搜档网
当前位置:搜档网 › Reionization History from Coupled CMB21cm Line Data

Reionization History from Coupled CMB21cm Line Data

Reionization History from Coupled CMB21cm Line Data
Reionization History from Coupled CMB21cm Line Data

a r X i v :a s t r o -p h /0502419v 1 21 F e

b 2005

Mon.Not.R.Astron.Soc.000,000–000(0000)Printed 2February 2008

(MN L A T E X style ?le v1.4)

Reionization History from Coupled CMB/21cm Line Data

R.Salvaterra 1,B.Ciardi 2,A.Ferrara 1,C.Baccigalupi 1

1SISSA/International School for Advanced Studies,Via Beirut 4,34014Trieste,Italy

2

Max-Planck-Institut f¨u r Astrophysik,Garching,Germany

2February 2008

ABSTRACT

We study CMB secondary anisotropies produced by inhomogeneous reionization by

means of cosmological simulations coupled with the radiative transfer code CRASH .The reionization history is consistent with the WMAP Thomson optical depth determina-tion.We ?nd that the signal arising from this process dominates over the primary

CMB component for l >~4000and reaches a maximum amplitude of l (l +1)C l

/2π?1.6×10?13on arcmin scale,i.e.l as large as several thousands.We then cross-correlate secondary CMB anisotropy maps with neutral hydrogen 21cm line emission ?uctua-tions obtained from the same simulations.The two signals are highly anti-correlated on angular scales corresponding to the typical size of H II regions (including overlap-ping)at the 21cm map redshift.We show how the CMB/21cm cross-correlation can be used to:(a)study the nature of the reionization sources,(b)reconstruct the cosmic reionization history,(c)infer the mean cosmic ionization level at any redshift.We discuss the feasibility of the proposed experiment with forthcoming facilities.Key words:galaxies:formation -intergalactic medium -cosmology:theory

1INTRODUCTION

The Wilkinson Microwave Anisotropy Probe (WMAP ?)has provided strong evidence for an optical depth to Thomson scattering of τe ~0.17±0.04(the uncertainty quoted for this number depends on the analysis technique employed),based on the measured correlation between Cosmic Microwave Background (CMB)temperature and polarization on large angular scales (e.g.Kogut et al.2003).If the reionization process is described as instantaneous and homogeneous,this corresponds to a reionization redshift z ion ~17±5.More probably,reionization went through a highly inhomogeneous phase (e.g.Ciardi et al.2000;Gnedin 2000;Miralda-Escud′e ,Haehnelt &Rees 2000;Ciardi,Stoehr &White 2003,CSW;Sokasian et al.2003;Ricotti &Ostriker 2004),which ended only when the individual H II regions overlapped completely.In this case,the reionization process should have left an im-print on the CMB.In fact,the modulation of the ionization fraction,playing a similar role to the density modulation from the non-linear Vishniac e?ect,leads to anisotropies at sub-degree scales (e.g.Bruscoli et al.2000;Benson et al.2001;Gnedin &Ja?e 2001;Santos et al.2003).In addition to temperature anisotropies,Thomson scattering introduces a polarization signal in the CMB spectrum.The detection of anisotropies in the temperature/polarization power spec-trum is an invaluable tool to discriminate between di?erent

?https://www.sodocs.net/doc/ad821139.html, sources of ionizing photons and reionization histories (e.g.Bruscoli,Ferrara &Scannapieco 2002;Holder et al.2003;Naselsky &Chiang 2004).

An alternative way to probe the end of the cosmic ‘dark ages’is through 21cm tomography.From the pioneering work of Field (1959),it has been suggested that the neutral hydrogen in the Intergalactic Medium (IGM)and in gravi-tationally collapsed systems may be detectable in emission or absorption against the CMB at the frequency correspond-ing to the redshifted 21cm line associated with the spin-?ip transition of the hyper?ne levels of neutral hydrogen.The inhomogeneities in the density ?eld,ionized hydrogen and spin temperature produce signatures both in the angular and in the redshift space.Di?erent signatures have been in-vestigated,ranging from the 21cm line emission induced by the ‘cosmic web’(Madau,Meiksin &Rees 1997;Tozzi et al.2000),the neutral hydrogen surviving reionization (e.g.Cia-rdi &Madau 2003;Furlanetto,Sokasian &Hernquist 2004;Furlanetto,Zaldarriaga &Hernquist 2004)or the minihalos with virial temperatures below 104K (e.g.Iliev et al.2002),to the 21cm lines generated in absorption against very high-redshift radio sources by the neutral IGM (Carilli,Gnedin &Owen 2002)and by intervening minihalos and protogalactic disks (Furlanetto &Loeb 2002).

In this paper,we compute the CMB temperature anisotropies due to an inhomogeneous reionization history obtained from radiative transfer simulations consistent with WMAP observations (Ciardi,Ferrara &White 2003,here-

c

0000RAS

2Salvaterra,Ciardi,Ferrara,Baccigalupi

after CFW).Moreover,we cross-correlate them with the ex-pected21cm emission maps obtained by Ciardi&Madau (2003,hereafter CM)for the same simulations,and discuss how the cross-correlation can be used to reconstruct the reionization history and to constrain the nature of ionizing sources.Our work is similar in spirit to the recently pub-lished study by Cooray(2004),although that work is based on a simpli?ed analytical description of the reionization pro-cess.This might be the reason for which our conclusions di?er from those obtained by Cooray(see Section6).

The paper is organized as follows.In Section2we present the numerical simulations of IGM reionization by CSW and CFW,and in Section4the results of CM on the 21cm emission from such patchy reionization histories are brie?y described.In Section3we construct and study the maps and the angular power spectra for secondary CMB temperature anisotropies due to the above reionization pro-cess,whereas the cross-correlation between CMB and21cm maps is presented in Section5.Finally,in Section6we sum-marize and discuss the results.

Throughout the paper we adopt theΛCDM“concor-dance”model with?m=0.3,?Λ=0.7,h=0.7,?b=0.04,n=1 andσ8=0.9,within the WMAP experimental error bars (Spergel et al.2003).

2NUMERICAL SIMULATIONS OF IGM REIONIZATION

In this Section we brie?y describe the numerical simulations of IGM reionization adopted to model the21cm line emission from neutral IGM and the CMB temperature anisotropies, and refer to CSW and CWF for further details.

A cosmological volume of comoving side479h?1Mpc has been simulated(Yoshida,Sheth&Diaferio2001)with the N-body code GADGET(Springel,Yoshida&White2001). An approximately spherical region with a diameter of about 50h?1Mpc has been subsequently“re-simulated”at a higher resolution(Stoehr2003)with the technique described in Springel et al.(2001,hereafter SWTK).A friends-of-friends algorithm was employed to determine the location and mass of dark matter halos.Gravitationally bound substructures have been identi?ed within the halos with the algorithm SUBFIND(SWTK)and have been used to build the merg-ing tree for halos and subhalos following the prescription of SWTK.A particle mass of M p=1.7×108h?1M⊙allows to resolve halos as small as M?109M⊙.The galaxy pop-ulation has been modeled with the semi-analytic technique described in Kau?mann et al.(1999)and implemented as in SWTK.For each of the simulation output we compile a cat-alogue of galaxies containing for each galaxy,among other quantities,its position,mass and star formation rate.

A cube of comoving side L=20h?1Mpc has been cut from the high resolution spherical subregion to model the details of the reionization process,using the radiative trans-fer code CRASH(Ciardi et al.2001;Maselli,Ferrara&Ciardi 2003)to follow the propagation into the IGM of the ionizing photons emitted by the simulated galaxy population.Several sets of radiative transfer simulations have been run in CSW and CFW,with di?erent choices for the galaxy emission properties.The ones used here are labeled S5(‘late’reion-ization case)and L20(‘early’reionization case),and adopt an emission spectrum typical of Pop III stars,a Salpeter Ini-tial Mass Function(IMF)and an escape fraction of ionizing photons f esc=5%(S5)and a Larson IMF with f esc=20% (L20).For details and discussion on the choice of parameters we refer to CSW and CFW.The S5and L20simulations give a reionization redshift of z ion≈8and≈13,respectively.In addition,they provide the redshift evolution and the spatial distribution of ionized/neutral IGM and have been used to model both the H I21cm line emission(see Sec.4)and the CM

B temperature anisotropies(see Sec.3).

3SECONDARY CMB ANISOTROPIES

The solution of the Boltzmann equation for the present value of the perturbation of the photon temperature(δT/T)CMB, along the line of sight(los)?γ,can be written as:

δTη4χ(x,η)?γ·v(x,η),(1) whereη= (1+z)dt is the conformal time andτ0= n e,0σTη0c,with n e,0being the present free electron density,σT the Thomson cross section and c the light speed.The quantitiesχ(x,η)and v(x,η)are the ionization fraction and the peculiar velocity in units of c,respectively,calculated at position x=?γ(η0?η)and conformal timeη.

In principle,a map of temperature anisotropies can be simply obtained by integrating eq.(1)along each los pass-ing trough random slices of the simulation boxes.However, the periodic simulation boundary conditions would arti?-cially enhance the anisotropy signal by a non-negligible fac-tor(Gnedin&Ja?e2001).To prevent this spurious e?ect, we randomly?ip and transpose each simulation box around any of its six edges,hence breaking the?ctitious correlations introduced by the computational method.We consider30 (65)simulation outputs from z=18.7to complete reion-ization,i.e.z≈13(z≈8)for the L20(S5)model.The output redshifts are optimized to completely cover the path between the initial and?nal redshift of the simulation.Al-though this method might now somewhat underestimate the true anisotropy signal as we miss the contribution of scales larger than the box,the results constitute a solid lower limit to such quantity.In addition,we emphasize that the size of our box(L=20h?1Mpc)is one of the largest used up to now for reionization studies,hence making the large-scale missing power a less severe e?ect.

The dimension of the map is set by the angle subtended by the simulation box at the highest redshift;for the adopted cosmologyθmax≈9.25arcmin.The spatial information on the ionization fraction is obtained from the radiative transfer simulations,whereas the peculiar velocity?eld is provided by the N-body simulation.We repeat the above integra-tion for a random realization with the same volume-averaged value of the ionization fractionχ.A map of the temperature ?uctuations due to ionized patches(i.e.the inhomogeneous part)is derived by subtracting the two maps.The result is shown in Fig.2for the S5(top left panel)and the L20(top right panel)model.

c 0000RAS,MNRAS000,000–000

Reionization History3 3.1Anisotropy distribution

The statistics of temperature anisotropy can be analyzed in

terms of spherical harmonics,Y lm:

δT

2l+1 m a2lm.(3) There is a strict relation between the probed angular scaleθand the multipole l in the formula above,θ?180/l degrees.Therefore the extension and resolution of our maps sets an interval in l in which our analysis is meaningful,i.e. 4000≤l≤1.67·105,corresponding to1/3of the map and the pixel scale,respectively.To analyze the maps and ob-tain the angular power spectrum we use the software pack-age HEALPix?(G′o rski,Hivon&Wandelt1999).The results are shown in Fig.1together with the primary CMB power spectrum from WMAP data?tting(Spergel et al.2003). The signal due to patchy reionization dominates the primary CMB power spectrum for l>~4000and reaches a maximum amplitude of≈1.6×10?13.The amplitude in the two mod-els is comparable.The power spectrum obtained here is in agreement with that derived by Gnedin&Ja?e(2001),and it is roughly an order of magnitude smaller than the one cal-culated by Santos et al.(2003)via a semi-analytical model.

A last aspect which is worth commenting is the fact that the anisotropy keeps a rather?at level up to the highest signif-icant multipoles.That is the indication that the secondary anisotropy from reionization keep their structure at least up to the arcsecond scale.

3.2Comments on observability

The detection of the signal from patchy reionization requires high sensitivity experiments that can reach large multipole numbers,since the peak of the power spectrum is expected to be at l of the order of few×103.These characteristics are within the capability of the next generation of millimeter wavelength interferometers like ALMA?,ACT§,or CQ?. For example,ALMA is expected to reach sensitivities of 2μK rms for a1′beam with1h integration up to2ar-cmin scale,thus appearing as a perfect instrument to search for signature of inhomogeneous reionization.

However,to measure the power spectrum from patchy reionization,several other astrophysical signals must be cleaned out from the maps.In particular,the main fore-grounds in the angular range discussed here are the thermal Sunyaev-Zel’dovich(SZ)and the Poisson noise from faint point sources.Thermal SZ is expected to be negligible,at least after multifrequence cleaning,for observations at217

?https://www.sodocs.net/doc/ad821139.html,/science/healpix/

?https://www.sodocs.net/doc/ad821139.html,/or https://www.sodocs.net/doc/ad821139.html,/projects/alma

§https://www.sodocs.net/doc/ad821139.html,/angelica/act/act.html

?

http://brown.nord.nw.ru/CG/CG.htm Figure1.Primary CMB power spectrum from WMAP data?t-ting(dotted line;Spergel et al.2003),together with the angular power spectra from patchy reionization in the L20(solid)and S5 (dashed)model.

GHz(Zhang,Pen&Trac2004).More important is the fore-ground from unresolved IR and radio sources,which is sev-eral orders of magnitude above the reionization signal at l>~few×104.Luckily,this foreground contamination can be described in terms of a simple power-law(White&Ma-jumdar2003).Thus,a foreground measurement at l≈104 would allow to extrapolate its value at lower l,where it can be subtracted to obtain a clean reionization signal.For this reason,multifrequency observations are particularly suited to subtract such foreground contamination.For this tech-nique to be successful though,a good knowledge of the in-strumental noise is required.

421CM RADIATION FROM NEUTRAL IGM The21cm hyper?ne transition of neutral hydrogen in the IGM provides a powerful probe to study the era of cosmo-logical reionization.In this paper we use the results from the numerical simulation of CM,that we brie?y describe in this Section.We refer to the above paper for further details.

The emission of the21cm line is governed by the spin temperature,T S.In the presence of a CMB radiation with T CMB=2.725(1+z)K,T S quickly reaches thermal equi-librium with T CMB,and a mechanism is required that de-couples the two temperatures.While the spin-exchange col-lisions between hydrogen atoms are too ine?cient for typ-ical IGM densities,Lyαpumping contributes signi?cantly by mixing the hyper?ne levels of neutral hydrogen in its ground state via intermediate transitions to the2p state.If a Lyαbackground>~9×10?23(1+z)ergs cm?2s?1Hz?1 sr?1is present at redshift z,Lyαpumping will e?ciently decouple T S from T CMB.CM?nd that the di?use?ux of Lyαphotons produced by the same sources responsible for the IGM reionization,satis?es the above requirement from z≈20to the time of complete reionization.As the IGM

c 0000RAS,MNRAS000,000–000

4Salvaterra,Ciardi,Ferrara,

Baccigalupi

Figure 2.Top panels :map of CMB temperature ?uctuations,(δT/T )CMB ,due to patchy reionization for the S5(left panel)and the L20(right panel)model.The maps measure ≈9.25arcmin on a side.Lower panels:maps of di?erential antenna temperature,(δT/T )21cm ,from 21cm line emission for the S5(left panel)and the L20(right panel)model,at an observed frequency (redshift)ν≈115MHz (z ≈11)and ν≈90MHz (z ≈14.5),respectively.The maps have been derived assuming a bandwidth ?ν=1MHz and measure ≈9.25arcmin on a side.

can be easily preheated by primordial sources of radiation (e.g.Madau,Meiksin &Rees 1997;Chen &Miralda-Escud′e 2003),the universe will,most likely,be observable in 21cm emission at a level that is independent of the exact value of T S .Variations in the density of neutral hydrogen (due to either inhomogeneities in the gas density or di?erent ionized fraction)will appear as ?uctuations of the sky brightness of this transition,and allow,in principle,to map the history of reionization .

Using the numerical simulations described in Section 2,CM have studied the evolution of the 21cm line emission ex-pected from those reionization histories.In particular,they have derived maps and ?uctuations of brightness tempera-ture at di?erent redshifts (i.e.observed frequencies)in both the S5and L20model.The S5model predicts a peak in the amplitude of the expected rms brightness ?uctuations at an observed frequency (redshift)ν≈115MHz (z ≈11),whereas in the L20the peak is at ν≈90MHz (z ≈14.5).In both models,the overall amplitude of the signal at its peak

is δT 2

rms 1/2≈10?20mK at angular scales θ≈5arcmin (see CM for details).In Fig.2maps of di?erential antenna temperature,(δT /T )21cm ≡δT b /T CMB (0),are shown for the

The brightness temperature against the CMB is de?ned as T b =T CMB e ?τ+T S (1?e ?τ),where τis the optical depth of a patch of IGM in the hyper?ne transition.The di?eren-tial antenna temperature between the patch and the CMB is δT b ?(T S ?T CMB )τ/(1+z ).

S5(lower left panel)and the L20(lower right panel)model at the peak frequencies.The maps have been derived from the simulations of reionization described in Section 2assum-ing a bandwidth ?ν=ν?z/(1+z )=1MHz and measure ≈9.25arcmin on a side.

5CMB/21CM CROSS-CORRELATION

CMB secondary anisotropies from patchy reionization are expected to be highly anti-correlated with 21cm line emis-sion temperature ?uctuations on scales smaller than the an-gle subtended by typical H II regions at the redshift of the 21cm emission.To quantify this e?ect,we compute the cross-correlation between the CMB and the 21cm map at redshift z as:

C (θ,z )=

N CMB i =1

N 21cm

j =1

1

T

CMB

(i )

δT

Reionization History

5

Figure 3.Cross-correlation between the CMB secondary anisotropy map and the 21cm maps at di?erent redshifts (marked by di?erent line styles)for a bandwidth ?ν=1MHz.In the small panel,a zoom of the region in which the transition from anti-correlation to correlation occurs is shown.The subscript r refers to the random cross-correlation.Model

S5.

Figure 4.The same of Fig.3,but for Model L20.Note that lines refer to di?erent redshifts.

box in the top-left corner shows a zoom of the region in which the majority of the curves ?rst pass through a zero point,i.e.from anti-correlation to correlation.

As expected,we ?nd that the two signals are highly anti-correlated below a characteristic angular scale,θ0,ex-cept for the highest redshift where only a very small fraction of the volume is ionized (line at z =18.5).The amplitude of the anti-correlation signal increases with decreasing redshift

until reionization is almost completed.At any given redshift the model L20shows a stronger anti-correlation signal,as reionization proceeds more rapidly,and a larger θ0,as a re-sult of the relative larger (on average)H II region sizes.In fact,the angular scale θ0indicates the typical dimension of the H II regions (including overlapping)at that redshift and allows,in principle,to reconstruct the reionization history and to discriminate among di?erent reionization models and sources (e.g.quasars or massive Pop III stars versus more standard stars).

The redshift evolution of the angular scale θ0is shown in Fig.5;labels there indicate the typical comoving dimen-sion of the corresponding H II regions in units of Mpc/h .As the evolution of θ0re?ects the growth of H II regions,the value of θ0at a given redshift is very di?erent for the two models considered.In general,this result can be used to discriminate among di?erent ionizing sources as H II regions produced by quasars or massive Pop III stars typically tend to be larger than those digged by more standard stars.More-over,as the redshift evolution of θ0re?ects the growth of H II regions,non-monotonic reionization histories would re-sult in a more complex behavior for θ0.For example,in case of a double-reionization (e.g.Cen 2003;Wyithe &Loeb 2003)we expect that θ0increases until the ?rst reionization is completed.Then,once the ionizing emissivity drops and the IGM partially recombines,θ0should decrease or remain constant,and eventually grow again when the second reion-ization takes place.

From our simulations it is also possible to derive a re-lation between the measured value of θ0and the volume averaged hydrogen ionization fraction in the computational volume.This relation is shown in Fig.6.From there we see that the two quantities are positively correlated.It is also worth noticing that a 50%mean ionization level is char-acterized by θ0≈3′independently of the adopted reion-ization model:identifying this epoch is crucial as it corre-sponds to the redshift at which most of the CMB secondary anisotropies are produced and it provides a sensible de?-nition of the reionization redshift for prompt reionization models often adopted for practical purposes (Bruscoli,Fer-rara &Scannapieco 2002).Moreover,the θ0-x e relation appears to be quite insensitive to the details of the reioniza-tion model,thus providing a robust mapping between the correlation function and the mean ionization level at each epoch.

The results in Fig.3and 4have been derived assuming a bandwidth for 21cm line observations of ?ν=1MHz.Although a smaller bandwidth,e.g.0.1MHz,would sub-stantially increase the intensity of 21cm line emission (CM),it does not signi?cantly a?ect the estimates of the cross-correlation (Fig.5).

In conclusion,we ?nd that the cross-correlation between secondary anisotropy in the CMB and 21cm emission maps can be a useful tool to follow the reionization process and to give constraints on the nature of the ionizing sources.More-over,the cross-correlation,combining information obtained by di?erent experiments,can be used to maximize the signal from the reionization process with respect to instrumental noise,systematic errors in the measures,and astrophysical foregrounds.

c

0000RAS,MNRAS 000,000–000

6Salvaterra,Ciardi,Ferrara,

Baccigalupi

Figure5.Redshift evolution of the angular scale at which the

transition between anti-correlation and correlation takes place in

the L20(upper curves)and S5(lower)models.The labels report

the typical comoving dimension of the corresponding H II regions

(including overlapping)in units of Mpc/h.The21cm maps have

been obtained assuming a bandwidth?ν=1MHz(solid lines)

and0.1MHz

(dotted).

Figure 6.Relation between the zero-point angle of the cross-

correlation function and the mean ionization fraction in the

simulation box for the S5(left panel)and L20(right)mod-

els.The21cm maps have been obtained assuming a bandwidth

?ν=1MHz(solid lines)and0.1MHz(dotted).

6SUMMARY

We have calculated the secondary anisotropies in the CMB

temperature power spectrum produced by inhomogeneous

reionization from radiative transfer simulations consistent

with WMAP observations.We?nd that the signal arising

from this process dominates over the primary CMB com-

ponent for l>~4000and reaches a maximum amplitude of

l(l+1)C l/2π?1.6×10?13on arcminute angular scales,i.e.

l as large as several thousands.We then cross-correlated the

secondary CMB anisotropy maps with21cm line emission

?uctuation maps for the same reionization simulations.As

expected,the two signals are highly anti-correlated on an-

gular scales corresponding to the typical size of H II regions

(including overlapping)at the redshift of the21cm map.

The cross-correlation and,in particular,the redshift evolu-

tion of the angular scale at which the transition between

anti-correlation to correlation takes place,can be used:(a)

to study the nature of the reionization sources,(b)to recon-

struct the cosmic reionization history,(c)to infer the mean

cosmic ionization level at any redshift.

Cooray(2004)has studied the correlation signal be-

tween CMB temperature anisotropies and21cm?uctuations

by means of an analytical reionization model.He concludes

that,contrary to what we have shown,the correlation can-

not be seen in the angular cross-power spectrum,due to a

geometric cancellation e?ect between velocity and density

?uctuations.However,such cancellation likely occurs due to

the assumption made in that paper that the neutral hydro-

gen fraction depends only on overdensity but not on spatial

location.In fact,Cooray writes the neutral hydrogen density

as n HI=x Hˉn(1+δ),where x H is the neutral H fraction,

ˉn is the mean gas density andδis the gas overdensity.In

a patchy reionization scenario,where the ionized bubbles

around luminous sources do not completely?ll the cosmic

volume,it is clear that this assumption is not correct,as

two?uctuations with the sameδvalue located either inside

a ionized region or outside it will have di?erent n HI.Hence,

if the patchiness of the reionization can be properly modelled

(e.g.through radiative transfer simulations)the degeneracy

(and the above cancellation)can be broken.Notice that the

largest contribution to the secondary anisotropies come from

the epoch when roughly50%of the cosmic volume is?lled

with bubbles and where the variance in the relation n HI?δ

is largest.

Planned millimeter wavelength interferometers,like

ALMA and ACT,are expected to have sensitivities and

angular resolution good enough to measure the signature

of inhomogeneous reionization in the CMB maps.However,

extracting information on the reionization process from the

observed maps can be hampered by the presence of both

astrophysical foregrounds and instrumental noise.The same

applies to21cm emission observations(see Di Matteo,Ciardi

&Miniati2004for a detailed study of the foreground con-

tamination of21cm maps).Provided that both the CMB

and21cm maps can be cleaned from foreground contami-

nation,the information obtained from a cross-correlation of

the two maps is an invaluable tool to study the reionization

history and its sources.

c 0000RAS,MNRAS000,000–000

Reionization History7

ACKNOWLEDGMENTS

Some of the results in this paper have been derived using the HEALPix(G′o rski,Hivon,and Wandelt1999)package.

REFERENCES

Benson,A.J.,Nusser,A.,Sugiyama,N.&Lacey,C.G.2001,MN-RAS,320,153

Bruscoli M.,Ferrara A.,Fabbri R.,Ciardi B.,2000,MNRAS,318, 1068

Bruscoli,M.,Ferrara,A.&Scannapieco,E.2002,MNRAS,330, L43

Carilli,C.L.,Gnedin,N.Y.&Owen,F.2002,ApJ,577,22 Cen,R.2003,ApJ,591,12

Chen,X.&Miralda-Escud`e,J.2003,ApJ,602,1

Ciardi,B.,Ferrara,A.,Governato,F.&Jenkins,A.:2000,MN-RAS,314,611

Ciardi,B.,Ferrara,A.,Marri,S.&Raimondo,G.2001,MNRAS, 324,381

Ciardi,B.,Ferrara,A.&White,S.D.M.2003,MNRAS,344,L7 (CFW)

Ciardi,B.&Madau,P.2003,ApJ,596,1(CM)

Ciardi,B.,Stoehr,F.&White,S.D.M.2003,MNRAS,343,1101 (CSW)

Cooray,A.2004,astro-ph/0405528

Di Matteo,T.,Ciardi,B.&Miniati,F.2004,astro-ph/0402322 Field,G.B.1959,ApJ,129,551

Furlanetto,S.R.&Loeb,A.2003,ApJ,588,18

Furlanetto,S.R.,Sokasian,A.and Hernquist,L.2004,MNRAS, 347,187

Furlanetto,S.R.,Zaldarriaga,M.and Hernquist,L.2004,astro-ph/0403697

Gnedin,N.Y.2000,ApJ,535,530

Gnedin N.Y.&Ja?e A.H.,2001,ApJ,551,3

Gnedin N.Y.&Shandarin S.F.,2002,MNRAS,337,1435

G′o rski,Hivon&Wandelt,1999,in Proceedings of the MPA/ESO Cosmology Conference”Evolution of Large-Scale Structure”, eds.A.J.Banday,R.S.Sheth and L.Da Costa,PrintPartners Ipskamp,NL,pp.37-42(also astro-ph/9812350)

Holder,G.P.,Haiman,Z.,Kaplinghat,M.&Knox,L.2003,ApJ, 595,13

Iliev,I.T.,Shapiro,P.R.,Ferrara,A.&Martel,H.2002,ApJ, 572,L123

Kau?mann,G.,Colberg,J.M.,Diaferio,A.&White,S.D.M.

1999,MNRAS,303,188

Kogut A.et al.,2003,ApJS,148,161

Madau,P.,Meiksin,A.,&Rees,M.J.1997,ApJ,475,492 Maselli,A.,Ferrara,A.&Ciardi,B.2003,MNRAS,345,379 Miralda-Escud′e,J.,Haehnelt,M.&Rees,M.R.,2000,ApJ,530, 1

Naselsky,P.&Chiang,L.-Y.2004,MNRAS,347,795

Ricotti,M.&Ostriker,J.P.2004,MNRAS,350,539

Santos M.G.,Cooray A.,Haiman Z.,Knox L.,Ma C.-P.,2003, ApJ,598,756

Sokasian,A.,Abel,T.,Hernquist,L.E.&Springel,V.2003,MN-RAS,344,607

Spergel,D.N.et al.2003,ApJS,148,175

Springel,V.,White,S.D.M.,Tormen,G.&Kau?mann,G.2001, MNRAS,328,726(SWTK)

Springel,V.,Yoshida,N.&White,S.D.M.2001,NewA,6,79 Stoehr,F.2003,PhD Thesis,Ludwig Maximilian Universit¨a t, M¨u nchen

Tozzi,P.,Madau,P.,Meiksin,A.&Rees,M.J.2000,ApJ,528, 597

White M.&Majumdar S.,2004,ApJ,602,565

Wyithe,J.S.B.&Loeb,A.2003,ApJ,586,693.Yoshida N.,Sheth R.K.&Diaferio A.,2001,MNRAS,328,669 Zhang P.,Pen U.&Trac H.,2004,MNRAS,347,1224

c 0000RAS,MNRAS000,000–000

密室逃脱计划书

密室逃脱计划书 一、项目介绍 真人密室逃脱,打破了电脑游戏的局限和束缚,原汁原味的展现了密室的精髓,让玩家能过通过自己的双眼和双手,经过逻辑思考和观察力,不断的发现线索和提示,最重要的是团队的合作,能够顺利的逃脱。整个过程充满了未知性和不确定性,在紧张的场景氛围中,真正的融入到故事背景中去,这是电脑游戏所无法提供的乐趣。 真人密室也是在2011年才在国内正式起步,相较于国外已经成熟的体系,还未完全被大众所接受。2011年9月20日,第一家主营真人密室逃脱的俱乐部,在杭州正式成立。据可靠统计,全国目前已经有超过500家以上真人密室逃脱俱乐部,其中以北上广三地发展最为迅速。福州地区2013年3月左右,开始出现第一家真人密室逃脱俱乐部。我们的密室逃脱俱乐部名为八度空间,于2013年5月开始经营,属于福州地区比较早的密室商家。 二、市场分析 1.市场前景分析: 我们都是生活在平静生活中的普通人,每天重复着相同的事情,毫无生机。即便有着看电影、唱K、泡吧等种种休闲活动,但是对于追求新鲜的年轻人来说,闲暇时间还是显得越来越乏味。而要脱离这种提不起劲的困境,逐渐兴起的真人主题密室逃脱无疑会是一个最好的选择。密室逃脱实体游戏项目,既好玩刺激,又可以让每个体验者在游戏中充分调用智慧和体力,享受酐畅淋漓的畅快感觉。 据调查,福州2010年人口711万,现在福州的密室逃脱有6家(有实力),一年的订单数为22100个,票价35左右。和福州的土地面积差不多大小的洛阳和北京,与之比较,洛阳和北京的密室逃脱比福州早一年开始,2010年洛阳人口680万,现在洛阳一年的订单数为27200个,但是只有一家的密室逃脱(有实力),为寡头市场。2012年北京人口2069万,现在北京一年的订单数为49000个,票价70元,11家密室逃脱。福州与洛阳比较:店铺越多,接收客源面积越大,订单数越多。所以福州的未来市场的需求量为增幅状态。福州与北京比较:价钱越贵,订单数越少。所以福州的未来市场的需求量为增幅状态。 注:以上数据来源于美团网和中国知网,店铺收入不单单来源于网络的团购,还有其他收入,所以这只是代表部分的收入,所以当做消极悲观者的眼光来看待市场的需求量也是为增幅状态。 作为一个新兴行业,它的市场是还没有饱和的,你的质量比别家的好,有吸引力,客源量就会增加。结论:2014年起,至少一年,市场的需求量为增幅状态。 2.与传统娱乐项目对比的优势 ①体验刺激 或许过山车的尖叫只是生理上的一种释放,但是主题密室逃脱却能够从心理上让体验者感受刺激。各种精心布置的主题场景,暗含玄机的种种物品,还有与场景相配的音乐,这些都能够让体验者产生一种身临其境的感觉,从而可以更快地融入密室逃脱当中。当然,情节悬疑也是好玩的密室逃脱中一个重要影响因素。只有环环相扣的故事情节以及层层迭进的线索,才能够带动体验者更充分地享受推理和逃脱的过程。 ②高科技力挺 密室逃脱要做得好仅仅依靠故事情节和环境布置就太单薄了,高科技产品的使用也是使密室逃脱更加真实的一个诀窍。运用高科技物理机械和电子幻灯制造悬疑的场景气氛,炫酷的室内特技效果让场景显得更加逼真,而红外线、夜视仪等道具的使用也充分调动了体验者的紧张感和积极性。这些高科技的使用让密室逃脱不仅仅只是一个游戏项目,还成为一场科技产品展示的体验与经历。 ③价值无限 如果只将其当作是一个娱乐项目未免有点太低看真人密室逃脱了,因为在整个的逃脱过程当中,除了让体验者感受刺激和悬疑以外,还考验了每个体验者的智力、耐性以及良好的团队协作力。只有将团队中每个人找到的线索结合起来,才能够找到正确的出路。当然,这中间也需要有人指挥,有人配合,一旦团

小游戏----密室逃脱

活动名称:大班数学探索活动----密室逃脱 设计思路: 偶然的机会听孩子们分享自己玩游戏的经验,发现他们对比较有挑战性的游戏如密室逃脱闯关等非常感兴趣,于是,我就想:能不能用游戏这样一个载体,将数学这一学科的某些知识呈现在里面?于是,我就按照自己的理解,把生活中常见的物品分成几个层次:将游戏材料有的散点状放置,有的向不同方向有序排列,有的重叠排列等,投放到科学探索区内,观察幼儿的游戏情况。在幼儿操作材料过程中,我发现他们数数时的方法、速度、能力等都有异同,因此,我梳理了幼儿的一些数数经验,结合大班幼儿的年龄特点,生成了本次活动。 活动目标:1、在幼儿观察、比较、推理中,尝试通过操作材料,探索可以将物品数正确的方法。 2、仔细倾听同伴的想法,乐意分享观察方式。 活动准备:幼儿操作卡(每人2张)、PPT4张、笔、夹子、照片。 活动过程: 1、呈现密室,激发幼儿兴趣:了解幼儿数数的能力。 出示PPT1,谈话引出课题 1、讲解密室逃脱游戏规则。 师:今天,老师带你们玩密室逃脱,你知道这个游戏怎么玩吗?师讲解游戏规则:密室逃脱就是我们进入房间,通过数房间里各种物品的数量来推算出房门的密码,从而打开房门,逃出密室。 2、报数游戏:让幼儿数数接龙。 师:清点人数完毕,请你们摆一个最漂亮、最帅气的姿势跟老师们打个招呼,不然,待会出不来可能没有人来救你。 3、谈话:你能数到几? 师:刚才集体报数完全正确,现在,我问问小朋友,你最多能数到几?我说一个数字,你接着往下数,往下数()个数。(教师一方面关注幼儿数数是否正确,另一方面关注幼儿从十位数数到百位数数的能力,同时,观察其他幼儿,聆听每个幼儿的数数情况。)师:小朋友们都能数到很大的数,真了不起!但你们数数的正确性怎么样呢?老师会在游戏中检查你们的本领。 2、进入密室:探索正确数数的方法。 第一环节:来到密室一:出示PPT2 师:我们已经进入密室,现在,赶紧来找找怎打开房门的密码。(引导幼儿找到门上的密码锁,通过寻找密码打开锁从而逃出密室。)密码锁提示我们找哪些物品? 1、幼儿完成相应操作卡,正确数出PPT上相框、靠枕、猫及红花的数量。 师:密码锁提示我们:要仔细找找密室里有几幅相框?靠枕有几个?猫有几只?红花有几朵?把你观察到的结果记录在对应的空格里,不会写数字的用圆点代替。(教师重点关注猫和红花的记录情况) 2、幼儿交流自己的观察结果。教师及时提升幼儿表达的数数要领: A、一起告诉我,相框有几幅?靠枕有几个?师总结:东西比较少,数起来很方便; B、数猫可就不简单了,请您告诉我,你数到有几只猫?你在哪里找到了第×只猫?师总结:要把东西数清楚是需要讲究方法,要从上到下、从左到右、从前到后,只要按照一定的顺序就能数清楚。(教师要重点关注幼儿的表达,如方位是否正确,语句是否完整,还要关注幼儿数猫的方法) C、这里的花特别多,你是怎么数的?你是怎么数的?黄花能不能数进去?引导幼儿说出2个2个一起数的规律。师总结:数东西的时候,不但要讲究顺序,而且要仔细看清楚题目,

(完整版)英国历史大事年表

英国历史大事年表 都铎王朝:1485~1603(近代英国开始) 1485年:亨利七世即位 【15世纪中叶,30年的玫瑰战争导致都铎王朝建立,获胜方南方大地主和新贵族的代表亨利·都铎加冕为王,是为亨利七世。都铎王朝正值资本主义在英国初升时期,产生了两位有名君主:亨利八世,为子嗣和婚姻问题与罗马教庭宣布决裂,成立英国国教(即圣公会);伊丽莎白一世(1558~1603)确立了英国的海上霸权,正值文艺复兴时期,出现了莎士比亚。苏格兰国王詹姆斯四世被伊丽莎白指定为继承人,1603年,詹姆斯登上英格兰国王的宝座,成为詹姆斯一世,开始了斯图亚特王朝的统治,这为100年后(1707年)苏格兰与英格兰正式合并创立了条件。】 1558年:英国女王伊丽莎白一世即位,统治英国达45年之久 1564年:莎士比亚诞生 1588年:击败西班牙无敌舰队,树立海上霸权。【英国在1588年英西海战中的胜利,是一次以弱胜强的胜利,它再一次显示了在王权统治下的民族国家的力量。长期处在欧洲主流文明之外的岛国,第一次以强国的姿态向欧洲大陆发出了声音,并迅速进入世界海洋霸权和商业霸权的争夺中心。】 斯图亚特王朝1603~1714 1603年:80岁的伊丽莎白一世去世了。 苏格兰王詹姆士六世加冕成为英格兰的詹姆士一世,统一了英格兰和苏格兰 1620年:对新教徒的镇压激化,一批新教徒乘"五月花号"抵达美洲 1628年,《权力请愿书》 1640年,英国在全球第一个爆发资产阶级革命,成为资产阶级革命的先驱。 1642~1651年:英国内战爆发 1649年:查理一世(詹姆士一世的儿子)被处决(1.30),克伦威尔宣布共和政体(5.19) 1660年:(查理二世)王朝复辟【詹姆斯二世(查理二世儿子)继承王位,后被罢黜。】 1676年:格林尼治天文台设立 1679年,人身保护法;托利党成立(1833年改称现名)

英语的发展史(中英文版)

一种民族语言(包括词汇)的发展与民族的历史密切可关。要了解英语语汇的发展史,不 可避免地跟整个英语的发展史,乃至英国的历史密不可分。 不列颠群岛的最早居民是凯尔特人,又称不列颠人。公元前55年,罗马人在凯萨大帝的 率领下侵入不列颠群岛,凯尔特人被罗马人赶入威尔士和苏格兰的深山之中。直到公元 410年,罗马占领时期才告结束。随后,来自德国北部平原的三个日耳曼部落盎格鲁人, 撒克森人和朱特人开始来到不列颠定居。英语就是盎格鲁—撒克森人的语言。 语言史学家一般把英语的历史分为三个时期:1、古英语时期,2、中古英语时期,3、现 代英语时期。 1、古英语时期(又称盎格鲁-萨克森时期公元450—1100年) 日尔曼部落在不列颠定居后,名自占领一些地区。盎格鲁人占领了泰晤士河以北的英格兰 的大部分地区和苏格兰的低地,朱特人占领了肯特郡一带地区,撒克森人占领了泰晤士河 以南的大部分地区。各个部落建立了一些小王国,出现了英国历史上的七国时代。直到公 元830年,阿尔弗雷德大王才统一了整个英格兰地区。由于全国长期没有统一,所以古英语时期存在着多种方言,主要方言有四种:西萨克森语,肯特语,莫西亚语和北恩布里亚语。这四种方言都曾一度占主导地位。西撒克森语保存下来的手搞最多。其它方言在形成 英语的过程中也起过很重要的作用。 古英语的词汇有着浓厚的日尔曼语族的特点。这主要表现为复合法是重要的构词方法。复 合词在古英语词汇中占有显著的地位。据统计,在史诗《贝奥武夫》3183行诗句中,竟有1069个复合词。有些复合词中不重读部分,渐渐失去了独立地位,而演变成了词缀,如 for-, in-, -ful 等派生法在古英语中也广泛使用。共有二十四个名词后缀、十五个形容词后缀,-dom, -hood, -ship, -ness, -the, -ful,- ish 等词缀都可溯源到古英语时期。古英语时期的诗歌有一种特殊的修辞手法,即头韵(alliteration),由此产生的许多短语一直保留到现在,如night and main, friend or foe, a labour of love。 古英语时期有两个重要的历史事件,给英语词汇带来较大的影响。第一件事是基督教传入 英国。公元597年,一个名叫奥古斯丁的牧师从罗马来到英国传教。罗马文化随着基督教传入了英国。与此同时,一批拉丁词进入了英语。 第二件事是北欧人入侵英国。从公元790年开始,大批斯堪的那维亚人在英国定居。丹麦国王卡纽特还一度成为英国的君主。斯堪的那维亚人和英国人频繁交往,所以有许多斯堪 的那维亚各国的词语进入了英语。 2、中古英语时期(公元1100—1500年) 公元1066年,诺曼人在征服王威廉率领下,横渡英吉利海峡,在哈斯丁战役中击溃了盎 格鲁-萨克森军队,英王哈路德战死,英国被征服。这在历史上被称为诺曼征服。从此,英国结束了分裂状态,置于中央集权的封建统治之下。谨曼征服是英国历史上的重要转折点,对英语的发展有巨大的影响。 诺曼征服之后,谨曼人占据了教会和政府的一切重要职务。以后的二、三百年里,谨曼法 语成为英国的官方语言。普通人仍然讲英语,但英语的文字记载却几乎中断。中古英语一 般右以分为两个时期,1204年后,英语逐渐恢复主导地位。1362年英王爱德华三世首次 用英语向议会致词。十五世纪,伦敦标准方言兴起。1476年,卡克斯顿把印刷术传入英国,

密室逃脱相关 (2)

Q1:别人做密室逃脱 从大二时,开始接触密室逃脱游戏,到今年寒假一天能玩上三、四次,“既然大家都喜欢,干嘛不自己也开一个呢?”黄皓月介绍,决定开一个“密室逃脱”店,很偶然,也很仓促。5个爱玩密室的女孩当即一拍即合,其中有两个女生已经工作,三个在校生中,黄皓月也即将本科毕业,她还“跨界”选修了金融专业的双学位。 三月份,考察江汉路所有密室逃脱店、玩遍40多个主题,敲定店址; 四月份,店面装修,自己设计主题、自己安装机关、自己制作装置……; “五一”,新店开张,首日客流量过百,不大的客厅里,挤满了前来“尝鲜”的同龄人。 开业的前一天,女孩们都在店里通宵加班,“创业比考研费精力多了,四月份的时候,天天熬夜。”黄皓月告诉记者,开店,比想象中的复杂、琐碎。对于“学霸”的称号,她觉得那是上高中以前的事了,从高二起,一直到现在,她更愿意把自己定义为“学霸班上的玩货”。 中考前,黄皓月因成绩优秀,提前保送到当地最好的学校——新洲一中“火箭班”。然而高一的第一次月考,成绩仅排在班上十几名,随后几次月考,更是滑落到二十几名。“我已经很努力了,学习成绩就是上不去。”家长的不理解,老师的不重视,让曾经的“神童公主”的骄傲光环瞬间破碎,从台上最闪亮的“明星”,跌落成台下普通观众,巨大的落差,让她一度“放松”自己,按照自己的意愿学习、生活,成为学霸班上的“另类”。 “其实二十几名已经很好了,至少可以考上武大华科,但那个时候没有人告诉我,我以为自己真的很差。”说到这里的时候,黄皓月的眼中有一丝伤感和落寞,虽然之后成绩时常徘徊在班上倒数几名,但高考总分依然超过一本分数线,考入湖北大学生物科学专业。

英国历史简介

[英国]英国简史(英文) 2006-1-23 页面功能【字体:大中小】【打印】【关闭】History Until 1707, this section deals primarily with English history. England and Wales were formally united in 1536. In 1707, when Great Britain was created by the Act of Union between Scotland and England, English history became part of British history. For the early history of Scotland and Wales, see separate articles. See also Ireland; Ireland, Northern; and the tables entitled Rulers of England and Great Britain and Prime Ministers of Great Britain. Early Period to the Norman Conquest Little is known about the earliest inhabitants of Britain, but the remains of their dolmens and barrows and the great stone circles at Stonehenge and Avebury are evidence of the developed culture of the prehistoric Britons. They had developed a Bronze Age culture by the time the first Celtic invaders (early 5th cent. B.C.) brought their energetic Iron Age culture to Britain. It is believed that Julius Caesar's successful military campaign in Britain in 54 B.C. was aimed at preventing incursions into Gaul from the island. In A.D. 43 the emperor Claudius began the Roman conquest of Britain, establishing bases at present-day London and Colchester. By A.D. 85, Rome controlled Britain south of the Clyde River. There were a number of revolts in the early years of the conquest, the most famous being that of Boadicea. In the 2d cent. A.D., Hadrian's Wall was constructed as a northern defense line. Under the Roman occupation towns developed, and roads were built to ensure the success of the military occupation. These roads were the most lasting Roman achievement in Britain (see Watling Street), long serving as the basic arteries of overland transportation in England. Colchester, Lincoln, and Gloucester were founded by the Romans as colonia, settlements of ex-legionaries. Trade contributed to town prosperity; wine, olive oil, plate, and furnishings were imported, and lead, tin, iron, wheat, and wool were exported. This trade declined with the economic dislocation of the late Roman Empire and the withdrawal of Roman troops to meet barbarian threats elsewhere. The garrisons had been consumers of the products of local artisans as well as of imports; as they were disbanded, the towns decayed. Barbarian incursions became frequent. In 410 an appeal to Rome for military aid was refused, and Roman officials subsequently were withdrawn.

小游戏----密室逃脱

活动名称: 大班数学探索活动----密室逃脱 设计思路: 偶然的机会听孩子们分享自己玩游戏的经验,发现他们对比较有挑战性的游戏如密室逃脱闯关等非常感兴趣,于是,我就想: 能不能用游戏这样一个载体,将数学这一学科的某些知识呈现在里面?于是,我就按照自己的理解,把生活中常见的物品分成几个层次: 将游戏材料有的散点状放置,有的向不同方向有序排列,有的重叠排列等,投放到科学探索区内,观察幼儿的游戏情况。在幼儿操作材料过程中,我发现他们数数时的方法、速度、能力等都有异同,因此,我梳理了幼儿的一些数数经验,结合大班幼儿的年龄特点,生成了本次活动。 活动目标: 1、在幼儿观察、比较、推理中,尝试通过操作材料,探索可以将物品数正确的方法。 2、仔细倾听同伴的想法,乐意分享观察方式。 活动准备: 幼儿操作卡(每人2张)、PPT4张、笔、夹子、照片。 活动过程: 1、呈现密室,激发幼儿兴趣: 了解幼儿数数的能力。 出示PPT1,谈话引出课题 1、讲解密室逃脱游戏规则。 师:

今天,老师带你们玩密室逃脱,你知道这个游戏怎么玩吗?师讲解游戏规则: 密室逃脱就是我们进入房间,通过数房间里各种物品的数量来推算出房门的密码,从而打开房门,逃出密室。 2、报数游戏: 让幼儿数数接龙。 师: 清点人数完毕,请你们摆一个最漂亮、最帅气的姿势跟老师们打个招呼,不然,待会出不来可能没有人来救你。 3、谈话: 你能数到几? 师: 刚才集体报数完全正确,现在,我问问小朋友,你最多能数到几?我说一个数字,你接着往下数,往下数()个数。(教师一方面关注幼儿数数是否正确,另一方面关注幼儿从十位数数到百位数数的能力,同时,观察其他幼儿,聆听每个幼儿的数数情况。)师: 小朋友们都能数到很大的数,真了不起!但你们数数的正确性怎么样呢?老师会在游戏中检查你们的本领。 2、进入密室: 探索正确数数的方法。 第一环节: 来到密室一: 出示PPT2

新八年级下册英语课文语法填空和短文改错

一、 HanselandGretel______(live)nearaforestwithhisfatherandstepmother.Oneyear,theweather______(be)sodry thatnofood_____(grow).Thewifetoldherhusbandthatunlesshe________(leave)hischildren______(die)inthe forest,thewholefamilywoulddie.Gretel_________(hear)thattheirstepmotherplanned________(kill)herandh erbrother.ButHanselhadaplan________(save)himselfandhissister.Hewenttogetsomewhitestonesbeforehew enttobedthatnight.Thenextday,thewife_________(send)thechildrentotheforest.Hansel___________(drop)t https://www.sodocs.net/doc/ad821139.html,terthatnight,they________(see)thestonesbecauseoftheshiningmoon.Thestones__ ace)forthisistheHimalayas.TheHimalayasrunalongthe______________(southwest)partofChina.Ofallthem ountains,Qomolangma________(rise)thehighestandis____________(famous).Itis8,844.43metershighands oisverydangerous________(climb).Thickcloudscoverthetopandsnow__________(fall)veryhard.Evenmore serious_______(difficulty)includefreezingweatherconditionsandheavystorms.Itisalsoveryhard_____(take) inairasyougetnearthetop. Thefirstpeople_____(reach)thetopwereTenzingNorgayandEdmundHillaryonMay29,1953.ThefirstChi neseteam__(do)soinI960,whilethefirstwoman_____(succeed)wasJunkoTabeifromJapanin1975. Whydosomanyclimbersrisktheir_____(life)?Oneofthemain_______(reason)isbecausepeoplewant______(c hallenge)themselvesinthefaceofdifficulties. Thespiritoftheseclimbers_____(show)usthatweshouldnevergiveup____(try)toachieveourdreams.Itals

《密室逃脱》碧绿色房间闯关攻略详解

《密室逃脱》碧绿色房间闯关攻略详解 继博士的家之后,小编接下来要为大家介绍密室逃脱碧绿色房间闯关攻略。密室逃脱,又 叫TAKAGISM ,是一款密室闯关游戏,游戏需要玩游戏者在游戏中寻找线索,一步一步地走出 密室。《密室逃脱》游戏的玩法很简单,只需用鼠标即可。整个游戏过程都是在一间房子里进行的,游戏的主人公不知道为什么被困在这里(每集都交待了不同的原因,但这些原因都是相当的 离奇)T akagism的逃离房间系列是非常经典的解迷小游戏,自从作者推出第一个版本Crimson Room后便深受世界各地网友的喜爱,并因此掀起了一股“逃离房间热”。本文将详细介绍密室逃脱碧绿色房间如何闯关。 1、开灯,左转(点画面的左下角,右转同理)在鞋橱的鞋下边发现“若”字图片;鞋橱底发现镜框。 2、左转,在土黄色的垫子底下发现“般”字图片。 3、左转,在壁橱的最上一格中左右边分别发现“多”字图片和一束香。二格的红笔记本有锁打 不开,在最下面的小橱里发现黄影集里两张照片。 4、点地上的红毯子,发现骷髅!点击靠近,在左手手腕处发现钥匙,右手发现药瓶,点小腿处的红绳物体可以把毯子叠起,并发现脚上有密码锁(暂时不开),点物品栏中的红毯,再点下边的“查看物体”(即"About Item"),可放大,点大图的红毯子得到十字架状物体。 百度攻略&口袋巴士提供 1

5、左转,在斜对着蓝门处,(就是那个有窟窿的蓝门,不是一开始的那个门)。点头顶的 灯罩,在灯罩上发现“罗”字图片(小红块,仔细点),在墙上发现“ 蜜”字图片(小白块)。 6、左转,在小冰箱里发现“ 波”字图片和一罐啤酒(啤酒先不要拿,因为骷髅要冰冻的)。在旁边的红桶里发现张纸,打开是些黑头发。记住:点装黑头发的纸,然后点击查看物体,放大纸,多点几下纸,然后就可以在红桶底下得到打火机。 7、用钥匙开红笔记本打开,在日记中可以找到女孩的生日,那就是开骷髅脚上的密码。(通常会是在日记的第四页,里面有一句话“The day after tomorrow is her birthday”,这一天的简单写法 就是密码。你先看你所翻到的那页日记上是几月几号,再在那个日期后加两天,就是小女孩子的 生日,那一天的简写就是密码。(如9月10日,简写就是0910,这就是密码),记下密码。继续翻日记,翻到最后得到一张CD。 8、放大装有头发的纸,点打火机,再点纸,可以烧出东西来,放大药瓶,里面有两粒药,一 张写有箴言的纸。放大绿十字,按照箴言的顺序位置和烧出来得数字相对应(形位相同),把字( 6张图片)填在十字架状物体上(位置随机的),放对会变成个四方体,放下暂不用。 9、在壁橱的第3格,有香炉和磬(旁边红的是槌),把装有CD的CD盒放在香炉后面,把香放香炉左,罐啤放香左(要冰镇的啊,冰一两分钟就可以拿出来了,先把啤酒从冰箱拿出来,点显 百度攻略&口袋巴士提供 2

中国文化常识-中国传统艺术I 中国民乐与戏剧(英文讲授中国文化)Chinese Folk Music and Local Operas

Folk Music 中国民乐 Beijing Opera 京剧 Local Operas 地方戏 Outline ?China, a nation of long history with profound culture, ?inherited and developed a great variety of traditional art forms which suit both refined and popular tastes 雅俗共赏. ?From the melodious and pleasant folk music to the elaborate and touching local dramas, ?from the simple but elegant inkwash painting(水墨画) to the flexible and powerful calligraphy, ?one can always discern the light of sparkling wisdom. ?Traditional Chinese arts have tremendously impressed the world. ?Chinese folk music, with strong nationalistic features, is a treasure of Chinese culture. ?As early as the primitive times, Chinese people began to use musical instruments, ?which evolved today into four main types categorized by the way they are played 吹拉弹打.materials they are made of (丝竹管弦). stringed instrument 丝:弦乐器 wind instrument 竹:管乐器 ?吹:The first type is wind instrument 管乐器, as show in xiao (a vertical bamboo flute )箫,flute 笛子, suona horn 唢呐, etc. ?拉:The second type is string instrument 弦乐器, represented by urheen 二胡, jinghu 京胡(a two-string musical instrument similar to urheen ), banhu fiddle 板胡, etc.

真人密室逃脱指南

现在,非常流行真人密室逃脱的游戏,让你进入密室里面,想尽一切办法逃出来。很多人不明白这个怎么玩,小编今日以自己的经验为你介绍。 方法/步骤 1首先,你在网上查一下在你所在的地方,有什么真人的密室。最好去的人比较多,年龄是不受限制的,但是尽量不要带16岁以下的,带去了没用,而且又花费了一张票钱。 2真人密室有很多主题。比如,诅咒;医院;梦游等等。还有很多电影的,比如,生化危机;电锯惊魂;盗墓,都是很火热的主题。所谓,主题,就是说密室里面的道具、背景、风格是哪种。 3选好主题之后。价格方面,其实所以密室都是差不多的价格,除非它的规模很大。价格基本在40到65一人,团购价,如果是选择在网上团购,那么要先打电话预约时间。注意:如果你明天要去,最好是提前半天打电话。这种真人游戏需要预约。 4打电话联系,会定下你们的时间,要求是提前15分钟到她们店里。如果你不选择网上团购,那么就到现场再付费,但是也是需要预约的。因为,真人密室非常受人追捧。而且,每场游戏时间都是一个小时。 5一定要提前去。去了之后,店内都有桌游可以随便玩,有饮料供应。所以也不必担心无聊。去之前最好少带随身物品,女士包包,都要少带。进去之前,工作人员会让你交出手机(有干扰),放在保险箱里。大可放心。 6进去之后,会有纸张写密室的故事背景。进去之后,一定要注意看周围的东西。一般来说,密室里面大多都是机械化的东西,像空调就不用找了,有纸张会提示你们什么东西不用去找。然后你们就要去找东西,也就是线索。手能够得到的地方都去摸一摸。 7但是这个也不是完全凭找东西就可以通关的。要靠线索去联想怎么回事。而且,如果没有用到的东西一定要把它带在身上,很多没用到的下一关就有可能用。工作人员会发给你传呼器,是给你提示用的,你们想不出来,就可以问问他。 选择加盟魔魔岛密室逃脱的5大理由 理由1:逼真代入感,如侦探小说一般,抽丝剥茧,环环相扣的逻辑,挑战你的IQ与思维。理由2:中型线索类密室最为考验玩家的逻辑推理能力,你不仅要具有当代福尔摩斯般敏锐的观察力和想象力,还要能勇敢的探索和决断。团队配合,将会是您胜出的关键! 理由3:体验过PC密室逃脱类游戏的玩家在体会找东西和解密快感的同时,还能体会到真实场景角色扮演的快乐。 理由4:各种梦幻场景,给玩家创造一个个惊喜。让玩家体会设计者的用心。 理由5:大型主题剧情机关解谜场景相结合,完美结合所有环节,更精致,更专业。

密室逃脱相关完整版

密室逃脱相关

Q1:别人做密室逃脱 从大二时,开始接触密室逃脱游戏,到今年寒假一天能玩上三、四次,“既然大家都喜欢,干嘛不自己也开一个呢?”黄皓月介绍,决定开一个“密室逃脱”店,很偶然,也很仓促。5个爱玩密室的女孩当即一拍即合,其中有两个女生已经工作,三个在校生中,黄皓月也即将本科毕业,她还“跨界”选修了金融专业的双学位。 三月份,考察江汉路所有密室逃脱店、玩遍40多个主题,敲定店址; 四月份,店面装修,自己设计主题、自己安装机关、自己制作装置……; “五一”,新店开张,首日客流量过百,不大的客厅里,挤满了前来“尝鲜”的同龄人。 开业的前一天,女孩们都在店里通宵加班,“创业比考研费精力多了,四月份的时候,天天熬夜。”黄皓月告诉记者,开店,比想象中的复杂、琐碎。对于“学霸”的称号,她觉得那是上高中以前的事了,从高二起,一直到现在,她更愿意把自己定义为“学霸班上的玩货”。 中考前,黄皓月因成绩优秀,提前保送到当地最好的学校——新洲一中“火箭班”。然而高一的第一次月考,成绩仅排在班上十几名,随后几次月考,更是滑落到二十几名。“我已经很努力了,学习成绩就是上不去。”家长的不理解,老师的不重视,让曾经的“神童公主”的骄傲光环瞬间破碎,从台上最闪亮的“明星”,跌落成台下普通观众,巨大的落差,让她一度“放松”自己,按照自己的意愿学习、生活,成为学霸班上的“另类”。 “其实二十几名已经很好了,至少可以考上武大华科,但那个时候没有人告诉我,我以为自己真的很差。”说到这里的时候,黄皓月的眼中有一丝伤感和落寞,虽然之后成绩时常徘徊在班上倒数几名,但高考总分依然超过一本分数线,考入湖北大学生物科学专业。 高中时期的那一段心路历程,对她触动很大,并且让“学霸班上的玩货”这一身份,一直保持到现在。今年,她们班上41名同学中,有三十几个考研,“没有同学相信我会考上,别人在学习的时候,我在玩。”她笑着说,作为前学生会副主席,如果她呆在寝室里安静的看书超过一周,所有人都会奇怪她没有不出去“活动”。 5月9日,小店开张后迎来的第一个双休日,女孩子们正在努力积累经验,希望在暑假旺季到来前,将自己打造成一个“全能女孩”。“我最大的优点,就是没有拖延症。”黄皓月觉得,“把今天做好”才是最重要的,至于最终结果是输是赢,只要自己努力过就好。她笑称,对未来没有明确的计划,如果读博的话,或许会考虑出国吧。 Q2采访5专家,2业主 业主1: 我是12年4月,5月的时候接触的密室逃脱,当时在武汉的EP逃逸层第一次接触到真人密室逃脱,当时整个武汉就两家,第一次体验了他们家的密室之后,我自己动了心思。6月我在创建了X-space真人密室逃脱。7月装修完开业,总共资金消耗6W不到,所有的谜题设计都是自己想的。那个时候也没什么房型啊,格局啊,什么的,一点纸片信息,一些文字内容,一点点的氛围,就用上房东家的家具,我们开业了。每天发发传单,做做问答,一个月的,收回了全部的成本还有不少的收益。当时也动了心思,想看看其他地方的密室逃脱是怎么做的,下一步,应该怎么发展。 永远要记住一点,你的视线永远要看着前方,比你能看到的位置更远的位置,然后收回来看脚下离目标有多远,选好节点,去执行。 我们的创业路径上很强调一个词,节点。后面也会不停的提到。

相关主题