搜档网
当前位置:搜档网 › 随机过程读书笔记

随机过程读书笔记

随机过程读书笔记
随机过程读书笔记

随机过程读书笔记

姓名:李灿 学号:2013050412 学院:信息科学与技术

(一)整理概率论的基本内容:包括概率空间,随机变量及其分布,随机变量的数字特征,特征函数,母函数,n 维正态分布和条件期望。

(二)给出随机过程的概念与基本类型:随机过程的基本概念,随机过程的分布律和数字特征,复随机过程和几种重要的随机过程。

(三)介绍泊松过程,主要有:泊松过程的定义和例子,泊松过程的基本性质,非齐次泊松过程,复合泊松过程等。

(四)引入马尔克夫链:马尔克夫链的概念及转移概率,马尔克夫链的状态分类,状态空间的分解,p ij 的渐进性质与平稳分布。

(五)介绍连续时间的马尔克夫链:连续时间的马尔克夫链概念,柯尔莫哥洛夫微分方程。

(六)平稳随机过程的定义和应用:平稳随机过程的概念与例子,联合平稳过程及相关函数的性质,随机分析和平稳过程的各态历经性。

1.概率论基础

随机试验:可重复、可预见、不确定

样本空间:随机试验所有可能结果的集合 Ω

样本点:基本事件 e ∈ Ω

事件:A ? Ω

必然事件:Ω

不可能事件:?

事件运算:并、交、差、(上、下)极限

均值函数)(t x μ =E[X(t)]

方差函数Var[X(t)]=E{[X(t)-)(t x μ]2}=EX 2(t)-)(t 2

x μ 自相关函数),(21xx t t R =E[X(1t )X(2t )]

自协方差函数),(21xx t t C =COV[X(1t ),X(2t )]=E{[ X(1t )-)(1x t μ][X(2t )-)(2x t μ]} Var[X(t)]= ),(t t C xx

如果n 个随机过程之和W (t )=)(t X 1+…+)(t X n ,其中)(t X 1,…, )

(t X n 两两不相关且各自均值函数为零,则有),(21w t t R =),(21x t t R 1

+…+),(21x t t R n 。

2.随机过程的概念与基本类型

随机过程概念:设T 为一无限实数集,记{X (t ),t ∈T},其中t 为参数,X(t)为随机变量,也称为过程状态。将依赖参数t ∈T 的一族随机变量称为随机过程。

随机过程分类:

依状态分???离散型随机过程连续型随机过程

),(当出现当出现现定义本空间为例:抛掷一枚硬币,样变量上服从均匀分布的随机)为在(为正常数,,),其中(例离散型随机过程连续型随机过程∞+∞∈???==+=???????????-t T H t t cos X(t)T}{H,S 2,0t cos X(t):ππθωαθω 依t ∈T 的连续性分 ??

?离散参数随机过程

连续参数随机过程 随机过程的分布函数族:引人{X F (1x ,2x ,…, n x ;1t ,2t ,…, n t ), i t ∈T}来刻画随机过程在不同时刻状态之间的统计联系,其中X F (1x ,2x ,…, n x ;1t ,2t ,…, n t )=P{X (t )≤11x t X ≤)(,…,X(n t )≤n x } ,R x ∈i ,i=1,2,…,n

3.泊松过程

独立增量过程:如果对任意选定的正整数n 和任意选定的0≦0t <1t <2t <…<n t , N 个增量,X (1t )-X(0t ),X(2t )-X(1t ),…, X(n t )-X(1n t +)相互独立,则称{X(t),t ≥0}为独立增量过程。

增量的平稳性:若对任意的实数h 和0≦s+h <t+h ,X(t+h)-X (s+h )与X (t )-X (s )具有相同的分布,称这一独立增量过程是其次的或时齐的

泊松过程所需满足的条件:

①在不相重复的区间上的增量具有独立性,即对任何整数n=2,3,…如时刻

0t =0<1t <2t <…<n t ,增量N (1t )-N (0t ),N (2t )-N (1t ),N (n t )-N (1-n t )互相独立

②时间上均匀性或齐次性,即对任何时刻t 和正数h ,随机变量增量N (t+h )-N (t )的概率分布只依赖于区间长度h 而不依赖于时刻t

③事件是稀有的,即存在正常数λ,当h →0时,使在长度为h 小区间里,事件至少发生一次的概率为P{N (t+h )-N (t )≥1}=λh+)(t ?ο

④相继性,即在小区间(t ,t+h]发生两个或两个以上事件的概率为 )(h ο,即当h →0, P{N (t+h )-N (t )≥2}=)(h ο

等待时间随机变量:设指点依次重复出现的时刻1t ,2t ,…, n t ,…是以强度为λ的泊松流,{N (t ),t ≥0}为相应的泊松过程。

n n t W =,n=1,2,…,n W 表示第n 个质点出现的等待时间。事件{n W >t}={N(t)

...32i 0t 0t 0

e )t (t ,,,,=≤>???=-λλi T

f 例:顾客依速率λ的泊松过程到达车站。若火车在时刻t 离站,问在[0,t]内顾客的平均总等待时间?

解:第一位顾客到达时间为1A ,等待到发车时间为1W =1A -t ,第i 位乘客的等待时

间为i i A -t W =,在[0,t]区段总共有N(t)位乘客,则总等待时间为

∑=)

()(t N 1

i i W -t ,平均总等待时间为E[∑=)()(t N 1

i i

W -t ]。

4.马尔可夫链

马尔可夫链的分类:

马尔可夫过程按其状态和时间参数是连续的或离散的,可分为三类:

(l)时间、状态都是离散的马尔可夫过程,称为马尔可夫链,

(2)时间连续、状态离散的马尔可夫过程,称为连续时间的马尔可夫链

(3)时间、状态都连续的马尔可夫过程.

马尔可夫链的定义:设随机序列(){}

;0X n n ≥的状态空间为S (离散),如果对于0n N ?∈及011,,,,n n i i i i S +∈,()()(){}010,1,,0n P X i X i X n i ===>有:

()()()(){}()(){}

10111|0,1,

,1|n n n n P X n i X i X i X n i P X n i X n i +++======+== 则称(){}

;0X n n ≥为Markov 链。 上式刻画了Markov 链的特性,此特性为Markov 性或无后效性(即随机过程的状态只与现在的状态有关,与过去无关)简称为马氏性。Markov 链也称为马氏链。

定义(){}

;0X n n ≥为马氏链,状态空间为S ,对于,i j S ?∈称 ()(){}()1|ij P X n j X n i p n +===为马氏链(){};0X n n ≥在n 时刻的一步转移概率。一般的,转移概率()ij p n 不仅与状态,i j 有关,而且与时刻n 有关,当()ij p n 不依赖于时刻

第二章 平稳随机过程的谱分析

第二章平稳随机过程的谱分析 本章要解决的问题: ●随机信号是否也可以应用频域分析方法? ●傅里叶变换能否应用于随机信号? ●相关函数与功率谱的关系 ●功率谱的应用 ●采样定理 ●白噪声的定义 2.1 随机过程的谱分析 2.1.1 预备知识 1、付氏变换: 对于一个确定性时间信号x(t),设x(t)是时间t的非周期实函数,且x(t) 满足狄利赫利条件(有限个极值,有限个断点,断点为有限值)且绝对可积,能量有限,则x(t)傅里叶变换存在。即: 满足上述三个条件的x(t)的傅里叶变换为:

其反变换为: 2、帕赛瓦等式 由上面式子可以得到: ——称为非周期性时间函数的帕塞瓦(Parseval)等式。 物理意义:若x(t)表示的是电压(或电流),则上式左边代表x(t)在时间(-∞,∞)区间的总能量(单位阻抗)。因此,等式右边的被积函数 2 )(ωX X 表示了信号x(t)能量按频率分布的情况,故称2 )(ωX X 为 能量谱密度。 2.1.2、随机过程的功率谱密度 一个信号的付氏变换是否存在,需要满足三个条件,那么随机信号是否满足这三个条件从而存在付氏变换呢? 随机信号持续时间无限长,因此,对于非0的样本函数,它的能量

一般也是无限的,因此,其付氏变换不存在。 但是注意到它的平均功率是有限的,在特定的条件下,仍然可以利用博里叶变换这一工具。 为了将傅里叶变换方法应用于随机过程,必须对过程的样本函数做某些限制,最简单的一种方法是应用截取函数。 x(t): 截取函数T 图2.1 x(t)及其截取函数 x(t)满足绝对可积条件。因此,当x(t)为有限值时,裁取函数T x(t)的傅里叶变换存在,有 T x(t)也应满足帕塞瓦等式,即:(注意积分区间和表达很明显,T 式的变化)

第3章 平稳随机过程的谱分析

第3章 平稳随机过程的谱分析 付里叶变换是处理确定性信号的有效工具,它信号的频域内分析处理信号,常常使分析工作大为简化。 对于随机信号,是否也可以应用频域分析方法?付里叶变换是否可引入随机信号中? 3.1 随机过程的谱分析 3.1.1 回顾:确定性信号的谱分析 )(t f 是非周期实函数, )(t f 的付里叶变换存在的充要条件是: 1.)(t f 在),(∞-∞上满足狄利赫利条件; 2.)(t f 绝对可积: +∞

3.1.2 随机过程的功率谱密度 一、样本函数的平均功率 问题1:由于付里叶变换是针对确定性函数进行的,在处理随机过程)(t X 时,取 )(t X 的一个样本函数)(t x (在曲线族中取某一曲线)来进行付里叶分 析。 问题2:随机过程)(t X 的样本函数)(t x 一般不满足付里叶变换的条件,它的总能 量是无限的,需考虑平均功率。 若随机过程)(t X 的样本函数)(t x 满足 +∞<=? -∞→T T T dt t x T W 2 )(21 lim W 称为样本函数)(t x 的平均功率。 对于平稳过程,其样本函数的平均功率是有限的。 二、截取函数 对于)(t X 的一个样本函数)(t x ,在)(t x 中截取长为T 2的一段,记为)(t x T , 它满足: ???? ?≥<=T t T t t x t x T 0 ) ()( 称)(t x T 为)(t x 的截取函数。 三、截取函数的付里叶变换 0>T ,取定后,)(t x T 的付里叶变换一定存在: ??--+∞ ∞--==T T t j t j T T dt e t x dt e t x X ωωω)()()( 其付里叶逆变换为: ? +∞ ∞ -= ωωπ ωd e X t x t j T T )(21 )( 其帕塞瓦(Parseval )等式为 ? ? ? +∞ ∞ --+∞ ∞ -= =ωωπ d X dt t x dt t x T T T T 2 2 2 )(21 )()(

随机过程知识点汇总

第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量,分布函数 离散型随机变量的概率分布用分布列分布函数 连续型随机变量的概率分布用概率密度分布函数 2.n维随机变量 其联合分布函数 离散型联合分布列连续型联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量连续型随机变量 方差:反映随机变量取值的离散程度 协方差(两个随机变量): 相关系数(两个随机变量):若,则称不相关。 独立不相关 4.特征函数离散连续 重要性质:,,, 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布均匀分布略 正态分布 指数分布 6.N维正态随机变量的联合概率密度 ,,正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。 分类:根据参数集和状态空间是否可列,分四类。也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。(1)均值函数表示随机过程在时刻的平均值。 (2)方差函数表示随机过程在时刻对均值的偏离程度。 (3)协方差函数且有 (4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。

第十二章 平稳随机过程

第十二章 平稳随机过程 §1 基本概念 定义1:已给s.p t X t X {=,}T t ∈,若1≥?n ,即T 中任意的,,,21n t t t Λ与 h t h t h t n +++,,,21Λ,n 维r.v ),,(21n t t t X X X Λ与),,(21h t h t h t n X X X +++Λ有相同 的n 维d.f 。即 ) ,,,;,,(),,() ,,(),,,;,,,(2121212121212121n n n h t h t h t n t t t n n x x x h t h t h t F x X x X x X P x X x X x X P x x x t t t F n n ΛΛΛΛΛΛ+++=≤≤≤=≤≤≤=+++ 则称s.p t X 是一个严(强,狭义)平稳过程。 当t X ?n 维d.l 时,则有 ),,;,,,(),,;,,,(21212121n n n n x x x h t h t h t f x x x t t t f ΛΛΛΛ+++= 若取n =1,则有),(),(1111x h t f x t f +=,特别,当T ∈0,可取,1t h -=则有),0(),(111x f x t f =。此时平稳过程t X 的一维d.l 与1t (时间)无关。于是 X X m dx x xf t X E μ=== ?+∞ ∞ -),0()(1 即t X 的均值是一个与时间无关的常数。 其方差 ?∞ ∞ -=-=-=.),0()(][2 22 X X X t t dx x f m x m X E X D σ也与时间t 无关的 常数。 而且T X 的二维d.l 也只依赖于.21t t -=τ即当2t h -=时,有 ).,;(),;0,(),;,(2121212121x x f x x t t f x x t t f τ∧ =-= 所以t X 与τ+t X 之间自相关为 ??∞∞-∞ ∞ -+== =+).(),;(),(21212 1ττττX t t X R dx dx x x f x x X X E t t R 它只依赖于.τ类似地τ+t t X X ,之间协方差为

随机过程分析

随机过程分析 摘要随着科学的发展,数学在我们日常的通信体系中有着越来越重的地位,因为在科学研究中,只有借助于数学才能精确地描述一个现象的不同量之间的关系,从最简单的加减乘除,到复杂的建模思想等等。其中,随机过程作为数学的一个重要分支,更是在整个通信过程中发挥着不可小觑的作用。如何全面的对随机信号进行系统和理论的分析是现在通信的关键,也是今后通信业能否取得巨大进步的关键。 关键字通信系统随机过程噪声 通信中很多需要进行分析的信号都是随机信号。随机变量、随机过程是随机分析的两个基本概念。实际上很多通信中需要处理或者需要分析的信号都可以看成是一个随机变量,利用在系统中每次需要传送的信源数据流,就可以看成是一个随机变量。例如,在一定时间内电话交换台收到的呼叫次数是一个随机变量。也就是说把随某个参量而变化的随机变量统称为随机函数;把以时间t为参变量的随机函数称为随机过程。随机过程包括随机信号和随进噪声。如果信号的某个或某几个参数不能预知或不能完全预知,这种信号就称为随机信号;在通信系统中不能预测的噪声就称为随机噪声。下面对随机过程进行分析。 一、随机过程的统计特性 1、数学期望:表示随机过程的n个样本函数曲线的摆动中心, 即均值

?∞ ∞-==11);()]([)(dx t x xp t X E t a 2、方差:表示随机过程在时刻t 对于均值a(t)的偏离程度。 即均方值与均值平方之差。 {}?∞ ∞ --=-=-==112222);()]([)]()([))](()([)]([)(dx t x p t a x t a t X E t X E t X E t X D t δ 3、自协方差函数和相关函数: 衡量随机过程任意两个时刻上获得的随机变量的统计相关特性时,常用协方差函数和相关函数来表示。 (1)自协方差函数定义 {} )]()()][()([);(221121t a t X t a t X E t t C x --=??∞∞-∞ ∞---=2121212211),;,()]()][([dx dx t t x x p t a x t a x 式中t1与t2是任意的两个时刻;a (t1)与a(t2)为在t1及t2得到的数学期望; 用途:用协方差来判断同一随机过程的两个变量是否相关。 (2)自相关函数 ??∞∞-∞ ∞-==2121212212121),;,()]()([),(dx dx t t x x p x x t X t X E t t R X 用途:a 用来判断广义平稳; b 用来求解随机过程的功率谱密度及平均功率。 二、平稳随机过程 1、定义(广义与狭义): 则称X(t)是平稳随机过程。该平稳称为严格平稳,狭义平稳或严平稳。

随机过程——马尔可夫过程的应用

随机过程——马尔可夫过程的应用 年级:2013级 专业:通信工程3班 姓名:李毓哲 学号:1302070131

摘要:随机信号分析与处理是研究随机信号的特点及其处理方法的专业基础, 是目标检测、估计、滤波灯信号处理理论的基础,在通信、雷达、自动检测、随机振动、图像处理、气象预报、生物医学、地震信号处理等领域有着广泛的应用,随着信息技术的发展,随机信号分析与处理的理论讲日益广泛与深入。 随机过程是与时间相关的随机变量,在确定的时刻它是随机变量。随机过程的具体取值称作其样本函数,所有样本函数构成的集合称作随机过程的样本函数空间,所有样本函数空间及其统计特性即构成了随机过程。通信工程中存在大量的随机现象和随机问题。如:信源是随机过程;信道不仅对随机过程进行了变换,而且会叠加随机噪声等。 马尔可夫过程是一类非常重要的随机过程。随着现代科学技术的发展,很多在应用中出现的马氏过程模型的研究受到越来越多的重视。在现实世界中,有很多过程都是马尔可夫过程,马尔可夫过程在研究质点的随机运动、自动控制、通信技术、生物工程等领域中有着广泛的应用。我们可以通过对马尔可夫过程的研究来分析马尔可夫信源的特性。 关键词:随机过程,马尔可夫过程,通信工程,应用

目录 一、摘要 二、随机过程 2.1、随机过程的基本概念及定义 2.2、随机过程的数学描述 2.3、基于MATLAB的随机过程分析方法 三、马尔可夫过程 3.1马尔可夫过程的概念 3.2马尔可夫过程的数学描述 四、马尔可夫过程的应用 4.1马尔可夫模型在通信系统中的应用 4.2马尔可夫模型在语音处理的应用 4.3马尔可夫模型的其他应用 五、结论 参考文献

平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程 粗略的说——随机过程的统计特征不随时间的推移而变化。一.严平稳随机过程 1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数 综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。 a):一般在实用中,只要产生随机过程的主要物理条件,在时间 进程中不变化。则此过程就可以认为是平稳的。 例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。 12121212 12 1 21212 2 2 2 (,)(,;)() (,)()()(,;)()()(0)(0)[()] X X X X X X X X X X X X X X R t t x x f x x dx dx R C t t x m x m f x x dx dx C R m C R m D X t τττττσ=?==??==?=?==∫∫∫∫

∞<)]([2 t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。即在观测的有限时间段内,认为是平稳过程。 因此,工程中平稳过程的定义如下: 二、宽平稳过程1、定义 若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数 R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关 则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。 可见:一个均方值有限的严平稳过程,一定是宽平稳过程。反之:一个宽平稳过程,则不一定是严平稳过程。 c):一般在工程中,通常只在相关理论的范围内讨论过程的平稳问题。即:讨论与过程的一、二阶矩有关的问题。

第十讲几种常用的随机过程解析

第十讲 几种常用的随机过程 10.1 马尔可夫过程 10.1.1马尔可夫序列 马尔可夫序列是指时间参数离散,状态连续的马尔可夫过程。 一个随机变量序列x n (n=1,2,…),若对于任意的n 有 )|(),...,,|(112 1 x x F x x x x F n n X n n n X ---= (10.1) 或 )|(),...,,|(112 1 x x f x x x x f n n X n n n X ---= (10.2) 则称x n 为马尔可夫序列。x n 的联合概率密度为 ) ()|( ) |()|(),...,,(1 1 2 2 11 2 1 x f x x f x x f x x f x x x f X X n n X n n X n X ??---= (10.3) 马尔可夫序列有如下性质: (1) 一个马尔可夫序列的子序列仍为马尔

可夫序列。 (2) ) |(),...,,|(1 21x x f x x x x f n n X k n n n n X -+++= (10.4) (3) )|(),...,|(111x X x x X n n n n E E --= (10.5) (4) 在一个马尔可夫序列中,若已知现在, 则未来与过去相互独立。即 ) |() |()|,(1 x x f x x f x x x f r s X n n X r s n X -= ,n>r>s (10.6) (5) 若条件概率密度)|(1 x x f n n X -与n 无关, 则称马尔可夫序列是齐次的。 (6) 若一个马尔可夫序列是齐次的,且所 有的随机变量X n 具有同样的概率密度,则称该马尔可夫序列为平稳的。 (7) 马尔可夫序列的转移概率满足切普曼 —柯尔莫哥洛夫方程,即 ) |()| ()|(x x f x x f x x f s r X r n X s n X ? ∞ ∞ -= , n>r>s (10.7) 10.1.2马尔可夫链 马尔可夫链是指时间参数,状态方程皆

随机过程例子分析

所截取的三段音乐都是古典音乐,将这三段音乐在matlab 用wavread 函数读入,用plot 函数画出三个音乐波形图,如下图(1): 01234 5 678910 -1 1音频波形 Time/s 01234 5678910 -0.2 0.2Time/s 01234 5678910 -1 1Time/s 随机过程的意义:若一过程当时间t 固定的时候,过程所处的状态(数值)是不确定的,则此过程是随机过程;对该过程的一次全程记录(观察)是该随机过程的一个样本函数。 在这里,因为音乐在某个时刻t 出现的幅值是随机的,则音乐幅值是随机变量,所以我们可以假设将这三段音乐看作是某空间在特定时间段所播放音乐的三次全程记录,这三段音乐就是一个随机过程的三个样本函数,样本函数空间有三个样本函数;也可以假设将这三段音乐看成某空间在3个特定时间段所播放音乐的三次全程记录,三段音乐就是三个随机过程各自的一个样本函数,每个随机过程的样本函数空间只有一个样本函数。 以下在算均值函数、方差函数和自相关函数的时候,都认为这三段音乐是一个随机过程的三个样本函数,而在算互相关函数时,则认为三段音乐是三个随机过程各自的一个样本函数。 (1) 均值函数 定义:T t t X E t m x ∈=)),(()(;其中X (t )是随机过程中时刻t 所处的状态; 利用MATLAB 画出的由这三段音乐所描述的随机过程的均值函数如下:

01234 5678910 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 均值 Time/s 上图所示的是随机过程的均值函数)(t m x ,所表达意义是随机过程中音乐信号在时间t 的平均幅值;在图中可以看到均值函数每一个时刻都不一样,是每一个时刻所记录到数值都是随机变量的一个值,均值函数不仅和时间有关系,还和每一时刻的随机变量有关系。 (2) 方差函数 定义:2 )]([)(t m X E t D x t x -=;其中X (t )是随机过程中时刻t 所处的状态; 利用MATLAB 画出的由这三段音乐所描述的随机过程的均值函数如下: 01234 5678910 方差 Time/s

2.9 严平稳随机过程

随机信号分析

目录 CONTENTS CONTENTS 严平稳随机过程平稳随机过程的基本概念

-2.5-2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 t1t2t3t4t5t6t7t8快艇航行噪声随时间变化的观测实验第1次观测第2次观测第3次观测 ()()x m t E X t =????随机过程的数学期望()1x m t ()4x m t () 5x m t 如果数学期望与时间无关,将简化分析和计算! ()x x m t m =

-2.5-2 -1.5-1 -0.5 0.5 1 1.5 2 2.5 3 t1t2t3t4t5t6t7t8快艇航行噪声随时间变化的观测实验第1次观测第2次观测第3次观测 随机过程的自相关函数????=?R t t E X t X t X ,1212)()()(R t t X ,23) (?=τt t 320R t t X ,56)(?=τt t 650如果自相关函数与观察起始时刻无关,只和观察的两个随机变量的时间差有关? ==?ττR t t R t t X X ,,1221)()(有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

严平稳随机过程 随机过程X t ,若它的n 维概率密度(或n 维分布函数) 不随时间起点选择的不同而改变 就是说,对任何n 和ε,随机过程X t 的n 维概率密度满足: +++=εεεf x x x t t f x x x t t X n n X n n ,,,;,,,t ,,,;,,,t 12121212)()(f x x x t t n n ,,,;,,,t 1212) (则称X t 为严(格)平稳过程,或称X t 为狭义平稳过程。 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

随机过程关于平稳过程中的各态历经性的综述

关于平稳过程中的各态历经性的综述 首先要介绍一下什么是平稳过程,平稳过程是一类统计特性不随时间推移而变化的过程。在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响。有这样重要的一类随机过程,即所谓平稳随机过程,它的特点是:过程的统计特性不随时间的推移而变化。严格地说,如果对于任意的n (=1,2…),12,,t t t T ∈n …,和任意实数h,当 12,,n t h t h t h T +++∈…,时,n 维随机变量 (X(1t ),X(2t ),…,X(t n )) 和 (X (1t h +),X (2t h +),…,X (n t h +)) 具有相同的分布函数,则称随机过程{}X ∈(t ),t T 具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程。 在实际工作中,确定随机过程的均值函数和相关函数是很重要的。而要确定随机过程的数字特征一般来说需要知道过程的一﹑二维分布,这在实际问题中往往不易办到,因为这时要求对一个过程进行大量重复的实验,以便得到很多的样本函数。 但是由于平稳过程的统计特性不随时间的推移而变化,就会提出这样一个问题:能否从一个时间范围内观察到的样本函数或一个样本函数在某些时刻的取值来提取过程的数字特征呢?所谓各态历经,是指可以从过程的一个样本函数中获得它的各种统计特性;具有这一特性的随机过程称为具有各态历经性的随机过程,只要有一个样本函数就可以表示出它的数字特征。 定义 设X (t )是均方连续平稳随机过程,如果它沿整个时间上的平均值即时间平均值〈X (t )〉存在,即 〈X (t )〉=1lim ()2T T T X t dt T -→∞? 存在,而且〈X (t )〉=E {X (t )}=X μ依概率1相等。即〈X (t )〉依概率1等于X μ= E {X (t )}, X μ代表随机过程的集平均(或称统计平均),则称该过程的均值具有各态历经性。 定义 设X (t )是一均方连续平稳随机过程,且对于固定的τ,()X t X t τ(+)也是连续平稳随机过程,〈()X t X t τ(+)〉 代表()X t X t τ(+)沿整个时间轴的平均值,即 ()X t X t τ(+)=1lim (+)()2T T T X t X t dt T τ-→∞? 若〈()X t X t τ(+)〉存在,称〈()X t X t τ(+)〉为X (τ)的时间相关函数。又

随机分析论文

题目建筑热过程随机分析的背景、方法和应用 南京大学信息与控制学院,南京210044 摘要:本文分析了建筑热过程的随机特性的背景,提出一种研究室外随机气象条件和室内随机自由得热共同作用下的建筑热过程的随机分析的方法,并给出该方法在暖通空调中的几个应用领域,以及对该方法的理论和实测的验证过程。 关键词:建筑热过程;随机分析;供暖空调 Title Building thermal process background, the method of stochastic analysis and Applications Nanjing University, Nanjing 210044 Abstract:This paper analyses the stochastic characteristics of building thermal processes in the background, the method of stochastic analysis of a research on outdoor random weather conditions and indoor random free building heat under the interaction process, and gives the method in HV AC applications, as well as the method of theoretical and experimental verification process. keywords:building thermal process;random analysis;heating and air conditioning 1 引言 建筑热过程是研究建筑环境特性、分析评价节能建筑、设计建筑环境的控制系统(供热、通风、空调)的基础。建筑热过程是由于室外气象条件和室内各种热源(人、照明及设备)作用在建筑物上而造成的建筑室内环境的温湿度变化。因此它取决于室外气象状况、室内热源状况及建筑物结构的热性能参数。然而,由于室外气象参数与室内的各种热源均不是确定的过程,而是具有很大的不确定成分的随机过程,因此,这些随机因素作用于建筑物,使建筑内的热环境变化过程(理论变化过程)亦成为一随机过程。

随机过程读书笔记

随机过程读书笔记 《应用随机过程》读书笔记 早期的概率论和分析是两个截然不同的领域.1933年,Kolmogorov建立了概率论公理基础,这标志着概率论成为一个严密的分支.此后学者们更感兴趣于用概率方法来解决分析问题.于是上世纪40到50年代间,随机分析学迅速发展成为一门新的学科,被誉为“随机王国中的牛顿定律”.随机分析学的理论受到了众多领域专家、学者的研究和关注。它的发展是迅速的,也是巨大的,其应用领域越来越广泛,紧密联系着数学的各个分支,也是近代概率论中最活跃的分支之一。随着其内容的不断丰富,随机分析己被广泛应用于点过程、估计理论等理论分支。 在放假期间,我看了《应用随机过程》第六章---鞅的内容。鞅是一类特殊的随机过程,鞅的初始概念是源于公平竞争的思想,也就是在竞争中付出与所期望的收入相匹配。直观地讲,在公平竞争中我们无法凭空创造则富。鞅仅描述现在所拥有的价值,离散时间鞅仅仅是对过程有个大致的描述,而连续时间鞅则是对招个过程的一个综合把握,可以细致而紧凑地研究过程的走向。下面就简单介绍一下鞅的基本概念及其相关性质。 一定义1 随机过程Xn,n0称为关于Yn,n0的下鞅,如

果对 n0,Xn时(Y0,,Yn)的函数,EXn,并且E(Xn1|Y0,,Yn)Xn,这里 如果对Xnmax0,Xn。我们称过程Xn,n0为关于Yn,n0的上鞅,n0,Xn是(Y0,,Yn)的函数,EXn,并且E(Xn1|Y0,,Yn)Xn,这里 Xnmax0,Xn。若Xn,n0兼为关于Yn,n0的下鞅与上鞅,则称 之为关于Yn,n0的鞅。 根据鞅的定义,我们可以直接推出以下命题: 适应列Xn,Fn,n0是下鞅当且仅当Xn,Fn,n0是上鞅。如果Xn,Fn,Yn,Fn是两个下鞅,a,b是两个正常数,则aXnbYn,Fn是下鞅。 如果Xn,Fn,Yn,Fn是两个下鞅,则 。 max(Xn,Yn),Fn或min(Xn,Yn),Fn是下鞅 下面以一个例子加以说明:考虑一个公平博弈的问题,设X1,X2独立同分布,分布函数为PXi1PXi1,于是,可以将Xi(i1,2,)看做一个投硬币的游戏的结果:如果出现正面就赢1元。 12出现反面就输1元。假设我们按以下的规则来赌博,每次投掷硬币之前的赌注都比上一次翻一倍,直到赢了赌博即停。令Wn表示第n次赌博后所输的总钱数,W00,无论如

随机过程知识点汇总

第一章随机过程的基本概念与基本类型一.随机变量及其分布1.随机变量,分布函数离散型随机变量的概率分布用分布列分布函数连续型随机变量的概率分布用概率密度分布函数2.n 维随机变量其联合分布函数离散型联合分布列连续型联合概率密度 3 .随机变量的数字特征 数学期望:离散型随机变量连续型随机变量 方差:反映随机变量取值的离散程度协方差(两个随机变量): 相关系数(两个随机变量):若,则称不相关。 独立不相关 4?特征函数离散连续 重要性质:,,, 5 ?常见随机变量的分布列或概率密度、期望、方差 0 — 1分布 二项分布泊松分布均匀分布略 正态分布 指数分布 6.N维正态随机变量的联合概率密度,,正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。分类:根据参数集和状态空间是否可列,分四类。也可以根据之间的概率关系分类,如独立增 量过程,马尔可夫过程,平稳过程等。 2 .随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。 (1)均值函数表示随机过程在时刻的平均值。 (2)方差函数表示随机过程在时刻对均值的偏离程度。 (3)协方差函数且有 (4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。 (5)互相关函数:,是两个二阶距过程,则下式称为它们的互协方差函数。 ,那么,称为互相关函数。若,则称两个随机过程不相关。 3 ?复随机过程 均值函数方差函数 协方差函数相关函数 4?常用的随机过程 (1)二阶距过程:实(或复)随机过程,若对每一个,都有(二阶距存在) ,则称该随机过程为二 阶距过程。 (2)正交增量过程:设是零均值的二阶距过程,对任意的,有 ,则称该随机过程为正交增量过程。

相关主题