搜档网
当前位置:搜档网 › Fluent燃烧模型介绍

Fluent燃烧模型介绍

Fluent燃烧模型介绍
Fluent燃烧模型介绍

1.Generalized Finite-Rate Model(通用有限速率模型)

该模型基于求解组分质量分数疏运方程,化学反应机理由用户自己定义。反应速率在组分疏运方程中作为源项,并且由阿累尼乌斯公式计算。该模型适合求解预混,部分预混以及非预混湍流燃烧。

2.Non-Premixed Combustion Model(非预混燃烧模型)

该模型求解混合分数输运方程,单个组分的浓度由预测得到的混合分数的分布求得。该模型是专门为求解湍流扩散火焰问题而发展,有许多方面都比有限速率模型要优越。该模型考虑了湍流对燃烧的影响,反映机理不能由用户自己设定。)

3.Premixed Combustion Model(预混燃烧模型)

该模型主要针对纯预混湍流燃烧问题,在这些问题中,反应物和生成物由火焰峰面隔开,该模型通过求解各种反应过程参数来预测火焰峰面的位置,该模型为考虑湍流对燃烧的影响,引入了一个湍流火焰速度。

4.Partially Premixed Combustion Model(部分预混燃烧模型)

该模型针对预混合肥预混燃烧都存在的湍流反应流动。通过求解混合分数方程和反应过程参数来确定火焰峰面的位置。

https://www.sodocs.net/doc/a61500942.html,position PDF Transport Combustion Model(组分概率密度输运燃烧模型)

该模型用来模拟湍流火焰中实现中存在的有限速率反应,任意的反应机理都可以导入FLUENT,该模型可用于求解预混,非预混及部分预混火焰,但只用此模型需要大投资。

FLUENT软件的燃烧模型介绍

Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。下面对Fluent软件的燃烧模型作一简单介绍:

一、气相燃烧模型

1.有限速率模型

这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。有限速率模型适用于预混燃烧、局部预混燃烧和非预混燃烧。

应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。

2.PDF模型

该模型不求解单个组分输运方程,但求解混合组分分布的输运方程。各组分浓度由混合组分分布求得。PDF模型尤其适合于湍流扩散火焰的模拟和类似的反应过程。在该模型中,用概率密度函数PDF来考虑湍流效应。该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型)或化学平衡计算来处理,因此比有限速率模型有更多的优势。

应用领域:该模型应用于非预混燃烧(湍流扩散火焰),可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。

3.非平衡反应模型

层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。在模拟富油一侧的火焰时,典型的平衡火焰假设失效。该模型可以模拟形成No x的中间产物。

应用领域:该模型可以模拟火箭发动机的燃烧问题和RAMJET及SCRAMJET的燃烧问题。

4.预混燃烧模型

该模型专用于燃烧系统或纯预混的反应系统。在此类问题中,充分混合的反应物和反应产物被火焰面隔开。通过求解反应过程变量来预测火焰面的位置。湍流效应可以通过层流和湍流火焰速度的关系来考虑。

应用领域:该模型可以用来模拟飞机加力燃烧室中的复杂流场模拟、气轮机、天然气燃炉等。

二、分散相燃烧模型

除了可以模拟各种气相燃烧问题以外,FLUENT 5还提供了模拟分散相燃烧问题(液体燃料燃烧、喷射燃烧、固体颗粒燃烧等)的燃烧模型:

在拉格朗日坐标下,模拟分散相(包括固体颗粒/油滴/气泡等)在瞬态和稳态下的运动轨迹;

多种球形和非球形粒子的曳力规律;

线性分布或Rosin-Rammler方程的粒子大小分布;

连续相的湍流效应对粒子传播的影响;

分散相的加热/冷却;

液滴的汽化和蒸发;

燃烧粒子,包括油滴的挥发过程和焦碳的燃烧;

连续相与分散相的耦合;

模拟油滴在湍流的影响而产生的扩散效应时,FLUENT可以采用粒子云模型和随机轨道模型。

1.随机轨道模型

该模型利用离散的随机跟踪法模拟瞬态湍流速度脉动对粒子轨迹的影响。

2.粒子云模型

该模型追踪粒子平均轨道的粒子云的形成和演化的统计过程。粒子云浓度通过粒子平均轨迹的概率密度函数来表示。

在FLUENT中,需定义油滴在初始状态的位置、速度、尺寸和温度分布及油滴的物性,根据这些设置计算粒子的轨迹和传热/传质,并可以计算粒子与连续相的相互影响。FLUENT 中还提供了丰富的关于粒子运动中曳力、汽化、喷射、破碎、碰撞等子模型,供用户来选择。计算得到的粒子的轨迹和传热传质可以通过图形界面和文本界面显示出来。

三、污染模型

1.NOx模拟

Fluent软件提供了三种NOx形成的模型:Thermal NOx、Prompt NOx和Fuel NOx形成模型。从而可以模拟绝大多数情况下的NOx生成问题。

2.烟尘模型(Soot Model)

Fluent软件可以考虑单步和两步的烟尘生成问题。烟尘的燃烧由有限速率模型模拟,并考虑了烟尘对辐射吸收的影响。

四、热辐射模型

1.Discrete Transfer Radiation Model (DTRM)

DTRM模型的优点是简单, 且可以适用的计算对象的尺度范围较大, 其缺点是没有包含散射和不能计算非灰的辐射。提高模型中射线的数量可以提高DTRM模型的精度,但计算量也明显增加。

2.P-1模型

P-1模型是P-N模型的简化,适用于大尺度辐射计算。对比DTRM模型,其优点在于计算量更小,且包含散射效应。当燃烧计算域的尺寸比较大时,P-1模型非常有效。另外P-1模型可应用在较为复杂的计算域中。

3.The Rosseland Model

Rosseland模型是最为简化的辐射模型,只能应用于大尺度辐射计算。其优点是速度最快,需要内存最少。

4.Discrete Ordinates (DO) Model

DO模型是所有四种模型是最为复杂的辐射模型,从小尺度到大尺度辐射计算都适用,且可计算非-灰度辐射和散射效应,但需要较大计算量。

纵上所述,我们可以看到,无论在模型数量上,还是在模型先进性上,FLUENT软件提供了远远优于其它商用CFD软件的燃烧模型。例如,在气相燃烧模型上,Star-CD仅仅提供了传统的有限速率模型和PDF模型,而缺乏在航空航天领域燃烧问题中应用最为重要的非平衡火焰模型和预混模型;在分散相模型上,与Star-CD相比,Fluent软件同样提供了更为丰富、更为先进的物理模型。

第六章 FLUENT中的燃烧模拟

第六章,FLUENT中的燃烧模拟 6.1 燃烧模拟的重要性 ●面向实际装置(如锅炉、内燃机、火箭发动机、火灾等) ●面向实际现象(如点火、熄火、燃烧污染物生成等) 6.2 FLUENT燃烧模拟方法概要 ●FLUENT可以模拟宽广范围内的燃烧(反应流)问题。然而,需要注意的是:你必须 保证你所使用的物理模型要适合你所研究的问题。FLUENT在燃烧模拟中的应用可如下图所示: ●气相燃烧模型 一般的有限速率形式(Magnussen 模型) 守恒标量的PDF模型(单或二组分混合物分数) 层流火焰面模型(Laminar flamelet model) Zimont 模型 ●离散相模型 煤燃烧与喷雾燃烧 ●热辐射模型 DTRM, P-1, Rosseland 和Discrete Ordinates模型 ●污染物模型 NO x 模型,烟(Soot)模型

6.3 气相燃烧模型 6.3.1 燃烧的化学动力学模拟 实际中的燃烧过程是湍流和化学反应相互作用的结果,燃烧的化学反应速率是强非线性和强刚性的。通常的化学反应机理包含了几十种组分和几百个基元反应,而且这些组分之间 的反应时间尺度相差很大(10- 9~102秒),因此在实际问题的求解过程中计算量和存储量极大,目前应用尚不现实。 在FLUENT 中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下: ● 有限速率燃烧模型——>预混、部分预混和扩散燃烧 ● 混合物分数方法(平衡化学的PDF 模型和非平衡化学的层流火焰面模型)——>扩散燃 烧 ● 反应进度方法(Zimont 模型)——>预混燃烧 ● 混合物分数和反应进度方法的结合——>部分预混燃烧 6.3.2一般的有限速率模型 ● 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述 ● 求解组分的输运方程,得到每种组分的时均质量分数值,如下: 6-1 其中组分j 的反应源项为所有K 个反应中,组分j 的净生成速率: 6-2 式中,反应k 中的组分j 的反应速率可按照Arrhenius 公式、混合(mixing )速率或 “eddy breakup” 速率的方法求解。在混合(mixing )速率方法中,混合速率和涡的时间尺度, k /ε.有关,其物理意义为化学反应受限于湍流导致的组分和热量的混合速率。J i 表达如下: 6-3 ● 计算所需参数包括:(i )组分及其热力学参数值;(ii )反应及其速率常数值。其中,FLUENT 提供了一个混合物组分的数据库可供查找选用,另外也提供了一个化学反应机理以及组分热力学性质的数据库可供查找选用。 ● 有限速率模型的优缺点: 优点:适用于预混、部分预混和扩散燃烧;简单直观 缺点:当混合时间尺度和反应时间尺度相当时(即Da>>1)缺乏真实性;难以解决化学 反应与湍流的耦合问题;难以预测反应的中间组分;模型常数具有不确定性 6.3.3 守恒标量的PDF 模型 ∑=k jk j R R

Fluent多相流模型选择

FLUENT多相流模型 分类 1、气液或液液流动 气泡流动:连续流体中存在离散的气泡或液泡 液滴流动:连续相为气相,其它相为液滴 栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡 分层自由流动:由明显的分界面隔开的非混合流体流动。 2、气固两相流动 粒子负载流动:连续气体流动中有离散的固体粒子 气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流 流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。 3、液固两相流动 泥浆流:流体中的大量颗粒流动。颗粒的stokes数通常小于1。大于1是成为流化了的液固流动。 水力运输:在连续流体中密布着固体颗粒 沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。 4、三相流 以上各种情况的组合 多相流动系统的实例 气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。 液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。 栓塞流:管道或容器中有大尺度气泡的流动 分层流:分离器中的晃动、核反应装置沸腾和冷凝 粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动 气力输运:水泥、谷粒和金属粉末的输运 流化床:流化床反应器、循环流化床 泥浆流:泥浆输运、矿物处理 水力输运:矿物处理、生物医学、物理化学中的流体系统 沉降流动:矿物处理。 多相流模型的选择原则 1、基本原则

1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相 模型。 2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴 和粒子负载流动,采用混合模型或欧拉模型。 3)对于栓塞流、泡状流,采用VOF模型 4)对于分层/自由面流动,采用VOF模型 5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。 6)对于流化床,采用欧拉模型 7)泥浆和水力输运,采用混合模型或欧拉模型。 8)沉降采用欧拉模型 9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣 的流动特种,选择合适的流动模型。此时由于模型只是对部分流动特 征采用了较好的模拟,其精度必然低于只包含单个模式的流动。 2、混合模型和欧拉模型的选择原则 VOF模型适合于分层的或自由表面流,而混合模型和欧拉模型适合于流动中有相混合或分离,或者分散相的体积分数超过10%的情况(小于10%可使用离散相模型)。 1)如果分散相有宽广的分布(如颗粒的尺寸分布很宽),最好采用混 合模型,反之使用欧拉模型。 2)如果相间曳力规律一直,欧拉模型通常比混合模型更精确;若相间 曳力规律不明确,最好选用混合模型。 3)如果希望减小计算了,最好选用混合模型,它比欧拉模型少解一部 分方程;如果要求精度而不在意计算量,欧拉模型可能是更好的选择。 但是要注意,复杂的欧拉模型比混合模型的稳定性差,可能会遇到收 敛困难。

fluent燃烧简介

FLUENT燃烧简介 FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。 1.1 FLUENT燃烧模拟方法概要 燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。FLUENT可以模拟宽广范围内的燃烧问题。然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。FLUENT在模拟燃烧中的应用可如下图所示: 离散相模型气相燃烧模型 输运方程 预混燃烧 部分预混燃烧 连续性扩散燃烧 动量 能量 化学组分 污染物模型热辐射和传热模型 图 1 FLUENT模拟过程中所需的物理模型 1.1.1 气相燃烧模型 一般的有限速率形式(Magnussen模型) 守恒标量的PDF模型(单或二组分混合分数) 层流火焰面模型(Laminar flamelet model) Zimount 模型 1.1.2 离散相模型 煤燃烧与喷雾燃烧 1.1.3 热辐射模型 DTRM,P-1,Rosseland 和Discrete Ordinates 模型 1.1.4 污染物模型 NOx模型,烟(Smoot)模型 2.1气相燃烧模型 ·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下: 有限速率燃烧模型---预混、部分预混和扩散燃烧 混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧

反应进度方法(Zimont模型)---预混燃烧 混合物分数和反应进度方法的结合---部分预混燃烧 2.2.1 有限速率模型 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。 求解积分的输运方程,得到每种组分的时均质量分数值,如下: -----(1) 其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率: -----(2) -----(3) 计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。 有限速率模型的有缺点: 优点:适用于预混、部分预混和扩散燃烧,简单直观; 缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。 这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。 应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。 2.2.2守恒标量的PDF模型 守恒标量的PDF模型仅适用于扩散(非预混)燃烧问题,该方法假定了反应是受混合速率所控制,即反应已经达到化学平衡状态,每个单元内的组分及其性质是由燃料和氧化剂的湍流混合强度所控制,其中涉及的化学反应体系由化学平衡计算来处理(利用FLUENT的组件程序PrePDF)。 该方法通过求解混合物分数及其方差的输运方程获得组分和温度场,而不是直接求解组分和能量的输运方程。 -----(4) -----(5) 其中-----(6) 混合分数定义-----(7)

使用非预混燃烧模型

《数值计算与工程仿真》专刊—FLUENT HELP 算例精选中文版(二)
算例 13
引言
使用非预混燃烧模型
煤粉燃烧的模拟包括气相连续流场的建模和它与煤粒非连续相的作用的建 模。穿过气体的煤粒会挥发燃烧并成为与气相反应的燃料源。反应可以用组份 输运模型(the species transport)或模型(the non-premixed combustion)模拟, 在本指南中你将用非预混燃烧模型模拟简单煤粉燃烧炉中的化学反应。 在本指南中你将学会: 1.怎样用 prePDF 预处理程序为煤粉燃料准备 PDF 表格。 2.怎样为非预混燃烧化学模型定义输入条件。 3.怎样定义煤粒的非连续相。 4.怎样解决包含非连续相煤粒的反应的模拟。 非预混燃烧模型用这样的一种建模方法:用一个或二个守恒量,即混合分 数求解输运方程。多种化学组份,包括基团和中间产物组份可能被包含在对问 题的定义当中,而且它们的浓度将来至于混合分数分布的预测。组份的特性参 数是通过化学数据库获得。湍流化学反应是用 Beta 或者双 delta 概率密度函数 来模拟的。关于非预混燃烧模拟方法的更多细节请参看使用手册。
前提条件
本指南是建立在你已经熟悉 FLUENT 的菜单结构并且已经做完指南 1 的基 础上的。因此在建立过程中的一些步骤和解决过程将被省略。
问题描述
本指南中用的煤燃烧系统为一简单的 10m*1m 的二维管道, 如图 13.1 所示。 因为是对称的,所以只模拟宽度方向上的一半区域。2D 管道的进口分为两股流 动。管道中心附近的高速流速度为 50m/s,宽度为 0.125m。另一股流的速度为 15m/s, 宽度为 0.375m.两股流都为 1500K 的空气。 煤粒在高速流的附近以 0.1kg/s
—151 —
https://www.sodocs.net/doc/a61500942.html,

FLUENT中两相流、多相流中模型的的选择问题

两相流:通常把含有大量固体或液体颗粒的气体或液体流动称为两相流;其中含有多种尺寸组颗粒群为一个“相”,气体或液体为另一“相”,由此就有气—液,气—固,液—固等两相流之分。 两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质,而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。 引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian 坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian 坐标或空间坐标。 一.离散相模型 FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相; 离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等; 应用范围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等/大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等; 颗粒-颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑; 湍流中颗粒处理的两种模型:Stochastic Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。通过计算颗粒的系统平均运动方程得到颗粒的某个“平均轨道” 二.多相流模型 FLUENT中提供的模型: VOF模型(Volume of Fluid Model) 混合模型(Mixture Model) 欧拉模型(Eulerian Model) 模型(Volume of Fluid Model) VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第一相,如果α1=1,则表示该控制容积中只含有第一相,如果0<α1<1,表示该控制容积中有两相交界面; VOF方法是用体积率函数表示流体自由面的位置和流体所占的体积,其方法占内存小,是一种简单而有效的方法。 2.混合模型(Mixture Model) 用混合特性参数描述的两相流场的场方程组称为混合模型; 考虑了界面传递特性以及两相间的扩散作用和脉动作用;使用了滑移速度的概念,允许相以不同的速度运动; 用于模拟各相有不同速度的多相流;也用于模拟有强烈耦合的各向同性多相流和各相以相同速度运动的多相流; 缺点:界面特性包括不全,扩散和脉动特性难于处理。 3.欧拉模型(Eulerian Model) 欧拉模型指的是欧拉—欧拉模型; 把颗粒和气体看成两种流体,空间各点都有这两种流体各自不同的速度、温度和密度,这些流体其存在在同一空间并相互渗透,但各有不同的体积分数,相互间有滑移;

第14章 非预混燃烧模拟

第十四章非预混燃烧模拟 Chapter 14. Modeling Non-Premixed Combustion 在非预混燃烧中,燃料和氧化剂以相异流进入反应区。这与预混燃烧系统截然不同。在预混燃烧系统中,反应物在燃烧以前以分子水平混合。非预混燃烧的例子包括甲烷燃烧、粉煤炉和内部燃烧柴油(压缩)发动机。 在一定假设条件下,热化学可被减少成一个单一的参数:混合分数。混合分数,用f表示,是来自燃料流的质量分数。换句话说,混合分数就是在所有组分(CO2、H2O、O2等)里,燃烧和未燃烧燃料流元素(C、H等)的局部质量分数。因为化学反应中元素是守恒的,所以这种方法极好。反过来,质量分数是一个守恒的数量,因此其控制输运方程不含源项。燃烧被简化为一个混合问题,并且与近非线性平均反应率相关的困难可以避免。一经混合,即可用层流小火焰(laminar flamelet)模型将化学反应模拟成为化学平衡或近化学平衡。 模型包括以下几个部分: 14.1:平衡混合分数/PDF模型(Description of the Equilibrium Mixture Fraction/PDF Model); 14.2:非预混平衡化学反应的模拟方法(Modeling Approaches for Non-Premixed Equilibrium Chemistry); 14.3:非预混平衡模型的用户输入(User Inputs for the Non-Premixed Equilibrium Model); 14.4:层流小火焰模型(The Laminar Flamelet Model); 14.5:在prePDF数据库中添加新种类(Adding New Species to the prePDF Database); 14.1:平衡混合分数/PDF模型 非预混模拟方法包括解一或两个守恒量(混合分数)的输运方程。不解单个组分方程。取而代之的是每个组分的浓度用预混分数场得到。热化学计算在prePDF中进行,并列成表以便于在FLUENT中查询。紊流和化学的相互作用考虑为一个概率(几率)密度函数(PDF)。 关于非预混混合分数/PDF模型的信息在以下分节中讲述: 14.1.1:非预混方法的优点和局限(Benefits and Limitations of the Non-Premixed Approach); 14.1.2:非预混方法的细节(Details of the Non-Premixed Approach); 14.1.3:非预混模拟的限制和特有案例(Restrictions and Special Cases for Non-Premixed Modeling); 见14.2:模拟和解决顺序的回顾,以及14.3;应用模型指导。 14.1.1非预混方法的优点和局限 非预混方法的优点(Advantages of the Non-Premixed Approach):非预混模拟方法已被明确用于模拟进行快速化学反应的紊态扩散火焰的研究。对这样的系统,该方法有许多点优于第十三章中描述的有限率公式。非预混

fluent中燃烧模型分类

FLUENT燃烧模型 化学反应 模拟方法 方法描述计算反应的选择 有限速率模型需要求解组分质量分数的 输运方程,化学反应机理 由用户自己定义。反应速 率在组分输运方程中作为 源项,并由阿累尼乌斯公 式计算。应用范围最广泛。 应用:模拟化学组分混合、 输运和反应的问题;壁面 或粒子表面反应问题 层流有限 速率模型 使用Arrhenius公式计算化学源项,忽略湍流脉动的影响。对于化学动力学控制的燃烧(如层流燃 烧),或化学反应相对缓慢的湍流燃烧是准确的。但对一般湍流火焰中Arrhenius化学动力学的高度 非线性一般不精确;对于化学反应相对缓慢、湍流脉动较小的燃烧(如超音速火焰)可能可以接受。 漩涡破碎模型 Eddy Dissipation 大部分燃料快速燃烧,整体反应速率由湍流混合控制。复杂且常是未知的化学反应动力学速率可以 完全的被忽略掉。化学反应速率由大尺度涡混合时间尺度k/ε控制。只要k/ε(湍流)出现,燃烧 即可进行,不需要点火源来启动燃烧。(缺点:未能考虑分子输运和化学动力学因素的影响) 适用条件:高雷诺数湍流预混燃烧过程。 EBU-Arrehenius 模型 EDC模型 假定化学反应都发生在小涡中(精细涡),反应时间由小涡生存时间和化学反应本身需要的时间共 同控制。EDC模型能够在湍流反应中考虑详细的化学反应机理。但是他们的数值积分计算开销很大。 使用条件:只有在快速化学反应假定无效的情况下才能使用这一模型(如快速熄灭火焰中缓慢的 CO烧尽、选择性非催化还原中的NO转化问题)。 非预混燃烧模型不求解每个组分的质量分数输运方程,求解混合分数输运方程和一个或两个守恒标量的方程,然后从预测的混合分数公布推导出每一个组分的浓度。通过概率密度函数或PDF来考虑湍流的影响。 应用:主要用于模拟湍流扩散火焰的反应系统。这个系统要求接近化学平衡,氧化物和燃料以两个或者三个进口进入计算域。 预混燃烧模型主要用于单一、完全预先混合好的燃烧系统。反应物和燃烧产物被火焰前沿分开。求解出反应发展变量来预测前沿的位置。湍流的影响通过湍流火焰速度计算。 部分预混燃烧模型描述非预混燃烧完全预混燃烧相结合的系统。结合混合分数方程和反应物发展变量来分别确定组分浓度和火焰前沿位置。适用于计算域内具有变化等值比率的预混火焰情况。通过求解混合分数方程和反应过程参数来确定火焰峰面的位置。 PDF输运方程模型结合CHEMKIN可以考虑详细的化学反应机理,高度的非线性化学反应项是精确模拟,无须封闭模型,可以合理的模拟湍流和详细化学反应动力学之间的相互作用,是模拟湍流燃烧的精确模拟方法。但计算量特别大。 优点:可以计算中间组分;考虑分裂影响;考虑湍流-化学反应之间的作用;无需求解组分输运方程 缺点:系统须满足(靠近)局部平衡;不能用于可压缩或非湍流流动;不能用于预混燃烧。

Fluent软件的燃烧模型介绍

FLUENT软件的燃烧模型介绍 Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。下面对Fluent软件的燃烧模型作一简单介绍: 一、气相燃烧模型 ·有限速率模型 这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。有限速率模型适用于预混燃烧、局部预混燃烧和非预混燃烧。 应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。 ?PDF模型 该模型不求解单个组分输运方程,但求解混合组分分布的输运方程。各组分浓度由混合组分分布求得。PDF模型尤其适合于湍流扩散火焰的模拟和类似的反应过程。在该模型中,用概率密度函数PDF来考虑湍流效应。该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型)或化学平衡计算来处理,因此比有限速率模型有更多的优势。 应用领域:该模型应用于非预混燃烧(湍流扩散火焰),可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。 ?非平衡反应模型 层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。在模拟富油一侧的火焰时,典型的平衡火焰假设失效。该模型可以模拟形成Nox的中间产物。 应用领域:该模型可以模拟火箭发动机的燃烧问题和RAMJET及SCRAMJET的燃烧问题。

?预混燃烧模型 该模型专用于燃烧系统或纯预混的反应系统。在此类问题中,充分混合的反应物和反应产物被火焰面隔开。通过求解反应过程变量来预测火焰面的位置。湍流效应可以通过层流和湍流火焰速度的关系来考虑。 应用领域:该模型可以用来模拟飞机加力燃烧室中的复杂流场模拟、气轮机、天然气燃炉等。 二、分散相燃烧模型 除了可以模拟各种气相燃烧问题以外,FLUENT5还提供了模拟分散相燃烧问题(液体燃料燃烧、喷射燃烧、固体颗粒燃烧等)的燃烧模型: ?在拉格朗日坐标下,模拟分散相(包括固体颗粒/油滴/气泡等)在瞬态和稳态下的运动轨迹 ?多种球形和非球形粒子的曳力规律 ?线性分布或Rosin-Rammler方程的粒子大小分布 ?连续相的湍流效应对粒子传播的影响 ?分散相的加热/冷却 ?液滴的汽化和蒸发 ?燃烧粒子,包括油滴的挥发过程和焦碳的燃烧 ?连续相与分散相的耦合 模拟油滴在湍流的影响而产生的扩散效应时,FLUENT可以采用粒子云模型和随机轨道模型。 ?随机轨道模型 该模型利用离散的随机跟踪法模拟瞬态湍流速度脉动对粒子轨迹的影响。 ?粒子云模型 该模型追踪粒子平均轨道的粒子云的形成和演化的统计过程。粒子云浓度通过粒子平均轨迹的概率密度函数来表示。

Fluent软件的燃烧模型介绍(精)

Fluent软件的燃烧模型介绍 Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。下面对Fluent软件的燃烧模型作一简单介绍: 一、气相燃烧模型 ·有限速率模型 这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。有限速率模型适用于预混燃烧、局部预混燃烧和非预混燃烧。 应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。 PDF模型 该模型不求解单个组分输运方程,但求解混合组分分布的输运方程。各组分浓度由混合组分分布求得。PDF模型尤其适合于湍流扩散火焰的模拟和类似的反应过程。在该模型中,用概率密度函数PDF来考虑湍流效应。该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型或化学平衡计算来处理,因此比有限速率模型有更多的优势。 应用领域:该模型应用于非预混燃烧(湍流扩散火焰,可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。 非平衡反应模型

层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。在模拟富油一侧的火焰时,典型的平衡火焰假设失效。该模型可以模拟形成Nox的中间产物。 应用领域:该模型可以模拟火箭发动机的燃烧问题和RAMJET及SCRAMJET 的燃烧问题。 预混燃烧模型 该模型专用于燃烧系统或纯预混的反应系统。在此类问题中,充分 混合的反应物和反应产物被火焰面隔开。通过求解反应过程变量来预测火焰面的位置。湍流效应可以通过层流和湍流火焰速度的关系来考虑。 应用领域:该模型可以用来模拟飞机加力燃烧室中的复杂流场模拟、气轮机、天然气燃炉等。 二、分散相燃烧模型 除了可以模拟各种气相燃烧问题以外,FLUENT5还提供了模拟分散相燃烧问题(液体燃料燃烧、喷射燃烧、固体颗粒燃烧等的燃烧模型:在拉格朗日坐标下,模拟分散相(包括固体颗粒/油滴/气泡等在瞬态和稳态下的运动轨迹 多种球形和非球形粒子的曳力规律 线性分布或Rosin-Rammler方程的粒子大小分布 连续相的湍流效应对粒子传播的影响 分散相的加热/冷却 液滴的汽化和蒸发 燃烧粒子,包括油滴的挥发过程和焦碳的燃烧

ffluent燃烧(预混、非预混)

12.2.1通用有限速度模型 该方法基于组分质量分数的输运方程解,采用你所定义的化学反应机制,对化学反应进行模拟。反应速度在这种方法中是以源项的形式出现在组分输运方程中的,计算反应速度有几种方法:从Arrhenius速度表达式计算,从Magnussen 和Hjertager [149]的漩涡耗散模型计算或者从EDC模型[148]计算。这些模型的应用范围是非常广泛的,其中包括预混和,部分预混和和非预混和燃烧,详细内容请参阅第13章。 12.2.2 非预混和燃烧模型 在这种方法中,并不是解每一个组分输运方程,而是解一个或两个守恒标量(混和分数)的输运方程,然后从预测的混合分数分布推导出每一个组分的浓度。该方法主要用于模拟湍流扩散火焰。对于有限速度公式来说,这种方法有很多优点。在守恒标量方法中,通过概率密度函数或者PDF来考虑湍流的影响。反映机理并不是由我们来确定的,而是使用flame sheet(mixed-is-burned)方法或者化学平衡计算来处理反应系统。具体请参阅第十四章。 层流flamelet模型是非预混和燃烧模型的扩展,它考虑到了从化学平衡状态形成的空气动力学的应力诱导分离,具体请参阅14.4节。 12.2.3 预混和燃烧模型 这一方法主要用于完全预混合的燃烧系统。在这些问题中,完全的混合反应物和燃烧产物被火焰前缘分开。我们解出反应发展变量来预测前缘的位置。湍流的影响是通过考虑湍流火焰速度来计算得出的。具体请参阅第15章。 12.2.4部分预混和燃烧模型 顾名思义,部分预混和燃烧模型就是用于描述非预混和燃烧和完全预混和燃烧结合的系统。在这种方法中,我们解出混合分数方程和反应发展变量来分别确定组分浓度和火焰前缘位置。具体请参阅第十六章。 12.3 反应模型的选择 解决包括组分输运和反应流动的任何问题,首先都要确定什么模型合适。模型选取的大致方针如下:

fluent帮助文件第16章 部分预混燃烧的模拟

16.部分预混燃烧的模拟 FLUENT提供了一个模拟部分预混燃烧的模型,它是基于14章讲述的非预混燃烧模型和15张讲述的预混燃烧模型的。关于部分预混燃烧模型按以下章节介绍: 16.1概述和局限 16.2理论 16.3使用部分预混模型 16.1概述和局限 16.1.1概述 部分预混燃烧系统,是带有不均匀燃料——氧化剂的混合物的预混燃烧火焰。这种部分预混火焰的情形如,预混的混合物喷射到静止的大气中,带有扩散引导火焰或者冷却气喷嘴的贫油预混燃烧,以及不完整的混合进口的贫油预混燃烧室。 FLUENT提供的部分预混模型是非预混模型(14章)和预混模型(15章)的简单结合。预混反应进度变量c,决定火焰前锋的位置。在焰锋后(c=1),混合物是燃尽的,所以采用平衡或者…..的求解方案;在焰锋(c=0)前,组份质量分数、温度、密度通过未燃烧混合物计算。火焰内部(0

相关主题