搜档网
当前位置:搜档网 › Mini6410-1048-原理图

Mini6410-1048-原理图

接触网隔离开关

接触网隔离开关及电动操动机构检修与维护手册 供电公司触网检修部 2011年 10月

概述 隔离开关是一种没有熄弧装置的开关电器,供接触网在无载情况下进行倒闸,电气隔离。隔离开关在分闸状态有明显可见断口,在合闸状态下能可靠地通过正常工作电流和短路故障电流。 轨道交通接触网现有的国产隔离开关分宝鑫和长城两种,一般与分段绝缘器合用。 宝鑫的隔离开关: 重型隔离开关:主要应用于牵引变电站出线端的触网馈电开关,馈电开关间的联络开关。 轻型隔离开关:主要应用于车辆段的库线、专用线和库线间的联络开关。 长城隔离开关: 宝鑫隔离开关及

电动机构控制箱 宝鑫隔离开关 一、结构 隔离开关为单柱各柱式结构。三根支柱绝缘子呈品字形排列,两根上端固定静触头,底部固定于底座;一根上端固定动触头,底部固定于手柄底座,手

柄底座可相对于底座做垂直面上的转动,分、合闸过程即靠此转动完成。 二、工作原理 隔离开关主要由底座、手柄底座、支柱绝缘子和导电回路组成。导电回路固定在支柱绝缘子的上端,两根支柱绝缘子固定在底座上,另一根固定在手柄底座上。通过传动机构操作手柄底座,使之相对于底座做垂直面上的转动,带动导电回路的触头作分、合闸运动。触头合闸时,使电气回路接通,以承受正常负荷电流。触头分闸时,电气回路断开,承受系统正常标准规定电压,起隔离作用。 三、检修与维护 1、到牵引站确认牵引小车位置后(冷备用状态)将隔离开关合闸并在分段两段挂设地线(注:将电动操作机构转换开关调至“当地”位置或关闭进线电源,防止电调或变电站误操作); 2、检查开关瓷瓶是否有烧伤、拉弧痕迹;是否有碰伤及裂纹,如发现应予更换。 3、检查开关动静触头是否有烧伤、拉弧痕迹;清理动静触头接触面,合分开关,看看动静触头接触是否完好,用0.05mm*10mm的塞尺检查刀片,其塞入深度在接触表面10%以下;并在动静触头上加涂导电油脂(中性凡士林)。 4、检查静触头上的可调弹簧螺栓,使静触头保持一定的间隙。

9205数字万用表工作原理电路及其测量电路

9205数字万用表工作原理电路及其测量电路- 全文 数字万用表由数字电压表(DVM)配上各种变换器所构成的,因而具有交直流电压、交直流电流、电阻和电容等多种测量功能。 下图是数字万用表的结构框图,它分为输入与变换部分、A/D转换器部分、显示部分。输入与变换部分,主要通过电流一电压转换器(w)、交一直流转换器(AC/DC)、电阻一电压转换器(R/V);电容一电压转换器(CN)将各测量转换成直流电压量,再通过量程旋转开关,经放大或衰减电路送入A/D转换器后进行测量。 A/D转换器电路与显示部分由ICL7106和LCD构成。

我们可以看出数字万用表是以直流200mV作基本量程,配接与之成线性变换的直流电压、电流;交流电压、电流,欧姆、电容变换器即能将各自对应的电参量用数字显示出来。 功能电路及工作原理 1.电阻测量电路及小数点显示电路(见下图) ①采用比例法测量电阻,被测电阻Rx和基准电阻串联起来接在V+和COM之间,Uin=V+RX/(R+RX)。测量档位确定后,R确定,则Rx越大,Uin也越大;档位从200Ω~20MΩ变化时,相应的R也增大,通过计算可以看出能保证Rx上的分压不会超出一定值,使各个量程保持平衡。 ②ICL7106只有液晶笔端和背电极驱动端,为了显示小数点,利用运放OP1构成反相放大器形成小数点显示电路,使得ICL7106去LCD的背电极BP点的脉冲信号(50Hz的方波,占空比位50%,保证交流电压有效值为0,延长LCD的使用时间)和相应去每个小数点BP2、BP20、BP200的脉冲信号反向,根据液晶的显示原理,此时正好点亮相应的小数点。

2.直流电压测量电路及交流电压测量电路(见下图) ①直流电压测量采用电阻分压器法测量电压,输入的直流电压通过分压和转换开关将各个量程电压均变成为0~200mV直流电压,最后送入A/D 转换电路去显示。 测量值越大,则分压送入ICL7106的输入端的电压越大;档位从 200mV~1000V变化时,相应的档位电阻减少,通过计算可以看出能保证

风力发电机工作原理图解析

风力发电,是能源业又一突破,其中风力发电机功不可没。通过风力发电机工作原理图,我们可以清晰了解各种奥妙。其实,风力发电机工作原理图并不是那么难懂。下面,我们一起来对风力发电机工作原理图进行详细的剖析和解读吧! 风力发电机为一由转动盘、固定盘、风轮叶片、固定轮、立竿、集电环盘、舵杆、尾舵和逆变器组成的系统。转动盘和固定盘构成该系统的发电机,逆变器包括50赫正弦波振荡器、整形电路、低压输出电路和倒相推挽电路。 风力发电机工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32。7-36。9米/秒。 风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时*齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元。

煤矿井下低压检漏保护装置的安装、运行、维护与检修细则定稿

煤矿井下低压检漏保护装置的安装、运行、维护与检修细则定稿

————————————————————————————————作者: ————————————————————————————————日期:

第一章总则 为了保证矿井和人身安全,根据《煤矿安全规程》(92年版)第434 条的规定,特制定本细则。 第1条本细则仅适用于井下中性点不直接接地的1140v及以下动力、照明、信号电网中的各类检漏保护装置,包括各类设备中具有漏电闭锁、漏电跳闸及选择性漏电保护功能的保护单元(以下简称检漏保护装置)。 第 2 条凡从事井下电气设备安装、运行、维护与检修的人员均应熟悉本细则。.第 3 条对井下使用的检漏保护装置,各矿(井)必须设专人进行维护、检修和整定,并根据本细则的要求制定相应的管理制度,使检漏保护装置正常运行。 第 4 条检漏保护装置的防爆性能必须符合国标GB3836《爆炸性环境用防爆电气设备》的要求.检漏保护装置的电气性能必须经煤炭系统归口检验单位检验合格。 第 5 条井下各变电所的低压馈电线上,应装设带漏电闭锁的检漏保护装置或有选择性的检漏保护装置。如无此种装置,必须装设自动切断漏电馈电线的检漏保护装置。 煤(岩)电钻、照明信号馈电线上,必须装设有自动切断漏电馈电线的检漏保护装置。 低压电磁起动器应具备漏电闭锁功能。 第 6 条运行中的检漏保护装置性能必须可靠,严禁任意拆除或停用。 第7 条选择性检漏保护装置必须配套使用(即总开关和所有分支开关必须都装设),带延时的总检漏保护装置不准单独使用。 第二章下井前的检验 第8 条检漏保护装置在地面要进行仔细检查、试验,符合要求后才可下井使用。检查试验内容: 1.按国标GB3836《爆炸性环境用防爆电气设备》检查隔爆外壳是否符合规定。 2 .按厂家说明书上所示线路核对检漏保护装置内部接线是否正确,连线是否良好,元件、导线等有无破损。 3 . 检漏保护装置的绝缘电阻值应符合:1140V的用1000V的摇表摇测不低于10M Ω;660V的用1000V的摇表摇测不低于10MΩ;380V的用500V的摇表摇测不低于5MΩ;127V的用250V的摇表摇测不低于2MΩ;42V的用250V的摇表摇测不低于0.5MΩ。 4.介电性能试验必须能承受交流工频耐压试验,历时lmin 而无击穿闪络现象。 对于主电路以及规定接至主电路的控制电路和辅助电路,其工频耐压试验应符合表 1 规定。 表1 主电路及接至主电路的控制电路和辅助电路的工频耐压值 对于规定不接至主电路的控制电路和辅助电路,其工频耐压试验应符合表2 规定。 表 2 不接至主电路的控制电路和辅助电路的工频耐压值 注:电子器件不

隔离开关的基础结构及用途 (图文) 民熔

隔离开关 隔离开关的结构组 成 (1)支持基地。这一部分的功能是将导电部件、绝缘体、传动机构、操作机构等作为一个整体来支撑和固定,并将它们固定在基础上。 (2)导电部分。包括触头、闸刀开关和接线座。这部分的作用是在电路中传导电流。 (3)绝缘体。包括支撑绝缘子和操作绝缘子。其功能是将带电部件与接地部件隔离。 (4)传动机构。其作用是接收操作机构的扭矩,通过曲柄臂、连杆、轴齿或操作绝缘体将运动传递给触头,完成隔离开关的分、合动作。 (5)操作机构。与断路器的操作机构一样,通过手动、电动、气动和液压为隔离开关的动作提供能量。 几种常用隔离开关简介及应用 1、 Gn19-10系列户内高压隔离开关 用途:gn19-10系列户内高压隔离开关是一种三相交流50Hz 高压电器,适用于10KV电压等级作为网络,在有电压和空载情况下分、合电路。 GN19系列隔离开关的主要技术参数

GN19-10型户内隔离开关外形 GN19-10C型户内隔离开关外形 二、GW4系列隔离开关: GW4型隔离开关可配用手动或电动操动机构,三相联动操作,电动操作可实现远方控制。根据需要还可配装接地开关。该型隔离开关结构简单紧凑,尺寸小,质量轻,广泛用于10~110kV配

电装置中。由于闸刀在水平面内转动,因而对相间距离的要求大是其不足之处。 GW4系列隔离开关 三、GW5系列隔离开关 1-底座;2-支座;3-棒型支柱绝缘子;4-垫;5-接线座;6-右触头;7-罩;8-左触头;9-接线座;10-接地静触头;11-接地动触头(单接地在右侧);12 闭锁板

底座装配 接线座装配 1-静触头;2-上节绝缘子;3-下节绝缘子;4-主闸刀;5-底座;6-铭牌;7-接地静触头;8-接地开关;9-转动底座;10-电动机构;11-垂直竖拉杆;12-手动机构

风力发电机结构图分析风力发电机原理

风力发电机结构图分析风力发电机原理 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。风力研究报告显示:依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。下面先看风力发电机结构图。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

风力发电机结构图指出:风力发电机因风量不稳定,故其输出的是13~25v变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220v市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。风力发电机结构图显示:目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200w风力发电机也可以通过大电瓶与逆变器的配合使用,获得500w甚至1000w乃至更大的功率出。 现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒。 风力发电机结构图显示:风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时监视齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元

远方漏电实验安全技术措施(最新版)

远方漏电实验安全技术措施 (最新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0194

远方漏电实验安全技术措施(最新版) 煤矿井下低压供电系统中馈电开关检漏继电器,为使其使用正常,动作灵敏可靠,保证供电安全。依据煤炭部制定的《煤矿井下检漏器安装、维护与检修细则》中第十八条规定,每月至少对检漏继电器进行一次远方人工漏电试验,因我矿是高瓦斯、双突出矿井,为保证试验安全,特编制本措施如下: 一、试验时间:每月内对井下所用的馈电开关检漏继电器逐台进行一次远方人工漏电试验。 二、试验人员组织:电管组、机电部维修工、被试验项目部维修工、瓦斯检查员各一人。 三、试验方法:在最远端的真空磁力起动器中的负荷侧按电压等级接入试验电阻(660V用11千欧10W电阻),接真空开关时,试验电阻的一端接在电机综保器的一项螺栓上,另一端接在接地螺栓

上,然后盖上外盖,送电。观察馈电开关是否跳闸,如立即跳闸,说明检漏器动作可靠,试验完毕后,要拆除试验电阻,盖好外盖,恢复正常供电。 四、技术要求及安全注意事项: 1、试验人员在远方人工漏电试验前,应对馈电开关检漏器运行情况进行一次全面检查试验,并作好记录,检查试验内容: ⑴、观察欧姆表指示是否正常。当网络绝缘660V低于30千欧,机电部修工和相关项目部维修工应检查供电网络电缆及设备有无漏电现象及时采取措施,以提高网络绝缘电阻阻值尽量避免自动跳闸。 ⑵、变电所及掘进工作面上的局部接地极和辅助接地极应安设良好,符合要求。 ⑶、检查各处导线绝缘有无破损,各处接头,接点接触是否良好,有无松动脱落或烧坏现象。 ⑷、内部元件,熔断器、三相电抗器、指示灯及馈电开关的线圈有无损坏。 ⑸、用试验按钮对检漏继电器进行一次跳闸试验。

数字万用表的基本原理和维修

常用数字万用表的基本原理和维修 看到经常有人问万用表烧了怎么修,就写了这个帖子,希望对大家能有所帮助.有什么疑问的话也可以共同研究. 我们常用的万用表基本都是用7106为核心做的,例如830,9205,9208等等这些表. 很多厂家在设计电路时会考虑对7106做适当的保护措施,例如在图中的IN+与地之间接一个三极管,将电压限制在1V以内.如果出现误操作导致高压进入,这个三极管被击穿短路,使得7106不会损坏.如果发现万用表在电压档一直显示0V的话,就检查这部分电路.芯片损坏的几率还是比较小的,大部分都是外围元件坏了. 7106是个典型的3位半AD转换器,基本原理如下: 2008-4-7 16:48 7106 750V,是因为元器件耐压的问题,而且通常也不需要太大的量程). 直流电压测量原理 前面几个是分压电阻,分别对应个量程.如果表坏了根据这个图可以很快的判断出故障部位.这种表的刀盘很复杂,拆的时候一定要注意刀盘弹簧片的位置,查找走线方向时一定要仔细,一不小心就看错了. 2008-4-7 16:57 830-DCV.JPG

交流电压测量:前端电路与支流电压完全相同,只是多了个整流电路.与普通指针表二极管整流不同,数字表都用运放整流,精度会高很多. 如果你的表在直流电压和电流档都正常,就是在交流电压和交流电流档有问题的话,不用怀疑,肯定是这部分出了问题.这里的整流一般都用TL062和2个1N4148,在电路板上很好找. 新加一张实际图,图中的TL062就是整流用的(不同的表所在的位置可能会不一样).这部分损坏的话交流就会出问题. 2008-4-7 17:07 830-ACV.JPG

风力发电机的组成部件其功用

风力发电机的组成部件及其功用 风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备。风力发电机通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。下面将以水平轴升力型风力发电机为主介绍它的各主要组成部件及其工作情况。图3-3-4和3-3-5是小型和中大型风力发电机的结构示意图。 图3-3-4 小型风力发电机示意图 1—风轮2—发电机3—回转体4—调速机构5—调向机构6—手刹车机构7—塔架8—蓄电池9—控制/逆变器 图3-3-5 中大型风力发电机示意图 1—风轮;2—变速箱;3—发电机;4—机舱;5—塔架。 1 风轮 风轮是风力机最重要的部件,它是风力机区别于其它动力机的主要标志。其作用是捕捉和吸收风能,并将风能转变成机械能,由风轮轴将能量送给传动装置。

风轮一般由叶片(也称桨叶)、叶柄、轮毂及风轮轴等组成(见图3-3-6)。叶片横截面形状基本类型有3种(见图第二节的图3-2-3):平板型、弧板型和流线型。风力发电机的叶片横截面的形状,接近于流线型;而风力提水机的叶片多采用弧板型,也有采用平板型的。图3-3-7所示为风力发电机叶片(横截面)的几种结构。 图3-3-6 风轮 1.叶片 2.叶柄 3.轮毂 4.风轮轴 图3-3-7 叶片结构 (a)、(b)—木制叶版剖面; (c)、(d)—钢纵梁玻璃纤维蒙片剖面; (e) —铝合金等弦长挤压成型叶片;(f)—玻璃钢叶片。 木制叶片(图中的a与b)常用于微、小型风力发电机上;而中、大型风力发电机的叶片常从图中的(c)→(f)选用。用铝合金挤压成型的叶片(图中之e),基于容易制造角度考虑,从叶根到叶尖一般是制成等弦长的。叶片的材质在不

低压检漏装置跳闸试验措施

井下低压供电系统检漏装置跳闸试验 安全(技术)措施 1、为保证井下低压供电系统的安全,规范井下低压供电系统试验操作方法,提高矿井供电安全管理水平,根据《煤矿安全规程》第457条、《煤矿井下低压检漏保护装置的安装、运行、维护与检修细则》和公司有关文件要求,每天必须对井下低压检漏装置进行一次就地跳闸试验,为保证试验工作安全有序的进行,特制定本措施。 2、低压检漏装置跳闸试验应在矿规定的时间进行,试验前必须请示矿调度,经矿调度允许后方可进行。 检漏试验班次及时间规定如下: 二水平泵房和北翼1#变电所在每日四点班16点~17点进行一次检漏继电器跳闸试验。其它地点的检漏继电器在每日八点班9:00~10:00进行一次跳闸试验。 井底变电所和北副井底变电所试验检漏前,矿调度应分别通知两个井底信号工,试验期间,严禁开动副井绞车,试验结束后方可开车。 如有特殊情况不能在规定时间试验时,必须由矿调度安排时间进行,不得空班漏检。 3、对各回路开关试验顺序的规定: 先试验分开关,后试验总开关。先试验风机专用回路,后试验其它回路。先试验风机专用回路如果跳闸,应及时恢复供电,观察风机回路运行情况。正常无误,间隔20分钟后,再试验其他回路,各回

路试验跳闸后应及时恢复。 4、凡涉及局部通风机的回路,在试验检漏前,各相关单位必须安排专职电工看管局部通风机,并进行一次风机倒台试验。风机倒台正常后,应向矿、机电调度汇报。本风机回路上的所有单位全部汇报风机倒台正常后,矿调度通知机电调度方可指挥配电工开始进行检漏试验。在此期间,影响地区应停止放炮、采煤、掘进等一切采掘作业。否则,不得进行检漏试验。 5、凡带有瓦斯监测及其它重要负荷供电线路试验检漏时,由矿调度通知相关单位,采取措施后,再通知机电调度,方可进行检漏试验。 6、低压检漏装置跳闸试验前,必须确保试验地点及所属范围内供电系统和通风系统正常,检查瓦斯浓度不得超过0.4%,否则不得试验。 7、试验人员在试验期间应密切观察供电系统是否正常,一旦发现问题,应及时汇报给区队值班人员和机电调度,并采取措施进行处理。 8、试验情况应及时向机电调度汇报,包括试验时间、试验人、绝缘电阻值、跳闸情况等情况。试验工作结束后,试验人员必须认真填写试验记录,汇报给区队值班人员和机电调度。 9、以上各条要严格执行,凡造成空班漏检的,要按照有关管理制度严肃追究相关人员的责任。

井下检漏保护装置跳闸试验实施细则(2020新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 井下检漏保护装置跳闸试验实 施细则(2020新版) Safety management is an important part of production management. Safety and production are in the implementation process

井下检漏保护装置跳闸试验实施细则 (2020新版) 况进行一次跳闸试验。为了严格执行《规程》的规定,并必须确保试验工作的安全顺利进行,特制定以下实施细则。 一、井下各变电所运行中的检漏保护装置必须符合《检漏保护细则》中的规定和要求,否则各变电所馈出低压电网严禁供电。 二、井下所有检漏保护装置每天必须进行一次跳闸试验。部分无专职变电工的变电所检漏保护装置必须由使用单位各工种司机作为兼职变电工进行试验,综采工作面移动变电站低压馈电开关的检漏保护装置由机电二队指定就近变电所的变得工进行试验。兼职变电工必须经培训合格后持证操作。所有漏电跳闸试验情况均要求及时做好记录,发现问题立即向矿调度室及本队值班干部汇报。经矿调度室同意后迅速切断漏电保护失灵的线路。所有向采掘工作面供

电的变电所或移动变电站,其漏电试验情况必须汇报调度室台帐记录。 三、井下所有检漏试验时间及试验过程 1、各变电所低压检漏保护装置必须于每天14:30---14:40进行试验(每台检漏保护装置时间不得超过1分种),对无人看管变电所或综采工作面移动变电站检漏保护装置在正常试验时间的基础上推后20分种试验,最终试验时间不得超过15:00。各有关机运队值班干部安排专、兼职变电工必须严格遵照执行。如遇特殊情况不能停电停风的工作面,由通风灭火部、生产技术部和机电运输部负责提前以书面形式安排调度员必须于每天14:00前提前通知变电所变电工不予试验,具体试验工作由机电运输部负责另行处理。如无调度命令,各变电工再不做请示,直接在规定时间内进行试验,当变电工试验工作终止,对检漏保护装置动作灵敏可靠的线路,要立即恢复供电;对检漏保护装置动作不可靠或不动作的线路,即可终止供电,并立即汇报调度安排处理。对影响的掘进工作面和采用局部通风机供风的其它地点由调度员负责通知各使用单位设栏警戒,严

数字万用表原理及详细介绍

数字万用表 :XXX 学号:XXXXXX 专业:08电子信息工程X班 数字万用表DMM(Dital MultiMeter)采用大规模集成电路和液晶数字显示技术,具有结构简单、测量精度高、输入阻抗高、显示直观、过载能力强、功能全、耗电省、自动量程转换等优点,许多数字万用表还带有测电容、频率、温度等功能。 本课题的主要容是理解DT-830型数字万用表的基本结构和原理,通过数字万用表的组装与调试,培养电子产品安装测试技能。 万用表的概述 数字万用表是采用集成电路模/数转换器和液晶显示器,将被测量的数值直接以数字形式显示出来的一种电子测量仪表。 1.数字万用表的组成 数字万用表是在直流数字电压表的基础上扩展而成的。为了能测量交流电压、电流、电阻、电容、二极管正向压降、晶体管放大系数等电量,必须增加相应的转换器,将被测电量转换成直流电压信号,再由A/D转换器转换成数字量,并以数字形式显示出来。它由功能转换器、A/D转换器、LCD显示器、电源和功能/量程转换开关等构成。 常用的数字万用表显示数字位数有三位半、四位半和五位半之分。对应的数字显示最大值分别为1999,19999和199999,并由此构成不同型号的数字万用表。 2.数字万用表的面板 (1)液晶显示器:显示位数为四位,最大显示数为±1999,若超过此数值,则显示1或-1。 (2)量程开关:用来转换测量种类和量程。 (3)电源开关:开关拨至"ON"时,表电源接通,可以正常工作;"OFF"时则关闭电源。 (4)输入插座:黑表笔始终插在"COM"孔。红表笔可以根据测量种类和测量围分别插入"V·Ω "、"mA"、"10A"插孔中。 1模数转换与数字显示电路 常见的物理量都是幅值连续变化的所谓模拟量。指针式仪表可以直接对模拟

隔离开关的工作原理

隔离开关是高压开关电器中使用最多的一种电器,顾名思义,是在电路中起隔离作用。它本身的工作原理及结构比较简单,但是由于使用量大,工作可靠性要求高,对变电所、电厂的设计、建立和安全运行的影响均较大。刀闸的主要特点是无灭弧能力,只能在没有负荷电流的情况下分、合电路。 隔离开关(disconnector),即在分位置时,触头间有符合规定要求的绝缘距离和明显的断开标志;在合位置时,能承载正常回路条件下的电流及在规定时间内异常条件(例如短路)下的电流的开关设备。 隔离开关(俗称“刀闸”),一般指的是高压隔离开关,即额定电压在1kV 及其以上的隔离开关,通常简称为隔离开关,是高压开关电器中使用最多的一种电器,它本身的工作原理及结构比较简单,但是由于使用量大,工作可靠性要求高,对变电所、电厂的设计、建立和安全运行的影响均较大。隔离开关的主要特点是无灭弧能力,只能在没有负荷电流的情况下分、合电路。隔离开关用于各级电压,用作改变电路连接或使线路或设备与电源隔离,它没有断流能力,只能先用其它设备将线路断开后再操作。一般带有防止开关带负荷时误操作的联锁装置,有时需要销子来防止在大的故障的磁力作用下断开开关。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解隔离开关的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.sodocs.net/doc/af1053035.html,/

数字万用表设计实验 (4)

数字万用表设计性实验 [概述] 随着数字测量技术的日趋普及,指针式仪表已经逐渐被淘汰,我厂对“指针式改装电表实验”进行了改进,现采用了“数字万用表设计性实验”,使学生对数字电表的原理和使用方法有了深入的理解和应用,深得广大院校师生的好评。 一、实验目的 1.掌握数字万用表的工作原理、组成和特性 2.掌握数字万用表的校准方法和使用方法 3.掌握分压及分流电路的连接和计算 4.了解整流滤波电路和过压过流保护电路的功用 二、实验仪器 1.DM-Ⅰ数字万用表设计性实验仪一台 2.三位半或四位半数字万用表一台(另配) 三、实验原理 1.数字万用表的特性 与指针式万用表相比较,数字万用表有如下优良特性: ⑴高准确度和高分辨力 三位半数字式电压表头的准确度为±0.5%,四位半的表头可达±0.03%,而指针式万用表中使用的磁电系表头的准确度通常仅为±2.5%。 分辨力即表头最低位上一个字所代表的被测量数值,它代表了仪表的灵敏度。通常三位半数字万用表的分辨力可达到电压0.1mV、电流(指电流强度,下同)0.1μA、电阻0.1Ω,远高于一般的指针式万用表。 ⑵电压表具有高的输入阻抗 电压表的输入阻抗越高,对被测电路影响越小,测量准确性也越高。 三位半数字万用表电压挡的输入阻抗一般为10MΩ,四位半的则大于100MΩ。而指针式万用表电压挡输入阻抗的典型值是20~100kΩ/V。 ⑶测量速率快 数字表的速率指每秒钟能完成测量并显示的次数,它主要取决于A/D转换的速率。三位半和四位半数字万用表的测量速率通常为每秒2~4次,高的可达每秒几十次。 ⑷自动判别极性 指针式万用表通常采用单向偏转的表头,被测量极性反向时指针会反打,极易损坏。而数字万用表能自动判别并显示被测量的极性,使用起来格外方便。 ⑸全部测量实现数字式直读 指针式万用表尽管刻画了多条刻度线,也不能对所有挡进行直接读数,需要使用者进行换算、小数点定位,易出差错。特别是电阻挡的刻度,既反向读数(由大到小)又是非线性刻度,还要考虑挡的倍乘。而数字万用表则没有这些问题,换挡时小数点自动显示,所有测量挡都可以直接读数,不用换算、倍乘。 ⑹自动调零 由于采用了自动调零电路,数字万用表校准好以后使用时无需调校,比指针式万用表方便许多。 ⑺抗过载能力强 数字万用表具备比较完善的保护电路,具有较强的抗过压过流的能力。 当然,数字万用表也有一些弱点,如: ⑴测量时不象指针式仪表那样能清楚直观地观察到指针偏转的过程,在观察充放电等过程时不够方便。不过有些新型数字表增加了液晶显示条,能模拟指针偏转,弥补这一不足。 ⑵数字万用表的量程转换开关通常与电路板是一体的,触点容量小,耐压不很高,有的机械强度不够高,寿命不够长,导致用旧以后换挡不可靠。 ⑶一般数字万用表的V/Ω挡公用一个表笔插孔,而A挡单独用一个插孔。使用时应注意根据被测量调换插孔,否则可能造成测量错误或仪表损坏。

漏电实验安全技术措施示范文本

漏电实验安全技术措施示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

漏电实验安全技术措施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 煤矿井下低压供电系统中馈电开关检漏继电器,为使 其使用正常,动作灵敏可靠,保证供电安全。依据煤炭部 制定的《煤矿井下检漏器安装、维护与检修细则》中第十 八条规定,每月至少对检漏继电器进行一次远方人工漏电 试验,因我矿是高瓦斯、双突出矿井,为保证试验安全, 特编制本措施如下: 一、试验时间:每月内对井下所用的馈电开关检漏继 电器逐台进行一次远方人工漏电试验。 二、试验人员组织:电管组、机电部维修工、被试验 项目部维修工、瓦斯检查员各一人。 三、试验方法:在最远端的真空磁力起动器中的负荷 侧按电压等级接入试验电阻(660V用11千欧10W电

阻),接真空开关时,试验电阻的一端接在电机综保器的一项螺栓上,另一端接在接地螺栓上,然后盖上外盖,送电。观察馈电开关是否跳闸,如立即跳闸,说明检漏器动作可靠,试验完毕后,要拆除试验电阻,盖好外盖,恢复正常供电。 四、技术要求及安全注意事项: 1、试验人员在远方人工漏电试验前,应对馈电开关检漏器运行情况进行一次全面检查试验,并作好记录,检查试验内容: ⑴、观察欧姆表指示是否正常。当网络绝缘660V低于30千欧,机电部修工和相关项目部维修工应检查供电网络电缆及设备有无漏电现象及时采取措施,以提高网络绝缘电阻阻值尽量避免自动跳闸。 ⑵、变电所及掘进工作面上的局部接地极和辅助接地极应安设良好,符合要求。

漏电实验安全技术措施

漏电实验安全技术措施煤矿井下低压供电系统中馈电开关检漏继电器,为使其使用正常,动作灵敏可靠,保证供电安全。依据煤炭部制定的《煤矿井下检漏器安装、维护与检修细则》中第十八条规定,每月至少对检漏继电器进行一次远方人工漏电试验,因我矿是高瓦斯、双突出矿井,为保证试验安全,特编制本措施如下: 一、试验时间:每月内对井下所用的馈电开关检漏继电器逐台进行一次远方人工漏电试验。 二、试验人员组织:电管组、机电部维修工、被试验项目部维修工、瓦斯检查员各一人。 三、试验方法:在最远端的真空磁力起动器中的负荷侧按电压等级接入试验电阻(660V用11千欧10W电阻),接真空开关时,试验电阻的一端接在电机综保器的一项螺栓上,另一端接在接地螺栓上,然后盖上外盖,送电。观察馈电开关是否跳闸,如立即跳闸,说明检漏器动作可靠,试验完毕后,要拆除试 验电阻,盖好外盖,恢复正常供电。 四、技术要求及安全注意事项: 1、试验人员在远方人工漏电试验前,应对馈电开关检漏器运行情况进行一次全面检查试验,并作好记录,检查试验内容:

⑴、观察欧姆表指示是否正常。当网络绝缘660V低于30千欧,机电 部修工和相关项目部维修工应检查供电网络电缆及设备有无漏电现 象及时采取措施,以提高网络绝缘电阻阻值尽量避免自动跳闸。 ⑵、变电所及掘进工作面上的局部接地极和辅助接地极应安设良好, 符合要求。 ⑶、检查各处导线绝缘有无破损,各处接头,接点接触是否良好, 有无松动脱落或烧坏现象。 ⑷、内部元件,熔断器、三相电抗器、指示灯及馈电开关的线圈有无损坏。 ⑸、用试验按钮对检漏继电器进行一次跳闸试验 2、试验点及所属范围内通风必须正常,并经瓦斯检查员测量瓦斯浓度,其浓度不得超过0.1%,否则不得试验。 3、对于通风专用线路的馈电开关检漏继电器,在试验前应提前请示通防处和调度室,得到批准并采取相应措施方可试验。

煤矿井下低压检漏保护装置安装、运行、维护与检修细则

煤矿井下低压检漏保护装置的 安装、运行、维护与检修细则 第一章总则 为了保证矿井和人身安全,根据《煤矿安全规程》(1992年版)第434条的规定,特制定本细则。 第1条本细则仅适用于井下中性点不直接接地的1 l40 V及以下动力、照明、信号电网中的各类检漏保护装置,包括各类设备中具有漏电闭锁、漏电跳闸及选择性漏电保护功能的保护单元(以下简称检漏保护装置)。 第2条凡从事井下电气设备安装、运行、维护与检修的人员均应熟悉本细则。 第3条对井下使用的检漏保护装置,各矿(井)必须设专人进行维护、检修和整定,并根据本细则的要求制定相应的管理制度,使检漏保护装置正常运行。 第4条检漏保护装置的防爆性能必须符合国标GB 3836((爆炸性环境用防爆电气设备》的要求。检漏保护装置的电气性能必须经煤炭系统归口检验单位检验合格。 第5条井下各变电所的低压馈电线上,应装设带漏电闭锁的检漏保护装置或有选择性的检漏保护装置。如无此种装置,必须装设自动切断漏电馈电线的检漏保护装置。 煤(岩)电钻、照明信号馈电线上,必须装设有自动切断漏电馈电线的检漏保护装置。

低压电磁起动器应具备漏电闭锁功能。 第6条运行中的检漏保护装置性能必须可靠,严禁任意拆除或停用。 第7条选择性检漏保护装置必须配套使用(即总开关和所有分支开关必须都装设),带延时的总检漏保护装置不准单独使用。 第二章下井前的检验 第8条检漏保护装置在地面要进行仔细检查、试验,符合要求后才可下井使用。检查试验容: 1.按国标GB3836(1爆炸性环境用防爆电气设备》检查隔爆外壳是否符合规定。 2.按厂家说明书上所示线路核对检漏保护装置部接线是否正确,连线是否良好,元件、导线等有无破损。 3.检漏保护装置的绝缘电阻值应符合:1 l40 V的用 1 000 V 摇表摇测不低于10 MΩ;660 V的用1 000 V摇表摇测不低于10 M Ω;380 V的用500 V摇表摇测不低于5 MΩ;127V的用250 V摇表摇测不低于2MΩ;42 V的用250V摇表摇测不低于0.5MΩ。 4.介电性能试验必须能承受交流工频耐压试验,历时1 min而无击穿闪络现象。 对于主电路以及规定接至主电路的控制电路和辅助电路,其工频耐压试验应符合表1的规定。

500型万用表详细电路图

500型万用表电路图说明看图可以理解万用表内部原理,知道万用表为什么能够测量高电压,什么情况下测量高电压会炸表。看图可以修理万用表。看图可以制做万用表。 1、直流2.5V。左开关置2.5V,右开关置V档。+孔—右开关—V档,35 k7电阻—12k 电阻—左开关--表头右侧,表头—660电阻—1400电位器—公用孔。 2、直流10V。左开关置10V,右开关置V档。+孔—右开关—V档,35k7电阻—12k 电阻—150k电阻—左开关--表头右侧,表头—660电阻—1400电位器—公用孔。 3、直流50V。左开关置50V,右开关置V档。+孔—右开关—V档,35k7电阻—12k 电阻—150k电阻—800k电阻—左开关--表头右侧,表头—660电阻—1400电位器—公用孔。 4、直流250V。左开关置250V,右开关置V档。+孔—右开关—V档,35k7电阻—12k 电阻—150k电阻—800k电阻—3k+1M电阻—左开关--表头右侧,表头—660电阻—1400电位器—公用孔。

5、直流500V。左开关置500V,右开关置V档。+孔—右开关—V档,35k7电阻—12k 电阻—150k电阻—800k电阻—3k+1M电阻—5k电阻—左开关--表头右侧,表头—660电阻—1400电位器—公用孔。 6、交流10V。左开关置交流10V,右开关置V档。+孔—右开关—V档,35k7电阻,左开关第5刀—660电阻,分两路,其中一路(正半波)—右二极管—2k电阻—左开关第4刀—表头右端,表头—660电阻—1400电位器—公用孔;另一路(负半波)—左侧二极管—公用孔。 7、交流50V。左开关置交流50V,右开关置V档。+孔—右开关—V档,35k7电阻、12k、150k电阻,左开关第5刀—660电阻,分两路,其中一路(正半波)—右二极管—2k 电阻—左开关第4刀—表头右端,表头—660电阻—1400电位器—公用孔;另一路(负半波)—左侧二极管—公用孔。

漏电试验过程

漏电保护远方试验操作过程说明 我矿井下低压供电系统中馈电开关检漏继电器,为使其使用正常,动作灵敏可靠,保证供电安全。依据煤炭部制定的《煤矿井下低压检漏保护装置的安装、运行、维护与检修细则》中第十八条规定,每月至少对检漏继电器进行一次远方人工漏电试验,因我矿是煤与瓦斯突出矿井,为保证试验安全,特编制本操作过程说明: 一、试验时间:每月内对井下所用的馈电开关检漏继电器逐台进行一次远方人工漏电试验。 二、试验人员组织:机电科专业组试验人员、被试验区队电工各一人。 三、试验方法:在最远端的真空磁力起动器的负荷侧按电压等级接入试验电阻(11千欧10瓦电阻),试验电阻的一端接在电机电源的一相接线柱上,另一端接在接地螺栓上,然后盖上外盖,送电。观察馈电开关是否跳闸,如立即跳闸,说明检漏器动作可靠,试验完毕后,要拆除试验电阻,盖好外盖,恢复正常供电。 四、技术要求及安全注意事项: 1、试验人员在远方人工漏电试验前,应对馈电开关检漏器运行情况进行一次全面检查试验,并作好记录,检查试验内容: ⑴、观察欧姆表指示是否正常。当电网绝缘660伏低于30千欧,被试验区队电工应检查供电网络电缆及设备有无漏电现象及时采取措施,提高电网绝缘电阻阻值,尽量避免自动跳闸。 ⑵、变电所及试验地点巷道的局部接地极和辅助接地极应安设良好,符合要求。 ⑶、检查各处导线绝缘有无破损,各处接头,接点接触是否良好,有无松动脱落或烧坏现象。 ⑷、内部元件,熔断器、三相电抗器、指示灯及馈电开关的线圈有无损坏。

⑸、用试验按钮对馈电开关检漏继电器进行一次跳闸试验。 2、试验人员最少应有一人带一只合格的便携测量仪,试验地点及所属范围内通风必须正常,并经便携测量仪测量瓦斯浓度,其浓度不得超过0.5%,否则不得试验。 3、对于通风专、备用线路的馈电开关检漏继电器,在试验前应请示通风科和调度室,得到批准后方可试验。 4、在试验时如发现检漏继电器误动作或失灵,应在现场及时排除故障,恢复正常后再做试验。故障无法现场排除时应向机电科值班员汇报,机电科值班员再向调度室汇报。在试验过程中,试验地点应指派专人与变电所联系试验情况。当漏电试验跳闸后应马上联系好恢复正常供电,并填写详细记录。 5、在最远点的真空开关中接入试验电阻试验时,应注意,试验电阻的引线与各相导线必须保持足够的安全距离,以免发生弧光短路。 6、试验人员必须严格执行煤矿安全规程和电气操作规程规定。

相关主题