搜档网
当前位置:搜档网 › 平面直角坐标系与函数及图像

平面直角坐标系与函数及图像

平面直角坐标系与函数及图像
平面直角坐标系与函数及图像

第三模块函数

3.1平面直角坐标系与函数及图像

考点一、平面直角坐标系内点的坐标

1.有序数对

(1)平面内的点可以用一对有序实数来表示.例如点A在平面内可表示为

A(a,b),其中a表示点A的横坐标,b表示点A的纵坐标.

(2)平面内的点和有序实数对是一一对应的关系,即平面内的任何一个点可以用

一对有序实数来表示;反过来每一对有序实数都表示平面内的一个点.(3)有序实数对表示这一对实数是有顺序的,即(1,2)和(2,1)表示两个不同的点.

2.平面内点的坐标规律

(1)各象限内点的坐标的特征

点P(x,y)在第一象限?x>0,y>0;

点P(x,y)在第二象限?x<0,y>0;

点P(x,y)在第三象限?x<0,y<0;

点P(x,y)在第四象限?x>0,y<0.

(2)坐标轴上的点的坐标的特征

点P(x,y)在x轴上?y=0,x为任意实数;

点P(x,y)在y轴上?x=0,y为任意实数;

点P(x,y)在坐标原点?x=0,y=0.

【例1】在平面直角坐标系中,点P(m,m-2)在第一象限,则m的取值范围是________.

解析:由第一象限内点的坐标的特点可得:m>0,m-2>0,解得m>2.

方法点拨:此类问题的一般方法是根据点在坐标系中的符号特征,建立不等式组或者方程(组),把点的问题转化为不等式组或方程(组)来解决.

考点二、平面直角坐标系内特殊点的坐标特征

1.平行于坐标轴的直线上的点的坐标特征

(1)平行于x 轴(或垂直于y 轴)的直线上点的纵坐标相同,横坐标为不相等的实数.

(2)平行于y 轴(或垂直于x 轴)的直线上点的横坐标相同,纵坐标为不相等的实数.

2.平面直角坐标系各象限角平分线上的点的坐标特征

(1)第一、三象限角平分线上的点,横、纵坐标相等.

(2)第二、四象限角平分线上的点,横、纵坐标互为相反数.

3.平面直角坐标系对称点的坐标特征

点P (x ,y )关于x 轴的对称点P 1的坐标为(x ,-y );关于y 轴的对称点P 2的坐标为(-x ,y );关于原点的对称点P 3的坐标为(-x ,-y ). 以上特征可归纳为:

(1)关于x 轴对称的两点,横坐标相同,纵坐标互为相反数.

(2)关于y 轴对称的两点,横坐标互为相反数,纵坐标相同.

(3)关于原点对称的两点,横、纵坐标均互为相反数.

【例2】已知点M(1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围

在数轴上表示正确的是 ( )

解析:由题意得,点M 关于x 轴对称的点的坐标为(1-2m ,1-m ).

∵M (1-2m ,m -1)关于x 轴的对称点在第一象限, ∴???1-2m >0,1-m >0,解得???m <12,m <1.

考点三、确定物体位置的方位

1.平面内点的位置用一对有序实数来确定.

2.方法 (1)平面直角坐标法

(2)方向角和距离定位法

用方向角和距离确定物体位置,方向角是表示方向的角,距离是物体与观测点的距离.用方向角和距离定位法确定平面内点的位置时,要注意中心点的位置,中心点变化了,则方向角与距离也随之变化.

考点四、点到坐标轴的距离

考点五、平面直角坐标系中的平移与对称点的坐标

4,-1),C(2,0),将△ABC 平移至△A

1B

1

C

1

的位置,点A、B、C的对应

点分别是A

1、B

1

、C

1

,若点A

1

的坐标为(3,1),则点C

1

的坐标为________.

解析:由A(-2,3)平移后点A

1

的坐标为(3,1),可知A点横坐标加5,纵坐标减2,

则点C的坐标变化与A点的坐标变化相同,故C

1

(2+5,0-2),即(7,-2).方法点拨:求一个图形旋转、平移后的图形上对应点的坐标,一般要把握三点:一是根据图形变换的性质;二是利用图形的全等关系;三是确定变换

前后点所在的象限.

考点六、函数及其图象

1.函数的概念

(1)在一个变化过程中,我们称数值发生变化的量为变量,有些数值是始终不

变的,称它们为常量.

(2)函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且

对于x在其取值范围内的每一个确定的值,y都有唯一确定

的值与其对应,那么就说,x是自变量,y是x的函数.

函数值:对于一个函数,如果当自变量x =a 时,因变量y =b ,那么b 叫

做自变量的值为a 时的函数值

注:函数不是数,它是指某一变化过程中的两个变量之间的关系

(3)用来表示函数关系的数学式子,叫做函数解析式或函数关系式.

2.函数的表示法及自变量的取值范围

(1)函数有三种表示方法:解析法,列表法,图象法,这三种方法有时可以互相转化.(表示函数时,要根据具体情况选择适当的方法,有时为了全面认识问题,可同时使用几种方法)

(2)当函数解析式表示实际问题或几何问题时,其自变量的取值范围必须符合实际意义或几何意义.

3.函数的图象:对于一个函数,把自变量x 和函数y 的每对对应值分别作为点

的横坐标与纵坐标在平面内描出相应的点,组成这些点的图形

叫这个函数的图象.

(1)画函数图象,一般按下列步骤进行:列表、描点、连线.

(2)图象上任一点的坐标是解析式方程的一个解;反之以解析式方程的任意一个解为坐标的点一定在函数图象上.

温馨提示:画图象时要注意自变量的取值范围,当图象有端点时,要注意端点是

否有等号,有等号时画实心点,无等号时画空心圆圈.

【例4】函数y =1x +x 的图象在( ) A .第一象限 B .第一、三象限

C .第二象限

D .第二、四象限

解析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a

的取值范围即可.

???2x<3(x -3)+1,①

3x +24

>x +a.② 由①得x >8,

由②得x <2-4a ,

其解集为8<x <2-4a.

因不等式组有四个整数解,为9,10,11,12,

则???2-4a>12,2-4a≤13,

解得-114≤a<-52. 故选B.

【例5】[2013·苏州] 在物理实验课上,小明用弹簧秤将铁块悬于盛有水的水

槽中,然后匀速向上提起(不考虑水的阻力),直到铁块完全露出水面一定高度.下图能反映弹簧秤的度数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是 ( )

解析:因为小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直

至铁块完全露出水面一定高度.露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.故选C.

方法点拨:观察图象时,首先弄清横轴和纵轴所表示的意义,弄清哪个是自变量,

哪个是因变量;然后分析图象的变化趋势,结合实际问题的意义进行判断.

考点七、自变量取值范围的确定方法

求函数自变量的取值范围时,首先要考虑自变量的取值必须使解析式有意义.

1.自变量以整式形式出现,它的取值范围是全体实数.

2.自变量以分式形式出现,它的取值范围是使分母不为零的实数.

3.当自变量以偶次方根形式出现,它的取值范围是使被开方数为非负数;

以奇次方根出现时,它的取值范围为全体实数.

4.当自变量出现在零次幂或负整数幂的底数中,它的取值范围是使底数不为零的数

5.在一个函数关系式中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分.

【例6】(1)(2010·遵义)函数y =1x -2

的自变量x 的取值范围是________. (2)(2010·济宁)在函数y =x +4中,自变量x 的取值范围是________.

(3)(2010·黄冈)函数y =x -3x +1

的自变量x 的取值范围是________. (4)(2010·玉溪)函数y =x x +1

中自变量x 的取值范围是________. 【解答】(1)由x -2≠0得x≠2.

(2)由x +4≥0,得x≥-4.

(3)由??? x -3≥0,x +1≠0,

得x≥3. (4)由x +1>0,得x >-1.

(完整版)六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

七下平面直角坐标系压轴题

平面直角坐标系压轴题 ①能熟练解平面直角坐标系中的面积存在性问题; ②能将几何问题代数化,并能运用数形结合思想解题. 探究案 【例1】如图,在平面直角坐标中,A(0,1),B(2,0),C(2,1.5). (1)求△ABC的面积; (2)如果在第二象限内有一点P(a,0.5),试用a的式子表示四边形ABOP的面积; (3)在(2)的条件下,是否存在这样的点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由. 【例2】在平面直角坐标系中,已知A(-3,0),B(-2,-2),将线段AB平移至线段CD. 图2 (1)如图1,直接写出图中相等的线段,平行的线段; (2)如图2,若线段AB移动到CD,C、D两点恰好都在坐标轴上,求C、D的坐标; (3)若点C在y轴的正半轴上,点D在第一象限内,且S△ACD=5,求C、D的坐标; (4)在y轴上是否存在一点P,使线段AB平移至线段PQ时,由A、B、P、Q构成的四边形是平行四边形面积为10,若存在,求出P、Q的坐标,若不存在,说明理由;

【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积; (2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''', 请你在图中画出△A B C '''; (3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使2ACP ABC S S =V V ; (4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQ ABC S S =V V . 【例4】如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2 (2)20a b ++-=,过C 作CB ⊥x 轴于B . (1)求三角形ABC 的面积; (2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;

初三中考数学 平面直角坐标系与函数的概念

第四章 函数 课时14. 平面直角坐标系与函数的概念 【课前热身】 1.函数3-=x y 的自变量x 的取值范围是 . 2.若点P(2,k-1)在第一象限,则k 的取值范围是 . 3.点A(-2,1)关于y 轴对称的点的坐标为___________;关于原点对称的点的坐标为________. 4. 如图,葡萄熟了,从葡萄架上落下来,下面图象可以大致反映葡萄下落过程中的速度v 随时间变化情况是( ) 5.在平面直角坐标系中,平行四边形ABCD 顶点 A 、 B 、D 的坐标分别是(0,0),(5,0)(2,3),则 C 点 的坐标是( ) A .(3,7) B.(5,3) C.(7,3) D.(8,2) 【考点链接】 1. 坐标平面内的点与______________一一对应. 2. 点的位置 横坐标符号 纵坐标符号 第一象限 第二象限 第三象限 第四象限 3. x 轴上的点______坐标为0, y 轴上的点______坐标为0. 4. P (x,y)关于x 轴对称的点坐标为__________,关于y 轴对称的点坐标为________, 关于原点对称的点坐标为___________. 5. 描点法画函数图象的一般步骤是__________、__________、__________. 6. 函数的三种表示方法分别是__________、__________、__________. 7. x y =有意义,则自变量x 的取值范围是 . x y 1=有意义,则自变量x 的取值范围是 . 【典例精析】 例1 ⑴ 在平面直角坐标系中,点A 、B 、C 的坐标分别为A (-?2,1),B (-3, -1),

(完整版)基本初等函数图像及其性质表

函数名 一次函数 二次函数 反比例函数 指数函数 解析式 )0()(≠+=a b ax x f )0()(≠= k x k x f 图像 定义域 R R {}0|≠x x R 值域 R ) ,(∞+0 必过点 )(b ,0 ) ,(c 0 ) 1,(1,--k k ) ( ) (1,0 周期性 不是周期函数 不是周期函数 不是周期函数 不是周期函数 单调性 在R 上单增 )2-a b -∞,(为减 ),2+∞-a b (为增 )为减,(0-∞)为减,(∞+0 为减 为增,101<<>a a 最大最小值 在R 不存在最大最小值 开口向上有最小值 a b a c y 442min -= 不存在最大最小值 在R 上不存在最大最小值 奇偶性 非奇非偶函数 为奇函数00≠=b b 偶函数 为非奇非为偶函数,00≠=b b 奇函数 非奇非偶函数 对称性 为常数。 对称, 函数图像关于直线任何一点对称;关于图像上t t x a y +=1 - 对称 直线函数图像关于 a b x 2-= 函数图像关于原点对称; 对称。 直线和关于 对称,直线图像关于x y x y -== 既不成中心对称也不成轴对称。 渐近线 无 无 . 00==y x 直线或者直线 .0=y 直线 ) 0()(2≠++=a c bx ax x f ) 10()(≠=a a a x f x 且>0>a >a 0 >k ) ,44[ 2 +∞-a b a c ),(),(∞+?∞00-x a y =) 10(<a x y O 1

函数名 对数函数 幂函数的一个例子 双钩函数 含绝对值函数 解析式 ) 10(log ≠>=a a y x a 且 ) 0(≥=x x y b a b x a x y <-+-=设为了研究方便 图像 O 1 y x ) 10(log <<=a y x a ) 1(log >=a y x a O y x x y =1 1 定义域 ()∞+,0 [)∞+,0 0}x |{x ≠ R 值域 R [) ∞+,0 (][) ∞+∞,,ab ab 22--Y [)+∞-,a b 必过点 )(0,1 () 1,1 )2,(2,ab a b ab a b -- )( ) ,(,a b b a b a --)( 周期性 不是周期函数 不是周期函数 不是周期函数 不是周期函数 单调性 单调递减。 单调递增。,, 101<<>a a 为增函数 定义域内 递增。递减,,递减,递增,,???? ??+∞???? ????? ? ? ????? ??∞,00,---a b a b a b a b (][)函数。 上为常值为增函数。 为减函数。 ,],[,-b a b a +∞∞ 最大最小值 无最大最小值 最小值为 0min =y ,无最 大值 无最大最小值 a b y -=min 奇偶性 非奇非偶 非奇非偶 奇函数 对称性 既不是轴对称也不是中心对称 既不是轴对称也不是中心对称 关于原点成中心对称 关 于 直 线 2 b a x += 对称。 渐近线 直线x=0 ax y =和0=x O y x a b a b -ab 2ab 2-O y x a b a b -的情况 只了解中学研究方便通常 ) (00>>+=b a x b ax y 为偶函数0=+b a

平面直角坐标系中如何求几何图形的面积

图1 图2 图3 平面直角坐标系中如何求几何图形的面积 一、 求三角形的面积 1、有一边在坐标轴上或平行于坐标轴 例1:如图1,平面直角坐标系中,△ABC 的顶点坐标分别为(-3,0)、(0,3)、(0,-1),你 能求出三角形ABC 的面积吗 2、无边在坐标轴上或平行于坐标轴 例2:如图2,平面直角坐标系中,已知点A (-3,-1)、B (1,3)、C (2,-3),你能求出三角形ABC 的面积吗 归纳:求三角形面积的关键是确定某条边及这条边上的高,如果在坐标系中,某个三角形中有一条边在坐标轴上或平行于坐标轴,则根据这条边的两个顶点的坐标易求出这边的长,根据这条边的相对的顶点可求出他的高。 二、求四边形的面积 例3:如图3,你能求出四边形ABCD 的面积吗 分析:四边形ABCD 是不规则的四边形,面积不能直接求出,我们可以利用分割或补形来求。

归纳:会将图形转化为有边与坐标轴平行的图形进行计算。 怎样确定点的坐标 一、 象限点 解决有关象限点问题的关键是熟记各象限的符号特征,由第一到底四象限点的符号特征分别为(+,+)、 (-,+)、(-,-)、(+,-)。 例1:已知点M (a 3-9,1-a )在第三象限,且它的坐标都是整数,则a =( ) A 、1 B 、2 C 、3 D 、0 二、轴上的点 解决有关轴上点问题的关键是把握“0”的特征,x 轴上点的纵坐标为0,可记为(x ,0);y 轴上点的横坐标为0,可记为(0,y );原点可记为(0,0)。 例2:点P (m+3,m+1)在直角坐标系的x 轴上,则P 点的坐标为( ) A 、(0,-2) B 、(2,0) C 、(4,0) D 、(0,-4) 三、象限角平分线上的点 所谓象限角平分线上的点,就是各象限坐标轴夹角平分线上的点。解决这类问题的关键是掌握“y x =”的特征,一、三象限角平分线上点的横、纵坐标相等,可记为(x ,x );二、四象限角平分线上的点横、纵坐标互为相反数,可记为(x ,-x )。 例3:已知点Q (8,4m 22 2++++m m m )在第一象限的角平分线上,则m=_________. 四、对称点 对称点的横、纵坐标之间有很密切的关系,点P (a ,b )关于x 轴对称的点的坐标上(a ,-b );关于y 轴对称的点的坐标是(-a ,b );关于原点对称的点的坐标是(-a ,-b );关于一、三象限角平分线对称的点的坐标是(b ,a );关于二、四象限角平分线对称的点的坐标是(-b,-a ). 例4:点(-1,4)关于原点对称的点的坐标是( ) A 、(-1,-4) B 、(1,-4) C 、(1,4) D 、(4,-1) 五、平行于坐标轴的直线上的点 平行于x 轴的直线上点的纵坐标相同,平行于y 轴的直线上点的横坐标相同。 例5:点A(4,y)和点B (x ,-3),过A 、B 的直线平 行于x 轴,且AB=5,则x=____,y=_____.

平面直角坐标系与函数的概念

专题四 函数 第一节 平面直角坐标系与函数的概念 一【知识梳理】 1.平面直角坐标系如图所示: 注意:坐标原点、x 轴、y 轴不属于任何象限。 2.点的坐标的意义:平面中,点的坐标是由一个“有序实数对”组成, 如(-2,3),横坐标是-2,纵坐标是-3,横坐标表示点在平 面内的 左右位置,纵坐标表示点的上下位置。 3.各个象限内和坐标轴的点的坐标的符号规律 ①各个象限内的点的符号规律如下表。 说明:由上表可知x 轴的点可记为(x , 0) ,y 轴上的点可记做(0 , y )。⒋ 对称点的坐标特征:点P (y x ,)①关于x 轴对称的点P 1(y x -,);②关于y 轴对称的点P 2(y x ,-);③关于原点对称的点P 3(y x --,)。 5.坐标平面内的点和“有序实数对” (x , y)建立了___________关系。 6.第一、三象限角平分线上的点到_____轴、_____轴的距离相等,可以用直线___________表示;第二、四象限角平线线上的点到_____轴、_____轴的距离也相等,可以用直线___________表示。 7.函数基础知识 (1) 函数: 如果在一个变化过程中,有两个变量x 、y ,对于x 的 ,y 都有

与之对应,此时称y 是x 的 ,其中x 是自变量,y 是 . (2) 自变量的取值范围:①使函数关系式有意义;②在实际问题的函数式中,要使实际问题有 意义。 (3)常量:在某变化过程中 的量。变量:在某变化过程中 的量。 (4) 函数的表示方法:① ;② ;③ 。 能力培养:从图像中获取信息的能力;用函数来描述实际问题的数学建模能力。 二【巩固练习】 1. 点P(3,-4)关于y 轴的对称点坐标为_______,它关于x 轴的对称点坐标为_______. 它关于原点的对称点坐标为_____. 2.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子便得意洋洋地躺在一棵大树下睡起觉来.乌龟一直在坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程S 随时间t 变化情况的是 ( ). 3.如图,所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点 (3,-2)上,则○炮位于点( ) A.(-1,1) B.(-1,2) C.(-2,1) D.(-2,2) 4. 如果点M(a+b,ab)在第二象限,那么点N(a ,b)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5.图中的三角形是有规律地从里到外逐层排列的.设y 为第n 层(n 为 正整数)三角形的个数,则下列函数关系式中正确的是( ). A 、y =4n -4 B 、y =4n C 、y =4n +4 D 、y =n 2 6. 函数y =中自变量x 的取值范围是( ) A . x ≥1- B . x ≠3 C . x ≥1-且x ≠3 D . 1x <- 7. 如图 ,方格纸上一圆经过(2,5),(-2,l ),(2,-3), ( 6,1)四点,则该圆的圆心的坐标为( ) A .(2,-1) B .(2,2) C .(2,1) D .(3,l ) 8. 右图是韩老师早晨出门散步时,离家的距离y 与时间x 的函数 图象.若用黑点表示韩老师家的位置,则韩老师散步行 走的路线可能是( ) 相帅炮

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

三角函数 正切、余切图象及其性质

正切、余切函数图象和性质反三角函数[知识要点] 1.正切函数、余切函数的图象与性质 2.反三角函数的图象与性质 3.已知三角函数值求角 [目的要求] 1.类比正、余弦函数的研究,讨论正切函数与余切函数的图象和性质,关注其不同点. 2.从反函数概念入手,引入反三角函数定义,并定性讨论其图象和性质. 3.能熟练运用正、余弦函数性质解决问题. 4.能用反三角函数值表示不同范围内的角. [重点难点] 1.正切函数图象与性质2.已知三角函数值求角 [内容回顾] 一、正切函数与余切函数图象 由前面我们正、余弦函数图象和性质的过程知,在中学阶段,对一个函数的认识,多是“由图识性”.因此,可以先作出正、余切函数的图象. 作三角函数图象的一般方法,有描点法和平移三角函数线法. 与正、余弦函数的五点法作图相类似,我们可以选择正切函数在一个周期内的图象上三点及两条重要的辅导线——渐近线,来作正切函数在区间上的简图,不妨称之为“三点两线法”. 若想迅速作出余切函数y=cotx的图象,如何选择“三点”及“两线”呢?请大家看余切函数的图象,不难得到答案. 二、正、余切函数的性质 由图象可得: y=tanx y=cotx 定义域值域R R 单调性在上单增(k∈Z) 在上单减(k∈Z) 周期性T=π T=π 对称性10 对称中心,奇函数(k∈Z) 20 对称轴;无10 对称中心,奇函数(k∈Z) 20 对称轴;无 注: 1、由定义域知,y=tanx与y=cotx图象都存在无数多个间断点(不连续点). 2、每个单调区间一定是连续的.

3、由单调性可解决比较大小问题,但要务必使两个自变量在同一单调区间内. 三、反三角函数的概念和图象 四种三角函数都是由x到y的多值对应,要使其有反函数,必须缩小自变量x的范围,使之成为由x到y的对应.从方便的角度而言,这个x的范围应该(1)离原点较近;(2)包含所有的锐角;(3)能取到所有的函数值;(4)最好是连续区间.从这个原则出发,我们给出如下定义: 1.y=sinx, x∈的反函数记作y=arcsinx, x∈[-1,1],称为反正弦函数. y=cosx, x∈[0, π]的反函数记作y=arccosx, x∈[-1,1],称为反余弦函数. y=tanx,x∈的反函数记作y=arctanx, x∈R,称为反正切函数. y=cotx,x∈(0, π)的反函数记作y=arccotx, x∈R,称为反余切函数. 2.反三角函数的图象 由互为反函数的两个函数图象间的关系,可作出其图象. 注:(1)y=arcsinx, x∈[-1,1]图象的两个端点是 (2)y=arccosx, x∈[-1,1]图象的两个端点是(1,0)和(-1,π). (3)y=arctanx, x∈R图象的两条渐近线是和. (4)y=arccotx, x∈R图象的两条渐近线是y=0和y=π. 四、反三角函数的性质由图象,有 y=arcsinx y=arccosx y=arctanx y=arccotx 定义域[-1,1] [-1,1] R R 值域[0, π] (0, π) 单调性在[-1,1]上单增在[-1,1]上单减在R上单增在R上单减对称性10对称中心(0,0)奇函数 20对称轴;无10对称中心非奇非偶 20对称轴;无10对称中心 (0,0)奇函数 20对称轴;无10对称中心非奇非偶 20对称轴;无周期性无无无无 另外: 1.三角的反三角运算 arcsin(sinx)=x(x∈)arccos(cosx)=x (x∈[0, π]) arctan(tanx)=x(x∈)arccot(cotx)=x(x∈(0, π)) 2.反三角的三角运算 sin(arcsinx)=x (x∈[-1,1])cos(arccosx)=x (x∈[-1,1])

平面直角坐标系中的几何综合题

2015年七年级下学期期末备考之《平面直角坐标系中几何综合 题》 2015-06-15一.解答题(共17小题) 1.(2015春?玉环县期中)如图在平面直角坐标系中,A(a,0),B(b,0),(﹣1,2).且|2a+b+1|+=0. (1)求a、b的值; (2)①在y轴的正半轴上存在一点M,使S△COM=S△ABC,求点M的坐标.(标注:三角形ABC 的面积表示为S△ABC) ②在坐标轴的其他位置是否存在点M,使S△COM=S△ABC仍成立若存在,请直接写出符合条件的点M的坐标. 2.(2015春?汕头校级期中)如图,在下面直角坐标系中,已知A(0,a),B(b,0),C (3,c)三点,其中a、b、c满足关系式:|a﹣2|+(b﹣3)2+=0. (1)求a、b、c的值; (2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在负整数m,使四边形ABOP的面积不小于△AOP面积的两倍若存在,求出所有满足条件的点P的坐标,若不存在,请说明理由.

3.(2015春?鄂城区期中)如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD. (1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC. (2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC若存在这样一点,求出点P 的坐标;若不存在,试说明理由. (3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由. 4.(2014春?富顺县校级期末)在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2)(见图1),且|2a+b+1|+=0 (1)求a、b的值; (2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标; ②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积仍然成立若存在,请直接写出符合条件的点M的坐标;

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

定义域 (),-∞+∞ 对称轴 2b x a =- 顶点坐标 24,24b ac b a a ??-- ??? 值域 24,4ac b a ??-+∞ ? ?? 24,4ac b a ??--∞ ? ?? 单调区间 ,2b a ? ?-∞- ? ? ?递减 ,2b a ??- +∞ ??? 递增 ,2b a ? ?-∞- ? ? ?递增 ,2b a ?? - +∞ ??? 递减 ①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 叫做幂函数,其中x 为自变量,α是常数. (2

正切函数和余切函数的图像和性质

正切函数和余切函数的 图像和性质 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

正切函数和余切函数的图像和性质知识点: 1.正切函数和余切函数的概念; 2.正切函数与余切函数的图像和性质; 3.正切函数与余切函数性质的应用; 教学过程: 1.正切函数和余切函数的概念: (1)正切函数---形如tan =的函数称为正切函数; y x 余切函数--形如cot =的函数称为余切函数; y x 2.函数的图像和性质: (1)正切函数的图像: 见正切函数图像课件。 (2)正切函数图像: (3)与切函数的图像: 归纳填表格:

例1.求下列函数的周期: (1)tan(3)3 y x π =-+; (2)221tgx y tg x =+ ; (3)cot tan y x x =-; (4)2 2tan 21tan 2 x y x =-; (5)sin 1tan tan 2x y x x ??=+ ?? ? 例2.求下列函数的单调区间: (1)tan(2)24 y x π =++; (2)tan()123 x y π=-+-; (3)12log cot y x ?= ?? 例3.求下列函数的定义域: (1)tan 4y x π??=- ??? ; (2)y = (3)y =

例4.(1)求函数21)tan tan ]y x x =-的定义域; (2)解不等式:23tan (2)(3tan(2)044 x x ππ+-+≤ 例5.已知2tan tan y x a x =-,当1[0,],[0,]34 x a π∈∈时,函数max y =a 的值; 例6.已知函数tan ,(0,)2y x x π=∈,若1212,(0,),2 x x x x π∈≠。 求证:1212()()()22f x f x x x f ++>。

平面直角坐标系与几何图形相结合

平面直角坐标系与几何图形相结合 扣庄乡陈官营中学田海凤 教学目标: (一)知识与技能:使学生进一步复习勾股定理、等腰三角形和平面直角坐标系的基础知识,通过知识的相互联系发展学生的基本技能,发展学生思维的灵活性. (二)过程与方法:通过学生的自主学习,合作探究等活动,让学生去感受和体会思考问题的正确的思路和方法,建立知识间的相互联系. (三)情感态度与价值观:体会事物间的相互作用和相互联系. 重点:掌握基础知识发展学生的基本技能 难点:提高学生的解决问题的能力 教学方法:自主探究、合作学习. 教学手段:小篇子 教学过程: 一、复习回顾 1.在R t△ABC中,∠C=90°a=3,b=4,则C=___ 2.如图1,等腰△ABC中,AB=AC,∠B=46°,BC=4,AD⊥BC (1)∠C=______° (2)∠BAD=______° (3)BD=______. 3. 等腰△ABC中∠B=60°,则△ABC是____三角形. BC=4,AD⊥BC,则AD=_____ 4.点A(1,-4),则点A在第______象限 5.点B(-1,-2),则点B关于x轴的对称点B′的坐标为_______;则点B关于y轴的对称点B〞的坐标为________;点B关于原点的对称点的坐标为_________;点B到x轴的距离是_______;点B到y轴的距离是_________ 二、例题讲解 等边△ABC中AB=AC=BC=6,请建一个适当的平面直角坐标系,求个点坐标。 教师总结:在坐标轴上只要有线段长就能求点的坐标,有坐标就会知道一些线段长,当点不在坐标轴上时,过点做两坐标轴的垂线,利用勾股定理也能求点的坐标。 变形:如图9,等边△ABC两个顶点的坐A(-4,0),B(2,0) (1)求点C的坐标; (2)求△ABC的面积 变形:如图8,在平面直角坐标系中,Rt△CDO的直角边OD在x轴、的正半轴上,且CD=2,OD=1,将△CDO沿x轴向左平移1个单位再把所得图像绕点O按逆时针旋转90°得到Rt△AOB,,

初二数学期末复习专题《平面直角坐标系与函数的图像》

初二数学期末复习专题《平面直角坐标系与函数的图像》 (时间:90分钟满分:100分) 一、选择题(每小题3分,共30分) 1.在平面直角坐标系中,和有序实数对一一对应的是( ) A.x轴上的所有点B.y轴上的所有点 C.平面直角坐标系内的所有点D.x轴和y轴上的所有点 2.如图,小手盖住的点的坐标可能为( ) A.(-4,-6) B.(-6,3) C.(5,2) D.(3,-4) 3.点A(0,-5)在( ) A.x轴上B.y轴上C.第三象限 D.第四象限 4.在平面直角坐标系中,点A(1,2)的横坐标乘-1,纵坐标不变,得到点A',则A与A'的关系是( ) A.关于x轴对称B.关于y轴对称 C.关于原点对称D.不确定 5.已知点P(x,y),Q(m,n),如果x+m=0,y+n=0,那么点P与Q ( ) A.关于原点对称B.关于戈轴对称 C.关于y轴对称D.关于直线y=x对称 6.将某图形各顶点的横坐标都减去2,纵坐标不变,则该图形( ) A.向右平移2个单位B.向左平移2个单位 C.向上平移2个单位D.向下平移2个单位 7.点A(1,2)向右平移2个单位得到对应点A',则点A'的坐标是( ) A.(1,4) B.(1,0) C.(-1,2) D.(3,2) 8.线段MN在平面直角坐标系中的位置如图所示,线段M1N1与MN关于y轴对称,则点M的对应的点M1的坐标为( ) A.(4,2) B.(4,-2)C.(-4,2)D.(-4,-2)9.(2013.成宁)如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x

轴于点M,交y轴于点N,再分别以点M,N为圆心,大于1 2 MN的长为半径画弧,两弧 在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( ) A.a=b B.2a+b=-1 C.2a-b=1 D.2a+b=1 10.如图所示,将边长为1的正方形OAPB沿x轴正方向连续翻转2014次,点P依次落在点P1,P2,P3,P4,…,P2014的位置,则P2014的横坐标x2014=( ) A.2012 B.2013 C.2014 D.无法确定 二、填空题(每小题3分,共24分) 11.小明坐在教室的位置是进门的第三排,第四列,记作(3,4),小芳的座位记为(4,3),那么小芳在第_______排,第_______列. 12.点A(-3,5)在第_______象限,到x轴的距离为_______,点A关于x轴的对称点坐标为_______. 13.已知x轴上点P到y轴的距离是3,则点P的坐标是_______;若点Q到x轴的距离为1,到y轴的距离为3,且在第三象限,则点Q的坐标是_______. 14.一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是_______. 15.已知长方形ABCD中,AB=5,BC=8,并且AB∥x轴,若点A的坐标为(-2,4),则点C的坐标为_______. 16.如图,已知点A,B的坐标分别为(2,0),(2,4),以A,B,P为顶点的三角形与△ABO全等,写出一个符合条件的点P的坐标:_______. 17.△ABC中BC边上的中点为M,把△ABC向左平移2个单位,再向上平移3个单位后,得到△A1B1C1的B1C1边上的中点M1的坐标为(-1,0),则M点坐标为_______.18.如图,围棋棋盘的左下角呈现的是一局围棋比赛中的几手棋,为记录棋谱方便,横线用数字表示,横线用英文字母表示,这样,黑棋①的位置可记为(C,4),白棋②的位置可记为(E,3),则白棋⑨的位置应记为_______.

空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类 正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。 在测量中常用的坐标系有以下几种: 一、空间直角坐标系 空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。空间直角坐标系可用图2-3来表示: 图2-3 空间直角坐标系 二、空间坐标系 空间坐标系是采用经、纬度和高来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;高是空间点沿参考椭球的法线方向到参考椭球面的距离。空间坐标系可用图2-4来表示:

图2-4空间坐标系 三、平面直角坐标系 平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。在我用的是高斯-克吕格投影也称为高斯投影。UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。 高斯投影是一种横轴、椭圆柱面、等角投影。从几何意义上讲,是一种横轴椭圆柱正切投影。如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。 高斯投影满足以下两个条件: 1、 它是正形投影; 2、 中央子午线投影后应为x 轴,且长度保持不变。 将中央子午线东西各一定经差(一般为6度或3度)围的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下图2-5右侧所示。 图2-5 高斯投影 x 方向指北,y 方向指东。 可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔一定的地区,另立中央子午线,采取分带投影的办法。我国国家测量规定采用六度带和三度带两种分带方法。六度带和三度带与中央子午线存在如下关系: 366 N L =中; n L 33=中 其中,N 、n 分别为6度带和3度带的带号。

中考数学专题复习平面直角坐标系与函数含详细参考答案

把握命题趋势,提高复习效率,提升解题能力,打造中考高分! 2016年中考数学专题复习 第十一讲平面直角坐标系与函数 【基础知识回顾】 一、平面直角坐标系: 1、定义:具有的两条的数轴组成平面直角坐标系,两条数轴分别称轴轴或轴轴,这两系数轴把一个坐标平面分成的四个部分,我们称作是四个 2、有序数对:在一个坐标平面内的任意一个点可以用一对来表示,如A(a .b),(a .b)即为点A的其中a是该点的坐标,b是该点的坐标平面内的点和有序数对具有的关系。 3、平面内点的坐标特征: ① P(a .b):第一象限第二象限 第三象限第四象限 X轴上 Y轴上 ②对称点:

(,) (,) (,)x P a b P a b P a b ?????→?????→?????→关于轴对称 关于y轴对称 关于原点对称 ③特殊位置点的特点:P(a .b)若在一、三象限角的平分线上,则 若在二、四象限角的平分线上,则 ④到坐标轴的距离:P(a .b)到x轴的距离到y轴的距离到原点的距离 ⑤坐标平面内点的平移:将点P(a .b)向左(或右)平移h个单位,对应点坐标为(或),向上(或下)平移k个单位,对应点坐标为(或)。 名师提醒:坐标平面内点的坐标所具备的特征必须结合坐标平面去理解和记忆,不可生硬死记一些结论。 二、确定位置常用的方法: 一般由两种:1、 2、。 三、函数的有关概念: 1、常量与变量:在某一变化过程中,始终保持的量叫做常量,数值发生的量叫做变量。 名师提醒:常量与变量是相对的,在一个变化过程中,同一个量在不同

情况下可以是常量,也可能是变量,要根据问题的条件来确定。 2、函数: ⑴函数的概念:一般的,在某个过程中如果有两个变量x、y,如果对于x的每一个确定的值,y都有的值与之对应,我们就成x是,y是x的。 ⑵自变量的取值范围: 主要有两种情况:①、解析式有意义的条件,常见分式和二次根式两种情况 ②、实际问题有意义的条件:必须符合实际问题的背景 ⑶函数的表示方法: 通常有三种表示函数的方法:①、法②、法③、法 ⑷函数的同象: 对于一个函数,把自变量x和函数y的每对对应值作为点的与 在平面内描出相应的点,符合条件的所有的点组成的图形叫做这个函数的同象

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质 一、常值函数(也称常数函数) y =C (其中C 为常数); α 1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果m

除x=0以外的一切实数。 三、指数函数x a y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

余切函数的图象和性质解读

正切、余切函数的图象和性质 教学目的:(略) 教学过程择录: 一、引题: 师:对比上一节的习题,请同学们看一看自己的作业本,对正弦和余弦函数,在作业中,我们已涉及了多少类型的问题? 生众:P159(11)正弦,余弦函数的定义域: P158(3)正弦,余弦函数的最值(值域): P158(6)正弦,余弦函数的奇偶性 P159(8)正弦,余弦函数的单调性 P159(7)正弦,余弦函数的应用一-----比大小 P158(4)正弦,余弦函数的周期(最小正周期) P159(12)正弦,余弦函数的图象 P160(16、17)正弦,余弦函数性质的应用 教师在黑板上书写:(1)定义域(2)值域(3)奇偶性(4)单调性(5)比大小(6)求最小正周期(7)作图(8)应用 教师:今天我们来学习正切、余切函数的图象和性质,可以想一想,我们要觖决什么问题? 生众:不就是上面这几点问题吗? 教师:说的不错,我们就是要来解决把“正弦、余弦函数”换成“正切、余切函数”后(1)~(7)后面加一个“是什么?”这样一些问题。请同学们带的这些问题看书5分钟(P153~P157)。 [评述]:这里是通过作业小结的方式引入问题。学生常常是很肓目的做作业,很少观察作业所涉及的问题类型和范围。教师有意识地引导学生作这种观察,既培养了学生看课本的习惯,又自然引出了今天的课题和要探索解决的问题。 二、学生自己回顾性设问,(自问自答)

5分钟以后:学生阅读完毕,教师指导第一组学生(7人)为相邻的同桌的同学(第二组学生)就前面七个方向提一个有关正、余切函数性质的问题,要求是后面的同学不要提前面已经提到过的问题,并请同桌同学(起立)对着大家回答。做完后,问、答的两组学生角色交换。其它组的同学一边听,一边作判断,对的放过,不对时请同一行的同学予以更正: 生1:正切函数的定义域是什么?邻生答:除了,k∈Z外的全体实数。 生2:正切函数的值域是整个y轴吗?邻生改正:应说成是全体实数 生3: ……… 生10:学过四种三角函数都是奇数吗?都是增函数吗?邻生答:不对,反例是余弦函数) 生11:正切函数是它定义域上的增函数吗?(好问题!)邻生答:是,其它学生更正:不是。教师追问理由……… 生12:正切函数是一个周期为2的函数吗?(含义不清的问题)邻生回答:准确地说正切函数是最小正周期为的周期函数。 生13:余切函数也是一个以2为周期的周期函数,这个说法对吗?邻生:不对, 另外的学生答:对,……… 学生即席讨论………。 生14:怎样由y=tgx的图象得到y=ctgx的图象?(好问题),邻生答:可以先把y=tgx的图象以x 轴为轴,翻转180度,再向右平移。另一个邻座同学:也可以先把y=tgx的图象以y轴为轴,翻转180度,再向右平移。教师插说:我怎么不懂了?为什么把y=tgx的图象以x轴为轴,翻转180度 和把y=tgx的图象以y轴为轴,翻转180度的效果一样?…学生讨论得到:因为y=tgx是奇函数,f(-x)=-f(x)。教师又插说:非要先翻转后平移吗?…学生讨论略。 [评论]学生自己设计问题,自问他答,其它学生协助判定是否正确,可以在很大程度上调动学生自己学习的主动性。但问题的难易控制有一定难度,先问的人设计问题相对容易些,可以用往复问答的方式来解决(第一个提问的学生将回答最后一个问题)。邻座的学生作答,同一横行同学做答的是非判定,这样做目的是让反馈的更快、更广些。从学生问答情况看,基本达到了目的。 三、自己提出问题,设计问题,当堂练习,自己作评价。 师:下面请第3组同学为大家设计一组课堂练习(2分钟)可以讨论。要求是七个方面都要覆盖。(七人上黑板,学生之间有交流,组长分配协调一人一个题,不使重复,2分钟后题目完成)请第四组同学上

相关主题