搜档网
当前位置:搜档网 › 三极管C945可以用什么代替

三极管C945可以用什么代替

三极管C945可以用什么代替

三极管C945可以用什么代替

这个管是NPN小功率高频管,50伏,0.1安,0.25瓦,250兆赫。可以用BC107,

2N2369,BC237,3DG120B代替

2SC945属于通用型NPN高频小功率管。频率为250M、Ic100mA、耐压60V。可用2N2222等代用。如果不是用在高频电路里,9013、8050等都可代用。

电路板贴片元件三极管封装写着1HE F ,F是横这些的,请问是什么原件

这是一个NPN型三极管,型号是L8050 ,Vceo=25V, Vcbo=40V,

IC=1.5A, PD=225mW

2TY 是8550 PNP SOT23

J3Y是8050 NPN SOT23

如果遇到这些打字反查具体型号之类的,你可以到天亿电子的网站查一下,他们的网站可以反查这种的,方便很多,不会那么麻烦的

全系列三极管应用参数代换大全

名称封装极性用途耐压电流功率频率配对管 9012 贴片PNP低频放大50V 0.5A 0.625W 9013 9012 21 PNP低频放大50V 0.5A 0.625W 9013 9013 21 NPN 低频放大50V 0.5A0.625W 9012 9013 贴片NPN 低频放大50V 0.5A 0.625W 9012 9014 21 NPN 低噪放大50V 0.1A0.4W 150HMZ 9015 9015 21 PNP低噪放大50V 0.1A0.4W 150MHZ 9014 9018 21 NPN 高频放大30V 0.05A0.4W 1000MHZ 8050 21 NPN 高频放大40V 1.5A1W 100MHZ 8550 8550 21 PNP高频放大40V 1.5A1W 100MHZ 8050 2N2222 21 NPN 通用60V 0.8A 0.5W 25/200NS 2N2369 4A NPN 开关40V 0.5A 0.3W 800MHZ 2N2907 4A NPN 通用60V 0.6A 0.4W 26/70NS 2N3055 12 NPN 功率放大100V 15A 115W MJ2955 2N3440 6 NPN 视放开关450V 1A1W 15MHZ 2N6609 2N3773 12 NPN 音频功放开关160V 16A50W 2N3904 21E NPN 通用60V 0.2A 2N2906 21C PNP 通用40V 0.2A 2N2222A 21铁NPN 高频放大75V 0.6A 0.625W 300MHZ 2N6718 21铁NPN 音频功放开关100V 2A 2W 2N5401 21 PNP视频放大160V 0.6A 0.625W 100MHZ 2N5551 2N5551 21 NPN 视频放大160V 0.6A 0.625W 100MHZ 2N5401 2N5685 12 NPN 音频功放开关60V 50A 300W 2N6277 12 NPN 功放开关180V 50A 250W 2N6678 12 NPN 音频功放开关650V 15A 175W 15MHZ 3DA87A 6 NPN 视频放大100V 0.1A1W 3DG6B 6 NPN 通用20V 0.02A 0.1W 150MHZ 3DG6C 6 NPN 通用25V 0.02A 0.1W 250MHZ 3DG6D 6 NPN 通用30V 0.02A 0.1W 150MHZ 3DK2B 7 NPN 开关30V 0.03A 0.2W 3DD15D 12 NPN 电源开关300V 5A 50W 3DD102C 12 NPN 电源开关300V 5A 50W 3522V 5V稳压管 5609 21 NPN 音频低频放大50V 0.8A 0.625W 5610 5610 21 PNP音频低频放大50V 0.8A 0.625W 5610 60MIAL1 电磁/微波炉1000V 60A 300W 9626 21 NPN 通用 MPSA42 21E NPN 电话视频放大300V 0.5A 0.625W MPSA92 MPSA92 21E PNP 电话视频放大300V 0.5A 0.625W MPSA42 MPS2222A 21 NPN 高频放大75V 0.6A 0.625W 300MHZ A634 28E PNP 音频功放开关40V 2A 10W A708 6 PNP 音频开关80V 0.7A 0.8W A715C 29 PNP 音频功放开关35V 2.5A 10W 160MHZ A733 21 PNP 通用50V 0.1A180MHZ

二极管及三极管电路符号大全

二极管及三极管符号大全【图】二极管符号参数二极管符号意义

CT---势垒电容 Cj---结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极管的总电容 Cjv---偏压结电容 Co---零偏压电容 Cjo---零偏压结电容 Cjo/Cjn---结电容变化 Cs---管壳电容或封装电容 Ct---总电容 CTV---电压温度系数。在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比 CTC---电容温度系数 Cvn---标称电容 IF---正向直流电流(正向测试电流)。锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管。硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流 IF(AV)---正向平均电流 IFM(IM)---正向峰值电流(正向最大电流)。在额定功率下,允许通过二极管的最大正向脉冲电流。发光二

极管极限电流。 IH---恒定电流。维持电流。 Ii---发光二极管起辉电流 IFRM---正向重复峰值电流 IFSM---正向不重复峰值电流(浪涌电流) Io---整流电流。在特定线路中规定频率和规定电压条件下所通过的工作电流 IF(ov)---正向过载电流 IL---光电流或稳流二极管极限电流 ID---暗电流 IB2---单结晶体管中的基极调制电流 IEM---发射极峰值电流 IEB10---双基极单结晶体管中发射极与第一基极间反向电流 IEB20---双基极单结晶体管中发射极向电流 ICM---最大输出平均电流 IFMP---正向脉冲电流 IP---峰点电流 IV---谷点电流 IGT---晶闸管控制极触发电流 IGD---晶闸管控制极不触发电流 IGFM---控制极正向峰值电流

常用三极管型号及参数

常用三极管型号及参数 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型IRFU020 50V 15A 42W **NMO场效应 IRFPG42 1000V 4A 150W ** NMO场效应 IRFPF40 900V 4.7A 150W ** NMO场效应 IRFP9240 200V 12A 150W ** PMOS场效应 IRFP9140 100V 19A 150W **PMOS场效应 IRFP460 500V 20A 250W ** NMO场效应 IRFP450 500V 14A 180W **NMO场效应IRFP440 500V 8A 150W **NMO场效应IRFP353 350V 14A 180W **NMO场效应IRFP350 400V 16A 180W **NMO场效应IRFP340 400V 10A 150W **NMO场效应IRFP250 200V 33A 180W **NMO场效应IRFP240 200V 19A 150W **NMO场效应IRFP150 100V 40A 180W **NMO场效应晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型IRFP140 100V 30A 150W **NMO场效应IRFP054 60V 65A 180W **NMO场效应IRFI744 400V 4A 32W **NMO场效应IRFI730 400V 4A 32W **NMO场效应IRFD9120 100V 1A 1W **NMO场效应IRFD123 80V 1.1A 1W **NMO场效应IRFD120 100V 1.3A 1W **NMO场效应IRFD113 60V 0.8A 1W **NMO场效应IRFBE30 800V 2.8A 75W **NMO场效应

常用高清行管和大功率三极管主要参数表

常用高清行管和大功率三极管主要参数表 2010-03-02 10:33:54 阅读78 评论0 字号:大中小 高清彩电行管损坏的原因及代换 现在,大屏幕彩色电视大都是数字高清,原来50Hz的场扫描频率接近人眼感知频闪的临界点,所以高清电视都是提高扫描频率来提高图像的清晰度,即将场扫描提高到100Hz或是60Hz逐行,这样就会使行扫描的频率提高一倍,自然行输出管的开关速度和功耗都会随之增加,普通的行输出管已经不能胜任,要采用性能更好的大功率三极管。目前采用的行管有:C5144、C5244、J6920、C5858、C5905等,这些行输出管的耐压都在1500V以上,电流多大于20A,但是由于其功耗比较大,损坏率还是比较高。归纳起来,其损坏的原因一般有以下六种。 1. 行激励不足 如果行激励不足,行管不能迅速截止与饱和,导致行管内阻变大,将造成行输出电路的功耗增加,引起行输出管发烫,一旦超过行管功耗的极限值,便会使行管烧坏。 在海信高清电视中,行振荡方波信号是由数字变频解码板输出,经过一对三极管2SC1815、2SA1015放大后,送到行激励管的基极。这两个三极管工作在大电流开关状态,故障率相对较高,损坏后就会造成行激励不足,损坏行输出管,对比可以用示波器测量行管基极的波形来确定。另外,行管基极的限流电阻阻值一般为Ω,与行管的发射极串联,再与行激励变压器并联,若是阻值增大有可能用普通万用表测不出来。我们曾经修过多例次电阻增值到2Ω以上而导致开机几分钟后行管损坏的故障,且损坏行管的比例较大。 2. 行逆程电压过高 在行逆程期间,偏转线圈会对逆程电容充电,逆程电容容量大小决定充电的时间。容量越小,充电时间越短,充电电压越高,因而会产生很高的反峰脉冲电压。所以,当行一旦超过行管的耐压值,就会出现屡烧行管的结果。我们在测量逆程电容时,一般是测量电容的直流参数,而一些ESR等交流参数无法测量,所以最好是代换较可靠。 3. 行偏转线圈或行输出变压器局部短路造成行负责过重 常见场输出集成电路击穿导致行偏转线圈或行输出变压器绝缘性能下降,产生局部短路、行输出逆程电容漏电等。如果保护电路性能不完善,则会引起行管过流损坏。海信高清电视由于电源保护措施比较完善,所以这种情况不多见,表现出来的现象是行一开机就停。 4. 电源电压升高 电源电压升高会导致行逆程电压升高。现在的高清电视电源一般都是模块化的,电源设计比较合理,保护功能全,不像以前的老式电源电路,电源电压升高造成击穿行管的故障相对比较少。 5. 行管的型号和参数不对 这种情况在专业的厂家售后一般不会出现,但是作为个体维修或是业余维修就可能遇到。高清电视行管的功率大、频率高,最好用同型号行管代换。有的行管发射结没有并联电阻,如果采用普通行管,发射结并联电阻的阻值比较小,会造成基极驱动电流小,激励不足,行电流过大(正常高清行电流在500mA~600mA)而再次损坏。更换行管后测量行电流,如果原行推动变压器次级并联有缓冲电阻的,可将电阻阻值增大,甚至拿掉;如果行管发射极串联有负反馈电阻或是基极有限流电阻的,可减小该电阻阻值,再次测量行电流,如果行电流减小就适当改变这两个电阻的阻值。 6. 其他 像阻尼二极管开路、高压打火、显像管内部跳火、行信号反馈电路有故障、更换后的行管

三极管参数大全

Order Code Description IEP EURO -------------------------------------------------------------------------------- 022PO2 HIGH VOLTAGE DIODE 6.59 8.37 0403-000571 ZD1S30 DIODE SAMSUNG SVB30IK 1.69 2.15 1.5KE400C BIDIR TRANSIL/400V/15000W 0.89 1.13 100V/1.3W ZENER-DIODE 100V/1.3W per 5 0.97 1.23 10V/0.4W ZENER-DIODE 10V/0.4W per 5 0.67 0.85 10V/1.3W ZENER-DIODE 10V/1.3W per 5 0.97 1.23 10VT27 FERGUSON-IC 5.95 7.55 1150040500 BR1 RECTIFIER PACE MSP990 1.88 2.39 11V/0.4W ZENER DIODE 11V/0.4W per 5 0.67 0.85 11V/1.3W ZENER DIODE 11V/1.3W per 5 0.97 1.23 1200003001 D54/300V DIODE PACE MSS1000 0.97 1.23 120V/1.3W ZENER-DIODE 120V/1.3W per 5 0.97 1.23 12V/0.4W ZENER DIODE 12V/0.4W per 5 0.67 0.85 12V/1.3W ZENER DIODE 12V/1.3W per 5 0.97 1.23 130V/1.3W ZENER DIODE 130V/1.3W per 5 0.97 1.23 13V/0.4W ZENER DIODE 13V/0.4W per 5 0.67 0.85 13V/1.3W ZENER DIODE 13V/1.3W per 5 0.97 1.23 14DN244 AMSTRAD IC 13.98 17.75 14DN329 AMSTRAD IC 14.99 19.03 14DN363 AMSTRAD IC=MN6748FVZ 11.89 15.10 14DN379 ARMSTRAD TVR3 IC4 =MN14831FVL 34.87 44.28 14DN487 IC AMSTRAD 12.54 15.92 1422112 GO TO 5V1/0.4W please ask 14V/0.4W ZENER DIODE 14V/0.4W 0.12 0.15 15/80H THYR.TRACE/900V/5.5A 5.88 7.47 15/85R THYR.RETRACE/900V/5.5A 4.84 6.15 150V/1.3W ZENER DIODE 150V/1.3W per 5 0.97 1.23 15V/0.4W ZENER DIODE 15V/0.4W per 5 0.67 0.85 15V/0.5WSMD ZENER DIODE SMD 15V/5% per 5 0.98 1.24 15V/1.3W ZENER DIODE 15V/1.3W per 5 0.97 1.23 16FR120 DIODE 1200V/16A 5.21 6.62 160V/1.3W ZENER-DIODE 160V/1.3W 0.19 0.24 16RIA100 THYRISTOR 1000V TO48 15.00 19.05 16V/0.4W ZENER-DIODE 16V/0.4W per 5 0.67 0.85 16V/1.3W ZENER-DIODE 16V/1.3W per 5 0.97 1.23 17058 GO TO 17088 please ask 17088 THY+DI/900V/3A/TRACE 2.70 3.43 17089 THY+DI/900V/3A/RETRACE 2.70 3.43 17127 THYRISTOR 1.80 2.29 17160 THYRISTOR please ask 176K5887SS IC ROADSTAR 44.76 56.83 18022 GO TO 17088 4.40 5.59 180V/1.3W ZENER DIODE 180V/1.3W per 5 0.97 1.23 18V/0.4W ZENER DIODE 18V/0.4W per 5 0.67 0.85 18V/1.3W ZENER DIODE 18V/1.3W per 5 0.97 1.23 1CXP508690 IC704 DAEWOO ACD7500 =CXP566HQ-590 please ask 1N4007 RECT.1000V/1A per 10 0.87 1.10 1N4148 GEN.REC.75V/75MA=1N4448 per 10 0.47 0.60 1N4448 GO TO 1N 4148 please ask 1N4744 GO TO 15V/1.3W please ask 1N4933 RHDX0527BMZZ DIODE SHARP 51C03IR/59C03IR/66CS03IR 1.39 1.76 1N4934 RHDX0528BMZZ DIODE SHARP 51CS03IR/55CS03IR/66CS03IR 0.79 1.00 1N4936 GO TO BYD 33M please ask

二极管和三极管原理

实用文案 二极管图 三极管工作原理 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基 本原理。 穂压二郴皆 表亍拆号.込6口 ZD,D 齐于特是-□ . “ 光硕二概苛葩光电接収二巒炭:?t_很首 駅亍咼号:U.VT 車示帝号 :Q,vr ■J'L hL H九世总 NPMSl三极普 表示持号:Q.VT 亵示符冒o 福压二Hi育 靑示時耳一口 艇谭二松苛隨谨二機営 净恃至二娜苗 潮看得■ : LED 翼台SflJ世 光嗽三慨営电接收三世 斫將号:LED

一、电流放大 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流 lb ;把从集电极C流至发射极E的电流叫做集电极电流lc。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的B倍,即电流变化被放大了B倍,所以我们把B叫做三极管的放大倍数(B一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流lb 的变化,lb 的变化被放大后,导致了lc 很大的变化。如果集电极电流lc 是流过一个电阻R 的,那么根据电压计算公式U=R*l 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 二、偏置电路三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V )。当基极与发射极之间的电压小于0.7V 时,基极电流就可以认为是0 。但实际中要放大的信号往往远比0.7V 要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因

全系列常用三极管型号参数资料(精)

全系列常用三极管型号参数资料 编者按:这些虽不能涵盖所有的三极管型号,例如3DD系列等,但是都是极其常用的型号,例如901系列,简直是无所不在。在网上查的电子元件手册都是卖书的广告,找到点参数型号确实不易。 名称封装极性功能耐压电流功率频率配对管 D633 28 NPN 音频功放开关100V 7A 40W 达林顿 9013 21 NPN 低频放大50V 0.5A 0.625W 9012 9014 21 NPN 低噪放大50V 0.1A 0.4W 150HMZ 9015 9015 21 PNP 低噪放大50V 0.1A 0.4W 150MHZ 9014 9018 21 NPN 高频放大30V 0.05A 0.4W 1000MHZ 8050 21 NPN 高频放大40V 1.5A 1W 100MHZ 8550 8550 21 PNP 高频放大40V 1.5A 1W 100MHZ 8050 2N2222 21 NPN 通用60V 0.8A 0.5W 25/200NS 2N2369 4A NPN 开关40V 0.5A 0.3W 800MHZ 2N2907 4A NPN 通用60V 0.6A 0.4W 26/70NS 2N3055 12 NPN 功率放大100V 15A 115W MJ2955 2N3440 6 NPN 视放开关450V 1A 1W 15MHZ 2N6609 2N3773 12 NPN 音频功放开关160V 16A 50W 2N3904 21E NPN 通用60V 0.2A 2N2906 21C PNP 通用40V 0.2A 2N2222A 21铁NPN 高频放大75V 0.6A 0.625W 300MHZ 2N6718 21铁NPN 音频功放开关100V 2A 2W 2N5401 21 PNP 视频放大160V 0.6A 0.625W 100MHZ 2N5551 2N5551 21 NPN 视频放大160V 0.6A 0.625W 100MHZ 2N5401 2N5685 12 NPN 音频功放开关60V 50A 300W 2N6277 12 NPN 功放开关180V 50A 250W 9012 21 PNP 低频放大50V 0.5A 0.625W 9013 2N6678 12 NPN 音频功放开关650V 15A 175W 15MHZ 9012 贴片PNP 低频放大50V 0.5A 0.625W 9013

S9013三极管

9013三极管 三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。s9013 NPN三极管主要用途:作为音频放大和收音机1W推挽输出。 1型号对比 s9014,s9013,s9015,s9012,s9018系列的晶体小功率三极管,把显示文字平面朝自己,从左向右依次为e发射极b基极c集电极;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c,s8050,8550,C2078 也是和这个一样的。用下面这个引脚图(管脚图)表示: 三极管引脚图 9013三极管[1] e b c 当前,国内各种晶体三极管有很多种,管脚的排列也不相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置(下面有用万用表测量三极管的三个极的方法),或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。 非9014,9013系列三极管管脚识别方法: (a) 判定基极。用万用表R×100或R×1k挡测量管子三个电极中每两个极之间的正、反向电阻值。当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。这时,要注意万用表表笔的极性,如果红表笔接的是基极b。黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测管子为PNP型三极管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN型管如9013,9014,9018。

半导体二极管三极管和MOS管的开关特性(精)

理想开关的开关特性 假定图2.1.1所示S是一个理想开关,则其特性应如下: 一、静态特性 (一)断开时,无论Uak在多大范围内变化,其等效电阻Roff=无穷,通过其中的电流Ioff=0。(二)闭合时,无论流过其中的电流在多大范围内变化,其等效电阻Ron=0,电压Uak=0。 二、动态特性 (一)开通时间Ton=0,即开关S由断开状态转换到闭合状态不需要时间,可以瞬间完成。 (二)关断时间Toff=0,即开关由闭合状态转换到断开状态哦也不需要时间,亦可以瞬间完成。 客观世界中,当然没有这种理想开关存在。日常生活中使用的乒乓开关、继电器、接触 器等,在一定电压和电流范围内,其静态特性十分接近理想开关,但动态特性很差,根本不可能满足数字电路一秒钟开关几百万次乃至数千万次的需要。虽然,半导体二极管、三极管和MOS管作为开关使用时,其静态特性不如机械开关,但其动态特性却是机械开关无法比拟的。 2.1.2 半导体二极管的开关特性 半导体二极管最显著的特点是具有单向导电特性。 一、静态特性 (一)半导体二极管的结构示意图、符号和伏安特性 1.结构示意图和符号 如图2.1.2所示,是半导体二极管的结构示意图和符号。 半导体二极管是一种两层、一结、两端器件,两层就是P型层和N型层、一结就 内部只有一个PN结,两端就是两个引出端,一个引出端叫做阳极A,一个引出端称为阴极K。 2.伏安特性 反映加在二极管两端的电压Ud和流过其中的电流Id两者之间关系的曲线,叫做 伏安特性曲线,简称为伏安特性。图2.1.3给出的是硅半导体二极管的伏安特性。 从图2.1.3所示伏安特性可清楚地看出,当外加正向电压小于0.5V时,二极管工作在死区,仍处在截止状态。只有在Ud大于0.5V以后,二极管才导通,而且当Ud达到0.7V后,即

常用晶体三极管参数

常用晶体三极管参数 2008-05-12 11:12 常用晶体三极管参数 名称封装极性耐压电流功率频率配对管 D633 28 NPN 音频功放 100V 7A 40W 达林顿 9013 21 NPN 低频放大 50V 0.5A 0.625W 9012 9014 21 NPN 低噪放大 50V 0.1A 0.4W 150HMZ 9015 9015 21 PNP 低噪放大 50V 0.1A 0.4W 150MHZ 9014 9018 21 NPN 高频放大 30V 0.05A 0.4W 1000MHZ 8050 21 NPN 高频放大 40V 1.5A 1W 100MHZ 8550 8550 21 PNP 高频放大 40V 1.5A 1W 100MHZ 8050 2N2222 21 NPN 通用 60V 0.8A 0.5W 25/200NS 2N2369 4A NPN 开关 40V 0.5A 0.3W 800MHZ 2N2907 4A NPN 通用 60V 0.6A 0.4W 26/70NS 2N3055 12 NPN 功率放大 100V 15A 115W MJ2955 2N3440 6 NPN 视放开 450V 1A 1W 15MHZ 2N6609 2N3773 12 NPN 音频功放 160V 16A 50W 2N3904 21E NPN 通用 60V 0.2A 2N2906 21C PNP 通用 40V 0.2A 2N2222A 21铁 NPN 高频放大 75V 0.6A 0.625W 300MHZ 2N6718 21铁 NPN 音频功放 100V 2A 2W 2N5401 21 PNP 视频放大 160V 0.6A 0.625W 100MHZ 2N5551 2N5551 21 NPN 视频放大 160V 0.6A 0.625W 100MHZ 2N5401 2N5685 12 NPN 音频功放 60V 50A 300W 2N6277 12 NPN 功放开 180V 50A 250W 9012 21 PNP 低频放大 50V 0.5A 0.625W 9013 2N6678 12 NPN 音频功放 650V 15A 175W 15MHZ 9012 贴片 PNP 低频放大 50V 0.5A 0.625W 9013 3DA87A 6 NPN 视频放大 100V 0.1A 1W 3DG6B 6 NPN 通用 20V 0.02A 0.1W 150MHZ 3DG6C 6 NPN 通用 25V 0.02A 0.1W 250MHZ 3DG6D 6 NPN 通用 30V 0.02A 0.1W 150MHZ MPSA42 21E NPN 电话视频 300V 0.5A 0.625W MPSA92 MPSA92 21E PNP 电话视频 300V 0.5A 0.625W MPSA42

三极管的主要参数

三极管的主要参数 1、直流参数 (1)集电极一基极反向饱和电流Icbo,发射极开路(Ie=0)时,基极和集电极之间加上规定的反向电压Vcb 时的集电极反向电流,它只与温度有关,在一定温度下是个常数,所以称为集电极一基极的反向饱和电流.良好的三极管,Icbo很小,小功率锗管的Icbo约为1~10微安,大功率锗管的Icbo可达数毫安,而硅管的Icbo则非常小,是毫微安级. (2)集电极一发射极反向电流Iceo(穿透电流)基极开路(Ib=0)时,集电极和发射极之间加上规定反向电 压Vce时的集电极电流.Iceo大约是Icbo的β倍即Iceo=(1+β)Icbo o Icbo和Iceo受温度影响极大,它们是衡量管子热稳定性的重要参数,其值越小,性能越稳定,小功率锗管的Iceo比硅管大. (3)发射极---基极反向电流Iebo 集电极开路时,在发射极与基极之间加上规定的反向电压时发射极的 电流,它实际上是发射结的反向饱和电流. (4)直流电流放大系数β1(或hEF) 这是指共发射接法,没有交流信号输入时,集电极输出的直流电流与 基极输入的直流电流的比值,即: β1=Ic/Ib 2、交流参数 (1)交流电流放大系数β(或hfe) 这是指共发射极接法,集电极输出电流的变化量△Ic与基极输入电流 的变化量△Ib之比,即: β= △Ic/△Ib 一般晶体管的β大约在10-200之间,如果β太小,电流放大作用差,如果β太大,电流放大作用虽然大,但性能往往不稳定. (2)共基极交流放大系数α(或hfb) 这是指共基接法时,集电极输出电流的变化是△Ic与发射极电流的 变化量△Ie之比,即: α=△Ic/△Ie 因为△Ic<△Ie,故α<1.高频三极管的α>0.90就可以使用 α与β之间的关系: α= β/(1+β) β= α/(1-α)≈1/(1-α) (3)截止频率fβ、fα当β下降到低频时0.707倍的频率,就是共发射极的截止频率fβ;当α下降到低频 时的0.707倍的频率,就是共基极的截止频率fαo fβ、fα是表明管子频率特性的重要参数,它们之间的关系为: fβ≈(1-α)fα (4)特征频率fT因为频率f上升时,β就下降,当β下降到1时,对应的fT是全面地反映晶体管的高频放 大性能的重要参数. 3、极限参数 (1)集电极最大允许电流ICM 当集电极电流Ic增加到某一数值,引起β值下降到额定值的2/3或1/2, 这时的Ic值称为ICM.所以当Ic超过ICM时,虽然不致使管子损坏,但β值显著下降,影响放大质量. (2)集电极----基极击穿电压BVCBO 当发射极开路时,集电结的反向击穿电压称为BVEBO. (3)发射极-----基极反向击穿电压BVEBO 当集电极开路时,发射结的反向击穿电压称为BVEBO. (4)集电极-----发射极击穿电压BVCEO 当基极开路时,加在集电极和发射极之间的最大允许电压,使用 时如果Vce>BVceo,管子就会被击穿.

三极管参数代换表三极管参数大全

三极管参数代换表三极管参数大全 型号耐压(V) 电流(A) 功率(W) 型号耐压(V) 电流(A) 功率(W) B857 70V 4A 40W BU2508A 1500V 8A 125W BU2508AF 1500V 8A 45W BU2508DF 1500V 8A 45W BU2520AF 1500V 10A 45W BU2520AX 1500V 10A 45W BU2520DF 1500V 10A 45W BU2520DX 1500V 10A 45W BU2522AF 1500V 10A 45W BU2522AX 1500V 10A 45W BU2522DF 1500V 10A 45W BU2522DX 1500V 10A 45W BU2525AF 1500V 12A 45W BU2525AX 1500V 12A 45W BU2527AF 1500V 12A 45W BU2527AX 1500V 12A 45W BU2532AL 1500V 15A 150W BU2532AW 1500V 16A 125W BU2725DX 1700V 12A 45W BU406 400V 5A 60W BU4522AF 1500V 10A 45W BU4522AX 1500V 10A 45W BU4523AF 1500V 11A 45W BU4523AX 1500V 11A 45W

BU4525AF 1500V 12A 45W BU4525DF 1500V 12A 45W BU4530AL 1500V 16A 125W BU4530AW 1500V 16A 125W BUH1015 1500V 14A 70W BUH315D 1500V 6A 44W BUT11A 1000V 5A 100W C3039 500V 7A 50W C3886A 1500V 8A 50W C3996 1500V 15A 180W C3997 1500V 20A 250W C3998 1500V 25A 250W c4242 450V 7A 40W C4288A 1600V 12A 200W C4532 1700V 10A 200W C4634 1500V 0.01A 2W C4686A 1500V 50mA 10W C4762 1500V 7A 50W C4769 1500V 7A 60W C4891 1500V 15A 75W C4897 1500V 20A 150W C4924 1500V 10A 70W C5027 1100V 50W C5039 800V 5A 30W C5045 1600V 15A 75W C5047 1600V 25A 25W C5048 1500V 12A 50W C5086 1500V 10A 50W C5088 1500V 8A 60W C5129 1500V 10A 50W C5142 1500V 20A 200W C5144 1700V 20A 200W

三极管的主要参数

三极管的主要参数 三极管的参数反映了三极管各种性能的指标,是分析三极管电路和选用三极管的依据。 一、电流放大系数 1.共发射极电流放大系数 (1)共发射极直流电流放大系数,它表示三极管在共射极连接时,某工作点处直流电流IC与IB的比值,当忽略ICBO时 (2)共发射极交流电流放大系数β它表示三极管共射极连接、且UCE恒定时,集电极电流变化量ΔIC与基极电流变化量ΔI B之比,即 管子的β值大小时,放大作用差;β值太大时,工作性能不稳定。因此,一般选用β为30~80的管子。 2.共基极电流放大系数 共基极直流电流放大系数它表示三极管在共基极连接时,某工作点处IC 与IE的比值。在忽略ICBO的情况下 (2)共基极交流电流放大系数α,它表示三极管作共基极连接时,在UCB 恒定的情况下,IC和IE的变化量之比,即: 通常在ICBO很小时,与β,与α相差很小,因此,实际使用中经常混用而不加区别。 二、极间反向电流 1.集-基反向饱和电流ICBO ICBO是指发射极开路,在集电极与基极之间加上一定的反向电压时,所对应的反向电流。它是少子的漂移电流。在一定温度下,ICBO 是一个常量。随着温度的升高ICBO将增大,它是三极管工作不稳定的主要因素。在相同环境温度下,硅管的ICBO比锗管的ICBO小得多。

2.穿透电流ICEO ICEO是指基极开路,集电极与发射极之间加一定反向电压时的集电极电流。ICEO与ICBO的关系为: ICEO = ICBO+ICBO=(1+)ICBO GS0125 该电流好象从集电极直通发射极一样,故称为穿透电流。ICEO和ICBO一样,也是衡量三极管热稳定性的重要参数。 三、频率参数 频率参数是反映三极管电流放大能力与工作频率关系的参数,表征三极管的频率适用范围。 1.共射极截止频率fβ 三极管的β值是频率的函数,中频段β=βo几乎与频率无关,但是随着频率的增高,β值下降。当β值下降到中频段βO1/ 倍时,所对应的频率,称为共射极截止频率,用fβ表示。 2.特征频率fT 当三极管的β值下降到β=1时所对应的频率,称为特征频率。在fβ~fT的范围内,β值与f几乎成线性关系,f越高,β越小,当工作频率f>fT,时,三极管便失去了放大能力。 四、极限参数 1.最大允许集电极耗散功率PCM PCM 是指三极管集电结受热而引起晶体管参数的变化不超过所规定的允许值时,集电极耗散的最大功率。当实际功耗Pc大于PCM时,不仅使管子的参数发生变化,甚至还会烧坏管子。PCM可由下式计算: PCM =ICUCE GS0126 当已知管子的PCM 时,利用上式可以在输出特性曲线上画出PCM 曲线。 2.最大允许集电极电流ICM 当IC很大时,β值逐渐下降。一般规定在β值下降到额定值的2/3(或1/2)时所对应的集电极电流为ICM当IC>ICM时,β值已减小到不实用的程度,且有烧毁管子的可能。

二极管三极管的开关特性(精)

第一节二极管的开关特性 一般而言,开关器件具有两种工作状态:第一种状态被称为接通 ,此时器件的阻抗很小,相当于短路;第二种状态是断开,此时器件的阻抗很大,相当于开路。 在数字系统中, 晶体管基本上工作于开关状态。对开关特性的研究, 就是具体分析晶体管在导通和截止之间的转换问题。晶体管的开关速度可以很快, 可达每秒百万次数量级, 即开关转换在微秒甚至纳秒级的时间内完成。二极管的开关特性表现在正向导通与反向截止这样两种不同状态之间的转换过程。二极管从反向截止到正向导通与从正向导通到反向截止相比所需的时间很短, 一般可以忽略不计, 因此下面着重讨论二极管从正向导通到反向截止的转换过程。 一、二极管从正向导通到截止有一个反向恢复过程 在上图所示的硅二极管电路中加入一个如下图所示的输入电压。在0―t 1时间内, 输入为 +VF , 二极管导通, 电路中有电流流通。 设 V D 为二极管正向压降(硅管为 0.7V 左右,当 V F 远大于 V D 时, V D 可略去不计,则

在 t 1时, V 1突然从 +VF 变为 -V R 。在理想情况下 ,二极管将立刻转为截止,电路中应只有很小的反向电流。但实际情况是, 二极管并不立刻截止, 而是先由正向的 I F 变到一个很大的反向电流 I R =VR /R L , 这个电流维持一段时间 t S 后才开始逐渐下降,再经过 t t 后 ,下降到一个很小的数值 0.1I R ,这时二极管才进人反向截止状态,如下图所示。 通常把二极管从正向导通转为反向截止所经过的转换过程称为反向恢复过程。其中 t S 称为存储时间, t t 称为渡越时间, t re =ts +tt 称为反向恢复时间。 由于反向恢复时间的存在,使二极管的开关速度受到限制。 二、产生反向恢复过程的原因——电荷存储效应 产生上述现象的原因是由于二极管外加正向电压 V F 时,载流子不断扩散而存储的结果。当外加正向电压时 P区空穴向N区扩散,N区电子向P区扩散,这样,不仅使势垒区(耗尽区变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴 ,它们都是非平衡少数载流于,如下图所示。

常用贴片三极管主要参数及丝印

常用贴片三极管主要参数(SOT-23) 序号型号 TYPE 极性 POLA RITY P D (mW) I C (mA) BV CBO (V) BV CEO (V) h FE V CE(sat)I C/I B f TYPE (MHZ) 打标 Marking Min/Max I C mA V CE Volts Max Volts mA 1S9012PNP3005004025120/3505010.6500501502T1 2S9013NPN3005004025120/3505010.650050150J3 3S9014NPN2001005045200/1000150.31005150J6 4S9015PNP2001005045200/1000150.310010150M6 5S9018NPN20050251870/190 1.O50.51001600J8 6S8050NPN3005004025120/3505010.650050150J3Y 7S8550PNP3005004025120/3505010.6500501502TY 8SS8050NPN1001500402585/30010010.58008080Y1 9SS8550PNP1001500402585/30010010.58008080Y2 10C1815NPN20015060500130/400260.251001080HF 11A1015PNP2001505050130/400260.31001080BA 12C945NPN2001506050130/400160.310010150CR 13A733PNP2001506050120/475160.31001050CS 142SC1623NPN200100605090/600160.310010250L4、L5、L6、L7 15M28S NPN20010004020300/1000010010.556002010028S 16M8050NPN2001000402580/30010010.580080150Y11 17M8550PNP2001000402585/30010010.580080150Y21 18MMBT5551NPN30060018016080/25010 5.O0.550 5.O80G1 19MMBT5401PNP300600160150100/20010 5.O0.5500.51002L 20MMBTA42NPN300300300300100/20010100.2202501D 21MMBTA92NPN300300300300100/20010100.2202502D 222SC2412NPN2001506050120/560160.4505180BQ、BR、BS 232SC3356NPN300100201250/30020100.51057000R23、R24、R25 242SC3837NPN30050301856/39010100.52041500CN、CP、CQ、CR 252SC3838NPN30050201156/3905100.51053200AN、AP、AQ、AR 26BC807-16PNP2255005045100/25010010.7500502005A 27BC807-25PNP2255005045160/40010010.7500502005B 28BC807-40PNP2255005045250/60010010.7500502005C 29BC817-16NPN2255005045100/25010010.7500502006A 30BC817-25NPN2255005045160/40010010.7500502006B 31BC817-40NPN2255005045250/60010010.7500502006C 32BC846A NPN2251008065110/220250.610051001A 33BC846B NPN2251008065200/450250.610051001B 34BC847A NPN2251005045110/220250.610051001E 35BC847B NPN2251005045200/450250.610051001F 36BC847C NPN2251005045420/800250.610051001G 37BC848A NPN2251003030110/220250.610051001J 38BC848B NPN2251003030200/450250.610051001K 39BC848C NPN2251003030450/800250.610051001L 40BC858A PNP2251008065125/250250.6510051003A 41BC858B PNP2251008065220/475250.6510051003B 42BC857A PNP2251005045125/250250.6510051003E 43BC857B PNP2251005045220/475250.6510051003F 44BC875C PNP2251005045420/800250.6510051003G

相关主题