搜档网
当前位置:搜档网 › 流动沸腾的格子Boltzmann方法模拟_李隆键

流动沸腾的格子Boltzmann方法模拟_李隆键

流动沸腾的格子Boltzmann方法模拟_李隆键
流动沸腾的格子Boltzmann方法模拟_李隆键

格子Boltzmann

格子Boltzmann 方法模拟C/C 复合材料 颗粒沉积过程 罗思璇 () Particle Deposition Process Simulation in C/C Composites by Lattice-Boltzmann Method Luo Sixuan () Abstract: Lattice Boltzmann method is used here to study the particle deposition process on C/C composites surface. This method considered the boudary condition change during particle deposition. Finally, the deposition pattern is obtained. Keywords: LB Method; flow-particle coupling; C/C composites; deposition 摘要:本文使用格子Boltzmann 方法研究了固体火箭发动机中C/C 复合材料表面上颗粒的沉积模态。该方法考虑了沉积过程中边界形貌的变化对流场的影响,最终得到了颗粒在碳纤维表面的沉积形态。 关键词:LB 方法;流固耦合;C/C 复合材料;沉积 0 引言 C/C 复合材料是目前新材料领域重点研究和开发的一种新型超高温热结构材料,具有密度小,比强度大、热膨胀系数低、热导率高等特点,是理想的航空航天高温材料[1, 2]。 C/C 复合材料在工作过程中其表面流过的工质为高温燃气。高温燃气中通常带有燃烧产生的固体颗粒,如选用较高比冲的含铝推进剂时会产生一定量的凝聚相(Al2O3颗粒)。固体颗粒在C/C 复合材料表面的沉积、冲刷及烧蚀会造成材料内型面的破坏,甚至影响气动性能。 本文使用格子Boltzmann 方法模拟C/C 复合材料中碳纤维上颗粒沉积过程及形态。 1模拟流场的格子Boltzmann 模型 格子Boltzmann 方法是近二十年来刚发展起来的,一种以“半晶格分离法”为处理方式的新型热量逐级传递数值方法,最初是在研究电磁场中的流动现象时被提出的,并且该方法可以确定流体域、固体域和温度场在边界处的连续性,十分适合针对复杂几何形状流固耦合传热问题的数值分析。与传统的经典CFD 方法相比,格子波尔兹曼算法具有很多优点。因而近年来受到国内外学者的广泛关注,并迅速在气固两相流和传热等研究领域得到应用。 格子Boltzmann 方法将流体抽象为微观的虚拟颗粒,通过这些颗粒在规则的网格点上进行碰撞和迁移来达到模拟流场的目的。分布函数f i (x ,t )表示t 时刻,x 网格点上,速度为c i 流体颗粒的概率密度,流场的宏观量通过对分布函数进行统计而得到。本文使用D3Q15模型模拟流场,流体宏观密度ρ和动量ρu 计算如下: 10 Q i i f ρ-==∑,1 Q i i i f ρ-==∑u c (1) 本文使用BGK 碰撞算子[3],流场演化方程为: eq (,)(,)[(,)(,)]i i i i i f x t t t f x t f x t f x t τ+??+?-=-c (2) 其中?t 为时间步长,τ为无量纲松弛时间,eq i f 为平衡态分布函数,在D2Q9模型中如下计算:

方格网计算步骤及方法

方格网计算步骤及方法 ; —— ——

2. 常用方格网计算公式

) 注:1 )a ——方格网的边长,m ; b 、 c ——零点到一角的边长,m ; h 1,h 2,h 3,h 4——方格网四角点的施工高程,m ,用绝对值代入; Σh ——填方或挖方施工高程的总和 ,m ,用绝对值代入; ——挖方或填方体积,m 。 2)本表公式是按各计算图形底面积乘以平均施工高程而得出的。 土方量的计算是建筑工程施工的一个重要步骤。工程施工前的设计阶段必须对土石方量进行预算,它直接关系到工程的费用概算及方案选优。在现实中的一些工程项目中,因土方量计算的精确性而产生的纠纷也是经常遇到的。如何利用测量单位现场测出的地形数据或原有的数字地形数据快速准确的计算出土方量就成了人们日益关心的问题。比较经 常的几种计算土方量的方法有:方格网法、等高线法、断面法、DTM 法、区域土方量平衡法和平均高程法等。 1、断面法 当地形复杂起伏变化较大,或地狭长、挖填深度较大且不规则的地段,宜选择横断面法进行土方量计算。

上图为一渠道的测量图形,利用横断面法进行计算土方量时,可根据渠LL,按一定的长度L设横断面A1、A2、A3……Ai等。 断面法的表达式为 (1) 在(1)式中,Ai-1,Ai分别为第i单元渠段起终断面的填(或挖)方面积;Li为渠段长;Vi为填(或挖)方体积。 土石方量精度与间距L的长度有关,L越小,精度就越高。但是这种方法计算量大, 尤其是在范围较大、精度要求高的情况下更为明显;若是为了减少计算量而加大断面间隔,就会降低计算结果的精度; 所以断面法存在着计算精度和计算速度的矛盾。 2、方格网法计算 对于大面积的土石方估算以及一些地形起伏较小、坡度变化平缓的场地适宜用格网法。这种方法是将场地划分成若干个正方形格网,然后计算每个四棱柱的体积,从而将所有四棱柱的体积汇总得到总的土方量。在传统的方格网计算中,土方量的计算精度不高。现在我们引入一种新的高程内插的方法,即杨赤中滤波推估法。 2.1杨赤中推估 杨赤中滤波与推估法就是在复合变量理论的基础上,对已知离散点数据进行二项式加权游动平均,然后在滤波的基础上,建立随即特征函数和估值协方差函数,对待估点的属性值(如高程等)进行推估。 2.2待估点高程值的计算 首先绘方格网, 然后根据一定范围内的各高程观测值推估方格中心O的高程值。绘制方格时要根据场地范围绘制。 由离散高程点计算待估点高程为

Matlab实现格子玻尔兹曼方法

Matlab实现格子玻尔兹曼方法 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % cylinder.m: Flow around a cyliner, using LBM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or (at your option) any later version. % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % You should have received a copy of the GNU General Public % License along with this program; if not, write to the Free % Software Foundation, Inc., 51 Franklin Street, Fifth Floor, % Boston, MA 02110-1301, USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear % GENERAL FLOW CONSTANTS lx = 250; ly = 51; obst_x = lx/5+1; % position of the cylinder; (exact obst_y = ly/2+1; % y-symmetry is avoided) obst_r = ly/10+1; % radius of the cylinder uMax = 0.02; % maximum velocity of Poiseuille inflow Re = 100; % Reynolds number nu = uMax * 2.*obst_r / Re; % kinematic viscosity omega = 1. / (3*nu+1./2.); % relaxation parameter maxT = 400000; % total number of iterations tPlot = 5; % cycles % D2Q9 LATTICE CONSTANTS t = [4/9, 1/9,1/9,1/9,1/9, 1/36,1/36,1/36,1/36]; cx = [ 0, 1, 0, -1, 0, 1, -1, -1, 1]; cy = [ 0, 0, 1, 0, -1, 1, 1, -1, -1]; opp = [ 1, 4, 5, 2, 3, 8, 9, 6, 7]; col = [2:(ly-1)]; [y,x] = meshgrid(1:ly,1:lx); obst = (x-obst_x).^2 + (y-obst_y).^2 <= obst_r.^2; obst(:,[1,ly]) = 1;

小学科学案例用数格子方法“比较叶的大小”教学一得

描*数*算 ——用数格子方法“比较叶的大小”教学一得 比较叶的大小是一个非常有趣、有意义的活动。小朋友常常会用到数格子的方法比较叶的大小,从而经历了简单的大小比较观察和测量过程。 笔者在备课时,觉得这种方法比较简单,而且课本中又有这种方法的介绍并配有插图,因此没有多加思考。教学这一环节时,当学生大致描述了操作步骤后,我就发给每个学生一张事先印好的方格纸,让学生独立来完成。没想到很多小朋友遇到了困难。有些小朋友拿着不平整的叶子无从着手,按住了树叶的这边,翘起了那头,急得满脸通红,描下来的叶子轮廓弯弯扭扭很不准确;有些小朋友因为格子太多数了不知从那里数起;有些小朋友好不容易数到一百八十,一不留神忘记了,又得重数;还有些看着描好的叶子轮廓不知不完整的格子怎么处理,只好坐在那里发呆。教室里乱得一团糟,教学效果可想而知。 出现这样的教学现象和效果,真出乎我的意料。课后,我对学生出现的问题进行了仔细的分析、归类: 1、叶子不平整,轮廓描不出。 运用数格子的方法时,小朋友必须先把叶子轮廓描在格子上,如果叶子不平整,学生就很难完成这个看似简单易操作的任务。 2、所占格子多而数不清。 我发给他们的方格纸里的格子多而小,准备了小叶子的学生,容易操作,很快完成了,而喜欢大叶子的学生就麻烦了,他们的叶子占的格子有的有一百多格,有的甚至两百多格,密密麻麻,眼睛都看花了。 3、格子不完整计算有困难。 叶子轮廓中会出现许多不完整的格子,这些格子合计起来要占不少的面积,处理这些格子有困难。 “如果这些问题让我自己来解决,我行吗?”我这样反问自己,发现自己也是一片茫然。连老师都有困难完成的事情,学生怎能独立完成呢?更何况他们还是三年级刚接触科学课的小朋友。 那么,如何能较好地处理这些问题?我一时找不到较好的处理办法。后来,我作出一个大胆的设想。“到课堂上让小朋友来讨论这些问题,我到时因势利导可能会有意外的收获。”带着这样的想法,我在平行班三(2)班教学这一环节时,改变了做法。 当学生提出用数格子的方法并描述了操作过程以后。我让学生小组讨论“要是叶子不平整你们准备怎么描轮廓?”想不到学生很快想出了办法,更令我佩服的是他们还想出了三种简便的方法。 方法整理如下: 一、叶子反扣法 由于新鲜的叶子不平整,把叶子反扣在格子上,叶子的边缘就能紧紧贴在格子上,小朋友沿着边缘描下叶子轮廓不成问题。 二、轮廓拓印法(一) 用水彩笔在叶子的边缘上涂一圈颜料,把叶子的轮廓拓印在格子上。 三、轮廓拓印法(二)

方格网计算步骤及实例

一、读识方格网图 方格网图由设计单位(一般在1:500的地形图上)将场地划分为边长a=10~40m的若干方格,与测量的纵横坐标相对应,在各方格角点规定的位置上标注角点的自然地面标高(H)和设计标高(Hn),如图1-3所示. 图1-3 方格网法计算土方工程量图 二、场地平整土方计算 考虑的因素: ① 满足生产工艺和运输的要求; ② 尽量利用地形,减少挖填方数量; ③争取在场区内挖填平衡,降低运输费; ④有一定泄水坡度,满足排水要求. ⑤场地设计标高一般在设计文件上规定,如无规定: A.小型场地――挖填平衡法; B.大型场地――最佳平面设计法(用最小二乘法,使挖填平衡且总土方量最小)。 1、初步标高(按挖填平衡),也就是设计标高。如果已知设计标高,1.2步可跳过。

场地初步标高: H0=(∑H1+2∑H2+3∑H3+4∑H4)/4M H1--一个方格所仅有角点的标高; H2、H3、H4--分别为两个、三个、四个方格共用角点的标高. M——方格个数. 2、地设计标高的调整 按泄水坡度、土的可松性、就近借弃土等调整. 按泄水坡度调整各角点设计标高: ①单向排水时,各方格角点设计标高为: Hn = H0 ±Li ②双向排水时,各方格角点设计标高为:Hn = H0± Lx ix± L yi y 3.计算场地各个角点的施工高度 施工高度为角点设计地面标高与自然地面标高之差,是以角点设计标高为基准的挖方或填方的施工高度.各方格角点的施工高度按下式计算: 式中 hn------角点施工高度即填挖高度(以“+”为填,“-”为挖),m; n------方格的角点编号(自然数列1,2,3,…,n). Hn------角点设计高程, H------角点原地面高程. 4.计算“零点”位置,确定零线 方格边线一端施工高程为“+”,若另一端为“-”,则沿其边线必然有一不挖不填的点,即“零点”(如图1-4所示). 图1-4 零点位置

作文格子制作方法

作文格子制作方法 有时候自己给学生出语文试卷,需要作文格子时,不熟悉制作方法,又没有现成的,很是伤脑筋。特别是不同版本的Word,有时候还连不了网,以及一页试卷有一般是试题,紧接着是半张作文纸等等情况;面对各种情况,在多方学习之后,特总结制作方法如下:另外附做成的作文格子一张,供需要的同行使用。 一般Word2003的稍微麻烦些,由于版本原因,可能没有“稿纸”这一项,有的使用“新建文档---稿纸导向之类的方法做”,但我觉得还是直接安装个“稿纸加载项”好用些。 具体Word2003的版本可以如下操作: 可以打开网页 https://www.sodocs.net/doc/a71793502.html,/downloads/zh-cn/confirmation.aspx?displaylan g=zh-cn&FamilyID=6730ff58-875d-4772-a3b3-3895de9c0b2f 先下载一个Word的加载项-稿纸,GenkoSetup_CHS.msi这个文件仅仅504KB,下载后,双击GenkoSetup_CHS.msi进行安装。安装完毕后,启动Word,在格式菜单中你会发现一个新的菜单“稿纸设置”,其他的自己按需要设置就行了。如果还想做的更好些,比如每一百字标注一次之类的,可以深入学习一下“稿纸功能”。 如果是Word2007就好办多了,此版本增加了这个功能,只要找到对应工具可以直接应用。所以2007版本的只是稍微提一下就可以了。 Word 2007的版本具体操作如下: 1、打开Word2007; 2、点击“页面布局”选项; 3、找到“稿纸”的“稿纸设置”功能区并单击; 4、在“格式”那个下拉菜单里选择“方格式稿纸”,其他的自己按需要设置就可以了。 但目前我们很多学校还有比较多的是2003版本,所以重点是希望交流一下2003的制作方法;当让还有就是直接插入表格,再设置,这样可以做好,但工作量太大了。下面还附了一张做好了的作文纸。

南方CASS方格网计算土方步骤

南方CASS方格网计算土方步骤 一:现场采集数据: 已知坐标点和高程,可以直接利用数据采集来采集要计算土方范围里的点(要算十米格子土方图,实际中采集点为5-8米一点,二十米格子为12-16米一点,中间地形变化比较大的全部要采集,砍高砍底要全部采集),同时范围边采集,而对于没坐标点的可以利用一个固定点为零平台,坐标全假设为0,利用0位角定向即可采集数据,方法和上面一样,再后一个不同之处就是会要采集个平整到哪处位置点的高程将成为你计算土方量的设计高程。 二:开始计算: 传好数据会出现记事本格式的DAT文件如图 , 在南方CASS绘图处理菜单中展野外测点点号,就会出现如图

然后把范围用多段线框出来,如图 把范围框线改别图层并关闭图层,删掉展点号,后打开关闭的图层。 打开CASS菜单里工程应用里方格网计算,会出现下图

接着就是采集原地面高程点数据文件输入如图 再后看到有三个设计面和一个方格网格子距离输入 你将可以选择是有坡度计算还是平整计算和十米格子或二十米格子计算等。 一般情况多用设计面第一个和第二个,第一个平整很简单直接输入设计高程,如图 接着就是你选择方格宽度,下图为20米

第二种有坡度的计算,设计面不同如图 基准点就是坡度开始位置点击平面会出现坐标,向下方向上一点就是坡度结束点点击平面出现的坐标,基准点设计高程就是坡度开始位置设计高程,接着也是选择格子距离10米或20米,下图为20米,

有坡比的和平整的不同之处就是设计高程会不同,如下图对比 有坡比的蓝色设计高程呈现不同值

平整的蓝色设计高程全为32米。 第三种设计面计算和第二种一样,就是一个坡度后接着再一个坡度。下面给个例子做下: 条件:已知采集好了原地面数据,平整高度为35米计算。 已知采集好了原地面数据,从左到右正直坡度为1.5℅,左边开始设计高程为32米计算。 比如电子版图,就在图上面把土方范围框出来后用命令G加点(是保存到你自己文件里)来采集原地面高程点,后面计算都一样。

lbm波尔兹曼算法

波尔兹曼方法基本原理 格子Boltzmann 方法是使用简单的微观模型来模拟流体的宏观行为的一种新的方法。格子Boltzmann 方法是建立在微观粒子运动论基础上的数值计算方法。其求解过程一般需要通过编程来实现! 一般来说研究流体的行为有两种方法:一种是从宏观的角度出发,假设流体连续分布于整个流场,注入密度、速度、压力等物理量均是时间可空间的足够光滑的函数。另一种是从微观的角度,从非平衡统计力学的观点出发,假设流体是由大量的微观的例子组成,这些例子遵守力学定律,同时服从统计定律,运用统计的方法来讨论流体的宏观性质。 然而流体是由大量的粒子组成的,当我们从宏观的角度研究流体行为的时候,并没有涉及到单个粒子的行为。通常我们所感兴趣的事代表某个点的宏观量,例如密度、速度、压力。根据连续性假设我们可以推导出N-S 方程,并且利用数学上的微积分知识来求解,然而由于N-S 方程是高度非线性化的偏微分方程,仅仅一些具有简单变界或者比较严格物理闲着的现象才能够得到理论分析界,如果从微观的角度了研究单个粒子的真是行为,对于一个包含大量例子的系统来说粒子的运动方程往往是得不到解的。统计学可以考虑整个系统所有的状态以及处理这个状态的概率来解决这些困难,对于稀薄气体所得到的就是Boltzmann 方程,但是得到的方程还不够,我们还要借助于统计方法得到流体的宏观性质,这就要求解Boltzmann 方程,然而Boltzmann 方程是一非线性微分方程,一般情况下严格求解也是非常困难的。 格子气方法是近年来发展起来的模拟流体力学以及其他系统的比较新的方法,格子气自动机模拟流场,就是将流体及其存在的时间和空间完全离散,给出离散的流体粒子之间相互作用以及迁移的规则。流体只存在于空间网格上,用一系列布尔变量,.....,2,1)(,(b i t x n i =来描述在时刻t 位于x 处节点的每一个速度方向是否有粒子存在,其中b 表示每一个节点的速度方向的数目,粒子在每一个时间步长的演化包括两部分:()a 迁移,粒子沿它的速度方向向距离最近的节点运动;()b 碰撞,当不同的粒子同时到达某个节点时,按照一定的碰撞规则发生碰撞并改变运动的方向,格子气模型具有两重 意义: ()a 尽可能建立一个简单的模型是指能够用来模拟一个有大量粒子组成的系统;()b 反映粒子真实碰撞的本质,这样经过长时间我们可以获得流体的宏观特性。 粒子的演化过程能够用来模拟宏观的流体过程是基于下列事实,即流体的宏观特性是系统内大量粒子整体行为的结果。分子之间的相互作用可以改变流体的传输特性,比如粘度,但是并不改变宏观方程的基本形式。 格子气的HPP 模型与FPH 模型 HPP 模型将流体存在的空间划分为间距为单位长度的正方形网格,将流体想象成许多有质量没有体积的微小粒子组成,在同一时刻同一网格节点上,每一个速度方向最多允许存在一个粒子,每个粒子可以向四个方向的其中之一运动,并且遵守以下碰撞准则:当且仅当只有两个粒子沿相反方向达到某节点时(对头碰撞),它们沿另外的两个方向离开该节点,其他情形则直接穿透,PHP 模型则是将流场划分为间距为单位长度的正三角网格,并且增加了相应的碰撞准则。 格子气的微观方程 为简单起见,以HPP 模型为例,用()x ,t n i 代表在时刻t 位置x 处的节点上第i 个方向的粒子数,则整个布尔场的更新可以写成 ()()()()231312,1++++++-Λ-ΛΛ-Λ-ΛΛ-Λ=++i i i i i i i i i i i n n n n n n n n n e x t n ν

生态学主要研究法

第7章生态学主要研究方法 7.1 个体生态 7.2 种群生态 7.3 群落生态 7.4 生态系统 7.5 景观生态 7.1 个体生态研究方法 生态因子对个体的影响及个体的生态适应 ?测定各种生态因子作用下生物个体生长、发育、繁殖等方面的影响 7.1.1 常用测定指标 测定指标主要是: ?生长量(高、径、花枝、果枝) ?物候期 ?光合、蒸腾 ?酶及其他生化产物含量 7.1.2 仪器设备 生长观测用常规方法 生理指标常用光合系统,可以测定植物的光合速率、蒸腾速率、气孔导度等 生化指标采用实验室常规方法,首选国际通用方法,其次是国家标准和行业标准 7.1.3 试验设计方法 主要采用实验室测定和场地盆栽的形式进行,少数采用野外直接测定的方法 发表的论文大多数是用折线图反映不同因素对植物个体生理生化作用的影响 鲜有进行统计学检验和分析 为什么? 试验设计的缺陷 最常见的是做组织培养,都只有一种培养基接种多少瓶,一瓶有几个外植体 最后在写论文的时候觉得需要进行方差分析,就临时将每个处理的9瓶分为三个区组,每三瓶为一区组,每区组三瓶成为重复 这是不规范的 (1)实验室和盆栽试验: 关键问题: ?处理和对照的设定 ?试验设计的重复性,包括区组和重复 每个处理盆栽几盆不叫区组 具体参照生物统计和田间试验设计 ?先将盆栽或露地幼苗分为三个区组,一般盆栽可以将幼苗分为三个大小、生长状

况无明显差异的三个区组 ?露地幼苗一般采用三块相邻的苗圃地作为三个区组,或者一块大苗圃地分为三个 部分,每一部分作为一个区组,注意区组间地形、地貌、水分、养分、生长状况应该保证无显著差异(需要进行统计学分析和检验) ?每个区组应包含所有的处理水平,包括对照,每个处理水平作为一个小区 ?每个处理水平(小区)还必须包含若干个体(重复株数) ?重复株数的多少要根据后期指标测定的需要确定,应能保证所有指标测定,特别 要注意破坏性采样,如测定不同时期的生物量就需要整个植株采样,这样的话,每个小区重复数一定要足够多,设计的时候要考虑总共采样多少次,每次采样多少株,再加上成活率等意外影响 ?每个植株或者器官采样之后进行生长、生理生化指标的测定,每个指标的测定也 需要重复 以水分胁迫对银杏幼苗的生理特性的影响研究为例 ?如果因子少,如单一研究不同水分胁迫水平的影响,一般采用单因素随机区组设 计 ?如果同时考虑水分和光胁迫的影响以及两因子的交互作用——光胁迫是否会加 重原有的水分胁迫还是减轻水分胁迫?一般需要采用多因素随机区组设计 ?如果因子更多 建议采用正交试验设计 (2)野外样地或无样地法 样地法: ?可以对部分因素进行人为控制,尽量减少非试验因素的干扰 ?需要建立样地,平时需要管理 ?野外样地有固定样地和临时样地,固定样地还有永久性样地和非永久性样地 ?样地可以进行长期定位研究 ?样地可以进行大树的测定 ?临时样地和非永久性样地可以进行破坏性取样和测定 ?但是永久性样地不能,只能进行非破坏性的监测指标测定 ?对于需要的破坏性采样必须在样地外的缓冲区进行 无样地法 ?简单易行 ?但是具有更多的不可控因素,可能对结果产生不可预知的影响 ?研究中需要对每个样株所涉及的各种个体特征、外在环境因素(气候、土壤)及

Cass7.0方格网、DTM土方计算方法

Cass7.0方格网、DTM土方计算方法 摘要:本文介绍了地形地籍成图软件Cass7.0的土方计算方法:方格网法与DTM法,并就如果更好的使用这些计算方法以及使用上的关键性问题进行了阐述。 关键词:土方计算;方格网法;DTM法。 1 引言土方工程虽然在整个工程项目造价中所占比例较小,但因其特殊性在方量的计算与造价的控制上有一定的难度,引起的纠纷较多,如何更加客观、准确地计算土方量,减少或避免土方工程的争议,值得我们进行认真的探讨。决定土方量计算精度的因素有很多,其中计算方法是至关重要的一环。南方数码科技有限公司研发的地形地籍成图软件Cass7.0是目前市面上较常见的一套测量软件,其中所包含的土方计算方法如方格网法、DTM法、等高线法等为大家所普遍使用,它不仅上手容易,内业操作简便,而且计算结果准确性良好,可信度较高,为广大使用者所认可。 本文在对常用的方格网法、DTM法作介绍的基础上,提出一些使用过程中应当注意的关键性问题,以期提高土方计算的精度。 2 计算方法 2.1 方格网法 Cass7.0软件中的方格网法,需要提供计算区域的“高程点坐标数据文件”作为计算的依据,其具体计算操作如下:首先是导入“高程点坐标数据文件”,然后选择设计面:(1)当设计面为平面时,需要输入“目标高程”,在“方格宽度”一项中输入你需要设置的方格网规格,例如输入20米则为采用20m×20m的方格网进行土方计算;(2)当设计面为斜面时,有“基准点”和“基准线”两种方法,其原理是相同的,只是计算条件不同而已。我们以“基准点”法为例,它需要确定斜面的“坡度”,然后是“基准点”,也就是坡顶点的“坐标”和“高程”,再者就是坡线的“下边点”的坐标了,也就是斜坡方向,最后再确定“方格宽度”即可计算出土方量。(3)当设计面非平面也非斜面时,这种情况在土方工程中比较常见,场地经开挖或回填后变的杂乱无章就属于这种情况,假如我们有场地前期的“高程点坐标数据文件”,那么我们则可以利用它生成“三角网文件”,然后在设计面选项中选择“三角网文件”,然后导入文件,最后再确定“方格宽度”即可计算出土方量。 通过对Cass7.0软件中的方格网法的了解,我们不难看出其计算理论与传统的方格网法是一样的。只是在用户提供相关的计算条件,如设计面高程、坡度、方格宽度、三角网文件等计算条件之后,电脑自动在设计面及待计算场地平面设置相同的方格网,根据“高程点坐标数据文件”、设计面高程、坡度等内插出各方格网角点高程,然后对比相同平面位置上下两期的方格网,计算出该方格网的土方挖填数,最后统计出挖填总方量。 2.2 DTM法 DTM法土方计算以外业所采集的测量数据为基础,通过建立DTM模型,然后通过生成三角网(即相邻的三个点连成互不重叠的三角形)来计算每一个三棱锥的挖填方量,最后累计得到指定范围内填方和挖方的土方量。 Cass7.0的DTM土方计算方法共有三种,一是由坐标数据文件计算,二是依照图上高程点进行计算,第三是依照图上的三角网进行计算。前两种算法包含重新建立三角网的过程,第三种方法则是直接采用图上已有的三角网。

Matlab实现玻尔兹曼晶格模拟

Matlab实现格子玻尔兹曼方法(Lattice Boltzmann Method,LBM)模拟clear % GENERAL FLOW CONSTANTS lx = 250; ly = 51; obst_x = lx/5+1; % position of the cylinder; (exact obst_y = ly/2+1; % y-symmetry is avoided) obst_r = ly/10+1; % radius of the cylinder uMax = 0.02; % maximum velocity of Poiseuille inflow Re = 100; % Reynolds number nu = uMax * 2.*obst_r / Re; % kinematic viscosity omega = 1. / (3*nu+1./2.); % relaxation parameter maxT = 400000; % total number of iterations tPlot = 5; % cycles % D2Q9 LATTICE CONSTANTS t = [4/9, 1/9,1/9,1/9,1/9, 1/36,1/36,1/36,1/36]; cx = [ 0, 1, 0, -1, 0, 1, -1, -1, 1]; cy = [ 0, 0, 1, 0, -1, 1, 1, -1, -1]; opp = [ 1, 4, 5, 2, 3, 8, 9, 6, 7]; col = [2:(ly-1)]; [y,x] = meshgrid(1:ly,1:lx); obst = (x-obst_x).^2 + (y-obst_y).^2 <= obst_r.^2; obst(:,[1,ly]) = 1; bbRegion = find(obst); % INITIAL CONDITION: (rho=0, u=0) ==> fIn(i) = t(i) fIn = reshape( t' * ones(1,lx*ly), 9, lx, ly); % MAIN LOOP (TIME CYCLES) for cycle = 1:maxT % MACROSCOPIC VARIABLES rho = sum(fIn); ux = reshape ( ... (cx * reshape(fIn,9,lx*ly)), 1,lx,ly) ./rho; uy = reshape ( ... (cy * reshape(fIn,9,lx*ly)), 1,lx,ly) ./rho; % MACROSCOPIC (DIRICHLET) BOUNDARY CONDITIONS

方格网法土方量计算及测量

土方施工技术 场地平整 理论知识: 一、平整场地土方量计算公式与步骤 1. 读识方格网图 方格网图由设计单位(一般在1:500的地形图上)将场地划分为边长a=10~40m的若干方格,与测量的纵横坐标相对应,在各方格角点规定的位置上标注角点的自然地面标高(H)和设计标高(Hn),如图所示. 2.确定场地设计标高 1)场地初步标高: H0=S(H11+H12+H21+H22)/4M H11、H12、H21、H22 ——一个方格各角点的自然地面标高; M ——方格个数. 或: H0=(∑H1+2∑H2+3∑H3+4∑H4)/4M H1--一个方格所仅有角点的标高;

H2、H3、H4--分别为两个、三个、四个方格共用角点的标高. 2)场地设计标高的调整 按泄水坡度调整各角点设计标高: ①单向排水时,各方格角点设计标高为: Hn = H0 ± Li ②双向排水时,各方格角点设计标高为:Hn = H0 ± Lx ix ± L yi y 3.计算场地各个角点的施工高度 施工高度为角点设计地面标高与自然地面标高之差,是以角点设计标高为基准的挖方或填方的施工高度.各方格角点的施工高度按下式计算: 式中hn------角点施工高度即填挖高度(以“+”为填,“-”为挖),m; n------方格的角点编号(自然数列1,2,3,…,n). Hn------角点设计高程, H------角点原地面高程. 4.计算“零点”位置,确定零线 方格边线一端施工高程为“+”,若另一端为“-”,则沿其边线必然有一不挖不填的点,即“零点”(如图1-4所示).

图1-4 零点位置 零点位置按下式计算: 式中x1、x2 ——角点至零点的距离,m; h1、h2 ——相邻两角点的施工高度(均用绝对值),m; a —方格网的边长,m. 确定零点的办法也可以用图解法,如图1-5所示. 方法是用尺在各角点上标出挖填施工高度相应比例,用尺相连,与方格相交点即为零点位置。将相邻的零点连接起来,即为零线。它是确定方格中挖方与填方的分界线。 图1-5 零点位置图解法 5.计算方格土方工程量 按方格底面积图形和表1-3所列计算公式,逐格计算每个方格内的挖方量或填方量. 表1-3 常用方格网点计算公式

格子玻尔兹曼方法(LBM)及其在微通道绕流中的应用

2019年第19卷第1期 编辑李文波 安全数值模拟专栏 格子玻尔兹曼方法(LBM)及其在 微通道绕流中的应用 冯俊杰,孙冰,姜杰,徐伟,石宁 (中国石化青岛安全工程研究院化学品安全控制国家重点实验室,山东青岛266071 ) 摘要:卜绍了格子玻尔兹曼方法基本理论 与计算方法,并建立了D2Q9计算模型,对宏观尺 度及微通道中的非稳态绕流进行了数值模拟,得 到了绕流过程的速度分布和涡量分布等信息,对 流场结构、固体阻力、尾涡脱落等变化规律进行了 分析。结果表明,格子玻尔兹曼方法以其计算稳 定、效率高等优势能够应用于微反应器领域的数值 模拟;同等液相停留时间条件下,微反应器中的圆柱 绕流湍动程度明显降低,未形成周期性涡流,流动更 加均勾稳定,有助于实现化学反应的精确控制。 关键词:(LBM)微反应器通 0 前言 微反应器在提高反应过程安全性、缩短反应 间、提高转化率、灵活生 面具有独特的优势,实现微通道 的精确测定和控制是微反应器发挥诸多优势的保障和广泛应用的基础[1]。由于微通道内的 具有尺度小、多尺度、相界面与复杂的特点,传统的计 体力学(CFD)方作为宏观模 在着诸多 ,而格子玻尔兹曼方法(lattice Boltzmann method,LBM)突破 了计 的框架, 离散模 发,通群的碰撞和迁移代 的体模型,更接近 的微观本质,在微流控领域具有明 显的优势[—3]。 格子玻尔兹曼 的体离散 为在网格 的介观 ,通过计 的碰 撞和迁移规律得到 布函数,进而统计计算到宏观变量如压力、速度 布规律,创造性地了模 体 的模 离散模型 的转变[]。LBM平 计物理 学的Boltzmann方程,因而能成为联系微观 尺 度与宏观尺度之间的 [5_6]。的C FD方法 宏观的 ,而难以计:些 不符合 者难以用宏观方程描述的 系统,对于这些体系往往 借助微观的 '动 力学 体动理论来进行描述[]。对 力 学来说必须同时跟踪大量 的运动,实际求解 的计算量 大。在这 , 论和概率统计力学的LBM就成为 有 法,其具有更高的计算效率,并且容易 行计 收稿日期=2018-07-16 作者简介:I俊杰,博士,工程师,2016年毕业于 北京化工大学化学工程与技术专业,现于中国 石化青岛安全工程研究院从事本质安全化技 术、反应器工程等方面工作。 SAFETY HEALTH & ENVIRONMENT U7

流体力学格子法的外文文献及翻译资料

2.英文原文 SCIENCE CHINA Earth Sciences September 2013 Vol.56 No.9: 1519–1530 doi: 10.1007/s11430-013-4643-0 Lattice Boltzmann simulation of fluid flow through coal reservoir’s fractal pore structure JIN Yi1,2*, SONG HuiBo1,2, HU Bin1,2, ZHU YiBo1 & ZHENG JunLing1 1 School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China; 2 Key Laboratory of Biogenic Traces & Sedimentary Minerals of Henan Province, Jiaozuo 454000, China Received November 6, 2012; accepted March 28, 2013; published online June 27, 2013 The influences of fractal pore structure in coal reservoir on coalbed methane (CBM) migration were analyzed in detail by cou-pling theoretical models and numerical methods. Different types of fractals were generated based on the construction thought of the standard Menger Sponge to model the 3D nonlinear coal pore structures. Then a correlation model between the permea-bility of fractal porous medium and its pore-size-distribution characteristics was derived using the parallel and serial modes and verified by Lattice Boltzmann Method (LBM). Based on the coupled method, porosity (?), fractal dimension of pore structure (D b), pore size range (r min, r max) and other parameters were systematically analyzed for their influences on the perme-ability (κ) of fractal porous medium. The results indicate that: ① the channels connected by pores with the maximum size (r max) dominate the permeability κ , approximating in the quadratic law; ② the greater the ratio of r max and r min is, the higher κ is; ③ the relationship between D b and κ follows a negative power law model, and breaks into two segments at the position where D b≌2.5. Based on the results above, a predicting model of fractal porous medium permeability was proposed, formu- lated as κ =Cfr max n , where C and n (approximately equal to 2) are constants and f is an expression only containing parameters of fractal pore structure. In addition, the equivalence of the new proposed model for porous medium and the Kozeny-Carman model κ=Cr n was verified at D b=2.0. fractal pore structure, porous media, lattice Boltzmann model, coalbed methane (CBM) Citation:Jin Y, Song H B, Hu B, et al. Lattice Boltzmann simulation of fluid flow through coal reservoir’s fractal pore structure. Sci ence China: Earth Sci-ences, 2013, 56: 1519–1530, doi: 10.1007/s11430-013-4643-0 With the rapid development of industrial extraction and commercial exploitation of the CBM in China, more and more attention has been paid to the course of its genesis and migration law in coals. As a dual-porosity medium, coal reservoir’s pore spaces which is a kind of matrix porous medium coupled with fractured network, dominates the storage and recoverability of CBM [1–5]. Due to various causes, the microstructures of pores in coal reservoir are always disordered and ex-tremely complicated. There is now considerable evidence at home and abroad showing that coal reservoir is a fractal *Corresponding author (email: ) porous medium [1, 6–11]. Since the microstructures of the real porous media in coal are usually disordered and extremely complicated, this makes it very difficult to find the permeability of the media analytically and access the transport property of CBM ac-curately. Over the last several decades, the migration law of CBM in the fractal porous medium in coals has been inves-tigated both experimentally and theoretically by many au-thors [12–21]. But, experimental study is influenced heavily by many factors, such as experiment condition, scale, and testing environment. At the same time, the underlying con-tinuous media assumption makes the controlling mechanism of fluid flow hard to explore. As to the theoretical analyses ? Science China Press and Springer-Verlag Berlin Heidelberg 2013

相关主题