搜档网
当前位置:搜档网 › 太阳能电池的分类及简介

太阳能电池的分类及简介

太阳能电池的分类及简介
太阳能电池的分类及简介

太阳能电池分类及简介

姓名:***** 学号:*****

摘要:太阳能电池用于把太阳的光能直接转化为电能。目前世界各国正在研究的太阳电池主要有单晶硅、多晶硅、非晶硅太阳电池。在能量转换效率和使用寿命等综合性能方面,单晶硅和多晶硅电池优于非晶硅电池。多晶硅比单晶硅转换效率略低,但价格更便宜。

关键词:太阳能电池单晶硅多晶硅非晶硅微晶硅非晶硅薄膜太阳能电池分类

0引言:随着社会的发展对能源的需求越来越大及煤、石油等能源的枯竭,人类越来越迫切的需要寻找新的能源来满足人类的需求。太阳能不仅来源广并且清洁,是理想中的新能源。近几年来太阳能电池的发展已经取得重大的突破,发明了种类繁多的太阳能电池,有单晶硅、多晶硅、非晶硅、微晶硅及非晶硅薄膜太阳能电池。虽说太阳能电池发展迅猛,但到目前为止美国能源部根据统计评论认为,当今太阳能占全球能源仍<1%,由于目前太阳能转换效率太低,制作成本太高,太阳能电池发展受到阻碍。但随着科技的发展,人类一定会制作出转换效率更高,制作成本更低,寿命更长的太阳能电池,使太阳能在未来的能源中占主要地位。

1单晶硅太阳能电池

单晶硅太阳能电池是以高纯的单晶硅棒为原料的太阳能电池,是当前开发得最快的一种太阳能电池。它的构造和生产工艺已定型,产品已广泛用于空间和地面。

为了降低生产成本,地面应用的太阳能电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳能电池专用的单晶硅棒。将单晶硅棒切成片一般片厚约0.3毫米。硅片经过抛磨、清洗等工序,制成待加工的原料硅片。加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。扩散是在石英管制成的高温扩散炉中进行。这样就硅片上形成P>N结。然后采用丝网印刷法,精配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉。因此,单晶硅太阳能电池的单体片就制成了。单体片经过抽查检验,即可按所需要的规格组装成太阳能电池组件(太阳能电池板),用串联和并联的方法构成一定的输出电压和电流。最后用框架和材料进行封装。单晶硅太阳能电池的光电转换效率为15%左右,实验室成果也有20%以上的。单晶硅太阳能电池的特点:

(1) 作为原料的硅材料在地壳中含量丰富,对环境基本上没有影响。

(2) 单晶制备以及pn 结的制备都有成熟的集成电路工艺作保证。

(3) 硅的密度低,材料轻。即使是50 μm 以下厚度的薄片也有很好的强度。

(4) 与多晶硅、非晶硅比较,转换效率高。

(5) 电池工作稳定,已实际用于人造卫星等方面,并且可以保证20 年以上的工作寿命。单晶硅太阳能电池因为资源丰富,转换效率高,所以是现在开发最快的产业。但因其制造工艺复杂,需消耗大量的能源,所以有成本高,能回收周期长的缺点。

研究现状:单晶硅太阳能电池因为原料丰富,转换效率高,所以是现在发展最快的产业之一。但单晶硅电池对硅的纯度要求较高,制造工艺复杂,需要消耗大量的能源,加之高纯单晶硅大部分都是从外国进口的,所以成本较高,很难实现商业化普及。单晶硅太阳能电池的转化效率较高,规模生产的电池组件效率可达到12---16%,实验室记录最高达到的转换效率为24.4%。单晶硅太阳能电池要想进一步发展普及,必须降低成本并提高转化效率。

2多晶硅太阳能电池

多晶硅太阳能电池是以多晶硅为基体材料的太阳能电池。

特点:多晶硅太阳能电池的制作工艺与单晶硅太阳电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电转换效率约12%左右。高效率多晶硅太阳能单晶硅太阳能电池的缺点是制造单晶过程复杂,能耗大。为解决这些问题,用浇铸法或晶带法制造的多晶硅太阳能电池的开发取得了进展。在1976 年证明用多晶硅材料制作的太阳能电池的转换效率已超过10%,对大晶粒的电池,有报道效率可达14%。这种低成本的多晶硅太阳能电池已经大量生产,目前,多晶硅太阳能电池的转换率可以做到比单晶硅太阳能电池的转换率低1.5 个百分点,它在太阳能电池工业中所占的分额也相当大电池)。从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。

研究现状:效率低是目前多晶硅薄膜太阳能电池所面临的1个主要问题。因此提高廉价衬底上多晶硅薄膜太阳能电池的效率将是今后一个主要研发方向。实际上,目前几乎所有的制备高效体硅太阳能电池的工艺都用在了薄膜太阳能电池的制备上。由此看来,多晶硅薄膜太阳能电池的效率的提高主要取决于多晶硅薄膜的质量改进。因此,通过采取各种工艺措施在廉价衬底上制备大晶粒、高质量的多晶硅薄膜将依然是今后多晶硅薄膜太阳能电池研发的核心课题。多晶硅薄膜的沉积技术各种各样,至今还没有定论哪种技术是最佳选择。但也可以看出沉积技术一直是沿着低温沉积和高温沉积2个方向发展。固这2条技术路线各有利弊,所以在今后相当长的一段时间内这种局面不会改变。衬底材料的选择范围也很宽,最主要的衬底材料包括低成本硅、玻璃及陶瓷。至今还没有定论何种衬底最佳,可以预见在今后相当长的一段时间内这3种衬底材料的薄膜太阳能电池将共存。

3微晶硅太阳能电池

微晶硅太阳能电池是由介于非晶硅和单晶硅之间的一种混合相无序半导体材料组成的。

微晶硅太阳能电池的优势:

1、具有低成本优势

2、具有较高的电导率、高的吸收系数和无明显光致衰减现象

3、具有易实现大面积制备、集成化等优点。

4、在对太阳光谱不同波段的有效光电转换方面与非晶硅薄膜电池可形成很好的互补。

目前,要生产出高效率、低成本柯进入市场投入商业化应用的优质微晶硅太阳能电池,其制备技术还有待进一步完善。

4非晶硅薄膜太阳能电池:

非晶硅薄膜太阳能电池是一种以非晶硅化合物为基本组成的薄膜太阳能电池。

非晶硅薄膜太阳能电池具有如下特点:

(1) 非晶硅具有较高的光吸收系数。特别是在0.3~0.75 μm 的可见光波段,它的吸收系数比单晶硅要高出一个数量级。因而它比单晶硅对太阳辐射

的吸收效率要高40 倍左右,用很薄的非晶硅膜(约1 μm 厚)就能吸收90%有用的太阳能。这是非晶硅材料最重要的特点,也是它能够成为低价格太阳能

电池的最主要因素;

(2) 非晶硅的禁带宽度比单晶硅大,随制备条件的不同约在1.5~2.0 eV 的范围内变化,这样制成的非晶硅太阳能电池的开路电压高;

(3) 制备非晶硅的工艺和设备简单,淀积温度低,时间短,适于大批生产;

(4) 由于非晶硅没有晶体所要求的周期性原子排列,可以不考虑制备晶体所必须考虑的材料与衬底间的晶格失配问题。因而它几乎可以淀积在任何衬底上,包括廉价的玻璃衬底,并且易于实现大面积化;

(5) 制备非晶硅太阳能电池能耗少,约100kW ·h,能耗的回收年数比单晶硅电池短得多。

非晶硅电池生产工艺简单且温度低、耗能小,其市场份额逐年提高。目前,一半以上薄膜太阳能电池公司采用非晶硅薄膜技术,预计几年内,非晶硅薄膜在未来薄膜太阳能电池中将占据主要份额,但光电转换效率低和光致衰退效应是当前非晶硅薄膜电池存在的两大主要问题,为提高效率和稳定性人们在新器件结构,新材料、新工艺和新技术等方面需要加强探索。

参考文献

[1] 《中国建设动态:阳光能源》2006年第5期

[2] https://www.sodocs.net/doc/a72203836.html,/info/6790.html

[3] https://www.sodocs.net/doc/a72203836.html,/Read/Read.aspx?id=33280616

[4] 汪建军,刘金霞. 太阳能电池及材料研究和发展现状[J].浙江万里学院学报,2006,V19(5):73—77.

太阳能电池材料的发展及应用

太阳能电池材料的发展及应用 材料研1203 Z石南起新材料(或称先进材料)是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。新材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。 随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。新材料按组分为金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材料性能分为结构材料和功能材料。21世纪科技发展的主要方向之一是新材料的研制和应用。新材料的研究,是人类对物质性质认识和应用向更深层次的进军。 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。 功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。 功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。在全球新材料研究领域中,功能材料约占85%。我国高技术 (863)计划、国家重大基础研究[973]计划、国家自然科学基金项目中均安排了许多功能材料技术项目(约占新材料领域70%比例),并取得了大量研究成果。

太阳能电池分类

太阳能电池分类 太阳能电池按结晶状态可分为结晶系薄膜式和非结晶系薄膜式(以下表示为a-)两大类,而前者又分为单结晶形和多结晶形。 按材料可分为硅薄膜形、化合物半导体薄膜形和有机膜形,而化合物半导体薄膜形又分为非结晶形(a-Si:H,a-Si:H:F,a-SixGel-x:H等)、ⅢV族(GaAs,InP等)、ⅡⅥ族(Cds 系)和磷化锌 (Zn 3 p 2 )等。 太阳能电池根所用材料的不同,太阳能电池可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池、塑料太阳能电池,其中硅太阳能电池是发展最成熟的,在应用中居主导地位。 1、太阳能电池硅太阳能 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜作为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%(截止2011,为17%)。因此,多晶硅薄膜电池不久将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。 2、太阳能电池多晶体薄膜 多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电

(整理)薄膜太阳能电池种类

薄膜太阳能电池种类 为了寻找单晶硅电池的替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等。 上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。 砷化镓太阳能电池 GaAs属于III-V族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。 砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。 磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。 GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LPE技术,其中 MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,MOCVD技术异质外延方法制造GaAs电池是降用低成本很有希望的方法。已研究的砷化镓系列太阳电池有单晶砷化镓,多晶砷化镓,镓铝砷--砷化镓异质结,金属-半导体砷化镓,金属--绝缘体--半导体砷化镓太阳电池等。 砷化镓材料的制备类似硅半导体材料的制备,有晶体生长法,直接拉制法,气相生长法,液相外延法等。由于镓比较稀缺,砷有毒,制造成本高,此种太阳电池的发展受到影响。除GaAs外,其它III-V化合物如Gasb,GaInP等电池材料也得到了开发。 1998年德国费莱堡太阳能系统研究所制得的GaAs太阳能电池转换效率为 24.2%,为欧洲记录。首次制备的GaInP电池转换效率为14.7%。另外,该研

太阳能电池的工作原理、工作效率、制造太阳能的材料及大致构造

引言太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染;4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCV D)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和

晶硅太阳能电池的特点和种类

晶体硅太阳能电池的种类及特点 太阳能电池已经有30多年的发展历史。目前世界各国研制的硅太阳能电池种类繁多,;主要系列有单晶、多晶、非晶硅几种。其中单晶硅太阳能电池占50%,多晶硅电池占20%、非晶占30%。我国光伏发电发展需解决的关键问题。太阳能光伏发电发展的瓶颈 是成本高。为此,需加大研发力度,集中在降低成本和提高效率的关键技术上有所突破,主要包括:a)晶体硅电池技术。降低太阳硅材料的制备成本:开发专门用于晶体硅太阳 能电池的硅材料,是生产高效和低成本太阳电池的基本条件;同时实现硅材料国产化和 提高性能,从产业链的源头,抓好降低成本工作。提高电池/组件转换效率:高效钝化 技术,高效陷光技术,选择性发射区,背表面场,细栅或者单面技术,封装材料的最佳 折射率等高效封装技术等。光伏技术的发展以薄膜电池为方向,高效率、高稳定性、低 成本是光伏电池发展的基本原则。 单晶硅在太阳能的有效利用当中,太阳能光电利用是近些年来发展最快,也是最具 活力的研究领域。而硅材料太阳能电池无疑是市场的主体,硅基(多晶硅、单晶硅)太阳 能电池占80%以上,每年全世界需消费硅材料3000t左右。生产太阳能电池用单晶硅, 虽然利润比较低,但是市场需求量大,供不应求,如果进行规模化生产,其利润仍然很 可观。目前,中国拟建和在建的太阳能电池生产线每年将需要680多吨的太阳能电池用 多晶硅和单晶硅材料,其中单晶硅400多吨,而且,需求量还以每年15%~20%的增长 率快速增长。硅系列太阳能电池中,单晶硅太阳能电池在实验室里最高的转换效率为23%,而规模生产的单晶硅太阳能电池,其效率为15%,技术也最为成熟。高性能单晶 硅电池是建立在高质量单晶硅材料和相关的成熟的加工处理工艺基础上的。现在单晶硅 的电池工艺已近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂 等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率 主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳 能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制 成倒金字塔结构。通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得 的电池转化效率超过23%。单晶硅具有完整的金刚石结构。通过掺杂得到n,P型单晶硅,进而制备出p/n结、二极管及晶体管,从而使硅材料有了真正的用途。单晶硅太阳能电 池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶 硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度 降低其成本是非常困难的。 多晶硅众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但 目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光 电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过 程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合 1

太阳能电池材料

太阳能电池材料 1.说明三氯氢硅还原法制备高纯硅的具体步骤 答:工业级硅经过酸洗、粉碎(60~100目),符合粒度的送入干燥炉,经热氮气流干燥后,送入沸腾炉,同时从炉底部通入适量的干燥HCL,进行三氯氢硅的合成。 2.论述拉制无错位单晶硅的工艺 无错位晶核是生长无错位单晶的基础 3.论述直拉法工艺的定义、工艺流程、需控制的参数、特点 答:生长方法:在直拉单晶炉内,向盛有熔硅坩埚中,引入籽晶作为非均匀晶核。然后控制热场,将籽晶旋转并缓慢向上提拉,单晶便在籽晶下按籽晶的方向长大。直拉法工艺流程:炉体、籽晶、多晶硅、掺杂剂、石英坩埚;清洁处理;装炉;抽真空(或通保护气体);加热熔化;单晶生长;降温出炉;性能测试。 单晶工艺流程:1.熔化;2.稳定;3.引晶;4.缩颈;5.放肩;6.等径;7.收尾。需控制的参数、特点:坩埚的位置、转速、上升速度,以及籽晶的转速和上升速度,热场的设计和调整。 4.论述在直拉法中杂质的掺入方法以及单晶中杂质均匀分布的控制方法 答:共熔法:纯材料与杂质(不易挥发的材料)一起放入坩埚熔化; 投杂法:向已熔化的材料中加入杂质(易挥发的材料) 单晶中杂质均匀分布的控制方法:1.直拉法单晶纵向电阻率均匀性的控制:变速 拉晶法:原理C S =KC L 。双坩埚法:连通坩埚法和浮置坩埚法。2.径向电阻率均匀 性的控制:在晶体生长过程中,如果熔体搅拌均匀,则固液交界面是等电阻面。 5.论述直拉工艺中降低氧含量的措施 6.什么是分凝现象?平衡分凝系数?有效分凝系数?小平面效应? 答:分凝现象:将含有杂质的晶态物质熔化后再结晶时,杂质在晶体的固体浓度Cs和未结晶的液体中浓度C l不同的现象。 平衡分凝系数:在一定温度的平衡状态下,杂质的固液两相中浓度的比值:K0=C S/C L

太阳能电池分类知识总结

太阳能电池分类知识总结太阳能电池,也称为光伏电池,是将太阳光辐射能直接转换为电能的器件。由这种器件封装成太阳能电池组件,再按需要将一定数量的组件组合成一定功率的太阳电池方阵,经与储能装置、测量控制装置及直流—交流变换装置等相配套,即构成太阳电池发电系统,也称为光伏发电系统。更多资讯请关注光伏英才网,最权威专业的光伏人才招聘太阳能求职网。 太阳能光伏发电最核心的器件是太阳能电池。而太阳能电池的发展历史已经经过了160多年的漫长的发展历史。从总的发展来看,基础研究和技术进步都起到了积极推进的作用,至今为止,太阳能电池的基本结构和机理没有发生改变。 1.按结构分类:同质节太阳能电池、异质节太阳能电池、肖特基太阳能电池 2.按材料分类:硅太阳能电池、多元化合物薄膜太阳能电池、有机化合物太阳能电池、敏化纳米晶太阳能电池、聚合物多层修饰电极型太阳能电池 3.按工作方式分类:平板太阳能电池、聚光太阳能电池、分光太阳能电池 第一代:单晶硅和多晶硅两种,大约占太阳能电池产品市场的89.9%。第一代太阳能电池基于硅晶片基础之上,主要采用单晶体硅、多晶体硅为材料。其中,单晶硅电池转换效率最高,可达到18-20%,但生产成本高。 第二代:薄膜太阳能电池,占太阳能电池产品市场的9.9%,第二代太阳能电池基于薄膜技术基础之上,主要采用非晶硅及氧化物等为材料。效率比第一代低,最高的的转化效率为13%,但生产成本最低。 第三代:铜铟硒(CIS)等化合物薄膜太阳能电池及薄膜Si系太阳能电池。主要

处于实验室生产状态,由于其的高效率,低成本而存在潜在庞大的经济效应。 1.硅太阳能电池可分为:单晶硅太阳能电池、多晶硅薄膜太阳能电池、非晶硅薄膜太阳能电池 单晶硅太阳能电池,是以高纯的单晶硅棒为原料的太阳能电池,其转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的热加工处理工艺基础上。 非晶硅薄膜太阳能电池所采用的硅为a-Si。其基本结构不是pn结而是pin结。掺硼形成p区,掺磷形成n区,i为非杂质或轻掺杂的本征层。 突出特点:材料和制造工艺成本低、制作工艺为低温工艺(100-300℃),耗能较低、易于形成大规模生产能力,生产可全流程自动化、品种多,用途广。 存在问题:光学带隙为1.7eV→对长波区域不敏感→转换效率低。光致衰退效

太阳能电池的分类及其工作原理

1 硅系太阳能电池 1.1 单晶硅太阳能电池 硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改 进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面 积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。 单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,

现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池 通常的晶体硅太阳能电池是在厚度350-450μm的高质量硅片 上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬 底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和溅射沉积法也可用来 制备多晶硅薄膜电池。 化学气相沉积主要是以SiH2Cl2、SiHCl3、Sicl4或SiH4,为反 应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用Si、SiO2、Si3N4等。但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙。解决这一问题办 法是先用 LPCVD在衬底上沉炽一层较薄的非晶硅层,再将这层非晶 硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜,因此,再结晶技术无疑是很重要的一个环节,目前采用的技术主

太阳能电池材料

太阳能材料的研究和发展 1 引言 随着人类社会的不断发展,人与自然的矛盾也愈来愈突出。目前全世界范围面临的最为突出的问题是环境与能源,即环境恶化和能源短缺。这个问题当然要通过各国政府采取正确的对策来处理,发展新材料及相应的技术.将是解决这一问题最为有效的方法。事实上近年来人们对太阳能材料的研制和利用,已显示了积极有效的作用。这一新型功能材料的发展,既可解决人类面临的能源短缺,又不造成环境污染。尽管太阳能材料的成本还较高和性能还有待进一步提高,但随着材料科学的不断进步,太阳能材料愈来愈显示了诱人的发展前景。可以预见,在下个世纪,太阳能材料将扮演更为重要的角色。就象半导体等功能材料的发展带来电信和计算机产业的兴起和发展一样,太阳能材料及相关技术也将带来太阳能器件的产业化的发展,使人类在环境保护和能源利用两方面的和谐达到更加完善的境界。大阳能是人类取之不尽,用之不竭的可再生能源,也是清洁能源,不产生任何的环境污染。为了充分有效地利用太阳能,人们发展了多种太阳能材料。按性能和用途大体上可分为光热转换材料,光电转换材料,光化学能转换材料和光能调控变色材料等。由此而形成太阳能光热利用,光电利用,光化学能利用和太阳能光能调控等相应技术。从目前世界范围内经济发展状况来看,太阳能材料及相应利用技术是发展最快和最有发展前景的高科技产业之一。随着科学技术的不断进步,将不断地出现更为经济,性能更好的新型太阳能材料。太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽; ②要有较高的光电转换效率:3、材料本身对环境不造成污染;4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。 1 硅系太阳能电池 1.1 单晶硅太阳能电池 硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太

太阳能电池的分类简介

太阳能电池的分类: 太阳能电池的分类简介 太阳能电池按结晶状态可分为结晶系薄膜式和非结晶系薄膜式(以下表示为a-)两大类,而前者又分为单结晶形和多结晶形。 按材料可分为硅薄膜形、化合物半导体薄膜形和有机膜形,而化合物半导体薄膜形又分为非结晶形 (a-Si:H,a-Si:H:F,a-SixGel-x:H等)、ⅢV族(GaAs,InP等)、ⅡⅥ族(Cds系)和磷化锌 (Zn 3 p 2 )等。 太阳能电池根据所用材料的不同,太阳能电池还可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%。因此,多晶硅薄膜电池不久将会国际空间站太阳能电池板在太阳能电地市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。 (2)多元化合物薄膜太阳能电池 多元化合物薄膜太阳能电池材料为无机盐,其主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。 硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产品。 砷化镓(GaAs)III-V化合物电池的转换效率可达28%,GaAs化合物材料具有十分理想的光学带隙以及较高的吸收效率,抗辐照能力强,对热不敏感,适合于制造高效单结电池。但是GaAs材料的价格不菲,因而在很大程度上限制了用GaAs 电池的普及。 铜铟硒薄膜电池(简称CIS)适合光电转换,不存在光致衰退问题,转换效率和多晶硅一样。具有价格低廉、性能良好和工艺简单等优点,将成为今后发展太阳能电池的一个重要方向。唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到限制。 (3)聚合物多层修饰电极型太阳能电池 以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本底等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。 (4)纳米晶太阳能电池 纳米TiO2晶体化学能太阳能电池是新近发展的,优点在于它廉价的成本和简单的工艺及稳定的性能。其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/5~1/10.寿命能达到20年以上。 此类电池的研究和开发刚刚起步,不久的将来会逐步走上市场。 (5)有机太阳能电池 有机太阳能电池,就是由有机材料构成核心部分的太阳能电池。大家对有机太阳能电池不熟悉,这是情理中的事。如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的。 Page 1 of 1

太阳能电池的种类特点及发展趋势word资料14页

太阳能电池的种类特点及发展趋势 一、种类 按照材料分类 ?硅太阳能电池:以硅为基体材料(单晶硅、多晶硅、非晶硅) ?化合物半导体太阳能电池:由两种或两种以上的元素组成具 半导体特性的化合物半导体材料制成的太阳能电池(硫化镉、 砷化稼、碲化镉、硒铟铜、磷化铟) ?有机半导体太阳能电池:用含有一定数量的碳-碳键且导电 能力介于金属和绝缘体之间的半导体材料制成的电池(分子 晶体、电荷转移络合物、高聚物) 单晶硅太阳电池 特点 硅系列太阳能电池中,单晶硅的光电转换效率最高,技术也最成熟,高性能单晶硅电池是建立在高质量单晶硅材料和相关成熟的加工工艺基础上。提高转换效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。单晶硅太阳能电池的转换效率无疑是最高的,在大规模应用和工业生产中仍旧占据主导地位,但由于受单晶硅材料价格及相应繁琐的电池工艺影响,致使单晶硅成本据高不下,严重影响了其广泛应用。 单晶硅太阳能电池的特点是对于大于0.7μm的红外光也有一定的灵敏度。以p型单晶硅为衬底,其上扩散n型杂质的太阳能电池与n型单晶硅为衬底的太阳能电池相比,其光谱特性的峰值更偏向左边(短波长一方)。它对从蓝到紫色的短波长(波长小于0.5μm)的光有较高的灵敏度,但其制

法复杂,成本高,仅限于空间应用。此外,带状多晶硅太阳能电池的光谱特性也接近于单晶硅太阳能电池的光谱特性。 1. 多晶硅太阳电池 特点 单晶硅太阳能电池的缺点是制造过程复杂,制造电池的能耗大。为解决这些问题,用浇铸法或晶带法制造的多晶硅太阳能电池的开发取得了进展。在1976年证明用多晶硅材料制作的太阳能电池的转换效率已超过10%,对大晶粒的电池,有报道效率可达20%。这种低成本的多晶硅太阳能电池已经大量生产,目前,它在太阳能电池工业中所占的分额也相当大。 但是多晶硅材料质量比单晶硅差,有许多 晶界存在,电池效率比单晶硅低; 晶向不一致,表面织构化困难。 单晶、多晶与非晶的区别 多晶:短程有序(团体有序),成百上千个原子尺度,通常是在微米的量 铸造多晶硅 ?结晶形态分 单晶硅 多晶硅 非晶硅 高纯多晶硅 薄膜多晶硅 带状多晶硅 区熔单晶硅 直拉单晶硅

纳米结构材料及其技术在太阳能电池中的应用和发展现状

纳米结构材料及其技术在太阳能电池中的应用和 发展现状 王二垒,张秀霞,杨小聪,张绍慧 (北方民族大学电信学院,宁夏银川750021) 摘要:太阳能电池的发展和利用离不开太阳能电池材料和技术的发展,文中对纳米结构材料及其技术在太阳能电池和太阳能光电转化技术中的应用和发展现状做了简要综述。介绍了多元化合物太阳电池纳米材料、染料敏化太阳电池纳米材料和有机聚合物太阳电池结构纳米材料的研究现状和技术创新,并指出其发展趋势。关键词:太阳能电池;阳能电池材料;纳米结构材料;光电转化中图分类号:O 484.4 文献标识码:A 文章编号:1674-6236(2012)24-0184-04 Application and development of NANO -structured materials and technologies for solar cells WANG Er -lei ,ZHANG Xiu -xia ,YANG Xiao -cong ,ZHANG Shao -hui (School of Electronics and Information Engineering ,North National University ,Yinchuan 750021,China ) Abstract:The development and use of solar cells can not be separated from the development of solar materials and technologies ,this paper summarized the application and development of NANO -structured material and technologies for solar cells and solar photoelectric conversion.The study status and technology innovation for multi -element compounds solar cells of NANO -structured materials ,dye -sensitized solar cells of NANO -structured materials and organic polymer solar cells of NANO -structured materials were introduced ,the development tendency were also been pointed out.Key words:solar cells ;solar cell material ;NANO -structured material ;photoelectric conversion 收稿日期:2012-08-28 稿件编号:201208157 基金项目:国家自然科学基金资助项目(60844006);北方民族大学研究生创新项目(2012XYC040;2012XYC041);宁夏高等学校 科学研究项目基金(2011JY002);北方民族大学科学研究专项任务项目基金(2011XJZKJ02);北方民族大学大学生创新项目(CJJ-CX-DX-40;CJJ-CX-DX-39) 作者简介:王二垒(1985—),男,河南商水人,硕士研究生。研究方向:纳米材料在太阳能电池中的应用研究。 石油燃料作为一种能源的应用正在年复一年地引起全球环境恶化的许多严重问题。由于燃料的消耗,大气中CO 2浓度正以每年1PPm 的速率在上升,因此加剧了地球大气 PPm 的“温室效应”并导致种种变态现象。如果这种情况持续 不衰,那么在不远的将来,我们将在全世界范围内面临严重的危险。另外,石油燃料的储藏量也是有限的,预计在下世纪内将被耗尽。而太阳每秒钟辐射到地球表面的能量约为17万亿kW ,相当于目前全世界一年能源消耗的3.5万倍,其作为一种分布广泛、取之不尽用之不竭的无污染清洁能源是人类可持续发展的首选能源。作为一种环境友好并能有效提高生活标准的新型发电方式,光伏发电技术正在全球范围内逐步得到应用。光能使半导体材料内部的电荷分布状态发生变化,从而产生电动势和电流。光电转换材料是通过光生伏特效应将太阳能转换为电能的材料,主要用于制作太阳电池。太阳电池对光电转换材料的要求是转换效率高、能制成大面积的器件,以便更好地吸收太阳光。所以光伏发电技术的实行离不开太阳能电池材料。1839年,法国科学家贝克雷尔发现,光照能使半导体材料的不同部位之间产生电位差,这种现象后来被称为“光生伏打效应”。1954年,美国科学家恰宾和皮尔松在贝尔实验室首次制成了实用的单晶硅太阳能电池,从此太阳能转换为电能的实用光伏发电技术诞生。如今太阳能电池的种类不断增加,应用范围日益广阔,市场规模逐步扩大,太阳能电池的研究在欧洲,美洲,亚洲大规模展开。近几年,全世界太阳能电池的生产量平均每年增长近 40%,美国和日本相继出台了太阳能研究开发计划。随着光伏 技术及应用材料的飞速发展,光电材料成本不断下降,光电转换效率逐渐升高,太阳能光伏发电将会越来越显现出优越性。太阳能光电利用是近些年来发展最快、最具活力的研究领域,新材料、新工艺的出现可进一步提高人类利用太阳能光电利用的水平,确切的说,太阳能利用的水平最总取决于太阳能材料的发展水平[1]。传统的太阳能电池材料主要是单晶硅和多晶硅材料,尽管硅太阳能电池具有转化效率高、稳定性好的特点,但由于生产工艺复杂,加工工艺繁琐,使太阳 电子设计工程 Electronic Design Engineering 第20卷Vol.20第24期No.242012年12月Dec.2012 -184-

太阳能电池与功能材料和结构材料

1.硅太阳能电池工作原理与结构 太阳能电池发电的原理主要是半导体的光电效应,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。而黄色的表示掺入的硼原子,因为硼原子周围只有3个电子,所以就会产生入图所示的蓝色的空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成P(positive)型半导体。同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N(negative)型半导体。黄色的为磷原子核,红色的为多余的电子。N 型半导体中含有较多的空穴,而P型半导体中含有较多的电子,这样,当P型和N型半导体结合在一起时,就会在接触面形成电势差,这就是PN结。当P型和N型半导体结合在一起时,在两种半导体的交界面区域里会形成一个特殊的薄层),界面的P型一侧带负电,N型一侧带正电。这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差。N区的电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P 的“内电场”,从而阻止扩散进行。达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是PN结。当晶片受光后,PN结中,N型半导体的空穴往P型区移动,而P型区中的电子往N型区移动,从而形成从N型区到P型区的电流。然后在PN结中形成电势差,这就形成了电源。) 结构材料和功能材料的区分在于人们对于材料主要要求的性能不同。对于结构材料,材料的强度、韧性是主要要求的性能,这种性能对材料的组织、原子排列方式很敏感;而功能材料主要要求材料的声、电、热、光、磁等物理性能和化学性能,它们往往对组织不那么敏感,而对材料中的电子分布与运动敏感。所以本章分成结构材料和功能材料二部分来介绍。 结构材料在工业文明中发挥了巨大作用。大到海洋平台,小到一枚螺丝钉,它们所用材料都要考虑承载能力,都是用结构材料。面向21世纪,进一步发展空间技术、核能、海洋开发、石油、化工、建筑建材及交通运输等等仍然要依赖于结构材料。其中金属材料以前是,现代仍然是占主导地位;在一些关键部位或特殊环境下如高温、腐蚀条件下要用到结构陶瓷;高分子材料重量轻、耐腐蚀的优点使人们在一些承载低的工况下用它做结构材料;复合材料由于可利用各种材料之长,正成为大家关注的热点,其作为结构材料使用的场合不断增加。总之,这几类材料都可以作结构材料,但各有优缺点,通过学习大家要掌握这几类结构材料的特点和一些典型材料微观结构对性能的影响规律。 功能材料是当代新技术,如信息技术、生物工程技术、航空航天技术、能源技术、先进制造技术、先进防御技术……的物质基础,是新技术革命的先导,它的用量不大,但作用不小。金属材料、无机非金属材料、高分子材料中都有一些是功能材料,不同功能材料的复合更有可能开发出多功能的功能材料。由于这几类材料的声、光、电、热、磁各物理性质在本质上有共同的地方,所以功能材料部分我们按电、光、磁的顺序来介绍。这三种物理性质用的较多。对于电、光、磁本质的了解可以使我们容易理解形形色色的功能材料。 2.功能材料与结构材料区别 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。 结构材料是以力学性能为基础,以制造受力构件所用材料,当然,结构材料对物理或化学性能也有一定要求,如光泽、热导率、抗辐照、抗腐蚀、抗氧化等。

太阳能电池分类及知识一览

太阳能电池分类及知识一览 太阳能电池,也称为光伏电池,是将太阳光辐射能直接转换为电能的器件。由这种器件封装成太阳能电池组件,再按需要将一定数量的组件组合成一定功率的太阳电池方阵,经与储能装置、测量控制装置及直流—交流变换装置等相配套,即构成太阳电池发电系统,也称为光伏发电系统。 太阳能光伏发电最核心的器件是太阳能电池。而太阳能电池的发展历史已经经过了160多年的漫长的发展历史。从总的发展来看,基础研究和技术进步都起到了积极推进的作用,至今为止,太阳能电池的基本结构和机理没有发生改变。太阳能电池 1.按结构分类 ?同质节太阳能电池?异质节太阳能电池?肖特基太阳能电池 2.按材料分类 ?硅太阳能电池?多元化合物薄膜太阳能电池?有机化合物太阳能电池?敏化纳米晶太阳能电池?聚合物多层修饰电极型太阳能电池 3.按工作方式分类 ?平板太阳能电池?聚光太阳能电池?分光太阳能电池 p第一代:单晶硅和多晶硅两种,大约占太阳能电池产品市场的89.9%。第一代太阳能电池基于硅晶片基础之上,主要采用单晶体硅、多晶体硅为材料。其中,单晶硅电池转换效率最高,可达到18-20%,但生产成本高。 p第二代:薄膜太阳能电池,占太阳能电池产品市场的9.9%,第二代太阳能电池基于薄膜技术基础之上,主要采用非晶硅及氧化物等为材料。效率比第一

代低,最高的的转化效率为13%,但生产成本最低。 p第三代:铜铟硒(CIS)等化合物薄膜太阳能电池及薄膜Si系太阳能电池。主要处于实验室生产状态,由于其的高效率,低成本而存在潜在庞大的经济效应。 1.硅太阳能电池可分为: 1).单晶硅太阳能电池 2).多晶硅薄膜太阳能电池 3).非晶硅薄膜太阳能电池 单晶硅太阳能电池 单晶硅太阳能电池,是以高纯的单晶硅棒为原料的太阳能电池,其转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的热加工处理工艺基础上。 非晶硅薄膜太阳能电池 非晶硅薄膜太阳能电池所采用的硅为a-Si。其基本结构不是pn结而是pin

太阳能电池的分类及应用

科研训练报告 题 目:太阳能电池的 分类及应用 2013年 9 月 10 日

一、国内外研究进展及研究意义 1.1 国内外研究现状和发展动态 太阳电池是全球增长最快的高技术产业之一,其生产量已由1971年始的100KW,按每年10%的速度增加。至今,太阳电池的应用范围非常广泛,应用领域包括农村电气化、交通、通信、石油、气象、国防等。 光伏电源系统解决了许多农村学校、医疗所、家庭照明、电视等用电,对发展边远贫困地区的社会经济和文化发挥了十分重要的作用。我国西藏有7个无电县城采用光伏电站供电,社会经济效益非常显著。 在研究开发方面,我国开展了单晶硅、多晶硅电池研究及非晶硅、碲化镉、硒铜等薄膜电池研究,同时还开展了浇铸多晶硅、银/铝浆、EVA等材料研究,并取得可喜成果,其中刻槽埋栅电池效率达到国际水平。 我国的光伏产业20年来已形成了较好基础,但在总体水平上我国同国外相比还有很大差距,表现为:(1)生产规模小。我国太阳电池制造厂的生产能力比国外生产规模低一个多数量级。(2)技术水平较低。电池效率、封装水平同国外存在一定差距。(3)专用原材料国产化经过“八五”攻关取得一定成果,但性能有待进一步改进,部分材料仍采用进口品。(4)成本高。目前我国电池组件成本约30元/W,平均售价42元/W,成本和售价都高于国外产品。(5)市场培育和发展迟缓,缺乏市场培育和开拓的支持政策、法规、措施。 在太阳能、煤炭气化和液化、风能、氢能和核能等可再生能源技术中,光伏是未来最有希望的一种能源。太阳电池系统的市场规模,最终取决于光伏系统的成本。从地域上看,发展中国家在发展光伏技术方面更有潜力。发展中国家无电、缺电地区多,特别是无电居民比例很高。在数十年内,太阳电池在发展中国家将形成一个规模较大的市场,并且随着太阳能光电技术的日趋成熟和商业化发展。 就市场估计和价格估计而言是建立在以下技术预测基础上的:(1)晶体硅光伏电池在2020年前仍然是光伏技术的主角,但将向高效率、低成本的方向大步前进;(2)薄膜光伏电池是21世纪中叶以后的主力电池,前景看好,在2010年的前后可望有重大突破,逐步投入商业化生产,并应用于光伏并网发电和光伏屋顶发电等领域;(3)控制器、逆变器等关键平衡设备将向高可靠、高效率、智能化、低成本的方向发展,并取得重大进展;(4)将研制开发出更适合光伏发电用的长寿命、低成本、免维护的蓄电池;(5)系统集成技术将更加科学化、规范化、智能化、综合化。 另外改善太阳能电池的性能,降低制造成本以及减少大规模生产对环境造成的影响是未来太阳能电池发展的主要方向。作为太阳能电池材料,其中:(1)由于多晶硅和非晶硅薄膜电池具有较高的转换效率和相对较低的成本,将最终取代单晶硅电池,成为市场的主导产品;(2)Ⅲ-Ⅴ族化合物及CIS等属于稀有元素,尽管转换效率很高,但从材料来源看,这类太阳能电池不可能占据主导地位;(3)有机太阳能电池对光的吸收效率低,从而导致转换效率低;(4)染料敏化纳米TiO2薄膜太阳能电池的研究已取得喜人成就,但还存在如敏化剂的制备成本较高等问题。 现阶段多沿用液态电解质,存在易泄漏、电极易腐蚀、电池寿命短等缺陷,使得制备全固态太阳能电池成为一个必然方向。目前,大部分全固态太阳能电池光电转换率都不很理想。纳米晶太阳能电池以其高效、低价、无污染的巨大优势将挑战未来。我们相信,随着科技发展以及研究进步,这种太阳能电池应用前景将无限广阔。 1.2 研究意义 1) 保护气候;

相关主题