搜档网
当前位置:搜档网 › zemax操作数手册

zemax操作数手册

zemax操作数手册
zemax操作数手册

ZEMAX优化操作数

一阶光学性能

1. EFFL 透镜单元的有效焦距

2. AXCL透镜单元的轴向色差

3. LACL透镜单元的垂轴色差

4. PIMH规定波长的近轴像高

5. PMAG近轴放大率

6. AMAG角放大率

7. ENPP透镜单元入瞳位置

8. EXPP透镜单元出瞳位置

9. PETZ透镜单元的PETZVAL半径

10. PETC反向透镜单元的PETZVAL半径

11. LINV透镜单元的拉格朗日不变量

12. WFNO像空间F/#

13. POWR指定表面的权重

14. EPDI 透镜单元的入瞳直径

15. ISFN像空间F/# (近轴)

16. OBSN物空间数值孔径

17. EFLX“X”向有效焦距

18. EFLY “Y”向有效焦距

19. SFNO弧矢有效F/#

像差

1. SPHA在规定面出的波球差分布(0则计算全

局)

2. COMA透过面慧差(3阶近轴)

3. ASTI透过面像散(3阶近轴)

4. FCUR透过面场曲(3阶近轴)

5. DIST透过面波畸变(3阶近轴)

6. DIMX畸变最大值

7. AXCL轴像色差(近轴)

8. LACL垂轴色差

9. TRAR径像像对于主光线的横向像差

10. TRAX “X”向横向色差

11. TRAY “Y”向横向色差

12. TRAI规定面上的径像横向像差

13. TRAC径像像对于质心的横向像差

14. OPDC主光线光程差

15. OPDX衍射面心光程差

16. PETZ 透镜单元的PETZVAL半径

17. PETC反向透镜单元的PETZVAL半径

18. RSCH 主光线的RMS光斑尺寸

19. RSCE类RSCH

20.RWCH主光线的RMS波前偏差

21. RWCE衍射面心的RMS波前偏差

22. ANAR像差测试

23. ZERN Zernike系数

24. RSRE几何像点的RMS点尺寸(质心参考)

25.RSRH类同RSRE(主光线参考)

26. RWRE类同RSRE(波前偏差)

27. TRAD “X”像TRAR比较

28. TRAE “Y”像TRAR比较

29. TRCX像面子午像差”X”向(质心基准)

30. TRCY像面子午像差”Y”向(质心基准)

31. DISG 广义畸变百分数

32. FCGS弧矢场曲

33.DISC子午场曲

34.OPDM限制光程差,类同TRAC

35.PWRH 同RSCH

36.BSER对准偏差

37.BIOC集中对准

38.BIOD 垂直对准偏差

MTF数据

1. MTFT 切向调制函数

2. MTFS 径向调制函数

3. MTFA平均调制函数

4. MSWT切向方波调制函数

5. MSWS径向方波调制函数

6. MSWA 平均方波调制函数

7. GMTA 几何MTF切向径向响应

8. GMTS几何MTF径向响应

9. GMTT几何MTF切向响应

衍射能级

1.DENC 衍射包围圆能量

2.DENF衍射能量

3.GENC几何包围圆能量

4. XENC

透镜数据约束

1.TOTR透镜单元的总长

2.CVVA规定面的曲率=目标值3.CVGT规定面的曲率>目标值4.CVLT规定面的曲率<目标值5.CTVA 规定面的中心厚度=目标值6.CTGT规定面的中心厚度>目标值7.CTLT规定面的中心厚度<目标值8.ETVA规定面的边缘厚度=目标值9.ETGT 规定面的边缘厚度>目标值10.ETLT 规定面的边缘厚度<目标值11.COVA 圆锥系数=目标值12.COGT圆锥系数>目标值13.COLT圆锥系数<目标值14.DMVA约束面直径=目标值15.DMGT约束面直径>目标值16.DMLT约束面直径<目标值17.TTHI面厚度统计

18.VOLU元素容量

19.MNCT 最小中心厚度20.MXCT最大中心厚度21.MNET最小边缘厚度22.MXET最大边缘厚度23.MNCG最小中心玻璃厚度24.MXEG最大边缘玻璃厚度25.MXCG最大中心玻璃厚度26.MNCA 最小中心空气厚度27.MXCA最大中心空气厚度28.MNEA最小边缘空气厚度29.MXEA最大边缘空气厚度30.ZTHI 控制复合结构厚度31.SAGX透镜在”XZ”面上的面弧矢32.SAGY透镜在”YZ”面上的面弧矢33.COVL柱形单元体积34.MNSD最小直径

35.MXSD最大直径

36.XXET最大边缘厚度37.XXEA 最大空气边缘厚度38.XXEG最大玻璃边缘厚度39.XNET最小边缘厚度40.XNEA最小边缘空气厚度41.XNEG最小玻璃边缘厚度42.TTGT总结构厚度>目标值

43.TTLT 总结构厚度<目标值

44.TTVA总结构厚度=目标值

45.TMAS结构总质量

46.MNCV最小曲率

47.MXCV最大曲率

48.MNDT最小口径与厚度的比率49.MXDT最大口径与厚度的比率

参数数据约束

1.PnVA约束面的第n个控制参数=目标值2.PnGT约束面的第n个控制参数>目标值3.PnLT约束面的第n个控制参数<目标值附加数据约束

1.XDVA附加数据值=目标值(1~99)2.XDGT附加数据值>目标值(1~99)3.XDLT附加数据值<目标值(1~99)

玻璃数据约束

1.MNIN最小折射率

2.MXIN组大折射率

3.MNAB最小阿贝数

4.MXAB最大阿贝数

5.MNPD 最小ΔPg-f

6.MXPD最大ΔPg-f

7.RGLA 合理的玻璃

近轴光线数据

1.PARX指定面近轴X向坐标

2.PARY指定面近轴Y向坐标

3.REAZ指定面近轴Z向坐标

4.REAR指定面实际光线径向坐标5.REAA指定面实际光线X向余弦6.REAB指定面实际光线Y向余弦7.REAC指定面实际光线Z向余弦8.RENA指定面截距处,实际光线同面X向正交

9.RENB指定面截距处,实际光线同面Y向正交

10.RENC指定面截距处,实际光线同面Z向正交

11.RANG同Z轴向相联系的光线弧度角12.OPTH规定光线到面的距离

13.DXDX “X”向光瞳”X”向像差倒数14.DXDY “Y”向光瞳”X”向像差倒数15.DYDX “X”向光瞳”Y”向像差倒数16.DYDY “Y”向光瞳”Y”向像差倒数17.RETX实际光线”X”向正交

18.RETY实际光线”Y”向正交

19.RAGX 全局光线”X”坐标

20.RAGY全局光线”Y”坐标

21.RAGZ全局光线”Z”坐标

22.RAGA全局光线”X”余弦

23.RAGB全局光线”Y”余弦

24.RAGC全局光线”Z”余弦

25.RAIN入射实际光线角

局部位置约束

1.CLCX指定全局顶点”X”向坐标2.CLCY指定全局顶点”Y”向坐标

3.CLCZ指定全局顶点”Z”向坐标

4.CLCA指定全局顶点”X”向标准矢量

5.CLCB指定全局顶点”Y”向标准矢量6.CLCC指定全局顶点”Z”向标准矢量

变更系统数据

1.CONF 结构参数

2.PRIM主波长

3.SVIG 设置渐晕系数

一般操作数

1.SUMM 两个操作数求和

2.OSUM合计两个操作数之间的所有数3.DIFF两个操作数之间的差4.PROD两个操作数值之间的积5.DIVI两个操作数相除

6.SQRT操作数的平方根

7.OPGT操作数大于

8.OPLT操作数小于

9.CONS常数值

10.QSUM所有统计值的平方根11.EQUA等于操作数

12.MINN返回操作数的最小变化范围13.MAXX返回操作数的最大变化范围14.ACOS操作数反余弦

15.ASIN 操作数反正弦

16.ATAN操作数反正切

17.COSI操作数余弦

18.SINE操作数正弦

19.TANG操作数正切多结构数据

1.CONF结构

2.ZTIH复合结构某一范围面的全部厚度高斯光束数据

1.CBWA规定面空间高斯光束尺寸

2.CBWO规定面空间高斯光束束腰

3.CBWZ 规定面空间光束Z坐标

4.CBWR规定面空间高斯光束半径梯度率控制操作数

1.TnGT

2.TnLT

3.TnVA

4.GRMN 最小梯度率

5.GRMX最大梯度率

6.LPTD轴向梯度分布率

7.DLTN ΔN

ZPL宏指令优化

1.ZPLM

像面控制操作数

1.RELI 像面相对亮度

ZEMAX优化操作数

ZEMAX优化操作数 ZEMAX Merit Function,是在网上下下来的一个word文档,觉得蛮好的,一般用到的好像就是EFFL。呵呵,这个收集下,以后有用。 一阶光学性能 1. EFFL 透镜单元的有效焦距 2. AXCL 透镜单元的轴向色差 3. LACL 透镜单元的垂轴色差 4. PIMH 规定波长的近轴像高 5. PMAG 近轴放大率 6. AMAG 角放大率 7. ENPP 透镜单元入瞳位置 8. EXPP透镜单元出瞳位置 9. PETZ 透镜单元的PETZVAL半径 10. PETC反向透镜单元的PETZVAL半径 11. LINV 透镜单元的拉格朗日不变量 12. WFNO 像空间F/# 13. POWR 指定表面的权重 14. EPDI 透镜单元的入瞳直径

15. ISFN 像空间F/# (近轴) 16. OBSN 物空间数值孔径 17. EFLX “X”向有效焦距 18. EFLY “Y”向有效焦距 19. SFNO 弧矢有效F/# 像差 1. SPHA 在规定面出的波球差分布(0则计算全局) 2. COMA 透过面慧差(3阶近轴) 3. ASTI 透过面像散(3阶近轴) 4. FCUR透过面场曲(3阶近轴) 5. DIST透过面波畸变(3阶近轴) 6. DIMX 畸变最大值 7. AXCL 轴像色差(近轴) 8. LACL 垂轴色差 9. TRAR 径像像对于主光线的横向像差 10. TRAX “X”向横向色差 11. TRAY “Y”向横向色差

12. TRAI 规定面上的径像横向像差 13. TRAC径像像对于质心的横向像差 14. OPDC 主光线光程差 15. OPDX 衍射面心光程差 16. PETZ 透镜单元的PETZVAL半径 17. PETC反向透镜单元的PETZVAL半径 18. RSCH 主光线的RMS光斑尺寸 19. RSCE 类RSCH 20. RWCH主光线的RMS波前偏差 21. RWCE衍射面心的RMS波前偏差 22. ANAR像差测试 23. ZERN Zernike系数 24. RSRE 几何像点的RMS点尺寸(质心参考) 25. RSRH 类同RSRE(主光线参考) 26. RWRE类同RSRE(波前偏差) 27. TRAD “X”像TRAR比较 28. TRAE “Y”像TRAR比较 29. TRCX 像面子午像差”X”向(质心基准)

zemax实例

课程1:单透镜(a singlet) 开始ZEMAX,输入波长和镜片数据,生成光线 特性曲线(ray fan),光程差曲线(OPD),和点列图 (Spot diagram),确定厚度求方法和变量,进行简 单的优化。 假设需要设计一个F/4的镜片,焦距为100mm,在轴上可见光谱范围内,用BK7玻璃,该怎样开始呢? 首先,运行ZEMAX。ZEMAX主屏幕会显示镜片数据编辑(LDE)。你可以对LDE(你工作的场所)窗口进行移动或重新调整尺寸,以适合你自己的喜好。LDE由多行和多列组成,类似于电子表格。半径、厚度、玻璃和半口径等列是使用得最多的,其他的则只在某些特定类型的光学系统中才会用到。 1、基本设置:开始,我们先为我们的系统输入波长。这不一定要先完成,我们只不过现在选中了这一步。在主屏幕菜单条上,选择“系统(System)”---“通用配置(general)”----“单位units”,先确定单位。再选择“系统(System)”菜单下的“波长(Wavelengths)”。屏幕中间会弹出一个“波长数据(Wavelength Data)”对话框。ZEMAX中有许多这样的对话框,用来输入数据和提供你选择。用鼠标在第二和第三行的“使用(Use)”上单击一下,

将会增加两个波长使总数成为三。现在,在第一个“波长”行中输入0.486,这是氢(Hydrogen)F谱线的波长,单位为微米。 Z EMAX全部使用微米作为波长的单位。现在,在第二行的波长列中输入0.587,最后在第三行输入0.656。这就是ZEMAX中所有有关输入数据的操作,转到适当的区域,然后键入数据。在屏幕的最右边,你可以看到一列主波长指示器。这个指示器指出了主要的波长,当前为0.486微米。在主波长指示器的第二行上单击,指示器下移到587的位置。主波长用来计算近轴参数,如焦距,放大率等等。“权重(Weight)”这一列用在优化上,以及计算波长权重数据如RMS点尺寸和STREHL率。现在让所有的权为1.0,单击OK保存所做的改变,然后退出波长数据对话框。 选择“系统(System)”---“视场(fields)”----“角度”将X、Y都设为零。表示光线平行于主光轴入射。 2、为镜片定义一个孔径。这可以使ZEMAX在处理其他的事情上,知道每一个镜片该被定为多大。由于我们需要一个F/4镜头,我们需要一个25mm的孔径(100mm的焦距除F/4)。设置这个孔径值,选择“系统”---“通用配置(General)”---“aperture(孔径)”输入“光圈数值”:25。注意孔径类型缺省时为“入瞳直径(Entrance Pupil Diameter)”,也可选择其他类型的孔径设置。 3、加入一些重要的表面数据。ZEMAX模型光学系统使用一系列的表面,每一个面有一个曲率半径,厚度(到下一个面的轴上距离),和玻璃。一些表面也可有其他的数据,我们以后将会讨论到。

zemax常用评价函数操作数

Operand Definitions ZEMAX supports optimization operands which are used to define the merit function. Each operand may be assigned a weight which indicates the relative importance of that operand, as well as a target, which is the desired value for that operand. The operands are listed below. ABSO: Absolute value ACOS: Arccosine AMAG: Angular magnification ANAR: Angular aberration ASIN: Arcsine ASTI: Astigmatism ATAN: Arctangent AXCL: Axial color BLNK: Blank BSER: Boresight Error COGT: Conic greater than COLT: Conic less than COMA: Coma CONF: Configuration # CONS: Constant COSI: Cosine COV A: Conic value CTGT: Center thickness greater than 中心厚度(间隔)大于 CTLT: Center thickness less than 中心厚度(间隔)小于

(完整word版)基于ZEMAX的激光扩束镜的优化设计

光学软件设计 实验报告: 基于ZEMAX的激光扩束镜的优化设计 姓名: 学号:2011146211

一、实验目的 学会使用ZEMAX软件对多重结构配置的激光束扩大器进行优化设计。 二、实验要求 1、掌握使用多重结构配置。 2、进一步学习构建优化函数。 三、实验内容 设计一个激光扩束器,使用的波长为1.053um,输入光束直径为100mm,输出光束的直径为20mm,且输入光束和输出光束平行。要求只使用两片镜片,设计必须是伽利略式的(没有内部焦点),在镜片之间的间隔必须不超过250mm,只许使用1片非球面,系统必须在波长为0.6328um时测试。 1、打开ZEMAX软件,关闭默认的上一个设计结果,然后新建一个空白透镜。 2、在IMA面(像平面)前使用insert插入4个面,输入相关各面的厚度、曲率半径和玻璃类型值。 3、点击Gen设置入瞳直径为100,点击Wav设置波长为 1.053微米。

4、在主菜单Editors里构建一个优化函数,将第一行操作数类型改为REAY,surf输入5,Py输入1,taiget输入10,weight输入1。 5、在评价函数编辑窗中选工具—默认优化函数。选reset,将“开始在”的值设置为2,

确定。 6、点击Opt进行优化,优化后生产OPD图。

7、将第一面的conic设置为变量(control+z)。再次进行优化,重新生产OPD图并观察。 8、将三个曲率和圆锥西数的变量状态去掉。 9、点击Wav重新配置光波长,将之前的1.053改为0.6328,确定后再次更新OPD图并分析。

10、将第二面的厚度250mm设为可变,然后再次点击Opt优化,重新生成OPD图。此时去掉第二面的可变状态。 11、从主菜单—编辑中调出多重结构编辑窗,在这个窗口的编辑菜单中选“插入结构”来插入一个新的结构配置,双击第一行第一列,从下拉框中选wave,在同样的对话框里为wavelength选择1,确定。在config1下输入 1.053,在config2下输入0.6328。

zemax优化操作函数汇总

优化函数 1、像差 SPHA(球差):surf表面编号/wave波长/target设定目标值/weight权重 指定表面产生的球差贡献值,以波长表示。如果表面编号值为零,则为整个系统的总和 COMA(彗差) :surf表面编号/wave波长/target设定目标值/weight权重 指定表面产生的贡献值,以波长表示。如果表面编号值为0,则是针对整个系统。这是 由塞得和数计算得到的第三级彗差,对非近轴系统无效. ASTI(像散):指定表面产生像散的贡献值,以波长表示。如果表面编号值为0,则是针对整个系统。这是由塞得和数计算得到的第三级色散,对非近轴系统无效 FCUR(场曲):指定表面产生的场曲贡献值,以波长表示。如果表面编号值为0,则是计算整个系统的场曲。这是由塞得系数计算出的第三级场曲,对非近轴系统无效. DIST(畸变):指定表面产生的畸变贡献值,以波长表示。如果表面编号值为0,则使用整个系统。同样,如果表面编号值为0,则畸变以百分数形式给出。这是由塞得系数计算出的第三级畸变,对与非近轴系统无效. DIMX(最大畸变值):它与DIST 相似,只不过它仅规定了畸变的绝对值的上限。视场的整数编号可以是0,这说明使用最大的视场坐标,也可以是任何有效的视场编号。注意,最大的畸变不一定总是在最大视场处产生。得到的值总是以百分数为单位,以系统作为一个整体。这个操作数对于非旋转对称系统可能无效。 AXCL(轴向色差):以镜头长度单位为单位的轴向色差。这是两种定义的最边缘的波长的理想焦面的间隔。这个距离是沿着Z 轴测量的。对非近轴系统无效. LACL(垂轴色差):这是定义的两种极端波长的主光线截点的y方向的距离。对于非近轴系统无效TRAR(垂轴像差):在像面半径方向测定的相对于主光线的垂轴像差. TRAX(x方向垂轴像差):在像面x方向测定的相对于主光线的垂轴像差 TRAY(Y方向垂轴像差):在像面Y方向测定的相对于主光线的垂轴像差 TRAI(垂轴像差):在指定表面半口径方向测定的相对于主光线的垂轴像差.类似于TRAR,只不过是针对一个表面,而不是指定的像面. OPDC(光程差):指定波长的主光线的光程差. PETZ(匹兹伐曲率半径):以镜头长度单位表示,对非近轴系统无效 PETC(匹兹伐曲率):以镜头长度单位的倒数表示,对非近轴系统无效 RSCH:相对于主光线的RMS 斑点尺寸(光线像差)。 RSCE:环带波长Hx,Hy,以镜头长度单位测量的,相对于几何像质心的RMS 斑点尺寸(光线像差)。这个操作数类似于RSCH,只不过参考点是像质心,而不是主光线。详细内容可参见RSCH。!R0Y}N ~Q

Zemax操作

首先在运行系统中开启ZEMAX,默认的编辑视窗为透镜资料编辑器(Lens Data Editor, LDE),在LDE可键入大多数的透镜参数,这些设罝的参数包括: 表面类型(Surf:Type)如标准球面、非球面、衍射光栅…等 曲率半径(Radius of Curvature) 表面厚度(Thickness):与下一个表面之间的距离 材料类型(Glass)如玻璃、空气、塑胶…等:与下一个表面之间的材料 表面半高(Semi-Diameter):决定透镜表面的尺寸大小 以单透镜为例: 1、设置系统孔径(System->General) 注:F/#指的是光由无限远入射所形成的有效焦距F与近轴光线所对应的入瞳直径#的比值。在说明问题前,首先要了解一些光学术语:A=D/f’,A表示物镜的相对孔径,D表示入瞳直径一般就是指物镜直径,f’表示物镜焦距,另外在照相机里面为了方便常常将A的倒数即f’/D作为相机上的标示值,称为光圈F(注意此处F为光圈数,区别上面所说的有效焦距F)。现在来说明F/4的意思,即我们知道有效焦距为F,入瞳为4mm(光学里面一般以毫米为单位),假如设计时给出焦距为100mm,那么我们立即可以得到光圈数为100/4=25mm。 包括输入入瞳,选择好透镜单位等 2、设置视场角(System->Filed) ZEMAX默认的视场角是即为近轴视场角,其中「Weight」这个选项可以用来设罝各视场角之权值,并可运用于优化。 3、设置波长(Wav) 4、键入透镜资料 建立单透镜这个例子需要建立4个表面。 The object surface(OBJ):设罝光线的起始点 The front surface of the lens(STO):光线进入Lens 的位置。在这例子里,这表面的位置也决定了光阑(Stop)的位置 The back surface of the lens(2):光线从Lens 出来并进入空气中的位置。 The image surface(IMA):光线追迹最后停止的位置,不可以在IMA这个之后设罝任何的表面。这个位置上并非存真实的表面,而是一个哑的表面。 (注:游标移到「IMA」并按下按键盘上的Insert 键,即可产生「2」这个面)

使用ZEMAX设计的典型实例分析

使用ZEMAX于设计、优化、公差和分析 武汉光迅科技股份有限公司宋家军(QQ:41258981)转载并修改 摘要 光学设计软件ZEMAX的功能讨论可藉由使用ZEMAX去设计和分析一个投影系统来讨论,包括使用透镜数组(lenslet arrays) 来建构聚光镜(condenser)。 简介 ZEMAX以非序列性(non-sequential) 分析工具来结合序列性(sequential) 描光程序的传统功能,且为一套能够研究所有表面的光学设计和分析的整合性软件包,并具有研究成像和非成像系统中的杂散光(stray light) 和鬼影(ghosting) 的能力,从简单的绘图(Layout) 一直到优化(optimization)和公差分析(tolerance analysis)皆可达成。 根据过去的经验,对于光学系统的端对端(end to end)分析往往是需要两种不同的设计和分析工具。一套序列性描光软件,可用于设计、优化和公差分析,而一套非序列性或未受限制的(unconstrained) 描光软件,可用来分析杂散光、鬼影和一般的非成像系统,包括照明系统。 “序列性描光程序”这个名词是与定义一个光学系统为一连串表面的工具有关。所有的光线打到光学系统之后,会依序的从一个表面到另一个表面穿过这个系统。在定义的顺序上,所有的光线一定会相交到所有的表面,否则光路将终止。光线不会跳过任何中间的表面,且光线只能打在每一个已定义的表面一次。若实际光线路径交到一个表面上超过一次,如使用在二次描光(double pass) 中的组件,必须在序列性列表中,再定义超过一次的表面参数。 大部份成像光学系统,如照相机镜头、望远镜和显微镜,可在序列性模式中完整定义。对于这些系统,序列性描光具有许多优点:非常快、非常弹性和非常普遍。几乎任何形状的光学表面和材质特性皆可建构。在成像系统中,序列性描光最重要的优点为使用简单且高精确的方法来做优化和分析。序列性描光的缺点,包括无法追迹所有可能的光路径(即鬼影反射) 和许多无法以序列性方式来描述的光学系统或组件。 非序列性描光最常用来分析成像系统中的杂散光和鬼影,甚致分析照明和其它非成像系统。在非序列性描光中,光线入射到光学系统后,是自由的沿着实际光学路径追迹;一条光线可能打到一个对象(object) 许多次,而且可能完全未打到其它对象。此外,非序列性方法可用来分析从光学或机构组件产生的表面散射(scatter),以及从场内(in-field) 和场外(out-of-field) 的光源所产生的表面反射而形成的鬼影成像。 ZEMAX的功能 ZEMAX可以用于一个完全序列性模式中、一个完全非序性模式中和一个混合模式中,混合模式对分析具有大部分序列性而却有一些组件是作用在非序列性方式的系统,是相当有用的,如导光管(light pipes) 和屋顶棱镜(roof prisms)等。

zemax操作数手册

ZEMAX优化操作数 一阶光学性能 1.EFFL 透镜单元的有效焦距 2.AXCL透镜单元的轴向色差 https://www.sodocs.net/doc/a02847069.html,CL透镜单元的垂轴色差 4.PIMH规定波长的近轴像高 5.PMAG近轴放大率 6.AMAG角放大率 7.~ 8.ENPP透镜单元入瞳位置 9.EXPP透镜单元出瞳位置 10.P ETZ透镜单元的PETZVAL半径 11.P ETC反向透镜单元的PETZVAL半径 12.L INV透镜单元的拉格朗日不变量 13.W FNO像空间F/# 14.P OWR指定表面的权重 15.E PDI 透镜单元的入瞳直径 16.】 17.ISFN像空间F/# (近轴) 18.O BSN物空间数值孔径 19.E FLX“X”向有效焦距 20.E FLY “Y”向有效焦距 21.S FNO弧矢有效F/# 像差 1.SPHA在规定面出的波球差分布(0则计算全 局) 2." https://www.sodocs.net/doc/a02847069.html,A透过面慧差(3阶近轴) 4.ASTI透过面像散(3阶近轴) 5.FCUR透过面场曲(3阶近轴) 6.DIST透过面波畸变(3阶近轴) 7.DIMX畸变最大值 8.AXCL 轴像色差(近轴) https://www.sodocs.net/doc/a02847069.html,CL垂轴色差 10.TRAR径像像对于主光线的横向像差 11.{ 12.TRAX “X”向横向色差 13.TRAY “Y”向横向色差 14.TRAI规定面上的径像横向像差 15.TRAC径像像对于质心的横向像差 16.OPDC主光线光程差 17.OPDX衍射面心光程差 18.PETZ 透镜单元的PETZVAL半径 19.PETC反向透镜单元的PETZVAL半径 20.? 21.RSCH 主光线的RMS光斑尺寸 22.RSCE类RSCH 23.RWCH主光线的RMS波前偏差 24.RWCE衍射面心的RMS波前偏差 25.ANAR像差测试 26.ZERN Zernike系数 27.RSRE几何像点的RMS点尺寸(质心参考) 28.RSRH类同RSRE(主光线参考) 29.… 30.RWRE类同RSRE(波前偏差) 31.TRAD “X”像TRAR比较 32.TRAE “Y”像TRAR比较

照相物镜基于ZEMAX课程分析方案实例

应用光学课程设计 课题名称:照相物镜镜头设计与像差分析 专业班级:2009级光通信技术 学生学号: 学生姓名: 学生成绩: 指导教师: 课题工作时间:2018.6.20至2018.7.1

武汉工程大学教务处

课程设计摘要<中文) 在光学工程软件ZEMAX 的辅助下, 配套采用大小为1/2.5 英寸的CCD 图像传感器,设计了一组焦距f '= 12mm的照相物镜, 镜头视场角 33.32°, 相对孔径D/f’=2. 8, 半像高3.6 mm ,后工作距 9.880mm,镜头总长为14.360mm。使用后置光阑三片物镜结构,其中第六面采用非球面塑料,其余面采用标准球面玻璃。 该组透镜在可见光波段设计,在Y-field上的真值高度选取0、1.08、1.8、2.5452,总畸变不超过0.46%,在所选视场内MTF轴上超过60%@100lp/mm,轴外超过48%@100lp/mm,整个系统球差-0.000226,慧差-0.003843,像散0.000332。完全满足 设计要求。 关键词:ZEMAX;物镜;调制传递函数 ABSTRACT By the aid of optical engineering software ZEMAX,A focal length f '= 12mm camera lens matched with one CCD of 1/2.5 inch was designed。Whose FOV is 33.32°, Aperture is 2. 8,half image height is 3.6 mm,back working distance is9.880mm and total length is 14.360 mm. Using the rear aperture three-lens structure,a aspherical plastic was used for the sixth lens while standard Sphere glasses were used for the rest lenses。The group Objective lenses Designed for the visible light,Heights in the true value as Y-field Defined as 0、1.08、1.8、2.5452,total distortion is less than 0.41%,Modulation transfer function of shade in the selected field of view to meet the axis is greater than 60% @ 100 lp / mm, outer axis than 48% @ 100 lp / mm,The sum of the whole system spherical aberration -0.000226,Coma is -0.003843,Astigmatism is 0.000332。Fully meet the design requirements. Keyword:ZEMAX;Camera lens;Modulation transfer function 引言----

ZEMAX优化操作数汇总情况(全)

ZE M A X优化操作数 ZEMAX Merit Function,是在网上下下来的一个word文档,觉得蛮好的,一般用到的好像就是EFFL。呵呵,这个收集下,以后有用。一阶光学性能 1. EFFL 透镜单元的有效焦距 2. AXCL 透镜单元的轴向色差 3. LACL 透镜单元的垂轴色差 4. PIMH 规定波长的近轴像高 5. PMAG 近轴放大率 6. AMAG 角放大率 7. ENPP 透镜单元入瞳位置 8. EXPP透镜单元出瞳位置 9. PETZ 透镜单元的PETZVAL半径 10. PETC反向透镜单元的PETZVAL半径 11. LINV 透镜单元的拉格朗日不变量 12. WFNO 像空间F/# 13. POWR 指定表面的权重 14. EPDI 透镜单元的入瞳直径

15. ISFN 像空间F/# (近轴) 16. OBSN 物空间数值孔径 17. EFLX “X”向有效焦距 18. EFLY “Y”向有效焦距 19. SFNO 弧矢有效F/# MTF数据 1. MTFT 切向调制函数 2. MTFS 径向调制函数 3. MTFA 平均调制函数 4. MSWT 切向方波调制函数 5. MSWS 径向方波调制函数 6. MSWA 平均方波调制函数 7. GMTA 几何MTF切向径向响应 8. GMTS几何MTF径向响应 9. GMTT几何MTF切向响应 衍射能级 1.DENC 衍射包围圆能量2.DENF 衍射能量

3.GENC 几何包围圆能量 4.XENC 像差 1. SPHA 在规定面出的波球差分布(0则计算全局) 2. COMA 透过面慧差(3阶近轴) 3. ASTI 透过面像散(3阶近轴) 4. FCUR透过面场曲(3阶近轴) 5. DIST透过面波畸变(3阶近轴) 6. DIMX 畸变最大值 7. AXCL 轴像色差(近轴) 8. LACL 垂轴色差 9. TRAR 径像像对于主光线的横向像差 10. TRAX “X”向横向色差 11. TRAY “Y”向横向色差 12. TRAI 规定面上的径像横向像差 13. TRAC径像像对于质心的横向像差

ZEMAX优化操作数的中文含义

ZEMAX 优化操作数的中文含义 在很多次的成像及激光系统培训中,都有学员非常希望能够有一份ZEMAX中文的优化操作数说明。这样的确会对学习ZEMAX软件及控制光学系统有很好的帮助。 例如我们常用的EFFL控制焦距,PMAG控制近轴放大率,SPHA控制初级球差等。 尽管随着软件的不断升级,会有不断新增的操作数,但是下面的内容为您提供了一份比较全面的参考资料。 这里有比较完整的操作数ZEMAX优化操作数 一阶光学性能 1. EFFL 透镜单元的有效焦距 2. AXCL 透镜单元的轴向色差 3. LACL 透镜单元的垂轴色差 4. PIMH 规定波长的近轴像高 5. PMAG 近轴放大率 6. AMAG 角放大率 7. ENPP 透镜单元入瞳位置 8. EXPP透镜单元出瞳位置 9. PETZ 透镜单元的PETZV AL半径 10. PETC反向透镜单元的PETZV AL半径 11. LINV 透镜单元的拉格朗日不变量 12. WFNO 像空间F/# 13. POWR 指定表面的权重 14. EPDI 透镜单元的入瞳直径 15. ISFN 像空间F/# (近轴) 16. OBSN 物空间数值孔径 17. EFLX “X”向有效焦距 18. EFL Y “Y”向有效焦距 19. SFNO 弧矢有效F/# 像差 1. SPHA 在规定面出的波球差分布(0则计算全局) 2. COMA 透过面慧差(3阶近轴) 3. ASTI 透过面像散(3阶近轴) 4. FCUR透过面场曲(3阶近轴) 5. DIST透过面波畸变(3阶近轴) 6. DIMX 畸变最大值 7. AXCL 轴像色差(近轴) 8. LACL 垂轴色差 9. TRAR 径像像对于主光线的横向像差 10. TRAX “X”向横向色差

ZEMAX实验指导书(初学的练习教程)

实验一光学设计软件ZEMAX的安装和基本操作 一、实验目的 学习ZEMAX软件的安装过程,熟悉ZEMAX软件界面的组成及基本使用方法。 二、实验要求 1、掌握ZEMAX软件的安装、启动与退出的方法。 2、掌握ZEMAX软件的用户界面。 3、掌握ZEMAX软件的基本使用方法。 4、学会使用ZEMAX的帮助系统。 三、实验内容 1.通过桌面快捷图标或“开始—程序”菜单运行ZEMAX,熟悉ZEMAX的初始用户界面,如下图所示: 图:ZEMAX用户界面 2.浏览各个菜单项的内容,熟悉各常用功能、操作所在菜单,了解各常用菜单的作用。 3.学会从主菜单的编辑菜单下调出各种常见编辑窗口。 4.调用ZEMAX自带的例子(根目录下Samples文件夹),学会打开常用的分析功能项:草图(2D草图、3D草图、实体模型、渲染模型等)、特性曲线(像差曲线、光程差曲线)、

点列图、调制传递函数等,学会由这些图进行简单的成像质量分析。 5.从主菜单中调用优化工具,简单掌握优化工具界面中的参量。 6.掌握镜头数据编辑窗口的作用以及窗口中各个行列代表的意思。 7.从主菜单-报告下形成各种形式的报告。 8.通过主菜单-帮助下的操作手册调用帮助文件,学会查找相关帮助信息。 四、实验仪器 PC机

实验二基于ZEMAX的简单透镜的优化设计 一.实验目的 学会用ZEMAX对简单单透镜和双透镜进行设计优化。 二.实验要求 1.掌握新建透镜、插入新透镜的方法; 2.学会输入波长和镜片数据; 3.学会生成光线像差(ray aberration)特性曲线、光程差(OPD)曲线和点列图(Spot diagram)、产生图层和视场曲率图; 4.学会确定镜片厚度求解方法和变量,学会定义边缘厚度解和视场角,进行简单的优 化。 三.实验内容 (一). 用BK7玻璃设计一个焦距为100mm的F/4单透镜,要求在轴上可见光范围内。 1. 打开ZEMAX软件,点击新建,以抹去打开时默认显示的上一个设计结果,同时新建一个新的空白透镜。 2. 在主菜单-系统-光波长弹出的对话框中输入3个覆盖可见光波段的波长,设定主波长。同样在系统-通用配置里设置入瞳直径值。 3. 在光阑面的Glass列里输入BK7作为指定单透镜的材料,并在像平面前插入一个新的面作为单透镜的出射面。 4. 输入相关各镜面的厚度和曲率半径。 5. 生成光线像差特性曲线、2D、3D图层曲线和实体模型、渲染模型等分析图来观察此时的成像质量。 6. 利用Solve功能来求解镜片厚度,更新后观察各分析图的相应变化。 7. 利用主菜单-工具-优化-优化来对设计进行优化,更新后观察各分析图的相应变化。 8. 调用并建构优化函数(Merit Function),在优化后更新全部内容,然后观察各分析图的相应变化。 9. 分别调用点列图、OPD图以及焦点色位移图(主菜单-分析-杂项)来观察最优化后的成像质量。 10. 将此设计起名保存,生成报告。 (二). 以前一个实验内容设计优化后的单透镜为基础,添加一块材料为SF1玻璃的透镜来构建双透镜系统,进一步优化成像质量。 1. 插入新的平面作为第二块透镜的出射面,输入相关镜面的厚度、曲率半径以及玻璃类型值(BK7、SF1)。 2. 生成光线像差特性曲线、2D、3D图层曲线和实体模型、渲染模型等分析图来观察此时的成像质量。 3. 沿用前例的优化函数,在优化更新后观察各分析图的相应变化,并分别对比单透镜时的点列图、OPD图以及焦点色位移图(主菜单-分析-杂项)的相应变化,观察双透镜此时的成像质量。 4. 利用利用Solve功能来求解镜片边缘厚度,更新后更新后观察各分析图的相应变化。

1807中文说明书简易操作手册

1807中文说明书简易操作手册 1:在主机安装完毕后,按住(PWR)键三秒开机,完成后,在显示VFO(430.000)的情况下可以进行你需要的任何一项操作。 2:设置手动自动下差:在显示VFO的模式下按住(MHZ SET)键三秒进入主菜单,旋动(DIAL)旋纽到第四项菜单(ARS),轻按(MHZ SET)键进入第四项主菜单选择开关手动自动下差(ON/OFF),设置完毕后轻按(MHZ SET)键退出菜单。 3:设置差频:在显示VFO模式下按住(MHZ SET)键三秒进入主菜单,旋动(DIAL)旋纽到第43项(RPT)菜单,轻按(MHZ SET)键进入此项菜单设置上下差频(-RPT,+RPT,OFF) 4:设置差频数值:在显示VFO模式下按住(MHZ SET)键三秒进入主菜单,旋动(DIAL)旋纽到第46项(SHIFL)菜单,轻按(MHZ SET)键进入此项菜单后(7.6MHZ)设置差频值,机器默认数值为7.6MHZ,旋动(DIAL)旋纽设置你需要的差频值,设置完毕后轻按(MHZ SET)键推出主菜单。 5:设置亚音编码:在显示VFO模式下按住(MHZ SET)键三秒进入主菜单,旋动(DIAL)旋纽到第49项(SQLTYP)菜单,轻按(MHZ SET)键进入此项菜单设置你需要的编码,一般选择(TONE)编码(TONE/TSQL/DCS/RVTN/OFF) 6:设置亚音数值:在显示VFO模式下按住(MHZ SET)键三秒进入主菜单,旋动(DIAL)旋纽到第52项()菜单,轻按(MHZ SET)键进入此项菜单后(100MHZ)设置亚音,旋动(DIAL)旋纽进行设置你需要的亚音值。 7:储存频道:在显示VFO的模式下,用手咪输入你想要的频点,然后按住(MW D/MR)键,直至屏幕右下角出现数字(0),如果此数字一直在闪烁,表示此频道为空,然后旋动(DIAL)纽选择频道号码,选定后轻按(MW D/RW)键,完成频道存储。 8:频道模式与频率模式的转换:按(MW D/MR)可以进行转换。 9:发射功率调节:轻按(A/N LOW)键,发射功率分别是LOW1(5W),LOW2(10W),LOW3(25W),LOW4(50W)之间顺序转换。 10:机器复位操作:同时按住(REW)(LOW)(D/MR)键,开机,然后按(D/RW)键,机器将恢复到出厂的设置。 11:自动关机设置:在显示VFO的模式下按住(MHZ SET)键三秒进入主菜单,旋动(DIAL)旋纽到第1项(APO)菜单,轻按(MHZ SET)键进入第一项主菜单选择(30MIN,1H,3H,5H,8H)关机时间。 2:屏幕亮度调节:在显示VFO的模式下按住(MHZ SET)键三秒进入主菜单,旋动(DIAL)旋纽到第16项(DIMMER)菜单,轻按(MHZ SET)键进入主菜单选择(OFF,1-10)屏幕亮度。然后轻按(MHZ SET)退出菜单。 13:键盘锁定:在显示VFO的模式下按住(MHZ SET)键三秒进入主菜单,旋动(DIAL)旋

比较完整的操作数ZEMAX优化操作数

比较完整的操作数ZEMAX优化操作数 一阶光学性能 1. EFFL透镜单元的有效焦距 2. AXCL透镜单元的轴向色差 3. LACL透镜单元的垂轴色差 4. PIMH规定波长的近轴像高 5. PMAG近轴放大率 6. AMAG角放大率 7. ENPP透镜单元入瞳位置 8. EXPP透镜单元出瞳位置 9. PETZ透镜单元的PETZVAL半径 10. PETC反向透镜单元的PETZVAL半径 11. LINV透镜单元的拉格朗日不变量 12. WFNO 像空间F/# 13. POWR指定表面的权重 14. EPDI透镜单元的入瞳直径 15. ISFN像空间F/#(近轴) 16. OBSN物空间数值孔径 17. EFLX “ X”向有效焦距 18. EFLY “ Y”向有效焦距 19. SFNO弧矢有效F/# 像差 1. SPHA在规定面出的波球差分布(0则计算全局) 2. COMA透过面慧差(3阶近轴) 3. ASTI透过面像散(3阶近轴) 4. FCUR透过面场曲(3阶近轴) 5. DIST透过面波畸变(3阶近轴) 6. DIMX畸变最大值 7. AXCL轴像色差(近轴) 8. LACL垂轴色差 9. TRAR径像像对于主光线的横向像差 10. TRAX “ X”向横向色差 11. TRAY “ Y”向横向色差 12. TRAI规定面上的径像横向像差 13. TRAC径像像对于质心的横向像差 14. OPDC主光线光程差 15. OPDX衍射面心光程差 16. PETZ透镜单元的PETZVAL半径 17. PETC反向透镜单元的PETZVAL半径 18. RSCH主光线的RMS光斑尺寸 19. RSCE 类RSCH 20. RWCH主光线的RMS波前偏差

Zemax笔记

Zemax笔记 1. Birefringent: ZEMAX will trace the ordinary ray if the mode is set to 0 or 2. If the mode is set to 1 or 3, the extraordinary ray will be traced. ZEMAX cannot trace both rays at once, however it is easy to create a multi-configuration lens with the mode set to 0 in configuration 1, and to 1 in configuration 2; this allows inspection of both possible paths as well as simultaneous optimization and layouts of the traced rays. 2. Surface type: P226 3. Coordinate Break:P239 If the "order" flag is set to zero, ZEMAX first decenters in x, and then in y. Then ZEMAX tilts about the local z axis, then the local y axis, then the local x axis. 4. Chapter 14 OPTIMIZATION:P385 5. MULTI-CONFIGURATION OPERANDS GLSS :Surface # Glass. MOFF : Ignored An unused operand, may be used for entering comments PAR1: Surface # Parameter 1. Obsolete, use PRAM instead. PRAM: Surface, Parameter Parameter value(This operand controls any of the parameters) THIC: Surface # Thickness of surface. 6. Chapter 14 : Optimization, P385 ZEMAX uses an actively damped least squares method 7. heih

Zemax入门例子一套

如何在Zemax下模拟单模光纤的光束耦合 本文描述了一种商用的光纤耦合器,系统使用SUSS MicroOptics FC-Q-250微透镜阵列来耦合两根康宁(Corning)SMF-28e光纤。如下图所示: 供应商提供的上述元件的参数如下:单模光纤,康宁SMF-28e 数值孔径0.14 纤芯直径8.3μm 模场直径@1.31μm 9.2±0.4μm 微透镜阵列,SUSS MicroOptics SMO39920 基片材料熔融石英 基片厚度0.9mm 内部透过率>0.99 透镜直径240μm 透镜节距250μm 曲率半径330μm 圆锥常数(Conic constant)0 数值孔径0.17 附件中的文件single mode coupler.zmx 是整个系统的Zemax文件。请注意一下几点: 物面到透镜的距离和透镜到像面的距离设定为0.1mm,是因为这比较接近实际情况。后面经过优化过程时候,这个尺寸还会发生变化; 透镜到像面的距离使用了Pick-up solve,以确保和前面的物面到透镜的距离之间相等。既然两组透镜和光纤之间是完全一致的(在制造公差之内),因而整个系统也就应该是空间反演对称和轴对称的(either way round); 两个透镜之间的距离设定为2mm,因为这个是实验中使用的数据。同样地,这个距离后面也将会被严格的优化;系统孔径光阑设定为根据光阑尺寸浮动(float by stop size),而光阑设定在第一个透镜的后表面。这就意味着系统的孔径光阑由透镜的实际孔径决定。因而光纤的模式在这个系统中传输的过程中,就有可能受限于透镜的实际孔径。在这个例子中,光纤的模式要比透镜的实际孔径小很多。 当心“数值孔径”的多种不同定义。它有可能指的是边缘光束倾角的正弦值,有可能是光强降低到1/e2时的光束倾角的正弦值(我们将会看到Zemax会在不同的场合使用这两种定义),也有可能定义为光强降到1%峰值强度时光

zemax 的操作数

zemax 的操作数 管理提醒: 本帖被中华卫星设置为精华(2009-12-04) 这里有比较完整的操作数ZEMAX优化操作数 一阶光学性能 1. EFFL 透镜单元的有效焦距 2. AXCL 透镜单元的轴向色差 3. LACL 透镜单元的垂轴色差 4. PIMH 规定波长的近轴像高 5. PMAG 近轴放大率 6. AMAG 角放大率 7. ENPP 透镜单元入瞳位置 8. EXPP透镜单元出瞳位置 9. PETZ 透镜单元的PETZVAL半径 10. PETC反向透镜单元的PETZVAL半径 11. LINV 透镜单元的拉格朗日不变量 12. WFNO 像空间F/# 13. POWR 指定表面的权重 14. EPDI 透镜单元的入瞳直径 15. ISFN 像空间F/# (近轴) 16. OBSN 物空间数值孔径 17. EFLX “X”向有效焦距 18. EFLY “Y”向有效焦距 19. SFNO 弧矢有效F/# 像差 1. SPHA 在规定面出的波球差分布(0则计算全局) 2. COMA 透过面慧差(3阶近轴) 3. ASTI 透过面像散(3阶近轴)

4. FCUR透过面场曲(3阶近轴) 5. DIST透过面波畸变(3阶近轴) 6. DIMX 畸变最大值 7. AXCL 轴像色差(近轴) 8. LACL 垂轴色差 9. TRAR 径像像对于主光线的横向像差 10. TRAX “X”向横向色差 11. TRAY “Y”向横向色差 12. TRAI 规定面上的径像横向像差 13. TRAC径像像对于质心的横向像差 14. OPDC 主光线光程差 15. OPDX 衍射面心光程差 16. PETZ 透镜单元的PETZVAL半径 17. PETC反向透镜单元的PETZVAL半径 18. RSCH 主光线的RMS光斑尺寸 19. RSCE 类RSCH 20. RWCH主光线的RMS波前偏差 21. RWCE衍射面心的RMS波前偏差 22. ANAR像差测试 23. ZERN Zernike系数 24. RSRE 几何像点的RMS点尺寸(质心参考) 25. RSRH 类同RSRE(主光线参考) 26. RWRE类同RSRE(波前偏差) 27. TRAD “X”像TRAR比较 28. TRAE “Y”像TRAR比较 29. TRCX 像面子午像差”X”向(质心基准) 30. TRCY像面子午像差”Y”向(质心基准) 31. DISG 广义畸变百分数 32. FCGS 弧矢场曲

zemax优化函数说明书

zemax_优化函数说明书优化操作数和数据域的用法 名称说明Int1 Int2 Hxy,Pxy ABSO 绝对值操作数 编号 —— ACOS 指定编号的操作数的值的反余弦值。如果标 记是0,则其单位为弧度,否则为度操作数 编号 标记— AMAG 角放大率。这是像空间和物空间之间的近轴 主光线角度的比值。对于非近轴系统无效—波长— ANAR 在像面上测量的相对于主波长中主光线的角 度差半径。这个数定义成1-cosθ,这里θ是 被追迹的光线与主光线之间的角度。参见TRAR —波长— ASIN 指定编号的操作数的值的反正弦值。如果标 记为0,则其单位为弧度,否则为度操作数 编号 标记— ASTI 指定表面产生的像散贡献值,以波长表示。 如果表面编号值为0,则是针对整个系统。这 是由塞得和数计算得到的第三级色散,对非近 轴系统无效 表面波长— ATAN 指定编号的操作数的值的反正切值。如果标 记为0,则其单位为弧度,否则为度 操作数 标记—

编号 AXCL 以镜头长度单位为单位的轴向色差。这是两 种定义的最边缘的波长的理想焦面的间隔。这 个距离是沿着Z 轴测量的。对非近轴系统无效 ——— BLNK 不做任何事情。用来将操作数列表的各个部 分分隔开。在操作数名称右边的空白处将随意 地输入一注释行;这个注释行将在编辑界面和 评价函数列表中同样显示 ——— BSER 瞄准误差。瞄准误差定义成被追迹的轴上视 场的主光线的半坐标除以有效焦距。这个定义 将产生像的角度偏差的测量 —波长— CMFV 结构评价函数值。这个操作数调用了在两个 用来定义一个光学虚拟全息系统的结构系统的任一个中定义的评价函数。结构编号的值是1 或2,分别代表第一或第二结构系统。操作数编号可以是0,这将从这个结构系统中获得整个评价函数的值,也可以是整数,这说明了从中记录数据值的操作数行号。例如,假定结构 编号是2,操作数编号是7,CMFV 将获得第2 个结构文件的评价函数中第7 个操作数的值。如果在这个被优化的可逆系统中有一个以上的光学虚拟全息表面,结构编号可以加上2 来指代使用的第二个表面的参数,或者加上4 来指代使用的第三个表面的光学结构,等等。例如,值为7 的结构编号指代现存的第四个光学虚拟全息面的第一个结构系统。结构编 号 操作数 编号 — COGT 边界操作数,它强制使指定编号的表面的圆 锥系数大于指定的目标值表面编 号 —— 边界操作数,它强制使指定编号的表面的圆 锥系数小于指定的目标值 表面编

相关主题