搜档网
当前位置:搜档网 › 小电流接地系统电压不平衡的分析及处理

小电流接地系统电压不平衡的分析及处理

小电流接地系统电压不平衡的分析及处理

小电流接地系统电压不平衡的分析及处理小电流接地系统在运行中发生单相接地、缺相运行及其它异常时,会出现三相电压不平衡的情况,本文通过分析电压不平衡的现象和原因,判断故障性质,及时处理故障,避免事故扩大。

中低压电网(3kV~66kV电力系统)大多数都采用中性点非直接接地系统,即小电流接地系统。在小电流接地系统中,系统的绝缘按线电压设计,发生单相接地故障时,仍可带接地故障持续运行1~2h,但不平衡电压会威胁设备和人身安全,应尽快处理。系统出现电压不平衡时,值班调度员不能一概认为是系统一次接地故障,要从电压异常现象中正确分析并判断故障形式,迅速排除故障,确保电网安全运行。因此,值班调度员必须熟练掌握几种电压不平衡的原因,正确分析并判断故障。

常见电压不平衡的分析

在小电流接地系统中,引起电压不平衡的原因主要有以下几种情况:

(1)接地故障。

(2)运行中的电压互感器熔断器熔断。

(3)缺相运行故障。

(4)系统发生铁磁谐振。

2.1 接地故障

小电流接地系统中,多数接地故障为单相接地。发生单相不完全接地时,接地相电压降低,另两相电压在一定范围内会升高;发生金属性接地时,接地相电压降为零,另两相电压升高为线电压。若B相发生单相接地故障,其对应电压向量图如图1所示。

从图1可知,中性点不接地系统正常

运行时,三相电压分别为各相线对中性线(点)电压,当该系统发生单相接地故障时(图1为B相接地),中性点电位发生偏移。中性点对地电压,其大小和方向沿着弧线移动。当B相不完全接地时,故障相电压降低,中性点电压偏移但不到相电压,非故障相电压不确定,图中非故障相A相对地电压不确定,到线电压。因而接地相电压在一定范围内并不是最小的,不能以电压最小判定为接地相,发生单相不完全接地故障,调度员可以以正相序(A→B→C)为基准,判断相对地电压最大的下一相为接地相,由图1可知,A相对地电压总是最大,故可判断B相为接地相。B相为完全接地时,图1中d点与B点重合,中性点对地电压达到相电压,接地相B相对地电压为零,非接地相A相与C相电压达到线电压。

中国南方电网有限责任公司小电流接地选线装置技术规范

南方电网生〔2012〕32号附件 Q/CSG 中国南方电网有限责任公司企业标准 小电流接地选线装置技术规范 Specification for Fault Line Selection Device in Neutral Point Ineffectively Grounded System 中国南方电网有限责任公司 发 布

目次 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (2) 4 技术要求 (2) 5 试验方法 (8) 6 产品检验 (11) 7 标志、包装、运输、贮存 (13)

前言 为规范南方电网中低压配电网小电流接地选线装置的技术条件和基本要求,指导和规范小电流接地选线装置统一设计、制造、采购、检验和应用等方面的管理,保证选线装置安全、准确、可靠的运行,特制定本技术规范。 本技术规范以中华人民共和国电力行业相关标准为基础,参考了其它相关的国家标准、行业标准、技术规范与规定,综合考虑了南方电网的实际运行情况和发展要求,是南方电网规范小电流接地选线装置的技术性指导文件。 本规范由中国南方电网有限责任公司生产技术部提出、归口并解释。 本规范主要起草单位:广西电网公司、广西电网公司电力科学研究院 本规范主要起草人:俞小勇、谢雄威、罗俊平、高立克、李克文、覃剑、吴远利、孙广慧。 本规范主要审查人:佀蜀明、薛武、何朝阳、马辉、余新、戴宇、胡玉岚、麦洪、陈太展、巩俊强、王炼、桂国军、陈勇。 本规范由中国南方电网有限责任公司标准化委员会批准。 本规范自发布之日起实施。 执行中的问题和意见,请及时反馈至中国南方电网有限责任公司生产技术部。

小电流接地系统原因与分析

小电流接地系统接地的原因分析及对策 小电流接地系统特别是35KV及以下的小接地系统,由于线路分支多,走向复杂,电压等级较低,在设计施工中质量不易保证,运行中发生接地故障的几率很高。为了便于电网值班人员准确判断接地类别,及时处理故障,保证电网的安全可靠运行,提高用户电能质量。本文通过对兴义市地方电网的运行实践,从小接地系统绝缘监察装置的构成及动作原理,历年接地故障情况的统计、接地原因、故障判别及预防接地的措施等几个方面进行分析,对运行值班人员和工程技术人员有一定的借鉴作用。 1.问题提出 目前,小电流接地系统特别是35KV及以下的小接地系统,由于其线路分支多,走向复杂,电压等级较低,在设计施工中线路质量不易保证,运行中发生接地故障的几率是很高的。从我市地方电网历年来的运行统计资料来看,在小电流接地系统的接地故障中,35KV电网占8.2%,10KV电网占91.8%。本文通过笔者在实践中对电网运行工况的了解以及运行经验的总结,分析了小电流接地系统在实际运行中易引起误判的几类接地故障,在给出其原因分析的基础上着重阐述了接地故障的判别方法、处理措施及对策。相信对同行有一定的借鉴作用。 2.易引起误判的几类接地故障及其原因分析 为了便于展开下文,我们有必要首先对电网发生接地的原因作一个简单的分析。如图1,当中性点电压Uo不为0且Uo大于绝缘监察系统定值时,便有接地信号发出,而Uo 反映的是零序电压,其计算公式为: Uo=(ùa+ùb+ùc)/3 从上式可以看出,当电网各相电压ùa、ùb、ùc不平衡时,便有中性点电压Uo产生,而电网电压的不平衡度是接地信号发生与否的关键,本文下面的论述将紧紧围绕接地故障发生的原因作具体分析。根据兴义市地方电网历年来的运行资料,我们统计了如下几类经常发生接地的情况:

小电流接地选线装置选线不准确的实例分析

小电流接地选线装置选线不准确的实例分析 【导读】我国大多数配电网采用中性点不直接接地系统(NUGS),即小电流接地系统。小电流接地选线装置对提高供电可靠性起着重要的作用,小电流接地选线方法研究及新的高性能选线装置具有较大的潜力和挑战性。为了让小电流选线问题得到彻底解决,更好地运用于日常生活与生产之中,让小电流选线问题的解决为我国经济发展带来前所未有的贡献。 案例:重庆某110kV变电站 重庆市某110kV变电站10kV系统运行方式,为单母分段运行,其中10kV I 段母线有6回馈出线,2组电容器出线,1组站用变出线;10kV II段母线有11回馈出线,2组电容器出线,1组站用变出线。中性点接地方式为经消弧线圈接地方式。在运行过程中,10kV系统发生单相接地故障时,采用人工拉路的方式确定故障线路。 自2015年10月起安装了小电流接地选线装置,该装置安装于消弧线圈控制柜中,通过钳接系统二次回路的方式,采集系统零序电压和零序电流,进行综合判断。其中,I段母线中,6回出线2组电容出线,均接入设备,参与选线,II 段母线中,有6回出线2组电容出线,接入设备,参与选线,627、628、629、631、632没有接入设备。 至2016年11月底,设备共记录瞬时性接地故障194次,实接地故障6次,与现场实际接地处理记录对照,结果如下:

一、 1.2016/5/6 623蹬碑线 因为623为故障线路,其在消弧线圈投入前的半个周波中,零序电流的方向,应该与其他正常线路的零序电流方向相反,而且幅值最大,并且,623的零序电流应滞后I段母线零序电压90°,所以,通过录波和实际情况对比,623零序电流超前零序电压90°,而且612零序电流与623零序电流同相,得出的结果为:I母线电压接反,612电流接反。实际选线时,因为错误接线,所以611线路零序电流,符合接地故障特征,相位滞后零序电压90°,幅值较大,而且选线设备参数设置错误,所以产生错选。 纠正接地错误后分析,这是一个典型的中性点经消弧线圈接地系统,发生弧光接地,经消弧线圈补偿熄灭弧光后转变为高阻接地的故障,在故障发生的瞬间,因为弧光引起的弧光过电压,零序电压升到170V,并且零序电压因为谐波引起畸变,故障线路623的零序电流为最大,并且与其他正常线路的零序电流反向,在消弧线圈投入补偿后,弧光熄灭,在后续的录波中可以看到,零序电压降到100V以下,呈现高阻接地状态,623的零序电流也与其他正常线路的零序电流同相,并且都超前零序电压90°。这种现象的引起,可能是因为电缆绝缘薄弱引起弧光放电,也可能是因为瓷瓶间隙积水,或者湿树枝断裂搭接等多种故障引起,故障原因只能归纳为弧光接地演变为高阻接地。 2.2016/5/17 634蹬黄线

小电流接地故障现象及原因分析通用版

安全管理编号:YTO-FS-PD721 小电流接地故障现象及原因分析通用 版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

小电流接地故障现象及原因分析通 用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。 1 引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短

大电流接地系统与小电流接地系统

大电流接地系统与小电流接地系统(不接地系统)发生故障的区别,对系统设备运行的影响,处理原则和注意事项。 中性点直接接地(包括经小阻抗接地)得系统,当发生单相接地故障时,接地电流一般都比较大,所以称为大电流接地系统.一般110kv及以上的系统采用大电流接地系统。 中性点不接地或经消弧线圈接地的系统,发生单相接地故障时,由于不构成短路回路,接地短路电流比负荷电流小很多,这种系统称为小电流接地系统。一般66kv及以下系统常采用这种系统 1 中性点不接地电网的接地保护 中性点不接地系统的接地保护、接地选线装置 (1) 系统接地绝缘监视装置:(陡电6.0KV厂用电系统) 绝缘监视装置是利用零序电压的有无来实现对不接地系统的监视。 将变电所母线电压互感器其中一个绕组接成星形,利用电压表监视各相对地电压,另一绕组接成开口三角形,接入过电压继电器,反应接地故障时出现的零序电压。 当发生单相接地故障时,开口三角形出现零序电压,过电压继电器动作,发出接地信号。 该保护只能实现监测出接地故障,并能通过三只电压表判别出接地的相别,但不能判别出是哪条线路的接地。要想判断故障线路,必须经拉线路试验。且若发生两条线路以上接地故障时,将更难判别。 装置可能会因电压互感器的铁磁谐振、熔断器的接触不良、直流的接地、回路的接触不良而误发或拒发接地信号。(2) 零序电流保护:零序电流保护是利用故障线路的零序电流比非故障线路零序电流大的特点来实现选择性的保护,如DD-11接地电流继电器和南自厂的RCS-955系列保护。 该保护一般安装在零序电流互感器的线路上,且出线较多的电网中更能保证它的灵敏度和选择性。但由于零序电流互感器的误差,线路接线复杂,单相接地电容的大小、装置的误差、定值的误差、电缆的导电外皮等的漏电流等影响,发生单相接地故障线路零序电流二次反映不一定比非故障线路大,易发生误判断、误动。 (3) 零序功率保护: 零序功率方向保护是利用非故障线路与故障线路的零序电流相差180°来实现有选择性的保护。如传统的零序功率方向继电器,无人值守综自所应用的如南瑞DSA113、119系列零序功率方向保护。 零序功率方向保护没有死区,但对零序电压零序电流回路接线等要求比较高,对系统中有消弧线圈的需用五次谐波功率原理。 (4) 小电流接地选线综合装置:

小电流接地选线

小电流接地选线装置实施 一、 装置背景介绍 在我国110kV 以下电力系统中,变压器的中性点多采用不接地或经消弧线圈接地方式,简称为小电流接地系统。在小电流接地系统中,发生单相接地故障时,故障相电压降为零,非故障相电压升高为相电压的√3倍,但三相之间的线电压仍然保持对称,故障电流仅为系统对地电容电流,数值往往较负荷电流小得多,对供电负荷没有影响,因此规程允许继续运行1~2h 。但实际运行中,接地故障引起的弧光过电压可能会引起电力电缆爆炸、TV 保险熔断甚至烧坏、母线短路等事故,因此,迅速确定接地点、消除单相接地故障对系统的安全运行有着十分重要的意义。 传统的寻找接地故障线路的方法是:依次逐条断开每回出线的断路器,故障线路被断开后,系统电压恢复且接地信号消失,否则继续寻找。虽然这种寻找方法大多可通过重合闸来进行补救,但对一些供电要求很高的用电客户来说,这种方法的弊病是显而易见的,尤其是对那些负荷较重的线路,这种方法已不满足安全稳定供电的要求。小电流接地选线装置自问世以来,迅速得以普及,经历了几次更新换代,其选线的准确性已在不断提高。 二、 小电流接地系统单相接地故障特点 如图1所示为一中性点不接地系统,假定电网的负荷为零,并忽略电源和线路上的压降。电网各相对地电容为C 0,这三个电容就相当于一对称Y 形负载,其中性点就是大地。 C B A U N N K I A I B I C I C I B I A E C E B E A 图1 中性点不接地系统 正常运行时,电源中性点对地电压等于零,即U N =0,各相对地电压为相电势,三相电容电流也是对称的,并超前相应电压90°,正常运行时的相量如图2。

小电流接地故障现象及原因分析(正式版)

文件编号:TP-AR-L2950 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 小电流接地故障现象及 原因分析(正式版)

小电流接地故障现象及原因分析(正 式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1 引言 随着全国农村电网改造工程的全面展开,农村供 电网络健康水平明显提高,小接地电流电网中三相对 地电压不平衡现象是电网异常和故障的反映,电气运 行人员若能正确判断并限制故障发展,迅速排除故 障,则可保证电网安全运行。反之,往往导致配电变 压器电磁式电压互感器烧损、高压熔断器熔断、避雷 器爆炸、导线烧断、线路短路、保护误动、大面积停 电等事故发生。

1 引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。 2 故障现象判断与分析 2.1 绝缘监视装置自身故障的判断 2.1.1 TV熔断器一相熔断的现象与判断 (1)单相TV接线Y0/Y0/Δ接线时,由于磁路系统为单路回路,如果TV一次侧A相熔断器熔断,则

小电流接地选线装置技术规范(特选参考)

南方电网生〔2012〕32号附件Q/CSG 中国南方电网有限责任公司企业标准 Q/CSG110040-2012 小电流接地选线装置技术规范 Specification for Fault Line Selection Device in Neutral Point Ineffectively Grounded System 2012-09-30发布2012-10-08 实施

目次 地址发布:https://www.sodocs.net/doc/a7585759.html,// (务必收藏)https://www.sodocs.net/doc/a7585759.html,/feizhuliu/31615.html 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (2) 4 技术要求 (2) 5 试验方法 (8) 6 产品检验 (11) 7 标志、包装、运输、贮存 (13)

前言 为规范南方电网中低压配电网小电流接地选线装置的技术条件和基本要求,指导和规范小电流接地选线装置统一设计、制造、采购、检验和应用等方面的管理,保证选线装置安全、准确、可靠的运行,特制定本技术规范。 本技术规范以中华人民共和国电力行业相关标准为基础,参考了其它相关的国家标准、行业标准、技术规范与规定,综合考虑了南方电网的实际运行情况和发展要求,是南方电网规范小电流接地选线装置的技术性指导文件。 本规范由中国南方电网有限责任公司生产技术部提出、归口并解释。 本规范主要起草单位:广西电网公司、广西电网公司电力科学研究院 本规范主要起草人:俞小勇、谢雄威、罗俊平、高立克、李克文、覃剑、吴远利、孙广慧。 本规范主要审查人:佀蜀明、薛武、何朝阳、马辉、余新、戴宇、胡玉岚、麦洪、陈太展、巩俊强、王炼、桂国军、陈勇。 本规范由中国南方电网有限责任公司标准化委员会批准。 本规范自发布之日起实施。 执行中的问题和意见,请及时反馈至中国南方电网有限责任公司生产技术部。

小电流接地系统接地故障分析知识讲解

小电流接地系统 单相接地故障分析与检测 为了提高供电可靠性,配电网中一般采取变压器中性点不接地或经消弧线圈和高阻抗接地方式,这样当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,因而这种系统被称为小电流接地系统。 小电流接地系统中单相接地故障是一种常见的临时性故障,当该故障发生时,由于故障点的电流很小,且三相之间的线电压仍保持对称,对负荷设备的供电没有影响,所以允许系统内的设备短时运行,一般情况下可运行1-2个小时而不必跳闸,从而提高了供电的可靠性。但一相发生接地,导致其他两相的对地电压升高为相电压的倍,这样会对设备的绝缘造成威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起去系统过压。然而当系统发生单相接地故障时,由于构不成回路,接地电流是分布电容电流,数值比负荷电流小得多,故障特征不明显,因此接地故障检测仍是一项世界难题,很多技术有待克服。 单相接地故障分析 当任意两个导体之间隔着绝缘介质时会形成电容,因此在简单电网中,中性 ,在相电压作用下,点不接地系统正常运行时,各相线路对地有相同的对地电容C 每相都有一个超前于相电压900的对地电容电流流入地中,然而由于电容的大小与电容极板面积成正比而与极板距离成反比,所以线路的对地电容,特别是架空线路对地电容很小,容抗很大,对地电容电流很小。 系统正常运行时,如图1,由于三相相电压U A、U B、U C是对称的,三相对地电容电流I co.A、I co.B、I co.C也是平衡的,因此,三相的对地电容电流矢量和为0,没有电流流向大地,每相对地电压就等于相电压。

图1中性点不接地电力系统电路图与矢量图 当系统中某一相出现接地故障后,假设C相接地,如图2所示,相当于在C 相的对地电容中并联了一个大电阻,由于故障电流I C没有返回电源的通路,只能通过另外两项非故障A、B相线路的对地电容返回电源。此时C相线路的对地电压为U C’ = U CD = 0,而A相对地线电压即U A’ = U AD = U AC = -U CA = -U C∠-300 = U B∠-900,而B相对地线电压即U B’ = U BC = U B∠-300,则U A’和U B’相差600。非故障相中流向故障点的电容电流I AC= U A’jwC0,I BC= U B’jwC0,且I AC、I BC超前U A’和U B’ 900,I AC、I BC大小相等为I co.A之间相差600。 图2中性点不接地电力系统发生C相接地故障电路图与矢量图由此可见,C相接地时,不接地的A、B两相对地电压U A’和U B’由原来的相电压升高到线电压,即值升高到原来的倍,相位由原来的相差1200变为相差600。此时,从接地点流回的电流I C应为A、B两相的对地电容电流之和,即I C = I AC + I BC。

小电阻小电流接地糸统

小电阻小电流接地糸统的区别 1、应用不同场合: 电力接地系统按接地处理方式可分为大电流接地系统和小电流接地系统,大电流接地系统包括直接接地、电抗接地、和低阻接地,小电流接地系统包括不接地、经高阻接地、经消弧线圈接地、和经配电变压器接地。 在以架空线为主体的配电网中,外力或雷电造成的瞬时单相接地故障占很大比例,因此,在这类配电网中采用中性点经消弧线圈接地方式的优越性是明显的;在城市中心区,配电网以电缆线路为主,为解决经消弧线圈接地方式出现的诸多问题,配电系统中性点采用小电阻接地方式。 一般对于郊区变电站10kV侧带出线的变电站采用的是消弧线圈接地方式,对于核心城区变电站采用的是小电阻的接地方式,小电阻接地方式在某些方面弥补了消弧线圈运行方式带来的不足。 我国3~66kV中低压配电网大多数采用中性点非有效接地运行方式,接地系统的单相接地故障是常见的故障形式,占全网故障的80%以上。 2、运行的各自优缺点 随着我国城市电网的发展,城市居民的增多,10kV出线中电缆所占的比重越来越大,中性点经消弧线圈接地运行方式的缺点日渐暴露,主要原因为: (1)消弧线圈各分接头的标称电流和实际电流误差较大,有些甚

至可达15%,运行中就发生过由于实际电流值与铭牌数据差别而导致谐振的现象。 (2)计算电容电流和实际电容电流误差较大,对于电缆和架空线混合的出线,单位长度的电容电流也不尽相同,消弧线圈补偿的正确性难以保证。 (3)出线电缆的单相接地故障多为永久性故障。由于中性点经消弧线圈接地的系统为小电流接地系统,发生单相接地永久性故障后,在接地故障点的检出过程中,这对城市中人口密集的现状而言,事故的后果会非常严重。 (4)中性点经消弧线圈接地系统仅能降低弧光接地过电压发生的概率,并不能降低弧光接地过电压的幅值,将使系统设备长时间承受过电压作用,对设备绝缘造成威胁。 然而在中性点接入消弧线圈接地后,发生单相接地时,非故障线路电容电流的大小和方向与中性点不接地系统是一样的。发生单相接地后,故障相对地电压降低,非故障两相的相电压升高,但线电压的大小和相位不变(依然对称),不影响对用户的连续供电,所以不需要立即切除故障,系统可运行1~2小时,这也是小电流接地系统的最大优点。若发生单相接地故障时电网长期运行,因非故障的两相对地电压升高,可能引起绝缘的薄弱环节被击穿,发展成为相间短路,使事故扩大,影响用户的正常用电。还可能使电压互感器铁心严重饱和,导致电压互感器严重过负荷而烧毁。同时弧光接地还会引起全系统过电压,进而损坏设备,破坏系统安全运行。

小电流接地故障现象及原因分析

小电流接地故障现象及原因分析 摘要:随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。 关键词:小电流接地故障原因分析 1 引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。 2 故障现象判断与分析 2.1 绝缘监视装置自身故障的判断 2.1.1 TV熔断器一相熔断的现象与判断 (1)单相TV接线Y0/Y0/Δ接线时,由于磁路系统为单路回路,如果TV一次侧A相熔断器熔断,则二次侧A相无感应电压,但因TV负载另两侧相电压与A相形成一串联回路,故A相对地有很小的电压,A相二次熔断器熔断时,也同样因TV有负载,A相有很小的电压,电压表可能有一点指示。 (2)三相五柱式TV接成Y0/Y0/Δ接线时,它们的磁路是互通的,高压侧A相熔断器熔断,二次侧A相仍能感应出一定的电压,但此时的A相电压比单相TV接线时要高一些,二次侧断开一相时,情况与单相TV接线时相同。 2.1.2 TV熔断器两相熔断的现象与判断 (1)高压熔断器两相熔断时,熔断的两相相电压很小或接近于零,未熔断一相的相电压接近于正常相电压。熔断器熔断的两相相间电压为零(即线电压为零),其它线电压降低,但不为零。 (2)低压熔断器熔断两相时,熔断的两相相电压降低很多,但不为零,未断的一相电压正常,熔断器熔断的两相间电压为零,其它线电压降低,但不为零。 2.1.3 TV一次侧中性线断线的现象与判断

小电流接地选线 毕业设计开题报告

课题类别:设计论文 学生姓名: 学号: 班级: 专业(全称): 指导教师: 2012 年3 月

一、本课题设计(研究)的目的: 在我国电力系统中性点接地方式有两种,分别是中性点直接接地方式和中性点非直接接地方式。110kV及以上电网采用中性点直接接地方式,在这种系统中,发生单相接地时,短路电流很大,故称大电流接地系统。电压等级在110kV以下、6kV以上的中低压配电网络中,其中性点接地方式主要为非直接接地方式,即不接地或者经过消弧线圈接地,这样的系统一般称为小电流接地系统。 小电流接地系统直接面向用户。根据电力运行部门统计,其发生单相接地故障的几率最高,可占总故障的80%左右,这时供电仍能保证线电压的对称性,且故障电流较小,不影响对负荷连续供电,故不必立即跳闸,规程规定可以连续运行1至2小时。尤其在瞬时故障下,短路点可以自行灭弧,恢复绝缘,不需要运行人员采取什么措施,这对于减少用户短时停电次数具有积极意义。 但是,随着配电网的迅速发展,电网中电缆线路的比例上升,缆线混合线路越来越多,系统线路也增多,系统单相接地故障电流增大,长时间运行就容易使故障扩大成两点或者多点接地短路,弧光接地还会引起全系统过电压,进而损坏设备,破坏系统安全运行,所以运行人员必须及时查明故障线路,以便采取相应对策解除故障,恢复系统正常运行。由于该种故障造成的故障电流很小,不易检测,尤其是对于中性点经消弧线圈接地的系统难以准确选出故障设备,因此,小电流接地系统中发生单相接地故障时如何正确选择故障线路,一直是继电保护领域里的一个研究方向。目前系统中采用的小电流接地选线方法主要有:高次谐波法、暂态分量法、能量法、有功分量法等。 通过本课题的研究,在了解小电流接地系统中单相接地故障的特点基础上,以中性点经消弧线圈接地的小电流接地系统中的高次谐波接地选线保护作为研究对象,研究这种保护的原理、特点及相应微机保护的算法,利用虚拟现实技术设计开发出高次谐波接地选线保护装置虚拟仿真平台并进行运行仿真调试。通过本课题的毕业设计使学生对所学专业知识进行综合应用,以提高分析问题和解决问题的能力。 二、设计(研究)现状和发展趋势: 对于故障选线的研究,在前苏联,小接地电流系统得到了广泛应用,并对其保护原理和装置给予了很大重视,研制了几代装置,在供电和煤炭行业得到了应用,保护原理从过电流、无功方向发展到了群体比幅。装置由电磁式继电器,晶体管发展到了模拟集成电路和数字电路,而微机构成的装置较少。日本在供电、钢铁、化工用电中普遍采用中性点不接地或经电阻接地系统,选线原理简单,采用基波无功方向法。近年来,在如何获取零序电流信号以及接地点分区段方面投入不少力量,采用光纤研制的架空线和电缆零序互感器试验成功。德国多使用中性点经消弧线圈接地系统,并于20世纪30年代就提出了反映故障开始暂态过程的单相接地保护原理,研制了便携式接地报警装置。法国使用中性点经电阻接地系统几十年后,现在正以中性点经消弧线圈接地系统取代中性点经电阻接地系统,同时开发了高新技术产品:零序导纳接地保护。20世纪九十年代初,国外已将人工神经网络原理应用于单相接地保护,并有文献提到应用专家系统方法,随着小波分析的出现和发展,国内外均有文献提及,利用小波分析良好的时频局部性,分析故障暂态电流的高频分量的方法。 我国从1958年起,就一直对小电流接地系统单相接地故障的选线问题进行研究,提出了多种选线方法,并开发了相应的装置。20世纪50年代我国有根据首半波极性研制成功的接地保护装置和利用零序电流五次谐波研制成功的接地选线定位装置。70年代后期,上海继电器厂和许昌继电器厂等单位研制生产了一批有选择性的接地信号装置,如反映中性点不接地系统零序功率方向保护ZD-4型保护,反映经消弧线圈接

小电流接地系统

什么是小电流接地系统?什么又是大电流接地系统? 我国现在的10KV 110KV 220KV 500KV (国网已经有1000KV)高压输电线路都是没有零线的,因为这些电压等级都是不可以直接被设备(少数超高压设备除外)所接受的。而我们平时用电最多的是3相4线制(TN—C系统),3根火线+1零线。而零线的作用是:1.中性线(N线),和火线一起接成相电压。2.充当某些运行设备的中性点接地(工作接地)。3.和设备外壳相接充当保护(P线)。而这些在10KV以上电压等级是不需要的,110KV以上的输电线路上方有2条架空零线(或称架空避雷线、架空地线),其作用是起避雷作用(防止雷电波)。所以日常见到的高压进线没零线。 9 r5 _/ w1 P$ d: C 问到1相接地的问题,高压输电线都是需要保护的(禁止在无保护的条件下运行),110KV一般有一套保护,220KV以上则需要2套原理不同、且来自不同厂家的保护,运用比较广泛的是光纤纵差和高频保护。当发生一相接地的时候会发生跳闸,因为线路都有重合闸(分单重、3重、综重),在判定为永久性故障后不进行重合。所以:短路——重合——跳闸。 , _" b" p+ V& h' x" A3 p 关于大、小电流接地系统的问题,大电流接地系统是指中性点直接接地系统,像我们的3相4 线制就属于,因为在发生故障的时候接地电流会比较大。小电流接地系统包括:中性点不接地系统、中性点经消弧线圈接地系统、中性点经大电阻接地系统。发生故障的时候接地电流比较小。电力的变压器为什么需要装有瓦斯保护?在电网的变压器中,差动保护和瓦斯保护一起构成变压器的主保护,差动保护是用首末两端电流的对比判断故障然后动作的,保护的是变压器的绕组、套管、到CT侧,差动保护属于电气量保护。瓦斯保护是属于非电气量的保护,装在油箱和油枕之间,分过气流和过油流,如果变压器内部发生短路,那么短路电流会分解变压器油而产生气体,让瓦斯继电器发出告警信号(轻瓦斯保护),短路严重的时候,气温很高,会让油面上升,冲到瓦斯继电器的动作位置,发生跳闸信号(重瓦斯保护)。由于瓦斯保护可以保护到差动保护所保护不到的位置——铁心。所以瓦斯和差动一起构成变压器的主保护。 我国现在的10KV 110KV 220KV 500KV (国网已经有1000KV)高压输电线路都是没有零线的,因为这些电压等级都是不可以直接被设备(少数超高压设备除外)所接受的。而我们平时用电最多的是3相4线制(TN—C系统),3根火线+1零线。而零线的作用是:1.中性线(N线),和火线一起接成相电压。2.充当某些运行设备的中性点接地(工作接地)。3.和设备外壳相接充当保护(P线)。而这些在10KV以上电压等级是不需要的,110KV以上的输电线路上方有2条架空零线(或称架空避雷线、架空地线),其作用是起避雷作用(防止雷电波)。所以日常见到的高压进线没零线。 9 r5 _/ w1 P$ d: C 问到1相接地的问题,高压输电线都是需要保护的(禁止在无保护的条件下运行),110KV一般有一套保护,220KV以上则需要2套原理不同、且来自不同厂家的保护,运用比较广泛的是光纤纵差和高频保护。当发生一相接地的时候会发生跳闸,因为线路都有重合闸(分单重、3重、综重),在判定为永久性故障后不进行重合。所以:短路——重合——跳闸。 , _" b" p+ V& h' x" A3 p 关于大、小电流接地系统的问题,大电流接地系统是指中性点直接接地系统,像我们的3相4 线制就属于,因为在发生故障的时候接地电流会比较大。小电流接地系统包括:中性点不接地系统、中性点经消弧线圈接地系统、中性点经大电阻接地系统。发生故障的时候接地电流比较小。电力的变压器为什么需要装有瓦斯保护?在电网的变压器中,差动保护和瓦斯保护一起构成变压器的主保护,差动保护是用首末两端电流的对比判断故障然后动作的,保护的是变压器的绕组、套管、到CT侧,差动保护属于电气量保护。瓦斯保护是属于非电气量的保护,装在油箱和油枕之间,分过气流和过油流,如果变压器内部发生短路,那么短路电流会分解变压器油而产生气体,

小电流接地选线报告

BW-ML196H微机小电流接地选线装置调试记录 工程名称:CB项目10kv开闭所安装位置:10kV综合保护屏 一.装置设置及信息状态检查: 1.电源检查: 输入电源输入值实测值 交流电源220V 229V 直流电源220V 231V 面板显示电源装置面板显示5V,12V电源均正确 2.通讯设置检查: 检查结果:远传端口设置正确,通讯正常。 通讯设置: 通讯模块名称设置 ADDR 装置地址24H RULE 通信规约号01 BAUD 波特率4800 6.告警检查: 告警设置动作情况告警设置动作情况 装置失电正确装置故障正确 10KVⅠ母故障正确10KVⅡ母故障正确 二.线路及电压电流配置: 1.电压配置: 电压配置名称 第一组电压10kVⅠ段母线电压 第一组电压10kVⅡ段母线电压 2.电流配置及选线功能校验: 母线报警电压:30V;零序电流定值:0.1A;电流为容性电流 零序电流配置线路名称对应母线选线结果 第一组电流线路110kVⅠ段正确 第二组电流线路210kVⅠ段正确 第三组电流线路310kVⅠ段正确 第四组电流线路410kVⅠ段正确 第五组电流线路510kVⅠ段正确 第六组电流线路610kVⅠ段正确 第七组电流线路710kVⅠ段正确 第八组电流线路810kVⅡ段正确 第九组电流线路9 10kVⅡ段正确 第十组电流线路10 10kVⅡ段正确 第十一组电流线路1110kVⅡ段正确 第十二组电流线路1210kVⅡ段正确 第十三组电流线路1310kVⅡ段正确 第十四组电流线路1410kVⅡ段正确

第十五组电流线路1510kVⅡ段正确第十六组电流线路1610kVⅡ段正确第十七组电流线路1710kVⅡ段正确第十八组电流线路1810kVⅠ段正确第十九组电流线路1910kVⅠ段正确第二十组电流线路2010kVⅠ段正确第二十一组电流线路2110kVⅠ段正确 三.继电保护检验结论: 1.装置各元器件已按照出厂技术要求检验,符合技术要求. 2.装置特性已作调整,符合装置技术要求. 3.装置屏内绝缘良好,符合技术要求. 5.装置已按照所给保护定值单整定完毕,整定值符合规范要求. 6.整套装置完整,符合设计. 7.该保护装置可以投入运行. 调试人员:顾峰、景丽云报告整理:宋杰

一起小电流接地系统单相断线故障分析

起小电流接地系统单相断线故障分析 摘要:本文对一起小电流接地系统35kV 线路单相断线故 障进行了理论计算分析,得出了单相断线后的变压器各侧母线电压变化规律,对今后类似故障的判断及处理具有一定的借鉴作用。 关键词:小电流接地系统;单相断线;电压近几年,随着城市 建设步伐加快,不接地系统线路接地和断相的现象有所增加,或是负载原因,或是外力破坏在本地区近年的配网线路中发生过几起。文章针对一起35kV 系统单相断线故障,进行深入分析及研究。 1故障情况 变电站一次接线如图1所示,正常运行时,35kV B站由甲线供电。某日10:06 A站35kV I母电压不平衡,A相20kV, B相 20kV,C相23kV°35kV B站低压侧电压不平衡:A相6kV,B相 3kV,C相3kV。令值班员现场检查。10:15发现B站负荷从23MW 急剧下降至2MW 。 2处理过程 考虑故障侧10kV母线两相电压下降到正常相电压的一半,与正常侧10kV母线存在电压差,若采用10kV侧合解环调电方法,合环时将导致较大的不平衡电流,并且影响到主变的正常运行和负荷供电。因此,不宜采用10kV 合解环方法调电。也考虑到35kV B站进线有备自投,且大量负荷已甩掉,所以决定直接将断线线路拉停,B

站负荷靠自投恢复[1] 。10:25 拉停甲线后A 站、B 站电压恢复正常。 3事故现象分析中性点电压的大小与断线线路对地电容在系统中的所 占份额有关,当母线上只有唯一一条线路且缺相运行时,=+0N=。实际运行时,各相对地电容不完全对称,且A站35kV I 段母线上有多条线路运行,断线相对地电容电流变化不大,所以ONv,<<,、略为减小。所以A站35kV母线电压现象为断线相电压升高,正常相电压略为降低。 对于B站(负荷侧)、正常运行时、10kV母线相电压三相平衡、均在6kV左右。以A相为参考相、甲线C相断线后、负荷端高压线圈上的电压为=Ue、=Ue, =0。其中、U为相电压数值。根据对称分量法、有: 从计算结果可以看出、35kV甲线C相断线时、B站10kV 侧母线电压变化情况为一相(A相)对地电压正常、两相(B、C相)相电压降低至正常相电压的一半。 4结论 ①小电流接地系统线路单相断线时、如果断线相对地电容减小不多、则电源侧中性点不平衡电压不大、故障特征不明显、反映到电压互感器开口三角上电压达不到继电器的动作值时,不会发信号,但三相对地电压仍有差别,断线相电压升高,非断线相电压略降。②对于负荷侧,由于电源缺相,三相对称性被破坏,三相动力负载将

大电流接地系统与小电流接地系统故障判断分析

大电流接地系统与小电流接地系统故障判断分析大电流接地系统与小电流接地系统故障判断、分析 我国电压等级在110kV 及其以上的系统均为大电流接地系统,在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大的比例,造成单相故障的原因有很多,如雷击、瓷瓶闪落、导线断线引起接地、导线对树枝放电、山火等。线路单相接地故障分为瞬时性故障和永久性故障两种,对于架空线路一般配有重合闸,正常情况下如果是瞬时性故障,则重合闸会启动重合成功;如果是永久性故障将会出现重合于永久性故障再次跳闸而不再重合。为帮助运行人员正确判断和分析大电流接地系统线路单相瞬时性故障,本案例选取了某地区一典型的220kV 线路单相瞬时接地故障,并对相关的知识点进行分析。说明,此案例分析以FHS 变电站为主。本案例分析的知识点:(1)大电流接地系统与小电流接地系统的概念。(2)单相瞬时性接地故障的判断与分析。(3)单相瞬时性接地故障的处理方法。 (4)保护动作信号分析。(5)单相重合闸分析。(6)单相重合闸动作时限选择分析。(7)录波图信息分析。(8)微机打印报告信息分析。一、大电流接地系统、小电流接地系统的概念在我国,电力系统中性点接地方式有三种:(1)中性点直接接地方式。(2)中性点经消弧线圈接地方式。(3)中性点不接地方式。 110kV 及以上电网的中性点均采用中性点直接接地方式。中性点直接接地系统(包括经小阻抗接地的系统)发生单相接地故障时,接地短路电流很大,所以这种系统称为大电流接地系统。采用中性点不接地或经消弧线圈接地的系统,当某一相发生接地故障时,由于不能构成短路回 路,接地故障电流往往比负荷电流小得多,所以这种系统称为小电流接地系统。大电流接地系统与小电流接地系统的划分标准是依据系统的零序电抗X 0与正序电抗X 1的比值X 0/X 1。我国规定:凡是X 0/X 1≤4~5的系统属于大接地电流系统,X 0/X 1>4~5的系统则属于小接地电流系统。事故涉及的线路及保护配置图事故涉及的线路和保护配置如图1所示,两变电站之间为双回线,线路长度为66.76km 。 FT 线路及保护配置三、事故基本情况 2001年5月24日16时42分,FHS 变电站FT 一回线C 相瞬时性故障,C 相重合闸重合成功,负荷在正常范围内,系统无其他异常,FT 一回线(FT为双回线) 线路全长66.76km 四、微机监控系统主要信号 FT 一回SF-500收发信机动作 FT 一回SF-600收发信机动作 FT 一回WXH-11X 保护动作 FT 一回LEP-902A 保护动作 FT 一回C 相断路器跳闸 FT 一回WXH-11X 重合闸动作 FT 一回LEP-902A 重合闸动作 FT 一回WXH-11X 保护呼唤值班员 FT 一回LEP-902A 保护呼唤值班员3号录波器动作 5号录波器动作 1号主变压器中性点过流保护掉牌 2号主变压器中性点过流保护掉牌 220kV 母线电压低本站220kV 其他相关线路高频收发信机动作五、继电保护屏保护信号 WXH-11X 型微机保护:跳C 、重合闸、高频收发信、呼唤灯亮。 LFP-902A 型微机保护:TC 、

小电流接地选线

小电流接地选线装置实施 一、装置背景介绍 在我国110kV以下电力系统中,变压器的中性点多采用不接地或经消弧线圈接地方式,简称为小电流接地系统。在小电流接地系统中,发生单相接地故障时,故障相电压降为零,非故障相电压升高为相电压的V 3倍,但三相之间的线电压仍然保持对称,故障电流仅为系统对地电容电流,数值往往较负荷电流小得多,对供电负荷没有影响,因此规程允许继续运行1?2h。但实际运行中,接地故障引起的弧光过电压可能会引起电力电缆爆炸、TV保险熔断甚至烧坏、母线短路等事故,因此,迅速确定接地点、消除单相接地故障对系统的安全运行有着十分重要的意义。 传统的寻找接地故障线路的方法是:依次逐条断开每回出线的断路器,故障线路被断开后,系统电压恢复且接地信号消失,否则继续寻找。虽然这种寻找方法大多可通过重合闸来进行补救,但对一些供电要求很高的用电客户来说,这种方法的弊病是显而易见的,尤其是对那些负荷较重的线路,这种方法已不满足安全稳定供电的要求。小电流接地选线装置自问世以来,迅速得以普及,经历了几次更新换代,其选线的准确性已在不断提高。 二、小电流接地系统单相接地故障特点 如图1所示为一中性点不接地系统,假定电网的负荷为零,并忽略电源和线路上的压降。电网各相对地电容为C o,这三个电容就相当于一对称Y形负载,其中性点就是大地。 U N 图1中性点不接地系统 正常运行时,电源中性点对地电压等于零,即U N=0,各相对地电压为相电势,三 相电容电流也是对称的,并超前相应电压90°,正常运行时的相量如图2

E A IB I A ____ ■■ E C IC E B 图2正常运行时的相量图 当A相发生单相接地时,A相对地电压变为零。此时中性点对地电压就是中性点对A相的电压,即UN=-EA。各相对地电压和零序电压分别为 U 'A = 0 U 'B = E B - E A = V3 E A ej-15°° U 'C = E C - E A = V3 E A ej150 U o =1/3 ( U 'A + U'B + U 'C ) = -E A 上式说明,A相接地后,B相和C相对地电压升高为原来的V 3倍,此时三相电压之和不再为零,出现了零序电压。非故障相出现了超前相电压90°的电容电流,线路上出现了零序电容电流。其值分别为 |B=j 3 C0 U 'B I C=j 3 C0 U C 3l0= |B+ |C=-j3E A3 C0 接地故障时的相量如图3

小电流接地选线试验方案

编号:SM-ZD-23276 小电流接地选线试验方案Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

小电流接地选线试验方案 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 一.试验目的和原理: 1、检验KA2003型小电流接地系统单相接地故障选线装置的选线效果 2、KA2003系列选线装置实时采集系统故障信号,应用多种选线方法进行综合选线,具体包括:智能群体比幅比相法、谐波比幅比相法、小波法、首半波法、有功分量法、能量法、零序电流突变量法。装置通过粗糙集理论确定各种选线方法的有效域,根据故障信号特征自动对每一种选线方法得出的故障选线结果进行可信度量化评估,应用证据理论将多种选线方法融合到一起,最大限度地保证各种选线方法之间实现优势互补。为了避免故障信号受到干扰而导致误选,装置采用了连续选线方法,每隔一定时间(1秒)重新采集数据进行分析,只要故障没有消失,装置的选线计算就不停止。 特别对于10kV经消弧线圈接地系统,一般消弧线圈补偿

相关主题