搜档网
当前位置:搜档网 › 汽车传感器控制原理与检测

汽车传感器控制原理与检测

汽车传感器控制原理与检测
汽车传感器控制原理与检测

汽车传感器控制原理与检测

【基本概述】车用传感器是汽车计算机系统的输入装置,它把汽车运行中各种工况信息,如车速、各种介质的温度、发动机运转工况等,转化成电讯号输给计算机,以便发动机处于最佳工作状态。车用传感器很多,判断传感器出现的故障时,不应只考虑传感器本身,而应考虑出现故障的整个电路。因此,在查找故障时,除了检查传感器之外,还要检查线束、插接件以及传感器与电控单元之间的有关电路。

【详细介绍】

现代汽车技术发展特征之一就是越来越多的部件采用电子控制。根据传感器的作用,可以分类为测量温度、压力、流量、位置、气体浓度、速度、光亮度、干湿度、距离等功能的传感器,它们各司其职,一旦某个传感器失灵,对应的装置工作就会不正常甚至不工作。因此,传感器在汽车上的作用是很重要的。

汽车传感器过去单纯用于发动机上,现在巳扩展到底盘、车身和灯光电气系统上了。这些系统采用的传感器有100多种。在种类繁多的传感器中,常见的有∶

进气压力传感器:反映进气歧管内的绝对压力大小的变化,是向ECU(发动机电控单元)提供计算喷油持续时间的基准信号;

空气流量计:测量发动机吸入的空气量,提供给ECU作为喷油时间的基准信号;

节气门位置传感器:测量节气门打开的角度,提供给ECU作为断油、控制燃油/空气比、点火提前角修正的基准信号;

曲轴位置传感器:检测曲轴及发动机转速,提供给ECU作为确定点火正时及工作顺序的基准信号;

氧传感器:检测排气中的氧浓度,提供给ECU作为控制燃油/空气比在最佳值(理论值)附近的的基准信号;

进气温度传感器:检测进气温度,提供给ECU作为计算空气密度的依据;

冷却液温度传感器:检测冷却液的温度,向ECU提供发动机温度信息;

爆震传感器:安装在缸体上专门检测发动机的爆燃状况,提供给ECU根据信号调整点火提前角。

这些传感器主要应用在变速器、方向器、悬架和ABS上。

变速器:有车速传感器、温度传感器、轴转速传感器、压力传感器等,方向器有转角传感器、转矩传感器、液压传感器;

悬架:有车速传感器、加速度传感器、车身高度传感器、侧倾角传感器、转角传感器等;

下面我们来认识一下汽车上的主要传感器。

空气流量传感器是将吸入的空气转换成电信号送至电控单元(ECU),作为决定喷油的基本信号之一。根据测量原理不同,可以分为旋转翼片式空气流量传感器(丰田PREVIA旅行车)、卡门涡游式空气流量传感器(丰田凌志LS400轿车)、热线式空气流量传感器(日产千里马车用VG30E发动机和国产天津三峰客车TJ6481AQ4装用的沃尔沃B230F发动机)和热膜式空气流量传感器四种型式。前两者为体积流量型,后两者为质量流量型。目前主要采用热线式空气流量传感器和热膜式空气流量传感器两种。

进气压力传感器可以根据发动机的负荷状态测出进气歧管内的绝对压力,并转换成电信号和转速信号一起送入计算机,作为决定喷油器基本喷油量的依据。国产奥迪100型轿车(V6发动机)、桑塔纳2000型轿车、北京切诺基(25L发动机)、丰田皇冠3.0轿车等均采用这种压力传感器。目前广泛采用的是半导体压敏电阻式进气压力传感器。

节气门位置传感器安装在节气门上,用来检测节气门的开度。它通过杠杆机构与节气门联动,进而反映发动机的不同工况。此传感器可把发动机的不同工况检测后输入电控单元(ECU),从而控制不同的喷油量。它有三种型式:开关触点式节气门位置传感器(桑塔纳2000型轿车和天津三峰客车)、线性可变电阻式节气门位置传感器(北京切诺基)、综合型节气门位置传感器(国产奥迪100型V6发动机)。

也称曲轴转角传感器,是计算机控制的点火系统中最重要的传感器,其作用是检测上止点信号、曲轴转角信号和发动机转速信号,并将其输入计算机,从而使计算机能按气缸的点火顺序发出最佳点火时刻指令。曲轴位置传感器有三种型式:电磁脉冲式曲轴位置传感器、霍尔效应式曲轴位置传感器(桑塔纳2000型轿车和北京切诺基)、光电效应式曲轴位置传感器。曲轴位置传感器型式不同,其控制方式和控制精度也不同。曲轴位置传感器一般安装于曲轴皮带轮或链轮侧面,有的安装于凸轮轴前端,也有的安装于分电器(桑塔纳2000型轿车)。

爆震传感器安装在发动机的缸体上,随时监测发动机的爆震情况。目前采用的有共振型和非共振型两大类。

【基本特性】

一、传感器特性

传感器是指能感受规定的物理量,并按一定规律转换成可用输入信号的器件或装置。简单地说,传感器是把非电量转换成电

量的装置。

传感器通常由敏感元件、转换元件和测量电路三部分组成。

1)、敏感元件是指能直接感受(或响应)被测量的部分,即将被测量通过传感器的敏感元件转换成与被测量有确定关系的非电量或其它量。

2)、转换元件则将上述非电量转换成电参量。

3)、测量电路的作用是将转换元件输入的电参量经过处理转换成电压、电流或频率等可测电量,以便进行显示、记录、控制和处理的部分。

传感器的静态特性参数指标

1.灵敏度

灵敏度是指稳态时传感器输出量y和输入量x之比,或输出量y的增量和输入量x的增量之比,用k表示为

k=dY/dX

2.分辨力

传感器在规定的测量范围内能够检测出的被测量的最小变化量称为分辨力。

3.测量范围和量程

在允许误差限内,被测量值的下限到上限之间的范围称为测量范围。

4.线性度(非线性误差)

在规定条件下,传感器校准曲线与拟合直线间的最大偏差与满量程输出值的百分比称为线性度或非线性误差。

5.迟滞

迟滞是指在相同的工作条件下,传感器的正行程特性与反行程特性的不一致程度。

6.重复性

重复性是指在同一工作条件下,输入量按同一方向在全测量范围内连续变化多次所得特性曲线的不一致性。

7.零漂和温漂

传感器在无输入或输入为另一值时,每隔一定时间,其输入值偏离原示值的最大偏差与满量程的百分比为零漂。而温度每升高1℃,传感器输出值的最大偏差与满量程的百分比,称为温漂。

二、发动机常用传感器工作机理

一)磁电效应

根据法拉第电磁感应定律,N匝线圈在磁场中运动,切割磁力线(或线圈所在磁场的磁通变化)时,线圈中所产生的感应电动势的大小取决于穿过线圈的磁通的变化率,

直线移动式磁电传感器

直线移动式磁电传感器由永久磁铁、线圈和传感器壳体等组成

当壳体随被测振动体一起振动且在振动频率远大于传感器的固有频率时,由于弹簧较软,运动件质量相对较大,运动件来不及随振动体一起振动(静止不动)。此时,磁铁与线圈之间的相对运动速度接近振动体的振动速度。

转动式磁电传感器

软铁、线圈和永久磁铁固定不动。由导磁材料制成的测量齿轮安装在被测旋转体上,每转过一个齿,测量齿轮与软铁之间构成的磁路磁阻变化一次,磁通也变化一次。线圈中感应电动势的变化频率(脉冲数)等于测量齿轮上的齿数和转速的乘积。

二)霍耳式传感器

1.霍耳效应

半导体或金属薄片置于磁场中,当有电流(与磁场垂直的薄片平面方向)流过时,在垂直于磁场和电流的方向上产生电动势,这种现象称为霍耳效应。

2.霍耳元件

目前常用的霍耳材料锗(Ge)、硅(Si)、锑化铟(InSb)、砷化铟(InAs)等。N型锗容易加工制造,霍耳系数、温度性能、线性度较好;P型硅的线性度最好,霍耳系数、温度性能同N型锗,但电子迁移率较低,带负载能力较差,通常不作单个霍耳元件。

三)压电式传感器

1.压电效应

对某些电介质沿着一定方向加力而使其变形时,在一定表面上产生电荷,当外力撤除后,又恢复到不带电状态,这种现象称为正压电效应。在电介质的极化方向施加电场,电介质会在一定方向上产生机械变形或机械压力,当外电场去除后,变形或应力随之消失,此现象称为逆压电效应。

2.压电元件

压电式传感器是物性型的、发电式传感器。常用的压电材料有石英晶体(SiO2)和人工合成的压电陶瓷。

压电陶瓷的压电常数是石英晶体的几倍,灵敏度较高。

四)光电式传感器

1.光电效应

当光线照射物体时,可看作一串具有能量E的光子轰击物体,如果光子的能量足够大,物质内部电子吸收光子能量后,摆脱内部力的约束,发生相应电效应的物理现象,称为光电效应。

1)在光线作用下,电子逸出物体表面的现象,称为外光电效应,如光电管、光电倍增管等。

2)在光线作用下,物体的电阻率改变的现象,称为内光电效应,如光敏电阻、光敏二极管、光敏三极管、光敏晶闸管等。

3)在光线作用下,物体产生一定方向电动势的现象,称为光生伏特现象,如光电池(属于对感光面入射光点位置敏感的器件)等。

2.光敏电阻

光敏电阻受到光线照射时,电子迁移,产生电子—空穴对,使电阻率变小。光照越强,阻值越低。入射光线消失,电子—空穴对恢复,电阻值逐渐恢复原值。

3.光敏管

光敏管(光敏二极管、光敏三极管、光敏晶闸管等)属于半导体器件。

4.电致发光

固体发光材料在电场激发下产生的发光现象称为电致发光。电致发光是将电能直接转换成光能的过程。发光二极管(LED)是以特殊材料掺杂制成的半导体电致发光器件。当其PN结正向偏置时,由于电子—空穴复合时产生过剩能量,该能量以光子形式放出而发光。

五)热电式传感器

1.热电效应

将两种不同性质的金属导体A、B接成一个闭合回路,如果两接合点温度不相等(T0≠T),则在两导体间产生电动势,并且回路中有一定大小的电流存在,此现象称为热电效应。

2.热电阻传感器

热电阻材料通常为纯金属,广泛使用的是铂、铜、镍、铁等

3.热敏电阻传感器

热敏电阻用半导体制成,与金属热电阻相比有以下特点:

1)电阻温度系数大,灵敏度高;

2)结构简单,体积小,易于点测量;

3)电阻率高,且适合动态测量;

4)阻值与温度变化的关系是非线性的;

5)稳定性较差。

【发展历史】

在20世纪60年代,汽车上仅有机油压力传感器、油量传感器和水温传感器,它们与仪表或指示灯连接。

进入70年代后,为了治理排放,又增加了一些传感器来帮助控制汽车的动力系统,因为同期出现的催化转换器、电子点火和燃油喷射装置需要这些传感器来维持一定的空燃比以控制排放。80年代,防抱死制动装置和气囊提高了汽车安全性。

今天,传感器有用来测定各种流体温度和压力(如进气温度、气道压力、冷却水温和燃油喷射压力等)的传感器;有用来确定各部分速度和位置的传感器(如车速、节气门开度、凸轮轴、曲轴、变速器的角度和速度、排气再循环阀(EGR)的位置等);还有用于测量发动机负荷、爆震、断火及废气中含氧量的传感器;确定座椅位置的传感器;在防抱死制动系统和悬架控制装置中测定车轮转速、路面高差和轮胎气压的传感器;保护前排乘员的气囊,不仅需要较多的碰撞传感器和加速度传感器。面对制造商提供的侧量、顶置式气囊以及更精巧的侧置头部气囊,还要增加传感器。随着研究人员用防撞传感器(测距雷达或其他测距传感器)来判断和控制汽车的侧向加速度、每个车轮的瞬时速度及所需的转矩,使制动系统成为汽车稳定性控制系统的一个组成部分。

老式的油压传感器和水温传感器是彼此独立的,由于有着明确的最大值或最小值的限定,其中一些传感器的实际作用就相当于开关。随着传感器向电子化和数字化方向发展,它们的输出值将得到更多的相关利用。

【市场状况】

传感器在汽车上的应用不断扩大,它们在汽车电子稳定性控制系统(包括轮速传感器、陀螺仪以及刹车处理器)、车道偏离警告系统和盲点探测系统(包括雷达、红外线或者光学传感器)各个方面都得到了使用。

2005年,美国ABI研究公司公布了一份专门针对传感器市场的研究报告。这份名为《汽车传感器:加速计、陀螺仪、霍耳效应、光学、压力、雷达以及超音速传感器》的报告,对2012年前主要传感器的地区性使用前景作了预测。报告讨论了使用传感技术的许多先进安全系统,并提供了主要

40家生产厂家的详细资料,以及100多家生产厂家名录。这家调查公司的一位资深分析师认为,是主动式安全系统推动了传感器被越来越多地使用。在汽车业,安全系统成为传感器的最大市场。

根据“全球信息公司”的调查报告,全球轻型汽车传感器OEM市场年均增长率7.4%,到2010年将达到140亿美元的规模,其增长幅度远远超出汽车本身的年均增长率。在发达国家,随着汽车电子系统日益完善,电子传感新技术快速发展,但已经成熟的传感器产品的增长将趋缓甚至可能下降;在发展中国家,基本的汽车传感器主要用于汽车发动机、安全、防盗、排放控制系统,增长量十分可观。用于发展中国家汽车幕本传感器产品主要通过OEM生产,以减少成本。汽车传感器供应商面临严峻挑战:一方面要扩大产能产量,另一方面要不断减低成本,这种发展趋势未来将不可能改变。

汽车发动和驱动系统仍是传感器的最大和最成熟的市场,然而与其它应用相比,增速将放缓;随着全球燃油价格的提高,“改进燃烧效率”将是汽车传感器的新的应用“亮点”领域;在汽车安全和防盗系统中的应用将是最快的增长的市场;尾气排放控制系统市场的发展则十分稳定,前景良好。按区域划分的几大应用市场是,在美国,主要用于胎压检测;在欧洲,用于汽车行人警告系统;在新兴产业国家,主要用于安全气囊和自动安全带系统。以每辆车来衡量,氧传感器用量最多,技术上不断进步。

【应用现状】

传感器在发动机上的应用

发动机控制系统用传感器是整个汽车传感器的核心,种类很多,包括温度传感器、压力传感器、位置和转速传感器、流量传感器、气体浓度传感器和爆震传感器等。这些传感器向发动机的电子控制单元(ECU)提供发动机的工作状况信息,供ECU对发动机工作状况进行精确控制,以提高发动机的动力性、降低油耗、减少废气排放和进行故障检测。

由于发动机工作在高温(发动机表面温度可达150℃、排气歧管可达650℃)、振动(加速度30g)、冲击(加速度50g)、潮湿(100%RH,-40℃-120℃)以及蒸汽、盐雾、腐蚀和油泥污染的恶劣环境中,因此发动机控制系统用传感器耐恶劣环境的技术指标要比一般工业用传感器高1-2个数量级,其中最关键的是测量精度和可靠性。否则,由传感器带来的测量误差将最终导致发动机控制系统难以正常工作或产生故障。

1.温度传感器

温度传感器主要用于检测发动机温度、吸入气体温度、冷却水温度、燃油温度以及催化温度等。温度用传感器有线绕电阻式、热敏电阻式和热偶电阻式三种主要类型。三种类型传感器各有特点,其应用场合也略有区别。线绕电阻式温度传感器的精度高,但响应特性差;热敏电阻式温度传感器灵敏度高,响应特性较好,但线性差,适应温度较低;热偶电阻式温度传感器的精度高,测量温度范围宽,但需要配合放大器和冷端处理一起使用。

已实用化的产品有热敏电阻式温度传感器(通用型-50℃~130℃,精度1.5%,响应时间10ms;高温型600℃~1000℃,精度5%,响应时间10ms)、铁氧体式温度传感器(ON/OFF型,-40℃~120℃,精度2.0%)、金属或半导体膜空气温度传感器(-40℃~150℃,精度2.0%、5%,响应时间20ms)等。

2.压力传感器

压力传感器主要用于检测气缸负压、大气压、涡轮发动机的升压比、气缸内压、油压等。吸气负压式传感器主要用于吸气压、负压、油压检测。汽车用压力传感器应用较多的有电容式、压阻式、差动变压器式(LVDT)、表面弹性波式(SAW)。

电容式压力传感器主要用于检测负压、液压、气压,测量范围20~100kPa,具有输入能量高,动态响应特性好、环境适应性好等特点;压阻式压力传感器受温度影响较大,需要另设温度补偿电路,但适应于大量生产;LVDT式压力传感器有较大的输出,易于数字输出,但抗干扰性差;SAW式压力传感器具有体积小、质量轻、功耗低、可靠性高、灵敏度高、分辨率高、数字输出等特点,用于汽车吸气阀压力检测,能在高温下稳定地工作,是一种较为理想的传感器。

3.流量传感器

流量传感器主要用于发动机空气流量和燃料流量的测量。空气流量的测量用于发动机控制系统确定燃烧条件、控制空燃比、起动、点火等。空气流量传感器有旋转翼片式(叶片式)、卡门涡旋式、热线式、热膜式等四种类型。旋转翼片式(叶片式)空气流量计结构简单,测量精度较低,测得的空气流量需要进行温度补偿;卡门涡旋式空气流量计无可动部件,反映灵敏,精度较高,也需要进行温度补偿;热线式空气流量计测量精度高,无需温度补偿,但易受气体脉动的影响,易断丝;热膜式空气流量计和热线式空气流量计测量原理一样,但体积少,适合大批量生产,成本低。空气流量传感器的主要技术指标为:工作范围0.11~103立方米/min,工作温度-40℃~120℃,精度≤1%。

燃料流量传感器用于检测燃料流量,主要有水轮式和循环球式,其动态范围0~60kg/h,工作温度-40℃~120℃,精度 1%,响应时间<10ms。

4.位置和转速传感器

位置和转速传感器主要用于检测曲轴转角、发动机转速、节气门的开度、车速等。目前汽车使用的位置和转速传感器主要有交流发电机式、磁阻式、霍尔效应式、簧片开关式、光学式、半导体磁性晶体管式等,其测量范围0 ~360 ,精度 0.5 以下,测弯曲角达 0.1 。

车速传感器种类繁多,有敏感车轮旋转的、也有敏感动力传动轴转动的,还有敏感差速从动轴转动的。当车速高于100km/h时,一般测量方法误差较大,需采用非接触式光电速度传感器,测速范围0.5~250km/h,重复精度0.1%,距离测量误差优于0.3%。

5.气体浓度传感器

气体浓度传感器主要用于检测车体内气体和废气排放。其中,最主要的是氧传感器,实用化的有氧化锆传感器(使用温度-40℃~900℃,精度1%)、氧化锆浓差电池型气体传感器(使用温度300℃

~800℃)、固体电解质式氧化锆气体传感器(使用温度0℃~400℃,精度0.5%),另外还有二氧化钛氧传感器。和氧化锆传感器相比,二氧化钛氧传感器具有结构简单、轻巧、便宜,且抗铅污染能力强的特点。

6.爆震传感器

爆震传感器用于检测发动机的振动,通过调整点火提前角控制和避免发动机发生爆震。可以通过检测气缸压力、发动机机体振动和燃烧噪声等三种方法来检测爆震。爆震传感器有磁致伸缩式和压电式。磁致伸缩式爆震传感器的使用温度为-40℃~125℃,频率范围为5~10kHz;压电式爆震传感器在中心频率5.417kHz处,其灵敏度可达200mV/g,在振幅为0.1g~10g范围内具有良好线性度。

7.24GHz雷达传感器

24GHz雷达传感器用于汽车防撞安装系统,通过发射雷达波来判断前方出现的物体大小,距离和移动速度,进而通过显示器或与汽车制动系统进行配合,避免汽车与前方物体相撞。传感器发射频率在24.125GHz左右,可以调节的频率范围在50KHz左右。精度在国外精度可以达到毫米级别。

传感器在车身上的应用

车身控制用传感器主要用于提高汽车的安全性、可靠性和舒适性等。由于其工作条件不象发动机和底盘那么恶劣,一般工业用传感器稍加改进就可以应用。主要有用于自动空调系统的温度传感器、湿度传感器、风量传感器、日照传感器等;用于安全气囊系统中的加速度传感器;用于门锁控制中的车速传感器;用于亮度自动控制中的光传感器;用于倒车控制中的超声波传感器或激光传感器;用于保持车距的距离传感器;用于消除驾驶员盲区的图象传感器等。

导航系统用传感器主要有:确定汽车行驶方向的罗盘传感器、陀螺仪和车速传感器、方向盘转角传感器等。

在车身上应用的各种传感器:有防撞加速度传感器、超声近距离目标传感器和红外热成像传感器,毫米波雷达和环境气体电化学传感器。新型的传感器有超声阵列反向传感器、侧面路面偏距报警和红外热成像夜视传感器。

传感器在底盘上的应用

底盘控制用传感器是指用于变速器控制系统的车速传感器、加速踏板位置传感器、加速度传感器、节气门位置传感器、发动机转速传感器、水温传感器、油温传感器等;悬架控制系统应用的传感器有车速传感器、节气门位置传感器、加速度传感器、车身高度传感器、方向盘转角传感器等;动力转向系统应用的传感器主要有车速传感器、发动机转速传感器、转矩传感器、油压传感器等。

底盘应用的主要类型传感器,即旋转位移和压力传感器。惯性加速度传感器和角速率传感器取代了温度传感器而成为在车底盘上应用的4种主要传感器。表3种列出了27种传感器。其中4种是压力传感器,3种旋转位移传感器,5种加速度传感器和3种角速率传感器。27种传感器其中的15种是属于这种类型传感器。目前低盘应用的新型传感器有侧路面角速率传感器、车轮角位置传感器和悬架位移位置传感器。

传感器在控制系统中的应用状况

发动机控制系统用传感器主要有温度传感器、压力传感器、位置和转速传感器、流量传感器、气体浓度传感器和爆震传感器等。这些传感器向发动机的电子控制单元(ECU)提供发动机的工作状况信息,以提高发动机的动力性、降低油耗、减少废气排放和进行故障检测。

由于发动机工作在高温(发动机表面温度可达150℃、排气歧管可达650℃)、振动(加速度30g)、冲击(加速度50g)、潮湿(100%RH,-40℃-120℃)以及盐雾、腐蚀和油泥等污染的恶劣环境中,发动机控制系统用传感器耐恶劣环境的技术指标要比一般工业用传感器高1-2个数量级,其中最关键的是测量精度和可靠性。

汽车控制系统应用的主要传感器类型,即旋转位移传感器、压力传感器和温度传感器。在北美,这三种传感器的销售数量分别占第一、第二和第四位。在表2中共列出了40种不同的汽车传感器。其中有8种压力传感器,四种温度传感器和四中旋转位移传感器。近年来研制的新型传感器是气缸压力传感器,踏板加速计位置传感器和油质量传感器。

导航系统用传感器

随着基于GPS/GIS(全球定位系统和地理信息系统)的导航系统在汽车上的应用,导航用传感器这几年得到迅速发展。导航系统用传感器主要有:确定汽车行驶方向的罗盘传感器、陀螺仪和车速传感器、方向盘转角传感器等。

自动变速器系统传感器

自动变速器系统用传感器主要有:车速传感器、加速踏板位置传感器、加速度传感器、节气门位置传感器、发动机转速传感器、水温传感器、油温传感器等。制动防抱死系统用传感器主要有:轮速传感器、车速传感器;悬架系统用传感器主要有:车速传感器、节气门位置传感器、加速度传感器、车身高度传感器、方向盘转角传感器等;动力转向系统用传感器主要有:车速传感器、发动机转速传感器、转矩传感器、油压传感器等。

【国内发展】

汽车传感器是汽车电子技术领域研究的核心内容之一,本文简单介绍了国内汽车传感器的应用发展情况,主要介绍了汽车上几种主要的传感器,并对发展趋势进行了展望。

一、汽车传感器市场规模大

市场研究数据显示,2002年全球汽车传感器的市场规模为70.1亿美元,预计2005年将达到85.2亿美元,年平均增长率为6.7%;全球2002年汽车传感器的市场需求量为10.38亿只,预计2005年将达到12.83亿只,年平均增长率为7.3%。我国的汽车工业发展加快。估计2010年将达600万辆的生产能力,若每辆车用10只传感器,将需6000万套传感器及其配套变送器和仪表。

我国现有汽车2000万辆,并且每年以5%以上的速度递增,但是目前“电喷”汽车还只占10%左右,国家规定停止“化油器”汽车的生产,新出厂的汽车要求全部安装“电喷”系统。上海联合汽车电子现在年产120万套“电喷”系统传感器,约4000~6000元/套,其中,汽车传感器占60%以上的产值。国内电喷系统应用传感器占系统的70%以上,ABS传感器的成本为50元左右,国内产量为100万套,产值为5000万元;安全气囊的传感器占系统成本的70%以上,安全气囊的传感器售价为2000元左右,需求量为100万套/年,则传感器的产值可达20亿元。

二、汽车传感器举足轻重

汽车传感器作为汽车电子控制系统的信息源,是汽车电子控制系统的关键部件,也是汽车电子技术领域研究的核心内容之一。汽车传感器对温度、压力、位置、转速、加速度和振动等各种信息进行实时、准确的测量和控制。衡量现代高级轿车控制系统水平的关键就在于其传感器的数量和水平。当前,一辆国内普通家用轿车上大约安装了近百个传感器,而豪华轿车上的传感器数量多达200只。

近年来从半导体集成电路技术发展而来的微电子机械系统(MEMS)技术日渐成熟,利用这一技术可以制作各种能敏感和检测力学量、磁学量、热学量、化学量和生物量的微型传感器,这些传感器的体积和能耗小,可实现许多全新的功能,便于大批量和高精度生产,单件成本低,易构成大规模和多功能阵列,非常适合在汽车上应用。

微型传感器的大规模应用将不仅限于发动机燃烧控制和安全气囊,在未来5~7年内,包括发动机运行管理、废气与空气质量控制、ABS、车辆动力的控制、自适应导航、车辆行驶安全系统在内的应用,将为MEMS技术提供广阔的市场。

三、国内汽车传感器生产水平低

自20世纪80年代以来,国内汽车仪表行业引进国外的先进技术及与之相配套的传感器生产技术,基本满足了国内小批量、低水平车型的配套需求。由于起步较晚,还没有形成系列化、配套化,尚未形成独立的产业,仍然依附于汽车仪表企业。

众多轿车、轻型车及部分载货车中采用新的电子产品,需要大批量、高水平的汽车传感器,但国内现有最高水平的汽车传感器产品比国外同类产品落后10多年,每年要进口50万套以上的高性能汽车传感器。

许多传感器厂家为了增强产品的竞争力,采用与国外同行业进行合资经营的方式,消化吸收国外先进的传感器技术,使产品升级换代,从而逐步发展壮大,有的已成为几大“电喷”系统厂家的下游供应商。但绝大多数企业还只是配套生产其它车用传感器,处于利润少、产品单一、产品质量和技术水平低下的状况。

伴随着国内汽车产量的迅速增长,今后几年国内汽车工业对传感器及其配套变速器和仪表的需求亦将大大增加,实现汽车传感器国产化势在必行。为适应这一形势,应重点开发新型压力、温度、流量、位移等传感器,尽快为汽车工业解决电喷系统、空调排污系统和自动驾驶系统所需的传感器是十分迫切的任务。汽车传感器对整车厂而言,是二级配套产品,必须以系统形式进入整车厂配套。一级系统配套商的实力关系到主机厂的品牌,所以必须建立系统平台,以系统带动传感器的发展。

【发展趋势】

未来的汽车传感器技术的发展趋势是微型化、多功能化、集成化和智能化。

20世纪末期,设计技术、材料技术,特别是Mems (微电子机械系统)技术的发展使微型传感器提高到了一个新的水平,利用微电子机械加工技术将微米级的敏感元件、信号处理器、数据处理装置封装在同一芯片上,它具有体积小、价格便宜、可靠性高等特点,并且可以明显提高系统测试精度。目前采用Mems技术可以制作检测力学量、磁学量、热学量、化学量和生物量的微型传感器。由于Mems 微型传感器在降低汽车电子系统成本及提高其性能方面的优势,它们已开始逐步取代基于传统机电技术的传感器。Mems传感器将成为世界汽车电子的重要构成部分。

汽车传感器和电子系统向着采用Mems传感器的方向发展。Philips Electronics公司和Continental Treves公司10年销售1亿只用于汽车ABS系统的传感器芯片, 生产上达到了一个新的里程碑。两个公司共同开发有源磁场传感器的前瞻性技术,产品应用在汽车厂家生产的最新的轿车上。Continental Teves公司用这种磁阻式转速传感器制作了轮速传感器, 用于ABS系统,防滑系统等。

Mems传感器成本低、可靠性好、尺寸小,可以集成在新的系统中,工作时间达到几百万个小时。Mems器件最早的是绝压传感器(Map)和气囊加速度传感器。目前,正在研发和小批量生产的MEMS/MST 产品有:轮速旋转传感器, 胎压传感器, 制冷压力传感器, 发动机油压传感器, 刹车压力传感器和偏离速率传感器等等。在今后的5-7年Mems器件将大量应用到汽车系统中。

随着微电子技术的发展和电子控制系统在汽车上的应用迅速增加,汽车传感器市场需求将保持高速增长,以Mems技术为基础的微型化、多功能化、集成化和智能化的传感器将逐步取代传统的传感器,成为汽车传感器的主流。

21世纪初期(2010前后),敏感元件与传感器发展的总趋势是小型化、集成化、多功能化、智

能化、系统化。传感器领域的主要技术将在现有基础上予以延伸和提高,并加速新一代传感器的开发和产业化。

微机械加工技术(MEMT)和微米/纳米技术将得到高速发展,将成为21世纪传感器领域中带有革命变化的高新技术。采用MEMT制作的MEMS产品(微传感器和微系统),具有划时代的微小体积、低成本、高可靠等独特的优点,预计由微传感器、微执行器以及信号和数据处理装置总装集成的微系统将进入商业市场。

随着新型敏感材料的加速开发,微电子、光电子、生物化学、信息处理等各学科、各种新技术的互相渗透和综合利用,可望研制出一批新颖、先进的传感器。如:新一代光纤传感器、超导传感器、焦平面阵列红列探测器、生物传感器、诊断传感器、智能传感器、基因传感器以及模糊传感器等。

硅传感器的研究、生产和应用将成为主流,半导体工业将更加有力地带动传感器的设计手日工艺制造技术;而微处理器和计算机将进一步带动新一代智能传感器和网络传感器的数据管理和采集。

敏感元件与传感器的更新换代周期将越来越短,其应用领域将得到拓展,二次传感器和传感器系统的应用将大幅度增长,廉价传感器的比例将增大,必将促进世界传感器市场的迅速发展。

高科技在传感技术中的应用比例更加增大。传感技术涉及多学科的交叉,它的设计需要多学科综合理论分析,常规方法已难于满足,CAD技术将得到广泛应用。如:国外在90年代初就研究出了用于硅压力传感器设计的MEMS CAD软件,大型有限元分析软件ANSYS,包含了力、热、声、流体、电、磁等分析模块,在MEMS器件的设计和模拟方面取得了成功。

传感器产业将进一步向着生产规模化、专业化和自动化方向发展。工业化大生产的平面工艺技术将是促进传感器价格大幅度降低的主要动力。而传感器制造的后工序一一封装工艺和测试标定(两者的费用约占产品总成本的50%以上)的自动化,将成为关键生产工艺予以突破。

传感器产业的企业结构仍将呈现“大、中、小并举”“集团化、专业化生产共存”的格局,集团化的大公司(含跨国集团公司〉将越来越显示出它的垄断作用,而专业化生产的中、小企业因其能适应市场小批量产品的需求,仍有其生存、发展的空间和机遇。

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

汽车传感器类型及其工作原理

汽车传感器类型及其工作原理 汽车技术的发展,使得越来越多的元器件用到整个汽车系统的控制上面。 最常用的就是使用传感器来检测各种需要检测或者对汽车行驶、控制需要参考 的重要参数,并将这些信号转化成电信号等待再次处理。下面,小编来和大家 分享一些汽车传感器类型,并针对这些不同性能的传感器它的工作原理,来告 诉大家它在汽车中是用在什么地方,具体是怎么操作的,并且它在整个系统中 有什么样的作用。常用的汽车传感器类型、工作原理和使用方式(1) 里程表传感器在差速器或者半轴上面的传感器,来感觉转动的圈数,一般 用霍尔,光电两个方式来检测信号,其目的利用里程表记数可有效的分析判断 汽车的行驶速度和里程,因为半轴和车轮的角速度相等,已知轮胎的半径,直 接通过历程参数来计算。在传动轴上设计两个轴承,大大减轻了运行中的力距,减少了摩擦力,增强了使用寿命;由原来的动态检测信号改为齿轮运转式检测信号;由原来直插式垂直变速箱改为倒角式接口变速箱。里程表传感器插头一般是在变速箱上,有的打开发动机盖可以看到,有的要在地沟操作。 (2) 机油压力传感器是指集微型传感器、执行器以及信号处理和控制电路、接口电路、通信和电源于一体的微型机电系统。常用的有硅压阻式和硅电 容式,两者都是在硅片上生成的微机械电子传感器。一般情况上,我们通过机 油压力传感器来检测汽车的机油向内的汽油还有多少,并将检测到的信号转换 成我们可以理解的信号,提醒我们还有多少汽油,或者还可以走多远,甚至是 提醒汽车需要加汽油了。(3) 水温传感器它的内部是一个半导体热敏电阻,温度愈低,电阻愈大;反之电阻愈小,安装在发动机缸体或缸盖的水套上,与冷却水直接接触。从而侧得发动机冷却水的温度。电控单元根据这一变化测 得发动机冷却水的温度,温度愈低,电阻愈大;反之电阻愈小。电控单元根据这

《汽车传感器技术》课程标准

《汽车传感器技术》课程教学标准 课程编码:课程类别:专业素质课 适用专业:汽车电子技术课程管理单位:汽车工程系 学时:60 学分:3 制定日期:2010-11-12 第一次修订日期:2011-03-26 第二次修订日期: ... 1、课程概述 1. 1课程性质 《汽车传感器技术》属于人才培养方案中四个课程模块中的专业基础课,是汽车电子技术专业的专业必修课,是技能考证课程,《汽车传感器技术》是一门实践性很强的技术应用型课程,它是来自企业的特色课程。 1.2课程的定位 《汽车传感器技术》课程,是汽车电子技术专业课程开发与教学资源建设中的一门课程,是汽车电子技术专业一门重要的职业必修课程。 该课程的学习需要以前修课程《汽车电工技术》、《汽车电子技术》、《汽车机械制图》为前导课程;该课程在后续课程《汽车电器与电子设备》、《汽车车身电控系统故障诊断与维修》、《发动机电控系统检修》、《汽车底盘电控系统检修》、《汽车总成拆装实训》、《整车电路实训》、《汽车性能检测与故障诊断》的学习以及企业顶岗实习、毕业实践等环节中,起着重要的支撑作用。该课程与前后续课程共同形成了完整的职业能力培养体系,是实现汽车电器与电子检测与维修专业人才培养目标的重要环节。该课程属于能力培养第二阶段,是一门重要的专业基础课程。 1.3修读条件 具有高等数学和简单的工程数学的分析和应用能力,具有基本的物理和化学基础;具有基本的读图和识图能力,英语水平较好。前期必须已经合格修读完电工技术和电子技术等专业基础课程。 2、课程目标 2.1知识目标: ①能正确描述传感器的作用、组成和常用术语。 ②能正确描述汽车电控系统中各传感器的类型和工作原理。 ③掌握汽车电控系统中各传感器的故障现象、故障检测与故障排除的流程方法。 2.2技能目标: ①能辨别和说出汽车电器设备各部位传感器的名称和功用。 ②能将传感器实物转化成简图并分析工作过程。 ③通过简图能在实物中找出相应的零部件并分析它的工作过程和工作原理。 ④能正确拆装汽车电器的各个传感器,并有维修和排除故障的能力。

汽车传感器的检测方法Microsoft-Word-文档

汽车传感器的检测方法 1、汽车曲轴位置传感器 汽车曲轴位置传感器一般安装于曲轴皮带轮或链轮侧面,有的安装于凸轮轴前端、分电器内或飞轮上。 汽车曲轴位置传感器检测: 1)开路检测:关闭点火开关,拔下传感器插头,用万用表R×10欧挡测量感应线圈的电阻值一般为300-1500欧。 2)动态检测:1)用万用表AC电压档测量其输出电压,启动为0.1V;运转时为0.4-0.8V。用频率表测其工作频率。再用万用表测其电压信号和用示波器检测其信号波形。 2、汽车节气门位置传感器 为了使喷油量满足不同工况的要求,电子控制汽油喷射系统在节气门体上装的传感器统称为节气门位置传感器。 节气门位置传感器检测: 线性输出型节气门位置传感器检测 1)静态检测:用万用表检测各端子的电阻值与标准相比对动。态检测:接通点火开关不发动发电机检测各端子是否导通。 2)、动态检测:先检测端电压和线束的导通性,接通点火开关测量不通状态下的电压信号和ECU的输出量与标准相比对。 线性输出型节气门位置传感器检测波形图 开关量输出型节气门位置传感器检测

1)静态检测:关闭火花塞,取下传感器线束用万用表检测各端电阻值。 2)、动态检测:现检测线路的导通性然后接通点火开关,用万用表电压档检测供电电压12V启动发动机测量怠速时的信号电压功率触点时的信号电压。 开关量输出型节气门位置传感器检测波形图 3、汽车进气歧管压力传感器 汽车进气歧管压力传感器分为电压型汽车进气歧管压力传感器(半导体压敏电阻式,膜盒传动式);频率型汽车进气歧管压力传感器(电容式,表面弹性波式)。汽车进气歧管压力传感器安装在进气歧管上,发动机机舱内,发动机电脑内。汽车进气歧管压力传感器检测: 1)、开路检测:关闭点火开关,拔下传感器插头,用万用表欧姆挡测量其各端子电阻动态电阻随压力的变化电阻值的测量。 2)、用万用表检测时因信号类型不同应选用不同的挡位,电压信号选用直流电压挡,频率信号选用频率挡。拔下进气压力传感器插头,打开点火开关,测量线束端插头上VCC与E2端子之间的电压应为4.5-5.5V。若无电压,则应检查ECU与传感器之间的线路和ECU。将插头插回,拆下传感器上的真空软管,打开点火开关,测量ECU连接器上端子在大气压下的输出电压。 4、汽车流量传感器 汽车流量传感器分为汽车体积流量型传感器和汽车质量流量型传感器。安装于空气滤清器、节气门、进气歧管等位置。 1)、汽车体积流量型传感器检测: 静态检测:万用表测各端电阻值和导通状态动态检测接通点火开关,空气的流量大小测相应的电阻值大小。

传感器原理与应用作业参考答案

《传感器原理与应用》作业参考答案 作业一 1.传感器有哪些组成部分在检测过程中各起什么作用 答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。 各部分在检测过程中所起作用是:敏感元件是在传感器中直接感受被测量,并输出与被测量成一定联系的另一物理量的元件,如电阻式传感器中的弹性敏感元件可将力转换为位移。传感元件是能将敏感元件的输出量转换为适于传输和测量的电参量的元件,如应变片可将应变转换为电阻量。测量转换电路可将传感元件输出的电参量转换成易于处理的电量信号。 2.传感器有哪些分类方法各有哪些传感器 答:按工作原理分有参量传感器、发电传感器、数字传感器和特殊传感器;按被测量性质分有机械量传感器、热工量传感器、成分量传感器、状态量传感器、探伤传感器等;按输出量形类分有模拟式、数字式和开关式;按传感器的结构分有直接式传感器、差分式传感器和补偿式传感器。 3.测量误差是如何分类的 答:按表示方法分有绝对误差和相对误差;按误差出现的规律分有系统误差、随机误差和粗大误差按误差来源分有工具误差和方法误差按被测量随时间变化的速度分有静态误差和动态误差按使用条件分有基本误差和附加误差按误差与被测量的关系分有定值误差和积累误差。 4.弹性敏感元件在传感器中起什么作用 答:弹性敏感元件在传感器技术中占有很重要的地位,是检测系统的基本元件,它能直接感受被测物理量(如力、位移、速度、压力等)的变化,进而将其转化为本身的应变或位移,然后再由各种不同形式的传感元件将这些量变换成电量。 5.弹性敏感元件有哪几种基本形式各有什么用途和特点 答:弹性敏感元件形式上基本分成两大类,即将力变换成应变或位移的变换力的弹性敏感元件和将压力变换成应变或位移的变换压力的弹性敏感元件。 变换力的弹性敏感元件通常有等截面轴、环状弹性敏感元件、悬臂梁和扭转轴等。实心等截面轴在力的作用下其位移很小,因此常用它的应变作为输出量。它的主要优点是结构简单、加工方便、测量范围宽、可承受极大的载荷、缺点是灵敏度低。空心圆柱体的灵敏度相对实心轴要高许多,在同样的截面积下,轴的直径可加大数倍,这样可提高轴的抗弯能力,但其过载能力相对弱,载荷较大时会产生较明显的桶形形变,使输出应变复杂而影响精度。环状敏感元件一般为等截面圆环结构,圆环受力后容易变形,所以它的灵敏度较高,多用于测量较小的力,缺点是圆环加工困难,环的各个部位的应变及应力都不相等。悬臂梁的特点是结构简单,易于加工,输出位移(或应变)大,灵敏度高,所以常用于较小力的测量。扭转轴式弹性敏感元件用于测量力矩和转矩。 变换压力的弹性敏感元件通常有弹簧管、波纹管、等截面薄板、波纹膜片和膜盒、薄壁圆筒和薄壁半球等。弹簧管可以把压力变换成位移,且弹簧管的自由端的位移量、中心角的变化量与压力p成正比,其刚度较大,灵敏度较小,但过载能力强,常用于测量较大压力。波纹管的线性特性易被破坏,因此它主要用于测量较小压力或压差测量中。 作业二 1.何谓电阻式传感器它主要分成哪几种 答:电阻式传感器是将被测量转换成电阻值,再经相应测量电路处理后,在显示器记录仪上显示或记

常用车辆检测传感器综述

常用车辆检测传感器综述 前言随着城市规模的不断扩大以及人口持续增加,人们的工作生活越来越依赖于各种交通工具。经济不断发展,人们收入的增加,以及国家一系列的购车优惠政策,越来越多的人拥有汽车。城市各种车辆的增加给人们出行提供了方便,但是由于交通量的增加,容易造成交通拥堵,甚至出现交通事故。为了解决日益严重的交通问题,不能够仅仅依靠扩宽现有的道路或者修建新的道路,构建智能交通系统(Intelligent Transportation Systems,简称ITS)此时解决日益严重的道路交通问题的有效办法,而车辆检测传感器则是ITS中最重要的交通数据采集部分。 实时准确地检测道路车辆的交通流信息并预测未来道路交通状况,进而将预测信息提供给交通控制中心,才可能有效避免交通阻塞,减少出行时间和交通事故的发生。精确和可靠的检测数据是在交通控制中进行合理的信号配时优化的基础,有效地利用实时的交通数据预测未来的交通状况,是实现有效的交通控制关键所在。本文集中介绍了集中生活中常用的几种固定式车辆检测传感器的原理和特点,分析了在不同环境中,车辆检测传感器的选择方式。 固定式车辆检测传感器一般包括感应线圈式检测器、超声波检测器、微波检测器、红外线检测器、视频检测器、磁力检测器以及声学检测器等。 一、感应线圈检测器 1.1 工作原理 感应线圈车辆检测器在检测过程中利用了涡流效应,即根据电磁感应定律,当金属导体置于交变磁场中时,导体内就会产生感应电流,在导体内形成闭合回路电流。检测器LC谐振电路产生一定频率的正弦振荡信号,同时,正弦振荡信号经互感线圈感应到埋设在路面的环形激励线圈上,使其周围空间形成正弦交变磁场。 图1 线圈检测系统组成示意图 其主要构成包括:埋于路面以下较浅处的绝缘线圈、路边拉紧盒到控制箱的数据输入线以及装于控制箱内的电子元件,如图1所示。环形线圈检测系统与控制中心的主控机通过电缆连接、通信,主控机可发送信号,设置检测器的检测周期等工作状态,并监测检测器故障;检测器则将检测数据如车辆计数、占有率等传送至主控机,以便完成控制系统的信息存储、优化配置、方案选择和事件检测等功能,实现系统的最佳控制效果。当汽车停在或驶过绝缘线圈,车辆的金属部分产生涡流电流,且电流方向与线圈电流的方向相反,因此,引起涡流电流产生的磁场与线圈电流产生的磁场方向相反,使得线圈磁场场强减小,而线圈磁场场强的减小使得振荡电路的振荡频率增加,从而引发电子元件向控制箱发出脉冲,以表征车辆的出现和经过。 1.2 典型应用 感应线圈车辆检测器具有稳定性好、技术成熟、正常使用寿命长、性价比和精确度高等

汽车传感器论文浅谈传感器技术在汽车领域的应用

浅谈传感器技术在汽车领域的应 用 院系信息工程系 专业 年级 学生姓名 指导教师

目录 1 摘要 1.1 汽车传感器举足轻重 1.2 国内传感器生产水平低 1.3 汽车上的主要传感器 1.4 汽车传感器的发展趋势 2 传感器类型 2.1里程表传感器 2.2安全气囊传感器 2.3 速度传感器 3 基本原理和发展 致谢 参考文献

1 摘要汽车传感器发展综述 在20世纪60年代,汽车上仅有机油压力传感器、油量传感器和水温传感器,它们与仪表或指示灯连接。 进入70年代后,为了治理排放,又增加了一些传感器来帮助控制汽车的动力系统,因为同期出现的催化转换器、电子点火和燃油喷射装置需要这些传感器来维持一定的空燃比以控制排放。80年代,防抱死制动装置和气囊提高了汽车安全性。 今天,传感器有用来测定各种流体温度和压力(如进气温度、气道压力、冷却水温和燃油喷射压力等)的传感器;有用来确定各部分速度和位置的传感器(如车速、节气门开度、凸轮轴、曲轴、变速器的角度和速度、排气再循环阀(EGR)的位置等);还有用于测量发动机负荷、爆震、断火及废气中含氧量的传感器;确定座椅位置的传感器;在防抱死制动系统和悬架控制装置中测定车轮转速、路面高差和轮胎气压的传感器;保护前排乘员的气囊,不仅需要较多的碰撞传感器和加速度传感器。面对制造商提供的侧量、顶置式气囊以及更精巧的侧置头部气囊,还要增加传感器。随着研究人员用防撞传感器(测距雷达或其他测距传感器)来判断和控制汽车的侧向加速度、每个车轮的瞬时速度及所需的转矩,使制动系统成为汽车稳定性控制系统的一个组成部分。 老式的油压传感器和水温传感器是彼此独立的,由于有着明确的最大值或最小值的限定,其中一些传感器的实际作用就相当于开关。随着传感器向电子化和数字化方向发展,它们的输出值

汽车常见传感器工作原理及检测

汽车常见传感器工作原理及检测 各种汽车传感器的作用 目录 1、进气压力传感器:..................................................................... ............................................2 2、空气流量传感器:..................................................................... ............................................2 3、节气门位置传感器:..................................................................... ........................................2 4、曲轴角度传感器:..................................................................... ............................................3 5、凸轮轴位置传感器(又称气缸识别传感器)..................................................................... 3 6、氧传感器:..................................................................... ........................................................3 7、发动机转速传感器...................................................................... ...........................................4 8、进气温度传感器:..................................................................... ............................................5 9、水温传感

传感器原理及应用试题库

一:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件, 测量电路三个部分组成。 2.半导体应变计应用较普遍的有体型、薄膜型、扩散型、外延型等。 3.光电式传感器是将光信号转换为电信号的光敏元件,根据光电效应可以分为 外光电效应,光电效应,热释电效应三种。 4.亮电流与暗电流之差称为光电流。 5.光电管的工作点应选在光电流与阳极电压无关的饱和区域。 6.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式应变计 和箔式应变计结构。 7.反射式光纤位移传感器在位移-输出曲线的前坡区呈线性关系,在后坡区与 距离的平方成反比关系。 8.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感 器。 9.画出达林顿光电三极管部接线方式: U CE 10.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示k(x)=Δy/Δx 。 11.线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端基线性度、独立线性度、最小二乘法线性度等。最常用的是最

小二乘法线性度。 12.根据敏感元件材料的不同,将应变计分为金属式和半导体式两大 类。 13.利用热效应的光电传感器包含光---热、热---电两个阶段的信息变换过程。 14.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿 法、计算机补偿法、应变计补偿法、热敏电阻补偿法。 15.应变式传感器一般是由电阻应变片和测量电路两部分组成。 16.传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 17.在光照射下,电子逸出物体表面向外发射的现象称为外光电效应,入 射光强改变物质导电率的物理现象称为光电效应。 18.光电管是一个装有光电阴极和阳极的真空玻璃管。 19.光电管的频率响应是指一定频率的调制光照射时光电输出的电流随频率变 化的关系,与其物理结构、工作状态、负载以及入射光波长等因素有关。多数光电器件灵敏度与调制频率的关系为Sr(f)=Sr。/(1+4π2f2τ2) 20.光电效应可分为光电导效应和光生伏特效应。 21.国家标准GB 7665--87对传感器下的定义是:能够感受规定的被测量并按照 一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。 22.传感器按输出量是模拟量还是数字量,可分为模拟量传感器和数字量传感器 23.传感器静态特性的灵敏度用公式表示为:k(x)=输出量的变化值/输入量的变 化值=△y/△x 24.应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;

汽车传感器与测试技术实验指导书(2个实验)

实验一位移传感器性能实验 一、实验目的: 1、、了解电涡流传感器原理; 2、掌握电涡流传感器的应用方法; 二、基本原理: 电涡流传感器的基本原理 通以高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。三、需用器件与单元: 电涡流传感器、电涡流传感器实验模块、测微头、直流电源、数显单元(主控台电压表)、测微头、铁圆片。 四、实验步骤: 测微头的组成与使用测微头组成和读数如图8-2测微头读数图 图8-2 测位头组成与读数 测微头组成:测微头由不可动部分安装套、轴套和可动部分测杆、微分筒、微调钮组成。 测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两排刻度线,标有数字的是整毫米刻线(1mm/格),另一排是半毫米刻线(0.5mm/格);微分筒前部圆周表面上刻有50等分的刻线(0.01mm/格)。 用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。微分筒每转过1格,

测杆沿轴方向移动微小位移0.01毫米,这也叫测微头的分度值。 测微头的读数方法是先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对准微分筒上的数值、可以估读1/10分度,如图8-2甲读数为3.678mm,不是 3.178mm;遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的示值是否过零,如图6-2乙已过零则读2.514mm;如图8-2丙未过零,则不应读为2mm,读数应为1.980mm。 测微头使用:测微头在实验中是用来产生位移并指示出位移量的工具。一般测微头在使用前,首先转动微分筒到10mm处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再拧紧支架座上的紧固螺钉。当转动测微头的微分筒时,被测体就会随测杆而位移。 电涡流传感器测位移 1)电涡流传感器和测微头的安装、使用参阅图8-5。按图8-6示意图接线。 2)观察传感器结构,这是一个扁平绕线圈。 3)将电涡流传感器输出线接入实验模块上标有Ti的插孔中,作为振荡器的一个元件。 4)在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。 5)将实验模块输出端V o 与数显单元输入端V i 相接。数显表量程切换开关选 择电压20V档。 6)用连接导线从主控台接入+15V直流电源到模块上标有+15V的插孔中,同时主控台的“地”与实验模块的“地”相连。

汽车用传感器试题库

精品文档)5个×6一、名词解释(、逆压电效应:指当在某些电介质的极化方向施加电场时,电介质就会在一定方向上产生机械变形或机应压力,电场撤去时,1电介质变形随之消失的现象。内部极化,同时在它的两个表面上会产生极性相反的电荷,外力正压电效应:某些电介质在沿着一定方向受到外力而变形时,去掉后,又恢复到不带电状态,外力方向改变,电荷极性随之改变的现象。2、传感器的迟滞:指传感器在输入量增大和输入量减小行程间,输入-输出特性曲线不一致的程度。3、传感器灵敏度:指传感器在稳态下,输出量变化值与输入量变化值的比值,K=dy/dx。分辨力:指传感器能检测到输入量最小变化量的能力。线性度:指传感器输入量与输出量之间的静态特性曲线偏离直线的程度。传感器量程:传感器能够测量的上限值与下限值的差称为量程。传感器的准确度:准确度常用最大引用误差来定义。4、内光电效应:指在光线的作用下使物体的电阻率发生改变的光电效应。外光电效应:指在光线的作用下使电子逸出物体表面的光电效应。5、压阻效应:在一块半导体的某一轴向施加一定的应力时,其电阻率产生变化的现象。流过霍尔元件时,在垂直于电流I6、霍耳效应:把霍尔元件至于磁感应强度为B的磁场中,磁场方向垂直于霍尔元件,当有电流和磁场的方向上产生感应电动势的现象。、差动电桥:菱形的四条边各接一个测量温度或应变力的电阻传感器,相邻桥臂传感器应变方向应相反,相对桥臂传感器应变7 方向应相同,组成一个电桥电路,用以消除电桥的相对非线性误差。称对称电桥:由四个测量温度或应变力的电阻传感器组成互相对称的电桥电路,四个电阻达到某一关系时,电桥的输出为零,电桥平衡,否则就有电压或电流输出。组成这种物体的材料吸收了光子能E的光子轰击,、光电效应:当用光照射在某一物体上时,可以看做是物体受到一连串能量为8 量而发生相应电效应的现象。、热电效应:闭合回路中存在电动势并且有电流产生,电流的强弱与两个结点的温度有关。9、压电效应:某些电介质,沿着一定方向对其施加外力而使它变形时,内部极化,相应地会在它的表面产生符号相反的电荷,10外力去掉后,又重新恢复不带电状态的现象。11、应变效应:导体或半导体材料在外力作用下产生机械形变,其电阻发生变化的现象。12、电涡流效应:电涡流的产生必然要消耗一部分能量,从而使产生磁场的线圈阻抗发生变化。、磁阻效应:由载流子在磁场中受到洛伦兹力而产生的致使某些金属或半导体的电阻值变化的现象。13 塞贝克效应:回路中产生的电势使热能转变为电能的一种现象。两种不同导电材料构成的闭合回路中,当两个接点温度不同,14、、莫尔条纹:两条线或两个物体之间以恒定的角度和频率发生干涉的视觉结果,当人眼无法分辨这两条线或两个物体时,只能15 看到干涉的花纹,这种光学现象就是莫尔条纹。16、感应同步器:利用电磁原理将线位移和角位移转换成电信号的一种装置。17爆震:混合气处在压缩过程中,火花塞还没有跳火时,高压混合气就达到了自燃温度,并开始猛烈燃烧的不正常燃烧现象。、点火提前角:从点火时刻起到活塞到达压缩上止点,这段时间内曲轴转过的角度。18 、占空比:高电平在一个周期之内所占的时间比率。19 、传感器:能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置。20 21、转换元件 、敏感元件:指传感器中能直接感受被测量的变化,并转换为易于转换的非电量的元件。2223、热敏电阻:用半导体材料制成的敏感元件,大多为负温度系数,即阻值随温度增加而降低。 24、测量:是以确定被测量值为目的的一系列操作。 直接测量:指在使用仪表或传感器进行测量时,不需要经过任何运算就能直接从仪表或传感器上得出测量结果的方法。间接测量:指用直接测量法测得与被测量有确切函数关系的一些物理量,然后通过计算求得被测量的方法。 25、检测:是利用传感器,将生产科研需要的电量和非电量信息转化成为易于测量、传输、显示和处理的电信号的过程。 26、测量方法:指针对不同测量任务进行具体分析以找出切实可行的办法。 27、测量误差:被测量的测量值与真值之间的差异。 绝对误差:指被测量的测量值与被测量的真值之间的差值。 精品文档. 精品文档 满度相对误差:绝对误差与仪器满量程的百分比。 标称相对误差:绝对误差与被测量的测量值的百分比。 系统误差:在形同条件下,多次重复测量同一被测量时,其测量误差的大小和符号保持不变,或在条件改变时,误差按某一确定的规律变化。

汽车测速传感器检测系统设计

汽车车速传感器检测系统设计 目前,随着人们生活水平的逐渐提高,人们对于生活质量的要求也日益增加,尤其是对生活质量舒适度的要求。汽车在中国普遍作为代步工具。而在国外,汽车却是一项十分受欢迎的交通方式。因此爱好汽车人十分学要一款能测速的装置,以知道自己的运行情况。并根据外界条件,如温度,风速等进行适当的调节,已达到最佳的运行效果。因此需要寻找一种装置与方法进行对训练中各种参数的测定记录。 本文讲详细的具体的讨论这些方法在汽车上的应用。 汽车要实现测速必须满足以下这些要求: ⒈对汽车进行实时速度的测量。显示出速度值。 ⒉能针对不同的车型进行选择。从而采用不同的模块进行测量。 ⒊能测量出当前的环境,以供使用者决定是否适宜出行。 ⒋显示当前日期时间,可以任意设定当前工作时间。 ⒌显示行车里程,运动时间。 ⒍可以自行设定采样频率 ⒎记录一段时间内的定时采样速度,存入制定单元。通过与PC机进行通讯,将数据传送到PC机中用如见进行处理,分析。得出运动或训练的情况。 8. 可以进入系统休眠方式以节省电能,并随时激活唤醒系统重新进行工作。可以调节液晶对比度,可以打开背景灯显示。

系统框图 通过传感器对外部物理量进行测量,再将物理信号转换为电信号,输入单 片机,单片机对所输入的电信号进行处理,最后输出显示,并可以通过与上位机通讯将数据采集到电脑中。 其中传感器元件用霍尔传感器,霍尔传感器外形图和与磁场的作用关系如右图所示。磁场由磁钢提供,所以霍尔传感器和磁钢需要配对使用。 霍尔传感器检测转速示意图如下。在非磁材料的圆盘边上粘贴一块磁钢,霍尔传感器固定在圆盘外缘附近。圆盘每转动一圈,霍尔传感器便输出一个脉冲。通过单片机测量产生脉冲的频率就可以得出圆盘的转速。 提醒:当没有信号产生时,可以改变一下磁钢的方向,霍尔对磁钢方向有要求。没有磁钢时输出高电平,有磁钢时输出低电平。 被测量对象 传感器 单片机系统 数据处理并显示 PC 机通信处理

(完整版)传感器原理及应用试题库(已做)

:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件 测量电路三个部分组成。 2.金属丝应变传感器设计过程中为了减少横向效应,可米用直线栅式应变计 和箔式应变计结构。 3. 根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感器 4. 灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示 k (x)=△ y△ x。 5. 线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端 基线性度、独立线性度、最小二乘法线性度等。最常用的是最小二乘法线性 度。 6. 根据敏感元件材料的不同,将应变计分为金属式和半导体式两大类。 7. 应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿法、 计算机补偿法、应变计补偿法、热敏电阻补偿法。 8. 应变式传感器一般是由电阻应变片和测量电路两部分组成。 9. 传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 10. 国家标准GB7665--87对传感器下的定义是:能够感受规定的被测量并按照一定 的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。11. 传感器按输出量是模拟量还是数字量, 可分为模拟量传感器和数字量传感器12. 传感器静态特性的灵敏度用公式表示为:心)=输出量的变化值/输入量的变化 值=△ y/ △ x 13. 应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;蠕 变小;机械滞后小;耐疲劳性好;具有足够的稳定性能:对弹性元件和应变计不产生化学腐蚀作用;有适当的储存期;应有较大的温度适用范围。 14. 根据传感器感知外界信息所依据的基本校园,可以将传感器分成三大类:物理传 感器,化学传感器,生物传感器。

汽车传感器与检测技术课程整体设计

《汽车传感器与检测技术》 课程整体设计 黔东南民族职业技术学院汽车专业 2011.8

课程代码: 4134032 课程名称:汽车传感器与检测技术 课程类型: 专业必修课 总学时:36 讲课学时:18 实验学时:18 学分:2 适用对象: 高等职业院校汽车检测与维修技术专业 1.学习情境设计思想 汽车传感器与检测技术采用以行动为导向、基于工作过程的课程开发方法进行设计,整个学习领域由4个学习情境组成。学习情境的设计要考虑以下因素: 1)学习情境的设计要符合基于工作过程的教学设计思想的要求。学习情境是在职业学校实验场地对真实工作过程的教学化加工,以完成具体的工作任务为目标。 2)学习情境的前后排序要符合学生认知规律,可以考虑从简单到复杂、从单一到综合的排序方法。 通过对维修企业维修汽车传感器检测的典型工作任务进行分析,结合学生的认知规律,共为汽车传感器与检测技术学习领域设计了4个学习情境,如表1所示。学习情境按照从简单到复杂,从单一到综合的规律进行排序。由于汽车传感器检测是多个控制系统的高度耦合系统,一个故障现实可能是由多个系统的故障引起,因此,在学习时先从各系统故障入手,最后再学习发动机综合故障的诊断与修复。 表1 汽车传感器与检测技术学习情境 2.学习情境描述 学习情境的描述包括:学习情境的名称、学时、学习目标及学习内容、教学方法和建议、工具教学载体、学生已有基础和教师所需执教能力。学习目标主

要描述通过该学习情境的学习学生应获得的能力;学习内容主要描述在该学习情境中所需学习的知识点。各学习情境的描述见下表: 3.《汽车传感器检测检修》学习情境设计 学习情境设计1 专业领域:汽车检测与维修专业 学习领域:汽车传感器检测 教师姓名日期

几种重要的汽车传感器原理

几种重要的汽车传感器原理 一、传感器概述 传感器的概念:指能感受规定的物理量,并按照一定规律转换成可用输信号的器件或装置。简单的说,传感器即使把非电量转换成电量的装置。 汽车传感器的工作条件极为恶劣,因此,传感器能否精确可靠地工作至关重要。在该领域中,理论研究及材料应用发展迅速,半导体和金属膜技术研究及材料应用技术发展迅速,半导体和金属膜技术、陶瓷烧结技术等得到迅猛发展。智能化、集成化和数字化将是传感器的未来发展趋势。 传感器通常由敏感元件、转换元件及测量电路组成。敏感元件是指能直接感受被测量的部分。转换元件是指能将非电量转换成电量的部分。有些敏感元件可以直接输入电量。测量电路是指将转换元件输入的电量经过处理,以便进行显示、记录和控制的部分。测量电路中较多的使用电桥电路。比如后面要讲到的热线式空气流量计。 传感器的种类比较多,像我们一般碰到的传感器一般有: 温度传感器(冷却水温度传感器THW,进气温度传感器THA); 流量传感器(空气流量传感器,燃油流量传感器); 进气压力传感器MAP 节气门位置传感器TPS 发动机转速传感器 车速传感器SPD 曲轴位置传感器(点火正时传感器) 氧传感器 爆震传感器(KNK) 二、空气流量传感器 为了形成符合要求的混合气,使空燃比达到最佳值,我们就必须对发动机进气空气流量进行精确控制。下面我们来介绍一下几种常用的空气流量传感器。 1、卡门旋涡式空气流量计

涡流式空气流量传感器是利用超声波或光电信号,通过检测旋涡频率来测量空气流量的一种传感器。 众所周知,当野外架空的电线被风吹时,就会发出“嗡、嗡”的声音,且风速越高声音频率越高,这是气体流过电线后形成旋涡(即涡流)所致。液体、气体等流体均会产生这种现象。 同样,如果我们在进气道中放置一个涡流发生器,比如说一个柱状物,在空气流过时,在涡流发生器后部将会不断产生如图所示的两列旋转方向相反,并交替出现的旋涡。这个旋涡就称为卡门旋涡。 卡门旋涡式空气流量计就是利用这种这种旋涡形成的原理,测量气体流速,并通过流速的测量直接反映空气流量。 对于一台具体的卡门旋涡式空气流量计,有如下关系式:qv=kf , qv为体积流量,f为单列旋涡产生的频率,k为比例常数,它与管道直径,柱状物直径等有关。由这个关系式可知,体积流量与卡门涡流传感器的输出频率成正比。利用这个原理,我们只要检测卡门旋涡的频率f,就可以求出空气流量。 根据旋涡频率的检测方式的不同,汽车用涡流式空气流量传感器分为超声波检测式和光学式检测式两种。例如,中国大陆进口的丰田凌志LS400型轿车和台湾进口的皇冠3.0型轿车采用了光电检测涡流式空气流量器;日本三菱吉普车、中国长风猎豹吉普车和韩国现代轿车采用了超声波检测涡流式空气流量传感器。 (1)光学式卡门旋涡空气流量计 现代物理学光的粒子说认为,光是一种具有能量的粒子流,当物体受到光照射时,由于吸收了光子能量而产生的效应,称为光电效应。光敏晶体管是一种半 导体器件,它的特点就是受到光的照射时,它们都会产生内光电效应的光生伏特现象,从而产生电流。 工作原理:在产生卡门旋涡的过程中,旋涡发生器两侧的空气压力会发生变化,通过导孔作用在金属箔上,从而使其振动,发光二极管的光照在振动的金属箔上时,光敏晶体管接收到的金属箔上的反射光是被旋涡调制的光,再由光敏晶体管输出调制过的频率信号,这种频率信号就代表了空气的流量信号。 (2)超声波式卡门旋涡式空气流量计 超声波是指频率高于20HZ,人耳听不到的机械波。它的特性就是方向性好,穿透力强,遇到杂质或物体分界面会产生显著的反射,譬如自然界里的蝙蝠,鲸鱼等动物都是通过超声波来进行方位定向的。利用这种物理特性,我们可以把一些非电量转换成声学参数,通过压电元件转换成电量。

汽车传感器的检测

第十二章汽车常用传感器的检测 1.水温传感器 水温传感器的精密度对喷油量有一定的影响,当混合气过浓或者过稀时,应先检查水温传感器,然后检查其它传感器。在检查时,可拆下水温传感器,将其置于茶壶内对其进行加热测试,用万用表测量在不同水温时的电阻值,在水温20℃时其阻值应为2~3KΩ阻值左右,80℃时应为0.2~0.4KΩ阻值左右,如果测量结果不符合规定要求,则应更换水温传感器。 2.进气温度传感器 其结构与水温传感器基本相似,检查时可使用万用表测量阻值进行判断。在正常情况下,当温度在20℃左右时,其阻值应为2~3KΩ阻值左右,60℃时应为0.4~0.7KΩ阻值左右,如果测量结果不符合规定要求,则应更换其传感器。当安装于空气流量计内的进气温度传感器损坏时应更换空气流量计,清洗节气门体,更换原厂滤清器。 3.进气压力传感器 采用速度-密度方式检测进气量的电控燃油喷射系统,是利用进气岐管压力传感器来间接地测量发动机吸入的空气量,检测时通常检查传感器的电源电压和输出电压。 方法如下: 1)电源电压的检查:拆下进气岐管上的压力传感器的线束插头,将点火开关置于ON位置,然后用万用表的电压档来测量线束插

头上的电源端子之间的电压,其值应符合规定(具体数值请查看被维修车辆的维修手册),否则应更换或修复其电控线束; 2)输出电压的检查:拆下传感器与进气岐管相连接的真空软管,使传感器直接与大气相通,然后将点火开关置于ON位置,用电压表在电控单元线束插头处测量传感器的输出电压,接着向传感器内加真空。并测量不同真空下它的输出电压,该电压值随真空密度的增大而降低,其变化情况应符合技术参数规定,否则应更换其传感器。 4.氧气传感器的检测 氧传感器安装在发动机排气管上,其作用是检测排气管中氧分子的浓度,并将其转换成电压信号或电阻信号,使电控单元依此信号来控制混合气的浓度。 发动机油耗过大时,严重冒黑烟。正常的数据是:诊断仪检查发动机故障的数据流,氧传感器电压变化频率为10~20次/秒,这是比较理想的状态。如果低于10次,那么可以初步判断氧传感器故障,如果是在0.45V的电压上没有变化,那么可以判定氧传感器损坏,信号处于中断状态。 简单的检查方法:用万用表测量其接线端中加热器(电压加热电阻)的两根接线柱之间的电阻,其正常值应为4~40KΩ.否则应更换氧传感器; 5.检查霍尔凸轮轴位置传感器 发动机运转时,用汽车示波器测量霍尔凸轮轴位置传感器的信号

传感器原理设计与应用重点总结

本文档根据老师最后一次课上课时所说的相关内容并根据我自己的个人情况简要整理,相对简洁,和大家分享一下。考虑到老师说的内容和考试内容相比,可能不够完整;而且个人水平有限,不可能把握的很准确,所以只是参考而已。。。建议大家根据自己的理解补充完善~ 第一章:传感器概论 1、传感器的定义:传感器(或敏感元件)基于一定的变换原理/规律将被测量(主要是非电量的测量,可采用非电量电测技术)转换成电量信号。变换原理/规律涉及到物理、化学、生物学、材料学等学科。 2、传感器的组成:传感器一般由敏感元件(将非电量变成某一中间量)、转换元件(将中间量转换成电量)、测量电路(将转换元件输出的电量变换成可直接利用的电信号)三部分组成,有的传感器还需加上辅助电源。 3、传感器的分类 按变换原理分类——>利用不同的效应构成物理型、化学型、生物型等传感器。 按构成原理分类: 结构型:依靠机械结构参数变化来实现变换。 物性型:利用材料本身的物理性质来实现变换。 按输入量的不同分类——>温度、压力、位移、流量、速度等传感器 按变换工作原理分类: 电路参数型:电阻型、电容型、电感型传感器 按参电量如:Q(电量)、I、U、E 等分类:磁电型、热电型、压电型、霍尔型、光电式传感器 4、传感器技术的发展动向: 教材表述:发现新现象、开发新材料、采用微细加工技术、研制多功能集成传感器、智能化传感器、新一代航天传感器、仿生传感器 老师表述:微型化、集成化、廉价。 第二章:传感器的一般特性 1、静态特性 检测系统的四种典型静态特性 线性度:传感器的输出与输入之间的线性程度。传感器的理想输出-输入特性是线性的。 灵敏度:系统在静态工作的条件下,其单位输入所产生的输出,实为拟合曲线上某点的斜率。 即S N=输入量的变化/输出量的变化=dy/dx 迟滞性:特性表明传感器在正(输入量增大)反(输入量减小)行程期间输出-输入特性曲线不重合的程度。 (产生的原因:传感器机械部分存在的不可避免的缺陷。) 重复性:重复性表示传感器在输入量按同一方向作全量程多次测量时所得特性曲线不一致程度。曲线的重复性好,误差也小。产生的原因与迟滞性类似。 精确度. 测量范围和量程. 零漂和温漂. 2、动态特性:(传感器对激励(输入)的响应(输出)特性) 动态误差:输出信号不与输入信号具有完全相同的时间函数,它们之间的差异。包括:稳态动态误差、暂态动态误差

相关主题