搜档网
当前位置:搜档网 › 2015-2016学年高中数学 2.3第2课时 等差数列前n项和公式的应用练习 新人教A版必修5

2015-2016学年高中数学 2.3第2课时 等差数列前n项和公式的应用练习 新人教A版必修5

2015-2016学年高中数学 2.3第2课时 等差数列前n项和公式的应用练习 新人教A版必修5
2015-2016学年高中数学 2.3第2课时 等差数列前n项和公式的应用练习 新人教A版必修5

2015-2016学年高中数学 2.3第2课时 等差数列前n 项和公式的应

用练习 新人A 教版必修5

一、选择题

1.(2015·唐山市二模)在等差数列{a n }中,a 7=8,前7项和S 7=42,则其公差是( ) A .-13

B .-23

C .13

D .23

[答案] D

[解析] ∵S 7=7a 4=42,∴a 4=6,∴d =

a 7-a 47-4

=2

3

,故选D . 2.(2015·河南六市联考、江西质监)在等差数列{a n }中,首项a 1=0,公差d ≠0,若

a k =a 1+a 2+a 3+…+a 7,则k =( )

A .22

B .23

C .24

D .25

[答案] A

[解析] 由已知得:a 1+(k -1)d =7a 1+7×6

2d ,即k -1=21,∴k =22.

3.

13×5+15×7+17×9+…+113×15

=( ) A .415 B .2

15 C .1415 D .715 [答案] B

[解析] 原式=12(13-15)+12(15-17)+…+12(113-115)=12(13-115)=2

15,故选B .

4.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,S n 是等差数列{a n }的前n 项和,则使得S n 达到最大值的n 是( )

A .21

B .20

C .19

D .18

[答案] B

[解析] 由题设求得:a 3=35,a 4=33,∴d =-2,a 1=39,∴a n =41-2n ,a 20=1,a 21

=-1,所以当n =20时S n 最大.故选B .

5.设等差数列{a n }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为( )

A .5

B .6

C .7

D .8

[答案] B

[解析] 解法一:∵a 1>0,S 4=S 8,∴d <0,且a 1=112d ,∴a n =-112d +(n -1)d =nd -

13

2

d ,由???

??

a n ≥0

a n +1<0

得?????

nd -13

2

d ≥0

n +1 d -13

2

d <0,∴512

2

,∴n =6,

解法二:∵a 1>0,S 4=S 8, ∴d <0且a 5+a 6+a 7+a 8=0, ∴a 6+a 7=0,∴a 6>0,a 7<0, ∴前六项之和S 6取最大值.

6.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1

a n a n +1

}的前100项和为

( )

A .100

101 B .99101 C .99100 D .101100

[答案] A

[解析] 本小题主要考查等差数列的通项公式和前n 项和公式的运用,以及裂项求和的综合应用.

∵a 5=5,S 5=15 ∴

5 a 1+5

2

=15,∴a 1=1. ∴d =a 5-a 1

5-1=1,∴a n =n .

1

a n a n +1

1n n +1 =1n -1

n +1.

则数列{

1

a n a n +1}的前100项的和为:T 100=(1-12)+(12-13)+…+(1100-1101)=1-1

101

100101

. 故选A .

二、填空题

7.(2014·北京理,12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.

[答案] 8

[解析] 本题考查了等差数列的性质与前n 项和.

由等差数列的性质,a 7+a 8+a 9=3a 8,a 7+a 10=a 8+a 9,于是有a 8>0,a 8+a 9<0,故a 9<0,故S 8>S 7,S 90公差d <0,{a n }是一个递减的等差数列,前n 项和有最大值,a 1<0,公差d >0,{a n }是一个递增的等差数列,前n 项和有最小值.

8.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *

.若a 3=16,S 20=20,则S 10的值为________.

[答案] 110

[解析] 设等差数列{a n }的首项为a 1,公差为d .

a 3=a 1+2d =16,S 20=20a 1+

20×19

2

d =20, ∴?

??

??

a 1+2d =16,2a 1+19d =2,解得d =-2,a 1=20.

∴S 10=10a 1+10×9

2d =200-90=110.

三、解答题

9.在等差数列{a n }中,a 10=18,前5项的和S 5=-15, (1)求数列{a n }的通项公式;

(2)求数列{a n }的前n 项和的最小值,并指出何时取得最小值. [解析] (1)设{a n }的首项,公差分别为a 1,d .

则?

????

a 1+9d =18,5a 1+5×4

2×d =-15,

解得a 1=-9,d =3, ∴a n =3n -12. (2)S n =

n a 1+a n 2

=1

2

(3n 2

-21n )

=3

2

(n-

7

2

)2-

147

8

∴当n=3或4时,前n项和取得最小值为-18.

[点评] 由于(2)问不仅求何时取到最小值,还问最小值是多少,故应当用S n讨论以减少运算量.

10.已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.

(1)求a n及S n;

(2)令b n=1

a2n-1

(n∈N*),求数列{b n}的前n项和T n. [解析](1)设等差数列{a n}的首项为a,公差为d,由于a3=7,a5+a7=26,

∴a1+2d=7,2a1+10d=26,

解得a1=3,d=2.

∴a n=2n+1,S n=n(n+2).

(2)∵a n=2n+1,

∴a2n-1=4n(n+1),

∴b n=

1

4n n+1

1

4

(

1

n

1

n+1

).

故T n=b1+b2+…+b n

=1

4

(1-

1

2

1

2

1

3

+…+

1

n

1

n+1

)

=1

4

(1-

1

n+1

)=

n

4 n+1

∴数列{b n}的前n项和T n=

n

4 n+1

.

一、选择题

11.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n等于( )

A.12 B.16

C.9 D.16或9

[答案] C

[解析]a n=120+5(n-1)=5n+115,

由a n<180得n<13且n∈N*,

由n边形内角和定理得,

(n -2)×180=n ×120+n n -1

2

×5.

解得n =16或n =9 ∵n <13,∴n =9.

12.已知数列{a n }为等差数列,若a 11

a 10

<-1,且它们的前n 项和S n 有最大值,则使得S n >0的最大值n 为( )

A .11

B .19

C .20

D .21

[答案] B

[解析] ∵S n 有最大值,∴a 1>0,d <0, ∵

a 11

a 10

<-1, ∴a 11<0,a 10>0,∴a 10+a 11<0, ∴S 20=20 a 1+a 20

2=10(a 10+a 11)<0,

又S 19=19 a 1+a 19

2

=19a 10>0,故选B .

13.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值为4,则抽取的项是( )

A .a 8

B .a 9

C .a 10

D .a 11

[答案] D

[解析] S 11=5×11=55=11a 1+11×10

2d =55d -55,

∴d =2,S 11-x =4×10=40,∴x =15, 又a 1=-5,由a k =-5+2(k -1)=15得k =11.

14.设{a n }是等差数列,S n 为其前n 项和,且S 5S 8,则下列结论错误的是( ) A .d <0 B .a 7=0

C .S 9>S 5

D .S 6与S 7均为S n 的最大值

[答案] C

[解析] 由S 50,由S 6=S 7知a 7=0,

由S 7>S 8知a 8<0,C 选项S 9>S 5即a 6+a 7+a 8+a 9>0,∴a 7+a 8>0,显然错误.

15.设{a n }是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n 项和最大时,n 等于( )

A .4

B .5

C .6

D .7

[答案] A

[解析] ∵{a n }是等差数列,且a 1+a 2+a 3=15,∴a 2=5, 又∵a 1·a 2·a 3=105, ∴a 1a 3=21,由?????

a 1a 3=21

a 1+a 3=10

及{a n }递减可求得a 1=7,d =-2,∴a n =9-2n ,由a n ≥0

得n ≤4,∴选A .

二、填空题

16.等差数列{a n }中,d <0,若|a 3|=|a 9|,则数列{a n }的前n 项和取最大值时,n 的值为______________.

[答案] 5或6 [解析]

∵a 1+a 11=a 3+a 9=0, ∴S 11=11 a 1+a 11

2

=0,

根据二次函数图象的性质,由于n ∈N *

,所以当n =5或n =6时S n 取最大值. 三、解答题

17.设等差数列的前n 项和为S n .已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;

(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由. [解析] (1)依题意?????

S 12

=12a 1

+12×11

2

d >0S 13

=13a 1

+13×12

2

d <0,

即????

?

2a 1+11d >0, ①a 1+6d <0. ②

由a 3=12,得a 1+2d =12.③

将③分别代入②①,得?

??

??

24+7d >03+d <0,

解得-24

7

(2)由d <0可知{a n }是递减数列,因此若在1≤n ≤12中,使a n >0且a n +1<0,则S n 最大. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0,可得

a 6>0,a 7<0,

故在S 1,S 2,…,S 12中S 6的值最大.

18.一等差数列共有偶数项,且奇数项之和与偶数项之和分别为24和30,最后一项与第一项之差为10.5,求此数列的首项、公差以及项数.

[解析] 解法1:设此数列的首项a 1,公差d ,项数2k (k ∈N *

).

根据题意,得???

??

S

=24

S

偶=30

a

2k

-a 1=

21

2

,即?

????

S 偶-S 奇=6,a 2k -a 1=21

2,

∴?

???

?

kd =6, 2k -1 d =21

2,解得????

?

k =4,d =3

2

.

由S 奇=k 2(a 1+a 2k -1)=24,可得a 1=3

2

.

∴此数列的首项为32,公差为3

2

,项数为8.

解法二:设此数列的首项为a 1,公差为d ,项数为2k (k ∈N *

),

根据题意,得???

??

S 奇=24,S

=30,

a

2k -a 1=21

2

即?????

1

2

k a 1+a 2k -1 =24,1

2

k a 2

+a 2k

=30,

2k -1 d =212

,∴???

??

k [a 1+ k -1 d ]=24,k a 1

+kd =30, 2k -1 d =21

2

解得?????

a 1=3

2

d =3

2,k =4.

∴此数列的首项为32,公差为3

2

,项数为8.

[点评] 注意整体思想的运用.

在等差数列综合问题求解过程中,经常需要设出某些量,但实际解答过程中,并不需要求出这些量,而是利用等差数列及其和的性质,整体代换消去,向已知量转化,以简化解题过程.解法1运用整体思想解答比解法2显得简捷.

精练习下题:(1)等差数列{a n }中,a 2+a 7+a 12=24,求S 13.

(2)已知等差数列{a n }的前n 项和为377,项数n 为奇数,且前n 项中,奇数项和与偶数项和之比为7 6,求中间项.

分析:(1)根据等差数列前n 项和公式,结合等差数列的性质,运用整体思想解决.(2)利用等差数列前n 项和性质中关于奇数项和与偶数项和的关系求解.

解:(1)因为a 2+a 12=a 1+a 13=2a 7,a 2+a 7+a 12=24, 所以a 7=8.

所以S 13=13 a 1+a 13

2=13×8=104.

(2)因为n 为奇数,所以

S 奇S 偶=n +1n -1=76

,解得n =13. 所以S 13=13a 7=377.所以a 7=29. 故所求的中间项为29.

等差数列的前n项和

等差数列的前n项和 1.理解并掌握等差数列的前n项和公式及其推导过程,体会等差数列的前n项和公式与二次函数的关系.(重点) 2.熟练掌握等差数列的五个基本量a1,d,n,a n,S n之间的联系,能够由其中的任意三个求出其余的两个.(重点) [基础·初探] 教材整理等差数列的前n项和 1.等差数列的前n项和公式 已知量首项、末项与项数首项、公差与项数 求和公式S n=n a1+a n 2S n=na1+ n n-1 2d 2.等差数列前n项和公式的函数特点 S n=na1+n n-1 2d= d 2n2+? ? ? ? ? a1- d 2n. d≠0时,S n是关于n的二次函数,且无常数项. 判断(正确的打“√”,错误的打“×”) (1)公差为零的数列不能应用等差数列的前n项和公式.() (2)数列{n2}可以用等差数列的前n项和公式求其前n项和S n.() (3)若数列{a n}的前n项和为S n=an2+bn,则{a n}是等差数列.() 【解析】(1)任何等差数列都能应用等差数列的前n项和公式. (2)数列{n2}不是等差数列,故不能用等差数列的前n项和公式. (3)当公差不为0时,等差数列的前n项和是关于n的二次函数(常数项为0).【答案】(1)×(2)×(3)√

[小组合作型] 与S n 有关的基本量的计算 (1)已知等差数列{a n }中,a 1=32,d =-1 2,S n =-15,求n 和a n ; (2)已知等差数列{a n }中,S 5=24,求a 2+a 4; (3)数列{a n }是等差数列,a 1=1,a n =-512,S n =-1 022,求公差d ; (4)已知等差数列{a n }中,a 2+a 5=19,S 5=40,求a 10. 【精彩点拨】 运用方程的思想,根据已知条件建立方程或方程组求解,另外解题时要注意整体代换. 【尝试解答】 (1)S n =n ·32+n n -1 2·? ?? ?? -12=-15,整理得n 2-7n -60=0, 解得n =12或n =-5(舍去), 所以a 12=32+(12-1)×? ???? -12=-4. (2)设等差数列的首项为a 1,公差为d , 则S 5=5a 1+ 5×5-1 2 d =24, 即5a 1+10d =24,所以a 1+2d =24 5, 所以a 2+a 4=2(a 1+2d )=2×245=48 5. (3)因为a n =a 1+(n -1)d ,S n =na 1+ n n -1 2 d , 又a 1=1,a n =-512,S n =-1 022, 所以????? 1+n -1d =-512, ①n +1 2n n -1d =-1 022, ② 把(n -1)d =-513代入②得

等差数列前n项求和

2.3 等差数列的前n 项和 一、教学目标 1、理解等差数列的概念;探索并掌握等差数列的通项公式、前n 项和。 2、体会等差数列与二次函数的关系。 二、基础知识 1、数列前n 项和公式: 一般地,称n a a a a ++++...321为数列}{n a 的前n 项的和,用n S 表示,即n n a a a a S ++++= (321) 2、数列通项n a 与前n 项和n S 的关系 当2≥n 时,有n n a a a a S ++++=...321;13211...--++++=n n a a a a S ,所以n a =____________;当n=1时,11s a =。总上可得n a =____________ 3、等差数列}{n a 的前n 项和的公式=n S ________________=__________________ 4、若数列{}n a 的前n 项和公式为Bn An S n +=2(B A ,为常数),则数列{}n a 为 。 5、在等差数列}{n a 中,n S ;n S 2-n S ;n S 3-n S 2;。。。 仍成等差数列,公差为___________ 6、在等差数列}{n a 中:若项数为偶数2n 则=n S ________________;奇偶-s s =________________;=偶奇 s s ________________。 若项数为奇数2n-1则=-1n S ________________;偶奇-s s =________________;=偶奇 s s ________________。 7、若数列}{n a 与}{n b 均为等差数列,且前n 项和分别是n S 和n T ,则 =m m b a _____________。 三、典例分析 例1、已知数列{}n a 的前n 项和22+=n S n ,求此数列的通项公式。 解析:32111=+==s a ① )2(12]2)1[(2221≥-=+--+=-=-n n n n s s a n n n ② 在②中,当n=1时,1112=-?与①中的1a 不相等

第2讲等差数列及其前n项和

第2讲 等差数列及其前n 项和 一、选择题 1.(2016·武汉调研)已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d 等于( ) A.-1 B.-2 C.-3 D.-4 解析 法一 由题意可得?????a 1+(a 1+6d )=-8,a 1+d =2, 解得a 1=5,d =-3. 法二 a 1+a 7=2a 4=-8,∴a 4=-4, ∴a 4-a 2=-4-2=2d ,∴d =-3. 答案 C 2.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( ) A.10 B.20 C.30 D.40 解析 设项数为2n ,则由S 偶-S 奇=nd 得,25-15=2n ,解得n =5,故这个数列的项数为10. 答案 A 3.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( ) A.a 1+a 101>0 B.a 2+a 100<0 C.a 3+a 99=0 D.a 51=51 解析 由题意,得a 1+a 2+a 3+…+a 101=a 1+a 1012×101=0.所以a 1+a 101=a 2 +a 100=a 3+a 99=0. 答案 C 4.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A.0 B.37 C.100 D.-37

解析 设{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2, ∴{a n +b n }为等差数列,又a 1+b 1=a 2+b 2=100, ∴{a n +b n }为常数列,∴a 37+b 37=100. 答案 C 5.(2017·泰安模拟)设等差数列{a n }的前n 项和为S n ,若a 2=-11,a 5+a 9=-2,则当S n 取最小值时,n =( ) A.9 B.8 C.7 D.6 解析 设等差数列{a n }的首项为a 1,公差为d ,由?????a 2=-11,a 5+a 9=-2, 得?????a 1+d =-11,2a 1+12d =-2,解得?????a 1=-13,d =2. ∴a n =-15+2n . 由a n =-15+2n ≤0,解得n ≤152.又n 为正整数, ∴当S n 取最小值时,n =7.故选C. 答案 C 二、填空题 6.(2016·江苏卷)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 解析 设数列{a n }的公差为d ,由题设得 ???a 1+(a 1+d )2=-3,5a 1+5×42d =10, 解得?????a 1=-4,d =3, 因此a 9=a 1+8d =20. 答案 20 7.正项数列{a n }满足a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),则a 7= ________.

等差数列前n项和公式及性质

2.2 等差数列的前n项和 第一课时等差数列前n项和公式及性质 【选题明细表】 基础达标 1.在等差数列{a n}中,已知a1=2,a2+a3=13,则a4+a5+a6等于( B ) (A)40 (B)42 (C)43 (D)45 解析:∵a1=2,a2+a3=13, ∴3d=13-4=9,∴d=3, a4+a5+a6=S6-S3=6×2+×6×5×3-(3×2+×3×2×3)=42.故选B. 2.等差数列{a n}共有2n+1项,其中奇数项之和为319,偶数项之和为290,则其中间项为( B ) (A)28 (B)29 (C)30 (D)31

解析:∵S奇=a1+a3+…+a2n+1=(n+1)a n+1, S偶=a2+a4+…+a2n=na n+1, ∴S奇-S偶=a n+1=29.故选B. 3.(2013南阳高二阶段性考试)已知等差数列{a n}的前n项和为S n,若2a8=6+a11,则S9等于( D ) (A)27 (B)36 (C)45 (D)54 解析:∵2a8=a5+a11=6+a11,∴a5=6, ∴S9===9a5=54.故选D. 4.(2012郑州四十七中月考)设等差数列{a n}的前n项和为S n,若 S3=9,S6=36,则a7+a8+a9等于( B ) (A)63 (B)45 (C)36 (D)27 解析:由S3,S6-S3,S9-S6成等差数列, ∴2(S6-S3)=S3+(S9-S6),∴a7+a8+a9=S9-S6=2(S6-S3)-S3=2×(36-9)-9=45.故选B. 5.(2013广州市铁一中第一学期期中测试)在各项均不为零的等差数列中,若a n+1-+a n-1=0(n≥2),则S2n-1-4n等于( A ) (A)-2 (B)0 (C)1 (D)2 解析:由已知得2a n-=0, 又a n≠0,∴a n=2, ∴S2n-1===2(2n-1), ∴S2n-1-4n=-2.故选A.

等差数列前n项和1-导学案(公开课)

§2.3等差数列的前n 项和导学案(第一课时) 知识与技能:掌握等差数列前n 项和公式及其获取思路;会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题. 过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平. 情感态度与价值观:通过公式的推导过程,展现数学中的对称美. 重点:等差数列前n 项和公式及其应用. 难点:等差数列前n 项和公式的推导思路的获得. 复习回顾 1.数列{}n a 的前n 项和的概念: 一般地,称 为数列{}n a 的前n 项的和, 用n S 表示,即=n S 2.n S 与n a 的关系:(1)(2) n n a n =?=?≥? 3.等差数列}{n a 中,若m+n=p+q,(m,n,p,q 为常数)则有: ; 一般地,1n a a += = ...... 问题一:一个堆放铅笔的V 形架的最下面一层放1支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支。 这个V 形架上共放着多少支铅笔? 思考: (1)问题转化求什么?能用最短时间算出来吗? (2) (3)如果换成1+2+3+…+200=?我们能否快速求和?

问题二:?n 321S n =+?+++=(小组讨论,总结方法) 高斯算法: 倒序相加法: 探究:能把以上问题的解法推广到求一般等差数列的前n 项和吗? 问题三:已知等差数列}{n a 中,首项为1a ,公差为d ,第n 项为n a ,如何计算前n 项和n S ? 新知:等差数列前n 项和公式: 公式一: 公式二: 问题四 :比较以上两个公式的结构特征,类比于问题一,你能给出它们的几何解释吗? 公式一: 公式二: 问题五:两个求和公式有何异同点?能够解决什么问题?

等差数列前n项和公式》教学设计

《等差数列的前n项和公式》教学设计 职业技术学校刘老师 大纲分析: 高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列前n项和公式的推导及其简单应用。 教材分析: 数列在生产实际中的应用范围很广,而且是培养学生发现、认识、分析、综合等能力的重要题材,同时也是学生进一步学习高等数学的必备的基础知识。 学生分析: 数列在整个高中阶段对于学生来说是难点,因为学生对于这部分仅有初中学的简单函数作为基础,所以新课的引入非常重要。 教学目标: 知识与技能目标: 掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。 过程与方法目标: 培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。 情感、态度与价值观目标: 体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。 教学重点与难点: 等差数列前n项和公式是重点。 获得等差数列前n项和公式推导的思路是难点。 教学用具:ppt 整节课分为三个阶段: 问题呈现阶段 探究发现阶段 公式应用阶段 问题呈现1: 首先讲述世界七大奇迹之一泰姬陵的传说(泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,陵寝以宝石镶饰,图案之细致令人叫绝,成为世界七大奇迹之一。)传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,你知道 这个图案一共花了多少宝石吗?也就是计算1+2+3+ (100) 紧接着讲述高斯算法:高斯,德国著名数学家,被誉为“数学王子”。 200多年前,高斯的算术教师提出了下面的问题:1+2+3+…+100=? 据说,当其他同学忙于把100个数逐项相加时, 10岁的高斯却用下面的方法迅速算出了正确答案: (1+100)+(2+99)+……+(50+51)=101×50=5050 【设计说明】了解历史,激发兴趣,提出问题,紧扣核心。 问题呈现2: 图案中,第1层到第21层一共有多少颗宝石?

高三数学《等差数列及其前n项和》知识点总结

高三数学《等差数列及其前n项和》知 识点总结 www.5y kj.co m 一、等差数列的有关概念 .定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为an+1-an=d. 2.等差中项:数列a,A,b成等差数列的充要条件是A =/2,其中A叫做a,b的等差中项. 二、等差数列的有关公式 .通项公式:an=a1+d. 2.前n项和公式:Sn=na1+n/2d+d=n/2. 三、等差数列的性质 .若m,n,p,q∈N*,且m+n=p+q,{an}为等差数列,则am+an=ap+aq. 2.在等差数列{an}中,ak,a2k,a3k,a4k,…仍为等差数列,公差为kd. 3.若{an}为等差数列,则Sn,S2n-Sn,S3n-S2n,…仍为等差数列,公差为n2d. 4.等差数列的增减性:d>0时为递增数列,且当

a1<0时前n项和Sn有最小值.d<0时为递减数列,且当a1>0时前n项和Sn有最大值. 5.等差数列{an}的首项是a1,公差为d.若其前n项之和可以写成Sn=An2+Bn,则A=d/2,B=a1-d/2,当d≠0时它表示二次函数,数列{an}的前n项和Sn=An2+Bn是{an}成等差数列的充要条件. 四、解题方法 .与前n项和有关的三类问题 知三求二:已知a1、d、n、an、Sn中的任意三个,即可求得其余两个,这体现了方程思想. Sn=d/2*n2+n=An2+Bn⇒d=2A. 利用二次函数的图象确定Sn的最值时,最高点的纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.2.设元与解题的技巧 已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…; 若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.

等差数列前n项和性质

精心整理 2.3.2等差数列的前n 项和的性质【学习目标】 1.熟练掌握等差数列前n 项和公式,等差数列前n 项和的性质以及其与二次函数的关系; 2. 在学习等差数列前n 项和性质的同时感受数形结合的基本思想,会由等差数列前n 项和公式求其通项公式. 【自学园地】 1. 等差数列的前n 项和的性质: 已知数列{a n }是等差数列,S n 是其前n 项和. (1)若m ,n ,p ,q ,k 是正整数,且m +n =p +q =2k ,则a m +a n =a p +a q =2a k . (2)a m (3)(4(5(6){pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2. 2.{}n a 为等差数列?其前n 项和2n S An Bn =+. 3.若数列{}n a 为等差数列{ }n S n ?成等差. 4.等差数列的单调性的应用: (1)当10,0a d ><时,n S 有最大值,n 是不等式100 n n a a +≥??

(2)当10,0a d <>时,n S 有最大值,n 是不等式1 00n n a a +≤??>?的正整数解时取得. (II )当数列中有某项值为0时,n 应有两解.110m m m S S a ++=?=. 5.知三求二问题:等差数列数列前n 项和公式中各含有4个元素:1,,,n n S n a a 与1,,,n S n a d ,已知其中3个量,即可求出另外1个;综合通项公式及前n 项和公式,已知其中3个量即可求出另外2个量. 【典例精析】 1.(1(2(3(4,则项数n (5d . (62.3.4(1(2)问12,,S 中哪个值最大?5中,a 1=-60,6.7.已知正项数列{}n a 的前n 项和为n S ,且(1)n a n n = +,求n S 8.已知正项数列{}n a 的前n 项和为n S ,且1(2) n a n n = +,求n S 【巩固练习】 1.一个有11项的的等差数列,奇数项之和是30,则它的中间项是() A.8 B.7 C.6 D.5 2.设n S 是等差数列{}n a 的前n 项和,若3613S S =,则612 S S =()

等差数列的前n项和(1)

等差数列的前n 项和(1) 学习目标1.理解数列前n 项和的概念;2.会推导等差数列前n 项和的公式; 3.会应用等差数列前n 项和公式解题。 学习重点和难点 1.重点:等差数列通项公式的推导及应用; 2.难点:等差数列公式的推导。 学习过程:一.自学、思考 (一)问题导引 等差数列前n 项和n S =1a +2a +…+1-n a +n a . n S =n a +1-n a +…+2a +1a . 由倒序相加法可得 2n S = 即n S = 如果带入等差数列的通项公式d n a a n )1(1-+=,n S 也可以用首项1a 与公差d 表示,即 n S =_ __还可以写成n S =__ _ (二)知识的应用 例1.已知等差数列{}n a 中184,18a a =-=-,求8S ; 练习:根据下列条件,求相应的等差数列{}n a 的有关未知数: (1)120a =,54n a =,999n S =,求d 及n ;(2)1 3 d =,37n =,629n S =,求1a 及n a ; (3)156a =,1 6 d =-,5n S =-,求n 及n a ;(4)2d =,15n =,10n a =-,求1a 及n S . 例2.已知一个等差数列的前10项的和是310,前20项的和是1220,由这些条件能确定这个等差数列的前n 项和的公式吗? 练习1.已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; 练习2.公差不为零的等差数列{}n a 的前n 项和为n S .若734 a a ?=2a , 832S =,求10S . 练习3.等差数列{n a }的前n 项和记为S n .已知.50,302010==a a (Ⅰ)求通项n a ; (Ⅱ)若S n =242,求n.

求等差数列前n项和的最值问题的两种常用解法

求等差数列前n 项和的最值问题的两种常用解法 【必备方法】 1.函数法:利用等差数列前n 项和的函数表达式bn an S n +=2, 通过配方或借助图象求二次函数最值的方法求解,一定注意n 是正整数。 2.邻项变号法: ①0,01<>d a 时,满足???≤≥+0 01n n a a 的项数m 使得n S 取得最大值为m S ; ②当0,01>a a ,故n=7 时,n S 最大. 方法二:由113S S =可得d a d a 55113311+=+,把131=a 代入得2-=d ,故n n n n n S n 14)1(132+-=--=,根据二次函数性质,当n=7时,n S 最大. 方法三:根据131=a ,113S S =,知这个数列的公差不等于零.由于113S S =说明这个数列的和先是单调递增的然后又单调递减.根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性, 当113S S =时,只有72 113=+= n 时,n S 取得最大值. 答案:C 练习: 1.已知在等差数列}{n a 中,311=a ,n S 是它的前n 项的和,2210S S =. (1)求n S ;

完整版等差数列前n项和教案

等差数列的前n项和(第一课时)教学设计 【教学目标】 一、知识与技能 1 ?掌握等差数列前n项和公式; 2?体会等差数列前n项和公式的推导过程; 3?会简单运用等差数列前n项和公式。 二、过程与方法 1?通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法; 2.通过公式的运用体会方程的思想。 三、情感态度与价值观 结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。 【教学重点】 等差数列前n项和公式的推导和应用。 【教学难点】 在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。 【重点、难点解决策略】 本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。 【教学用具】 多媒体软件,电脑 【教学过程】 一、明确数列前n项和的定义,确定本节课中心任务:

前n 和呢,于数列{a n } :ai, a 2, as, a n ,…我 称ai+且2+23+…+a n 数列{a n } 的前n 和,用Sn 表不,Sn=ai+a2+a3+…+a 如 , Si =ax S 7 =ai+a 24-a 3+ +a 7,下面我们来共同探究如何求等差数列的前 n 项 和。 二、问题牵引,探究发现 问题1:(播放媒体资料情景引入)古算术《张邱建算经》中卷有一道题:今有与人钱,初一人 与一钱,次一人与二钱,次一人与三钱,以次与之,转多一钱,共有百人,问共与几钱? 即:Sioo=l+2+3+ ? +100=? 著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同 学们思考高斯方法的特点,适合类型和方法本质。 同学们讨论后总结发言:等差数列项数为偶数相加时首尾配对,变不同数的加法运算为 相同数的乘法运算大大提高效率。高斯的方法很妙,如果等差数列的项数为奇数时怎么办 呢? — ...... .... 探索与发现1:假如让你计算从第一人到第21人的钱数,高斯 的首尾配对法行吗? 即计算S2F1+2+3+?+21的值,在这个过程中让学生发现当 项数为奇数时,首尾配对出现了问题,通过动画演示引导帮助 学生思考解决问题的办法,为引出倒序相加法做铺垫。 特点: 首项与末项的和: 第2项与倒数第2项的和: 第3项与倒数第3项的和: 1+ 100 = 101, 2 + 99 =101, 3+98 =101, 50+ 51 = 101, 101 X 50 = 5050。 5050 第50项与倒数第50项的和: 于是所求的和是: 1 + 2+3+ ? +100 二 101X50

等差数列前n项和最值问题

等差数列前n项和最值 问题 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

等差数列前n 项和的最值问题 问题引入:已知数列{},n a 的前n 项和212 n S n n =+,求这个数列的通项公式.数列是等差数列吗如果是,它的首项与公差分别是什么 解: 当n>1时:1122n n n a s s n -=-= =- 当n=1时:2 11131122 a s ==+?= 综上:122n a n =- ,其中:13 2 a =,2d = 探究1:一般地,如果一个数列{}n a 的前n 项和为:2,n s pn qn r =++≠0,那么这个数列一定是等差数列吗如果是,它的首项和公差分别是 什么结论:当r=0时为等差,当r ≠0时不是 一、 应用二次函数图象求解最值 例1:等差数列 {}n a 中, 1490,a S S >=,则n 的取值为多少时n S 最大 分析:等差数列的前n 项和n S 是关于n 的二次函数,因此可从二次函数的图象的角度来求解。 解析:由条件1 490,a S S >=可知,d<0,且211(1)()222 n n n d d S na d n a n -=+ =+-, 其图象是开口向下的抛物线,所以在对称轴处取得最大值,且对称轴为49 6.52 n +==, 而n N * ∈,且介于6与7的中点,从而6n =或7n =时n S 最大。 1. 已知等差数列{n a }中1a =13且3S =11S ,那么n 取何值时,n S 取最大值. 解析:设公差为d ,由3S =11S 得:3×13+3×2d/2=11×13+11×10d/2 d= -2, n a =13-2(n-1), n a =15-2n, 由???≤≥+0a 0a 1n n 即? ??≤+-≥-0)1n (2150n 215得:≤n ≤,所以n=7时,n S 取最大值. 2. 已知a n 是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,求数列a n 前 5 项和取得最大值. 结合二次函数的图象,得到二次函数图象的开口向下,根据图象关于对称轴对称的特点,得到函数在对称轴处取到最大值,,注意对称轴对应的自变量应该是整数或离对称轴最近的整数.a n 是各项不为零的等差数列,其中a 1>0,公差d <0,S 10=0,根据二次函数的图象特点得到图象开口向下,且在n= =5时,数列a n 前5项和取得最大值. 二、转化为求二次函数求最值 例2、在等差数列{n a }中, 4a =-14, 公差d =3, 求数列{n a }的前n 项和n S 的最小值 分析:利用条件转化为二次函数,通过配方写成顶点式易求解。 解析:∵4a =1a +3d, ∴ -14=1a +9, 1a =-23, ∴ n S =-23n +2 )1(3-n n =23[(n -496)2- 24936], ∴ 当n= 496最小时,n S 最小,但由于n N * ∈,496 介于8与9之间, 8100S =-,999S =- 即有且8 9S S >,故当n =8 8S =-100最小. 点评:通过条件求出1a ,从而将n S 转化为关于n 的二次函数,然后配方求解,但要注意的是此处49 6 介于8与9之间,但并不能取两个整数,判断的标准是对称轴是否处于两个整数中点,否则只有一个取值。 3. 已知等差数列 {}n a 中,前n 项和215n S n n =-,则使n S 有最小值的n 是(B )

《等差数列前n项和公式》教学设计

《等差数列的前n项和》教学设计 一、设计理念 让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构,因为建构主义学习理论认为,学习是学生积极主动地建构知识的过程.在教学过程中,根据教学内容,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求法.通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主、合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习.同时根据我校的特点,为了促进成绩优秀学生的发展,还设计了选做题和探索题,进一步培养优秀生用函数观点分析、解决问题的能力,达到了分层教学的目的. 二、背景分析 本节课教学内容是高中课程标准实验教科书必修5(北师大)中第二章的第三节内容.本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用.等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法. 三、学情分析 1、学生已掌握的理论知识角度:学生已经学习了等差数列的定义及通项公式,掌握了等差数列的基本性质,有了一定的知识准备。 2、学生了解数列求和历史角度:大部分学生对高斯算法有比较清晰的认识,并且知道此算法原理,但在高斯算法中数列1,2,3,……,100只是一个特殊的等差数列,对于一般的等差数列的求和方法和公式学生还是一无所知。 3、学生的认知规律角度:本节课采取了循序渐进、层层深入的教学方式,以问题解答的形式,通过探索、讨论、分析、归纳而获得知识,为学生积极思考、自主探究搭

2.3等差数列的前n项和(一)

§2.3 等差数列的前n 项和(一) 学习目标 1.掌握等差数列前n 项和公式及其获取思路(重点);2.经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思;3.熟练掌握等差数列的五个量a 1,d ,n ,a n ,S n 的关系,能够由其中三个求另外两个(重、难点). 预习教材P42-43完成下列问题: 知识点一 数列a n 与前n 项和S n 的关系 1.数列的前n 项和的概念 一般地,我们称a 1+a 2+a 3+…+a n 为数列{a n }的前n 项和,用S n 表示,即S n =a 1+a 2+a 3+…+a n . 2.数列的通项a n 与前n 项和S n 的关系 当n ≥2时,有S n =a 1+a 2+a 3+…+a n ,S n -1=a 1+a 2+a 3+…+a n -1,所以S n -S n -1=a n ; 当n =1时,a 1=S 1. 综上可得a n =???S 1,n =1, S n -S n -1,n ≥2. 【预习评价】 1.利用数列的前n 项和S n 求数列的通项公式时,能不能直接运用S n -S n -1=a n 求解? 提示 不能.因为当n =1时,S 1-S 0没有意义. 2.已知数列{a n }的前n 项和S n =n 2,怎样求a 1,a n? 提示 a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1, 又n =1时也适合上式,所以a n =2n -1,n ∈N *.

知识点二 等差数列的前n 项和公式 1.等差数列的前n 项和公式 2.两个公式的关系:把a n =a 1+(n -1)d 代入S n =1n 2中,就可以得到S n =na 1+n (n -1) 2d . 【预习评价】 1.高斯用1+2+3+…+100=(1+100)+(2+99)+…+(50+51)=101×50迅速求出了等差数列前100项的和.如果是求1+2+3+…+n ,不知道共有奇数项还是偶数项怎么办? 提示 不知共有奇数项还是偶数项导致不能配对.但我们可以采用倒序相加来回避这个问题:设S n =1+2+3+…+(n -1)+n , 又S n =n +(n -1)+(n -2)+…+2+1, ∴2S n =(1+n )+[2+(n -1)]+…+[(n -1)+2]+(n +1), ∴2S n =n (n +1),∴S n =n (n +1) 2 . 2.能否用“倒序相加法”求首项为a 1,公差为d 的等差数列{a n }的前n 项和S n 呢? 提示 由上节课学到的性质:在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和.即a 1+a n =a 2+a n -1=a 3+a n -2=….“倒序相加法”可以推广到一般等差数列求前n 项和,其方法如下: S n =a 1+a 2+a 3+…+a n -1+a n =a 1+(a 1+d )+(a 1+2d )+…+[a 1+(n -2)d ]+[a 1+(n -1)d ];

2012高中数学 第二章《等差数列前n项和》学案(1) 大纲人教版

2.2.3等差数列的前n 项的和(1) 【学习目标】 1.掌握等差数列前n 项和公式及其推导过程. 2.会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题 【学习过程】 预习书本第39-41页 【问题1】等差数列的前n 项和公式 如何推导此公式? 【问题2】例1、在等差数列{a n }中, (1)已知31=a ,10150=a ,求50S ; (2)已知31=a ,2 1=d ,求10S ( 3 )已知21=d ,23=n a ,2 15-=n S ,求1a 及n . 【点评】: 在等差数列的通项公式与前n项和公式中,含有1a ,d,n,n a ,n S 五个量,只要已知其中的三个量,就可以求出余下的两个量. 练习:)在等差数列{a n }中, ⑴已知1a =7,4310-=a ,求10S ⑵已知1001=a ,2-=d ,

求50S . (3)已知1015-=a ,2=d ,求20S (4)已知5a =8,249=a ,求n n S a , 【问题3】例2、在等差数列{a n }中,已知第1项到第10项的和为310,第11项到第20项的和为910,求第21项到第30项的和. 【思考】:在例2中,你能否发现10S ,20301020,S S S S --这三者之间有何关系?并将这一结论推广至一般情形? 若数列{a n }是等差数列,前n 项和是n S ,那么 仍成等差数列,公差为 练习:在等差数列{a n }中,已知S 392,100168==S ,求24S 【数学应用】 1、在等差数列{a n }中, (1)已知,6,294-==S S 求n S (2)已知12+=n a n ,求n S 2、求等差数列1,5,9,…,401的各项的和。

1-2.2等差数列前n项和

122等差数列前n项和 教学目标 1.掌握等差数列前《项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前《项和的定义,了解逆项相加的原理,理解等差数列前?!项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前《项和的公式,利用公式求儿卫1/卫; 等差数列通项公式与前?项和的公式两套公式涉及五个字母,已知其中三个量求另两个值; (3)会利用等差数列通项公式与前《项和的公式研究q的最值. 2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特 殊的思维规律,初步形成认识问题,解决问题的一般思路和方法 3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平. 4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中 的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题. 教学重点:等差数列的前n项和公式的推导和应用, 难点:获得推导公式的思路. 教学方法:讲授法. 教学建议 (1)知识结构 本节内容是等差数列前《项和公式的推导和应用,首先通过具体的例子给出了求等差数列前《项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题. (2)重点、难点分析 高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上. (3)教法建议 ①本节内容分为两课时,一节为公式推导及简单应用, 一节侧重于通项公式与前《项

和公式综合运用. ②前《项和公式的推导,建议由具体问题引入,使学生体会问题源于生活 ③强调从特殊到一般,再从一般到特殊的思考方法与研究方法 ④补充等差数列前《项和的最大值、最小值问题. ⑤用梯形面积公式记忆等差数列前?项和公式. 教学过程:一.新课引入 提出问题:一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔? 问题就是(板书)“ 1 + 2 + 3 + 4 +…+100 = ? ” 这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的 (由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101, 50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果. 我们希望求一般的等差数列的和,高斯算法对我们有何启发? .讲解新课:(板书)等差数列前《项和公式 1.公式推导(板书)问题:设等差数列{%}的首项为"1,公差为d, E广勺+勺+偽+…+ a广?由学生讨论,研究高斯算法对一般等差数列求和的 指导意义. 思路一:运用基本量思想,将各项用衍和d表示,得 儿 + 十d)+ (a] + 2d)+(逐 +〃)+ ?? +仙+0-2同|+国+(旷1)引,有以下等式冷+d)+M +(旷2)d] = @1 +2d)+国+伙-加]二…,问题是一共有多少个 +国+也~1同,似乎与n的奇偶有关.这个思路似乎进行不下去了.

等差数列的前n项和公式推导及例题解析

等差数列的前n 项和·例题解析 一、等差数列前n 项和公式推导: 二、(1) Sn=a1+a2+......an-1+an 也可写成 三、 Sn=an+an-1+......a2+a1 四、 两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1) 五、 =n(a1+an) 六、 所以Sn=[n (a1+an )]/2 (公式一) 七、(2)如果已知等差数列的首项为a1,公差为d ,项数为n ,则 an=a1+(n-1)d 代入公式公式一得 八、Sn=na1+ [n(n+1)d]/2(公式二) 九、 十、二、对于等差数列前n 项和公式的应用 【例1】 等差数列前10项的和为140,其中,项数为 奇数的各项的和为125,求其第6项. 解 依题意,得 10a d =140a a a a a =5a 20d =125 1135791++++++101012()-????? 解得a 1=113,d=-22. ∴ 其通项公式为 a n =113+(n -1)·(-22)=-22n +135 ∴a 6=-22×6+135=3 说明 本题上边给出的解法是先求出基本元素a 1、d ,

再求其他的.这种先求出基本元素,再用它们去构成其他元素的方法,是经常用到的一种方法.在本课中如果注意到a6=a1+5d,也可以不必求出a n而 直接去求,所列方程组化简后可得 + + 相减即得+, a 2a9d=28 a4d=25 a5d=3 6 1 1 1 ? ? ? 即a6=3.可见,在做题的时候,要注意运算的合理性.当然要做到这一点,必须以对知识的熟练掌握为前提.【例2】在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和. 解由已知,第一个数列的通项为a n=3n-1;第二个数列的通项为b N=5N-3 若a m=b N,则有3n-1=5N-3 即=+ n N 21 3 () N- 若满足n为正整数,必须有N=3k+1(k为非负整数).又2≤5N-3≤197,即1≤N≤40,所以 N=1,4,7,…,40 n=1,6,11,…,66 ∴两数列相同项的和为 2+17+32+…+197=1393 【例3】选择题:实数a,b,5a,7,3b,…,c组成等差数列,且a+b+5a+7+3b+…+c=2500,则a,b,c的值分别为

等差数列及其前n项和(1)

编制人: 张进锋 审核人:冯王林 日期:2013年10月28日 编号: 班级: 姓名: 组别: 评价: 太阳每天都是新的,你是否每天都在努力? 今天多一份拼搏、明天多几份欢笑。 等差数列及其前n 项和(1) 【学习目标】 利用等差数列的概念、性质、通项公式与前n 项和公式解决等差数列的问题. 【重点难点】 通项公式与前n 项和公式解决等差数列的问题. 基础知识梳理 1.等差数列的定义 (1)如果一个数列从第 项起,每一项与前一项的差是 ,那么这个数列就叫作等差数列,这个常数为等差数列的 ,公差通常用字母 表示. (2)数学语言表达式: ,d 为常数. 2.等差数列的通项公式 若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n = 3.等差数列的前n 项和公式 若已知首项a 1和末项a n ,则S n = ,或等差数列{a n }的首项是a 1,公差是d ,则其前n 项和公式为S n = . 4.等差数列及前n 项和的性质 (1)如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列,那么A 叫作a 与b 的等差中项,即A = . (2)通项公式的推广:a n =a m + (n ,m ∈N +). (3)若{a n }为等差数列,当m +n =p +q , (m ,n ,p ,q ∈N +). 复习自测 1.在等差数列{a n }中,a 2=2,a 3=4,则a 10=( ). A .12 B .14 C .16 D .18 2.已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ). A .4 B .5 C .6 D .7 3.记等差数列{a n }的前n 项和为S n ,若a 1=1 2,S 4=20,则S 6=( ). A .16 B .24 C .36 D .48 4.在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=( ). A .12 B .16 C .20 D .24 5.已知数列{a n }的通项公式是a n =kn -3,并且它的第8项是-7,则它的第14项是________. 探究案 在等差数列{a n }中,已知a 2+a 7+a 12=12,a 2·a 7·a 12=28,求数列{a n }的通项公式. 我的收获: