ x x x x x x 2)5(0143223-=+=+-。。。。⑧⑦ 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程. 4.解一元二次方程的一般方法有 , , , · 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: . 6.(2004·沈阳市)方程0322=--x x 的根是 . 7.不解方程,判断一元二次方程022632 =+--x x x 的根的情况是 . 8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 . 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根. 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 . 二、选择题: 11.(2004·北京市海淀区)若a 的值使得1)2(42 2-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2 12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( ) 3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D 13.方程02=+x x 的解是( ) x A .=土1 0.=x B 1,0.21-==x x C 1.=x D

(完整版)解一元二次方程练习题汇编

一元二次方程练习题 1. 用直接开平方法解下列方程: (1)2225x =; (2)2 1440y -=. 2. 解下列方程: (1)2(1)9x -=; (2)2(21)3x +=; (3)2(61)250x --=. (4)281(2)16x -=. 3. 用直接开平方法解下列方程: (1)25(21)180y -=; (2) 21(31)644 x +=; (3)26(2)1x +=; (4)2()(00)ax c b b a -=≠,≥ 4. 填空 (1)28x x ++( )=(x + )2. (2)223 x x - +( )=(x - )2. (3)2b y y a -+( )=(y - )2. 5. 用适当的数(式)填空: 23x x -+ (x =- 2); 2x px -+ =(x - 2)

23223(x x x +-=+ 2)+ . 6. 用配方法解下列方程 1).210x x +-= 2).23610x x +-= 3).21(1)2(1)02x x ---+= 7. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 . 8. 用配方法解方程. 23610x x --= 22540x x --= 9. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 10. 关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程 (1)210x x --=; (2)23920x x -+=. 12. 用适当的方法解方程 (1)23(1)12x +=; (2)2 410y y ++=; (3)2884x x -=; (4)2310y y ++=.

一元二次方程解法讲义

龙文教育学科教师辅导讲义 课 题 一元二次方程的解法 教学目标 1. 理解一元二次方程及其有关概念 2. 会解一元二次方程,并能熟练运用四种方法去解 重点、难点 1. 一元二次方程的判定,求根公式 2. 一元二次方程的解法与应用 考点及考试要求 1. 一元二次方程的定义,一般形式,配方式 2. 熟练一元二次方程的解法能灵活运用:直接开平法,配方法.,因式分解,公式法去 3. 一元二次方程在实际问题中的综合应用 教学内容 考点一、概念 (1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③ 整式方程.... 就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax 注:当b=0时可化为02=+c ax 这是一元二次方程的配方式 (3)四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为)0(02≠=++a c bx ax 的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式: 2 =++c bx ax 时,应满足(a≠0) (4)难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132 +=+x x B 02112 =-+ x x C 0 2 =++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。

一元二次方程解法配方法教学设计

八年级数学教学设计 课题:一元二次方程的解法(配方法)第1课时设计人审核人执教人教学预设时间 一、学习目标 1.正确理解并会运用配方法将形如x2+px+q=0方程 变形为(x+m)2=n(n≥0)类型. 2.会用配方法解形如ax2+bx+c=0(a≠0)一元二次方程. 3.了解新、旧知识的内在联系及彼此的作用. 二、学习“三点”: 重点:用配方法解一元二次方程. 难点:正确理解把x2+ax型的代数式配成完全平方式 易错点:忽视了二次项的系数 三、教学准备:多媒体课件 四、教学注意事项: 1、温故的针对性要强,梯度不能过大 2、重难点把握准确:二次项系数不能忽视 五、课堂流程: 第一环:温故导新 (一) 温故 1、直接开平方: 2、完全平方公式:a2±2ab+b2=(a±b)2.课前修订或操作注意事项 () 20 x a a =≥ x a =±

3、填空: 1)x2-2x+()=[x+()]2 2)x2+6x+()=[x-()]2 (二)导新 怎样解方程, 方程如何解呢? 第二环:自主合作新知初探 (三)指导自学 自学教材23-24页的内容(8-10分) 1、对于配方法的探索先由自主学习、小组合作、分析、 交流、总结。 2、学生自主学习例1完成解题过程 第三环:师生对话探究新知 (四)点拨拓展 1、将方程x2-2x-3=0化为(x-m)2=n的形式,指出m,n 分别是多少? 练习:把下列方程化为(x+m)2=n的形式 概念点拨:通过配成完全平方式来解一元二次方程的方法,叫做配方法。课前修订或操作注意事项 ()2 215 x-= 2692 x x ++=

2、例题板演,生纠错。 3、引导学生观察例题的求解过程,总结出配方法解一元二次方程的一般步骤: 1、 化二次项系数为1; 2、 移项; 3、 配方;(构建完全平方) 4、 开方。 配方的关键-----方程两边都加上一次项系数一半的平方。 4、对于x 2+ax 型的代数式,只需再加上一次项系数一半的 平方即可完成上述转化工作. (五)强化训练 教材p25练习1、2题; 归一总结: 1.本节课学习用配方法解一元二次方程,其步骤如下: (1)化二次项系数为1. (2)移项,使方程左边为二次项,一次项,右边为常数项. (3)配方.依据等式的基本性质和完全平方公式,在方程的左 右两边同时加上一次项系数一半的平方. (4)用直接开平方法求解. 配方法的关键步骤是配方.配方法是解一元二次方程的通法. 2.配方法的理论依据是完全平方公式: a 2±2a b +b 2=(a ±b )2,配方法以直接开平方法为基础 课前修订或操作 注意事项

解一元二次方程-教学设计

解一元二次方程教学设计 教学设计思想 解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。在解一元二次方程的几种方法中,均需要用到转化的思想方法。如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。 教学目标 知识与技能: 1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。 2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。 过程与方法: 1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。 2.在探究一元二次方程的过程中体会转化、降次的数学思想。 情感态度价值观: 在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。 教学重难点 重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。 难点:根据方程的特点灵活选择适当的方法解一元二次方程。 教学方法 探索发现,讲练结合 教学媒体 多媒体 课时安排 4课时 教学过程设计 第一课时

一、复习引入: 1.一元二次方程的一般形式是什么?其中a 应具备什么条件? 2.042=-x 是一元二次方程吗?其中二次项的系数,一次项的系数,常数项各是什么? (是。二次项系数是1,一次项系数是0,常数项是-4) 3.解下列方程: (1)x 2=4 (2)(x+3)2 =9 学生依次回答上述问题。 师总结强调:(1)象这种通过直接开平方求得x 的值的方法,实际上就是求x 2=a (a ≥0)这种特殊形式的一元二次方程的解方法。 (2)对于形如“(x+a) 2=b (b ≥0)”型的方程,只要把x+a 看作一个整体,就可以转化为x 2=b (b ≥0)型的方法去解决,这里渗透了“换元”的方法。 (3)在对方程(x+3) 2=9两边同时开平方后,原方程就转化为两个一次方程。要向学生 指出,这种变形实质上是将原方程“降次”。“降次”也是一种数学方法 二、试着做做 1.如果(x+2)2 =9,那么x=_______________。 2.如果(x-3)2=7,那么x=_______________。 3.完全平方公式是什么? 4.如果x 2+2x+1=4,那么x=_______________。 学生独立求解 5.对于x 2+2x-3=0这样的方程,该怎样求解呢?能否经过适当变形,将方程转化为(x+m )2=n (m ,n 是常数,n ≥0)的形式,然后应用直接开平法求解呢?你能总结出你解这个方程的步骤吗? 学生活动:小组讨论,利用完全平方公式及上述提示寻求解法,将x 2+2x-3=0变形为x 2+2x+1=4,即(x+1)2=4 。并总结出解方程x 2+2x-3=0的一种方法: 三、做一做 把下列方程化为(x+ m )2 =n (m ,n 是常数,n ≥0)的形式,并求出它们的解。 (1)x 2+2x=48;(2)x 2-4x=12;

一元二次方程解法举例

https://www.sodocs.net/doc/9918992727.html, ------------------华夏教育资源库 https://www.sodocs.net/doc/9918992727.html, ------------------华夏教育资源库 一元二次方程解法举例 教学目标:1.巩固一元二次方程的四种解法 2.灵活选用一元二次方程的四种解法解方程 教学重点: 一元二次方程的四种解法的灵活运用 教学难点:能准确把握方程的特征,选用适当的解法. 教学准备:小黑板 教学过程: 复习引入:1. 一元二次方程02 =++c bx ax 的求根公式为 . 2.一元二次方程解法有哪几种?各有那些步骤? 对于方程02=++c bx ax (a ≠0,042≥-ab b ) 若b=0,则宜用 法解,其根为 ; 若c=0,则宜用 法解,其根为 ; 若b ≠0,c ≠0,则要准确把握方程的特征,选用适当的解法. 讲授新课: 范例讲解 例1 选用适当的方法解方程: (1)()922=-x ;(直接开平方法) (2)222 =-t t ;(配方法) (3)()()052432922=--+x x ;(因式分解法) (4)4.013.001.02 -=-x x ;(化小数系数为整数系数后再因式分解) (5)x x 2 21232=-;(去分母后用公式法) (6)1417522-=mx x m (m ≠0).(因式分解法) (7)()()x x x 211=-+;(先整理后,再确定适当的方法,配方法) (8)()()742322 +=+m m ;(先整理后,再确定适当的方法,公式法) (9)()()0812151222 =-+++x x .(因式分解法) 例2 (1)当x= 时,31432 +-x x 的值与22-x 的值相等.

图像法解一元二次方程

图像法解一元二次方程浅析 教学目标 (1)会求出二次函数与坐标轴的交点坐标; (2)会利用二次函数的图象求一元二次方程的近似解。 (3) 总结出二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实根和没有实根。 重点和难点: 重点:(1)会求出二次函数与坐标轴的交点坐标; (2)总结出二次函数与x 轴交点的个数与一元二次方程的根的个 数之间的关系,表述何时方程有两个不等的实根、两个相等的实根和没有实根。 难点: 一元二次方程的图象解法 一、预习交流: 画出函数322--=x x y 的图象,根据图象回答下列问题.

小结:二次函数与一元二次方程有密切的联系,二次函数与x轴的两个交点的横坐标即是对应的一元二次方程的两根,根的判别式决定着二次函数与x轴交点的个数和一元二次方程根的情况。

二.例题欣赏: 分析:先画图像,再观察图像,找出图像与x轴的公共点,最后再求出方程的根的近似值。

三、课堂小结:二次函数y=ax2+bx+c 的图象和x轴交点的三种情况与一元二次方程根的关系: 二次函数y=ax2+bx+c 的图象和x轴交点一元二次方程 ax2+bx+c= 0的根 一元二次方程 ax2+bx+c= 0根的判别式 Δ=b2-4ac 四、当堂达标: 1 .如果关于x的一元二次方程x2-2x+m=0有两个相等的实数根,则m=___,此时抛物线y=x2-2x+m与x轴有__个交点. 2.已知抛物线y=x2 –8x + c的顶点在x轴上,则c =__.

3.抛物线y=2x2-3x-5 与y轴交于点____,与x轴交于点. 5,那么二次4.一元二次方程 3x2+x-10=0的两个根是x1=-2 ,x2= 3 函数y= 3x2+x-10与x轴的交点坐标是________. 五、课外作业: 1、必做题:习题 A组1——3. 2、选做题:习题 B组.

一元二次方程解法:公式法

一元二次方程解法公式法(1) 授课教师: 课时安排 1课时 教学内容及教法分析 公式法是解一元二次方程的通法,是配方法的延续,即它实际上是配方法的一般化和程序化.利用它可以更为简捷地解一元二次方程. 本节课的重、难点是利用求根公式来解一元二次方程. 公式法的意义在于:对于任意的一元二次方程,只要将方程化为一般形式,然后确定a、b、c的值,在b2-4ac≥0的前提条件下,将a、b、c的值代入求根公式即可求出解. 因为掌握求根公式的关键是掌握公式的推导过程,而掌握推导过程的关键又是掌握配方法,所以在教学中,首先引导学生自主探索一元二次方程的求根公式,然后在师生共同的讨论中,得到求根公式,并利用公式解一些简单的数字系数的一元二次方程. 教学目标 (一)教学知识点 1.一元二次方程的求根公式的推导 2.会用求根公式解一元二次方程 (二)能力训练要求 1.通过公式推导,加强推理技能训练,进一步发展逻辑思维能力. 2.会用公式法解简单的数字系数的一元二次方程. (三)情感与价值观要求 1.通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯. 教学重点 一元二次方程的求根公式. 教学难点 求根公式的条件:b2-4ac≥0 教学方法 讲练相结合 教具准备多媒体课件 教学过程 Ⅰ.巧设现实情景,引入课题

[师]前面我们学习了利用配方法解一元二次方程.下面来做一练习以巩固其解法.(出示投影片) 1.用配方法解方程2x 2-9x+8=0 [生]解:,2x 2-9x+8=0 两边都除以2,得 移项,得;. 配方,得. 两边分别开平方,得 [师]同学们做得很好,从以上解题过程中,我们发现:利用配方法解一元二次方程的基本步骤是相同的.因此,如果能用配方法解一般的一元二次方程ax 2+bx+c =0(a ≠0),得到根的一般表达式,那么再 解一元二次方程时,就会方便简捷得多. 这节课我们就来探讨一元二次方程的求根公式. Ⅱ.讲授新课 [师]刚才我们已经利用配方法求解了一个一元二次方程,那你能否利用配方法的基本步骤解方程ax 2+bx+c =0(a ≠0)呢? 大家可参照解方程2x 2-9x+8=0的步骤进行. [生甲]因为方程的二次项系数不为1,所以首先应把方程的二次项系数变为1,即方程两边都除以二次项系数a ,得 x 2+ 错误!未找到引用源。 =0. [生乙]因为这里的二次项系数不为0,所以,方程ax 2+bx+c =0(a ≠0)的两边都除以a 时,需要说明a ≠0. [师]对,以前我们解的方程都是数字系数,显然就可以看到:二次项系数不为0,所以无需特殊说明,而方程ax 2+bx+c =0(a ≠0)的两边都除以a 时,必须说明a ≠0. 好,接下来该如何呢? 29 4.2x x -=-222999 4.244x x ????-+=- ? ????? 2917.416 x ??-= ???917.44x - =±917.44x ∴=±12917917;.44 x x +-∴==

解一元二次方程海量练习题

1)x2-9x+8=0 (2)x2+6x-27=0 (3)x2-2x-80=0 (4)x2+10x-200=0 (5)x2-20x+96=0 (6)x2+23x+76=0 (7)x2-25x+154=0 (8)x2-12x-108=0 (9)x2+4x-252=0 (10)x2-11x-102=0 (11)x2+15x-54=0 (12)x2+11x+18=0 (13)x2-9x+20=0 (14)x2+19x+90=0 (15)x2-25x+156=0 (16)x2-22x+57=0 (17)x2-5x-176=0 (18)x2-26x+133=0 (19)x2+10x-11=0 (20)x2-3x-304=0 (21)x2+13x-140=0 (22)x2+13x-48=0 (23)x2+5x-176=0 (24)x2+28x+171=0 (25)x2+14x+45=0 (26)x2-9x-136=0 (27)x2-15x-76=0 (28)x2+23x+126=0 (29)x2+9x-70=0 (30)x2-1x-56=0 (31)x2+7x-60=0 (32)x2+10x-39=0 (33)x2+19x+34=0 (34)x2-6x-160=0 (35)x2-6x-55=0 (36)x2-7x-144=0 (37)x2+20x+51=0 (38)x2-9x+14=0 (39)x2-29x+208=0 (40)x2+19x-20=0 (41)x2-13x-48=0 (42)x2+10x+24=0 (43)x2+28x+180=0 (44)x2-8x-209=0 (45)x2+23x+90=0 (46)x2+7x+6=0 (47)x2+16x+28=0 (48)x2+5x-50=0

一元二次方程解法-公式法

第6课时 22.2.3 公式法 教学内容 1.一元二次方程求根公式的推导过程; 2.公式法的概念; 3.利用公式法解一元二次方程. 教学目标 理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程. 复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)?的求根公式的推导公式,并应用公式法解一元二次方程. 重难点关键 1.重点:求根公式的推导和公式法的应用. 2.难点与关键:一元二次方程求根公式法的推导. 教学过程 一、复习引入 1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程 (1)x2=4 (2)(x-2) 2=7 提问1 这种解法的(理论)依据是什么? 提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊 二次方程有效,不能实施于一般形式的二次方程。) 2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式。) (学生活动)用配方法解方程 2x2+3=7x (老师点评)略 总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边; (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; (5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根. 二、探索新知 用配方法解方程 (1)ax2-7x+3 =0 (2)a x2+bx+3=0 (3)如果这个一元二次方程是一般形式a x2+bx+c=0(a≠0),你能否用上面配方法的 步骤求出它们的两根,请同学独立完成下面这个问题. 问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=,x2=

解一元二次方程公式法

公式法解一元二次方程 一、教学目标 (1)知识目标 1.理解求根公式的推导过程和判别公式; 2.使学生能熟练地运用公式法求解一元二次方程. (2)能力目标 1.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思 想. 2.结合的使用求根公式解一元二次方程的练习,培养学生运用公式解决问题的能力,全面培养学生解方程的能力,使学生解方程的能力得到切实的提高。 (3)德育目标 让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感. 二、教学的重、难点及教学设计 (1)教学的重点 1.掌握公式法解一元二次方程的一般步骤. 2.熟练地用求根公式解一元二次方程。 (2)教学的难点: 理解求根公式的推导过程及判别公式的应用。 (3)教学设计要点 1.情境设计 上课开始,通过提问让学生回忆一元二次方程的概念及配方法解一元二次方程的一般步骤。利用昨天所学“配方法”解一元二次方程,达到“温故而知新”的目的和总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备。 然后让学生思考对于一般形式的一元二次方程ax2+bx+c=0(a≠0) 能否用配方法求出它的解?引出本节课的内容。 2.教学内容的处理 (1)回顾配方法的解题步骤,用配方法来解一般形式的一元二次方程ax2+bx+c=0(a≠0)。 (2)总结用公式法解一元二次方程的解题步骤,并补充理解判别公式的分类与应用。 (3)在小黑板上补充课后思考题:李强和萧晨刚学了用公式法解一元二次方程,看到一个关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 李强说:“此方程有两个不相等的实数根”,而萧晨反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由. 3.教学方法 在教学中由特殊的解法(配方法)引导探究一般形式一元二次方程的解的形

解一元二次方程(计算题)

解一元二次方程 用配方法解方程: (1)2 40x x -=; (2)2670y y +-=; (3)2992x x -=; (4)211063x x --=; (5)23690y y +-=; (6)2220x x --=; (7)225 3103x x +=; (8)224110x x -+=;

(9)22520x x -+=; (10)2 91815m m -+=; (11)29124x x -=-; (12)2255x x +=; 用公式解方程: (1)235x x -=; (2)2242x x +=; (2)23210x x ++=; (4)221028t t -+=. (5)2210x x +-=; (6)22213t t -=-;

(7)23123y y +=; (8)2 7 2.5x x +=. (9)2220x x +-=; (10)2322x x +=. 用适当的方法解下列一元二次方程: (1)27100x x -+=; (2)(3)(2)6x x -+=; (3)3(2)5(2)x x x -=-; (4)2(51)2x -= (5)24210x x --=; (6)(27)3(27)x x x -=-;

(7)22(1)1t t -+=; (8)22(31)4(23)0x x --+=. (9)2220x x --=; (10)2 2310x x +-=; (11)22410x x -+=; (12)2630x x ++=. (13)9(x-1)2-4=0. (14)22510x x --=. (15)0672=+-x x ; (16))15(3)15(2-=-x x ;

(完整版)一元二次方程的解法大全

一元二次方程的解法大全【直接开平方法解一元二次方程】 =0(a≠0), 把方程ax2+c 例:用直接开平方法解方程: 1.9x2-25=0; ; 2.(3x+2)2-4=0 4.(2x+3)2=3(4x+3). 解:1.9x2-25=0 25 9x2= 2.(3x+2)2-4=0 (3x+2)2=4 3x+2=±2 2±2 3x=-

4.(2x+3)2=3(4x+3) 4x2+12x+9=12x+9 4x2=0 ∴x1=x=0. 【配方法解一元二次方程】 将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除 + 以二次项系数,使二次项系数为1,如x2 1.x2-4x-3=0; 2.6x2+x=35; 3.4x2+4x+1=7; 4.2x2-3x-3=0. 解:1.x2-4x-3=0 x2-4x=3 x2-4x+4=3+4 7 (x-2)2=

3.4x2+4x+1= 7

一元二次方程ax2+bx+c= 0(a 广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c 的值代入两根公式中直接解出,所以把这种方法 =0(a≠0)的求根公式。 例:用公式法解一元二次方程: 2.2x2+7x-4=0; . 4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x) 2.2x2+7x-4=0 ∵a=2,b=7,c=-4. 81 b2-4ac=72-4×2×(-4)=49+32=

4.x2-a(3x-2a+b)-b2=0(a-2b≥0) x2-3ax+2a2-ab-b2=0 ∵a=1,b=-3a,c=2a2-ab-b2 b2-4ac=(-3a)2-4×1×(2a2+ab-b2) =9a2-8a2-4ab+4b2 =a2-4ab+4b2 =(a-2b)2 2b≥0)时,得 当(a- 【不完全的一元二次方程的解法】 在不完全的一元二次方程中,一次项与常数至少缺一项。即b与c至少一个等于零,这类项方程从形式与解法上比一般一元二次方程要简单,因此要研究这类方程最简捷的解法,从规律上看有两种方法:一是因式分解,二是直接开平方法: 例:解下列一元二次方法: .

《一元二次方程的解法》规律总结

《一元二次方程的解法》规律总结 1.一元二次方程的解法 (1)直接开平方法:根据平方根的意义,用此法可解出形如a x 2=(a ≥0), b )a x (2=-(b ≥0)类的一元二次方程.a x 2=,则a x ±=;b )a x (2=-,b a x ±=-,b a x +=.对有些一元二次方程,本身不是上述两种形式,但可以化为a x 2=或b )a x (2 =-的形式,也可以用此法解. (2)因式分解法:当一元二次方程的一边为零,而另一边易分解成两个一次因式的积时,就可用此法来解.要清楚使乘积ab =0的条件是a =0或b =0,使方程x(x -3)=0的条件是x =0或x -3=0.x 的两个值都可以使方程成立,所以方程x(x -3)=0有两个根,而不是一个根. (3)配方法:任何一个形如bx x 2 +的二次式,都可以通过加一次项系数一半的平方的方法配成一个二项式的完全平方,把方程归结为能用直接开平方法来解 的方程.如解07x 6x 2=++时,可把方程化为7x 6x 2-=+,2 2226726x 6x ??? ??+-=??? ??++,即2)3x (2=+,从而得解. 注意:(1)“方程两边各加上一次项系数一半平方”的前提是方程的二次项系数是1. (2)解一元二次方程时,一般不用此法,掌握这种配方法是重点. (3)公式法:一元二次方程0c bx ax 2=++(a ≠0)的根是由方程的系数a 、b 、 c 确定的.在0ac 4b 2≥-的前提下,a 2ac 4b b x 2-±-=.用公式法解一元二次方 程的一般步骤: ①先把方程化为一般形式,即0c bx ax 2 =++(a ≠0)的形式; ②正确地确定方程各项的系数a 、b 、c 的值(要注意它们的符号); ③计算0ac 4b 2<-时,方程没有实数根,就不必解了(因负数开平方无意义); ④将a 、b 、c 的值代入求根公式,求出方程的两个根. 说明:象直接开平方法、因式分解法只是适宜于特殊形式的方程,而公式法则是最普遍,最适用的方法.解题时要根据方程的特征灵活选用方法. 2.一元二次方程根的判别式 一元二次方程的根有三种情况:①有两个不相等的实数根;②有两个相等的 实数根;③没有实数根.而根的情况,由ac 4b 2-的值来确定.因此ac 4b 2-=?叫做一元二次方程0c bx ax 2 =++的根的判别式. △>0?方程有两个不相等的实数根. △=0?方程有两个相等的实数根. △<0?方程没有实数根.

一元二次方程及其解法

第2课时 一元二次方程及其解法 一·基本概念理解 1 一元二次方程的定义: 含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2 ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 2、一元二次方程的解法 (1)、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。 直接开平方法适用于解形如 b a x =+2 )(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有2 22)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 (3)、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0(02 ≠=++a c bx ax 的求根公式:

) 04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c (4)、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 (5)、韦达定理 若1x ,2x 是一元二次方程的一般形式:)0(02≠=++a c bx ax 的两个实数根,则 a b x x -=+21,a c x x =21。以上的就称为韦达定理(或称为根与系数的关系)利用 韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=a b -,二根之积 =a c 也可以表示为a b x x -=+21,a c x x =21。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用 3、一元二次方程根的判别式 根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42 -叫做一元二次方程 )0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?

一元二次方程解法练习题(四种方法)

一元二次方程解法练习题 姓名 一、用直接开平方法解下列一元二次方程。 1、0142=-x 2、2)3(2=-x 3、()162812 =-x 二、 用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 3、9642=-x x 4、0542=--x x 5、01322=-+x x 6、07232=-+x x 三、 用公式解法解下列方程。 1、0822=--x x 2、223 14y y -= 3、y y 32132=+ 4、01522=+-x x 5、1842-=--x x 6、02322=--x x

四、 用因式分解法解下列一元二次方程。 1、x x 22= 2、0)32()1(22=--+x x 3、0862=+-x x 4、22)2(25)3(4-=+x x 5、0)21()21(2=--+x x 6、0)23()32(2=-+-x x 五、用适当的方法解下列一元二次方程。(选用你认为最简单的方法) 1、()()513+=-x x x x 2、x x 5322 =- 3、2260x y -+= 4、01072=+-x x 5、()()623=+-x x 6、()()03342 =-+-x x x 7、()02152 =--x 8、0432=-y y 9、03072=--x x

10、()()412=-+y y 11、()()1314-=-x x x 12、()025122 =-+x 13、22244a b ax x -=- 14、3631352= +x x 15、()()213=-+y y 16、) 0(0)(2≠=++-a b x b a ax 17、03)19(32=--+a x a x 18、012=--x x 19 、02932=+-x x 20、02222=+-+a b ax x 21、 x 2+4x -12=0 22、030222=--x x 23、01752=+-x x

解一元二次方程公式法例题讲解及练习

解一元二次方程公式法习题讲解及练习 判别一元二次方程根的情况 教学内容 用b2-4ac大于、等于0、小于0判别ax2+bx+c=0(a≠0)的根的情况及其运用.教学目标 掌握b2-4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2-4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2-4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用. 通过复习用配方法解一元二次方程的b2-4ac>0、b2-4ac=0、b2-4ac<0各一题,?分析它们根的情况,从具体到一般,给出三个结论并应用它们解决一些具体题目.重难点关键 1.重点:b2-4ac>0?一元二次方程有两个不相等的实根;b2-4ac=0?一元二次方程有两个相等的实数;b2-4ac<0?一元二次方程没有实根. 2.难点与关键 从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情况与根的情况的关系. 教具、学具准备 小黑板 教学过程 一、复习引入 (学生活动)用公式法解下列方程. (1)2x2-3x=0 (2)3x2x+1=0 (3)4x2+x+1=0

老师点评,(三位同学到黑板上作)老师只要点评(1)b 2-4ac=9>0,?有两个不相等的实根;(2)b 2-4ac=12-12=0,有两个相等的实根;(3)b 2-4ac=│-4×4×1│=<0,?方程没有实根 二、探索新知 从前面的具体问题,我们已经知道b 2-4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析: 求根公式:x=2b a -±,当b 2-4ac>0 于一个具体数,所以一元一次方程的x 1x 1,即有两个 不相等的实根.当b 2-4ac=0时,?,所以x 1=x 2=2b a -,即有两个相等的实根;当b 2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解. 因此,(结论)(1)当b 2-4ac>0时,一元二次方程ax 2+bx+c=0(a ≠0)?有两个不相 等实数根即x 1x 2 (2)当b-4ac=0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等实数根即x 1=x 2=2b a -. (3)当b 2-4ac<0时,一元二次方程ax 2+bx+c=0(a ≠0)没有实数根. 例1.不解方程,判定方程根的情况 (1)16x 2+8x=-3 (2)9x 2+6x+1=0 (3)2x 2-9x+8=0 (4)x 2-7x-18=0 分析:不解方程,判定根的情况,只需用b-4ac 的值大于0、小于0、等于0?的情况进行分析即可.

相关主题