搜档网
当前位置:搜档网 › 翼型航模DIY基础知识

翼型航模DIY基础知识

翼型航模DIY基础知识
翼型航模DIY基础知识

翼型航模DIY基础知识

机翼

机翼是模型飞机产生升力的主要部件。模型飞机性能的好坏往往决定于机翼的好坏,良好的机翼应该能产生很大的升力和很小的阻力,并有足够的强度和刚性,不容易变形而且容易制作。决定机翼产生升力大小的因素很多,与机翼面积、速度等直接有关,不过这些因素往往不能够或不便于改变,譬如空气密度,我们不能改变;机翼两积、通常受到比赛规则的限制;飞行速度不容易控制,而且对竞时的模型飞机来说,速度愈小愈好。这样一来,要想增大升力只能从增大升力系数着想了。在减小机翼阻力方面也是这样,主要是设法减小机翼产生的阻力系数。决定机翼升力系数及阻力系数的是机翼截面形状(即翼型)、机翼平面形状和当时的迎角。好的翼型能够在同样的迎角下有较大的升力系数和较小的阻力系数,这两种系数的比值(称升阻比)可达到18以上。

一、翼型

翼型就是机翼的截面形

状。现代模型飞机所用的翼型

一般可分为六类:平凸型、对

称型、凹凸型、双凸型、S型和

特种型,如图3-1所示。这六种

翼型各有各的特点,每种翼型

一般能符合某几种模型飞机的

要求。

翼型各部分的名称如图3-2所示。其中影响翼型性能最大的是中弧线(或中线)的形状、翼型的厚度和

翼型厚度的分布。中弧

线是翼型上弧线与下

弧线之间的距离中点

的连线。如果中弧线是

一根直线与翼弦重合,

那就表示这个翼型上

表面和下表面的弯曲

情况完全一样,这种翼

型称为对称翼型。普通

翼型中弧线总是向上

弯的,S翼型的中弧线

成横放的S形。

要表示翼型的厚度、中弧线的弯曲度和翼型最高点在什么地方等通常不用长度计算,因为各种大小不同的飞机都可以用同样的翼型。翼型形状如用具体长度表示,在设计计算时很不方便,现在的翼型资料对这些长度都用百分数表示,不用厘米或米来计算,基准长度是翼弦,例如翼型厚度是1.2厘米,弦长10厘米,那么翼型厚度用(1.2/10)来表示,即翼型厚度是翼弦的12%。这样的表示方法很方便,不管用在大飞机或小飞机上,这种翼型的厚度始终是12%。大家只要牢记基准长度是弦长便可以很容易算出实际的翼型厚度来,此外计算前后距离也用百分数,也以弦长为基准,而且都是从前缘做出发点。例如,翼型最高点在30%弦长处,那就表示翼型最高的地方离前缘的距离等于全翼弦的30%。

下面我们分别把翼型的画法、性能的表示法和性能的计算等问题加以讨论。

(一)翼型的画法

适合于模型飞机上使用的翼型现在巳有一百多种,每种翼型的形状都不相同。幸而每种翼型的形状都用同一办法(外形坐标表)表示,所以我们只要把翼型外形坐标表找到,这种翼型的形状便完全决定了。某

翼型坐标见表3-1。

所谓翼型坐标表是从翼型上下弧线选出一定的点,把这些点的坐标用弦长百分数表示所列成的表。坐标的原点是前缘,计算百分数的基准长度是弦长,横坐标是翼弦;表3-1就是这样的表格,表格第一行(X)表示到前缘的距离,第二行(Y u)对应于第一行距离的翼型上弧线上的一点到翼弦的距离;第三行(Y d)是下弧线上一点到翼弦的距离,把所有这些点都在图上标出以后,用圆滑的线将各点连接起来便可以得到正确的翼型形状。

画翼型前,要首先决定翼弦的长度。将弦长乘上表中的数字再除100就可以得出所需要的实际长度。

(1) 首光在纸上面一直线代表翼弦。在线上量出翼弦的长度,例如15厘米,如图3-3l(a)所示。

(2) 在翼弦上接表3-1中第一行量出距离。如第一行的30表示离前缘的距离是(30/100)?15即4.5厘米。在翼弦上离前缘4.5厘米的地方轻轻地点上一点,依此类惟。通过所有这些点画出垂直翼弦的线,如图3-3(b) 所示。

(3) 按表3-1中第二、第三

行的数值将上弧与下弧的距离

算出来。例如,在离前缘4.5厘

米的地方表中数字是11.65,上

弧到翼弦的实际距离是

11.65?15/100=1.76厘米。表中第

三行是-0.38,即下弧到翼弦距离

是-0.38?15/100=-0.057厘米(负

值表示这一点在翼弦下方)。根

据计算出来的数值便可以在刚

才画好的垂直线上(离前缘 4.5

厘米的那一根)点出两点:一点

在翼弦上面离翼弦l.76厘米,另

一点在翼弦下面,离翼弦0.057

厘米,用同样的方法将各不同距

离的上下弧各点都标出来,如图

3-31(c)所示。

(4)将点出来的各点连成圆滑的曲线便可以得到翼型的形状,如图3-3(d)所示。

如果我们点出来的点不能连成连续圆滑的曲线时表示有错误:或者距离没有算好;或量最得不准确,正负号没有注意。画出后的翼型最好与书中同一种翼型的形状对照一下,这样往往可以及时改正错误。

有其应掌握如何使用AutoCAD来画出翼型(详见“航空模型”),并在使用激光切割机时,对翼型实际加工厚的翼型进行修正。

(二)翼型的名称和牌号

翼型的种类很多,形状各异,所以每种翼型都有一定名称或牌号。以前的翼型多数是用发明者或研究机关的名称来命名,如:茹科夫斯基翼型、哥廷根翼型等。模型飞机用的翼型也往往用发明者的名字表示,加汉斯汉申翼型、古布菲翼型等。

航模爱好者常用翼型的来源不外乎两个方面:

(1) 一些国家的航空研究机构经过风洞试验的翼型。这些翼型资料往往还附有特性曲线。

(2) 航模爱好者自己设计和改进的翼型。这类翼型一般都是经过模型飞机的实际飞行并证明性能较好

的,当然也有一些是经过风洞试验的翼型。

航模爱好者自己设计的翼型常常用集体的名称或设计者的名字再加上它的序号来表示。例如:BH-l0,其中“BH ”是“北航”(原北京航空学院)汉语拼音的缩写字母,数字“10”是所试验的第10种翼型。 在航模爱好者设计的翼型中,要着重介绍的是“B ”系翼型(或称“Б”系翼型)。它是匈牙利著名的航模爱好者班尼狄克设计的翼型,采用4~5位数字来表示翼型的几何特性。例如,在翼型B-12307-b 或(Б-12307-b)和B-6556-d 中:

第一、第二位数字表示

翼型的最大相对厚度,前一

种翼型的12表示厚度为

12%弦长,后一种翼型的6,

表示是6%弦长。 中间两位数字表示翼型中弧线最高点距前缘的距离、30和55各表示等于30%和50%弦长。

最后一位数字表示中弧线最大弯度。7和6各表示等于7%和6%弦长。 在B 系翼型数字后面往

往附有一个小写的拉丁字母,用来表示中弧线的类型,它的含义是:

a 一中弧线是圆弧曲线;

b -中弧线是椭圆曲线;

c -中弧线由椭圆曲线和双曲线组合而成;

d -中弧线为任意曲线;

e -翼型上、下弧线在尾部重合为一条线;

f -翼型后缘部分很厚,最后突然变尖:;用这种翼型的机翼,后缘的强度和刚度一定要注意加强。 因为在翼型厚废和中弧线弯度相同的条件下,可设计出很多翼型、因此,在后面这个小写字母的后面还可加上分母数字。例如B-835-b ,B-8356-b/2及B-8356-b/3等,它们用来表示设计的先后次序。

航空研究机构试验的翼型有些也可以用在模型飞机上。这些经某些国家航空研究机构试验而得的翼型,都采用研究单位名称的缩写字为“姓”,并用表示试验系列或编号的数码或字母作为“名”。例加Clark-Y (克拉克-Y)(美国);哥廷根499或Go-499 (德固);MV A-321 (德国);ЦАГИ-731 (前苏联)。

这里要着重介绍美国国家航空航天局的前身NACA 研究的一系列翼型。他们研究过的翼型很多,也采用数字表示翼型的几何特性,在模型飞机上常用的NACA 翼型分两个系列,即4位数字翼型和5位数字翼型。现以4位数字翼型NACA -6409、NACA-23012为例,将有关数字的含义说明如下:

第一位数字

表示中弧线最大

弧高,6就是6%翼弦长度; 第二位数字表示中弧线最大弧高的位置,4表

示往40%翼弦长度 (从前缘向后量);

第三、第四位数字表示翼型最大厚度,09即9%翼弦长度,这类翼型最大厚度都在30%的地方,4位数字翼型都这样,所以不再标出来。

根据这个规律可以知道,NACA 一6412翼型与NACA-6409翼型基本上相同(中弧线完全相同),只是前者的最大相对厚度不是9%,而是12%。 班尼狄克翼型代号的几何特性含义

第一、二位数字表示翼型的最大相对厚度为12%弦长。第一、二位数字表示翼型的最大相对厚度为6%弦长。中间二位数字表示翼型中弧线最高点距前缘的距离为30%弦长。中间二位数字表示翼型中弧线最高点距前缘的距离为55%弦长。最后一位字母表示中弧线的类型,b为椭圆曲线。

最后一位数字表示中弧线最大弯度是7%的弦长。最后一位字母表示中弧线的类型,d为任意曲线。最后一位数字表示中弧线最大弯度是7%的弦长。NACA 翼型代号的几何特性含义第3、4位数字表示翼型的最大相对厚度为9%弦长。第2位数字表示翼型中弧线最高点距前缘的距离为40%弦长。第1位数字表示翼型中弧线最大弧高为6%弦长。

如果第一、第二两位数字是0,表示这类翼型是对称翼型。如NACA-0009表示是最大相对厚度9%的对称翼型。

NACA翼型不但在真飞机上使用很广,在模型飞机上也常常采用。如NACA-6409、NACA一6412、NACA一0018、NAC4一23012等都是常用的模型翼型。

除此之外,在模型飞机上还采用了一些对现有翼型加以改进而得的“新”翼型。例如1/2NACA(6406+6409) 或写作NACA-6407.5,这是将两个中弧线相同但厚度不同的翼型相加,取其最大相对厚度平均值而得到的“新翼型”。

MV A-301-75,即保持MV A-301翼型中弧线不变而把厚度改薄到原来的75%。

克拉克-Y-6%,是将最大相对厚度为11.7%的克拉克-Y翼型减薄到6%的“新翼型”。实际上这些翼型的中弧线也改变了。

(三)翼型性能的表示法

翼型的性能就是指翼型在各种不同迎角时所产生的升力系数、阻力系数和压力中心的位置。表示这三种数据的方法很多,有的用表格的形式,有的用曲线的形式,其中以后者最普遍,使用也最方便。

l. 升阻特性

表示翼型性能的曲线有很多种。最常见的是所谓升力系数曲线、阻力系数曲线和极曲线(亦称李林达曲线)。升力系数曲线在第二章巳提过,这种曲线的横坐标表示迎角α,纵坐标表示升力系数C L,如图3-4所示。从曲线上可以直接查到不同迎角时的升力系数,机翼的零升力迎角(用αo表示,通常是负值),临界迎角αc r和最大升力系数C Lmax。

阻力系数曲线与升力系数曲线相似。横坐标是

迎角α,纵坐标是翼型的阻力系数C D。这个曲线表示

在不同迎角时翼型产生阻力系数的大小。

还有一种翼型的性能曲线称为极曲线。极曲线

与以上两种曲线不同,这种曲线的横坐标表示翼型

的阻力系数,纵坐标表示升力系数,在曲线上标出

迎角的大小,如图3-5所示。利用这种曲线可以很迅

速地同时查到一定迎角下的升力系数和阻力系数。

譬如从图上可查到这种翼型在迎角6?时的升力系数是

0.80,阻力系数是0.078(相当于雷诺数84000的曲线)。从

这曲线上还可以看到翼型的最大升力系数(相当于曲线最

高点的升力系数)和临界迎角(对应于最大升力系数的迎

角)。在图3-5中,临界迎角是10.4?,最大升力系数是1.0

左右,阻力系数是0.12。

极曲线还有一个方便的地方,就是可以直接查到有利

迎角。所谓有利迎角就是升力系数与阻力系数的比值力最

大时的迎角。模型飞机用这个迎角飞行时,可以保证在同

一高度滑翔得最远。

从坐标原点做切线与曲线相切,切点所对应的迎角就是有利迎角。图3-5中所示曲线的有利迎角为2?-3?,这时所对应的升力系数为0.55,它与阻力系数0.05的比值(0.55/0.05=11)就是翼型的最大升阻比。

在其他迎角下这个翼型的升阻比都比这个数值小。

有时将机翼极曲线与升力系数曲线画在一起。横坐标同时表示迎角和阻力系数,纵坐标则只表示升力系数。这种曲线上的极曲线一般不标明迎角。需要知道迎角时可通过升力系数曲线决定,如图3-6所示。例如在升力系数是1.2时迎角是6?。这样极曲线上对应于升力系数1.2的那一点的迎角也是6?。

另外还有一种不常见的曲线,就是升阻比曲线(图3-4的C L /C D 曲线)。这种曲线是根据不同迎角时机翼产生的升阻比的大小画出的。

每种翼型都可以通过试验的方法找出它的极

曲线或升力系数曲线来,这些曲线通称翼型性能曲

线。不同翼型的曲线也不同,所以每一曲线上都应

注明是哪一种翼型,如B-6358或MV A 一301等。

此外,最好写上试验时的雷诺数,以便查阅。雷诺

数相差很大的资料不能随便通用。

如果在曲线旁边写有λ=∞ 字样,表示这些曲线

是翼型数据不是实际机翼数据,λ称为展弦比,表

示机翼的长度(翼展)和翼弦长度之比,机翼翼尖的

气流会影响到整个机翼的情况,所以要准确地测量

出翼型的性能,应把机翼做得无限长(即λ=∞),实

际上不可能这样做;但可在风洞中用隔板把两翼尖

顶住(相当干两个很大的垂直面装作翼尖上),试验

出的结果与翼展无限长的机翼基本相同。在利用已有资料时,必须注意资料上的展弦比是否和自己模型机翼上用的相同,如果不同便要用后面介绍的方法进行换算。

2. 力炬特性(07.11.19讲课到此)

除了升力、阻力特性外,还需要知道的翼型数据时压力中心的位置,即合力作用点的位置。一般假设这个作用点在翼弦上(实际情况是稍微高一点儿),所以阻力也作用在翼弦上。

一般的翼型当迎角增大时压力

中心向前移,迎角减小时压力中心

向后移,只有S 翼型例外,对称翼

型的迎角变化不大时,压力中心可

以说是不动的。如图3-7所示为翼

型压力中心随迎角变化的情况。

从图上可以看到,要表示各种

不同迎角时压力中心的位置,还需

要有另一条曲线,就是迎角与压力

中心位置的变化曲线。后来从理论

和实际中找出了另一个更好的办

法,所以现代翼型资料中已看不到

这种压力中心曲线了。

知道压力中心位置的主要目的,是用来计算机翼升力对整架模型飞机的重心所产生的力矩。将升力乘上压力中心到重心的距离便可求出升力产生的力矩。但是压力中心位置随迎角的改变而改变,计算很麻烦。后来研究结果发现机翼升力对于离前缘约l/4翼弦距离的一点所产生的力矩不随迎角改变而改变。如以这一点作为支点,升力产生的力矩是个常数,这一点通常称为机翼焦点。升力对这一点产生的力矩称为焦点力矩。在很多翼型资料上都写有焦点力矩系数的大小。知道焦点力矩系数便可以根据下式算出焦点力矩M 0

02021Z C M S V M ρ=

(3-1) 式中:p 一空气密度,单位:千克/米3;

v 一飞行速度,单位米/秒;

s 一机翼面积,单位:米2;

r 一翼弦长度,单位:米;

M Z0一焦点力矩系数。

根据机翼升力对焦点产生的力矩大小不随迎角改变而改变的性质,可以设想,升力作用在焦点上,升力的力矩可用焦点力矩代替。这样一来,要计算升力对模型飞机重心产生的力矩就很方便了。只要知道机翼焦点距模型飞机重心的距离和在该迎角下升力系数与阻力系数的大小、翼型的焦点力矩系数等,便可以直接算出力矩而不用管压力中心(即升力作用点)作用在什么地方。

例如,已知一机翼在迎角6?时,升力系数是1.0,

阻力系数0.025,焦点力矩系数-0.13(负号表示力矩具

有使模型飞机低头的趋势)。重心距机翼焦点的前后距

离是6厘米,上下距离8厘米,如图3-8所示。模型

飞机飞行速度5米/秒,翼弦平均长度15厘米,机翼

面积3000厘米2。求出机翼升力和阻力对模型飞机重

心所产生的力矩。

从图3-8可看到,对重心产生的力矩一共有三个:

一个是假设升力作用在机翼焦点上对重心产生的力

矩;一个是阻力对重心产生力矩,还有一个是焦点力

矩。计算方法如下:

由于升力产生的力矩

100/60.110000/30005226.12121221?????==x SC V M L ρ

=0.276牛·米 (抬头力矩)

由于阻力产生的力矩

100/8025.010000/30005226.12121222?????==y SC V M D ρ

=0.0092牛·米 (抬头力矩) 焦点力矩

()13.0100/1510000/30005226.121212020-?????==Z C M S V M ρ

=-0.0897牛·米 (低头力矩)

总的机翼对重心产生的力矩是

M=M 1+M 2+M 0=0.276+0.0092-0.0897=0.196牛·米

在计算时必须注意计量单位,否则会得出错误的结果。

不同翼型的焦点力矩系数不相同。绝大部分翼型的焦点力矩系数是负值,但S 翼型的是正值,对称翼型是0(即压力中心就在翼型焦点上而且不移动)。焦点力矩系数负值愈大,表示压力中心移动愈大。

焦点的位置本来不一定正好在距前缘1/4翼弦长度的地方,不过用于模型飞机的计算很方便,并且已经相当准确。翼型焦点力矩系数的大小也不是完全不变,只是一般来说不变,所以很多翼型资料都只写一个数值,如NACA-6412翼型M Z0=-0.13。但有些特别“讲究”的资料,也有给出不同迎角下不同焦点力矩系数的。

在以后考虑模型飞机的飞行问题时,都把升力看成作用在焦点上。但是应注意,全机的焦点位置因为受尾翼作用的影响,与单独机翼的焦点位置是不相同的。后面讨论全架模型飞机稳定性问题时再做进一步研究。

(四)翼型性能的估计及选用

模型飞机一般可按竞赛要求分三大类型:留空时间、飞行速度和飞行特技。后两种模型飞机所用的翼型通常是对称翼型或双凸翼型,选择翼型的要求比较简单,所以不做讨论。这里所说的翼型性能主要针对竞赛留空时间的模型飞机来考虑。

l. 根据翼型极曲线选择翼型

从翼型的极曲线可以看出翼型的好坏和特点。一般来

说,翼型的阻力系数愈小愈好,也就是说极曲线愈向纵轴

靠近愈好。如图3-9中所示的几种翼型极曲线,B-8306翼

型的阻力较小。不过这还不够,对于竞时模型飞机来说,

小迎角时阻力小并不说明翼型有什么好处。竞时模型飞机

要求下沉速度愈慢愈好,即要求升阻比愈大愈好。这时机

翼所用的迎角不是小迎角而是比有利迎角还大一些的迎

角。大多数翼型,最大升阻比(用符号K max表示) 愈大,

有利迎角就愈大,产生的升力系数也愈大,飞行速度便可

以减慢。从曲线上看,通过原点与极曲线相切的直线愈陡

愈好,因为切线与横轴所成的夹角愈大,表示升阻比愈大。

例如,图3-9中的B-8306翼型的最大升阻比较B-6358的大,所以一般说来前一种翼型比后一种好。选择翼型时可以把最大的升阻比选出来,然后再考虑其他因素。

如果从极曲线上发现两种翼型的最大升阻比相同,例如,图3-9中的B-10355与B-6358翼型几乎可用同一条线相切,则选用对应最大升阻比的升力系数较大的翼型。因为决定模型飞行性能的是整架模型飞机的升阻比,而翼型阻力只占整架模型阻力的1/3左右。虽然B-10355翼型的升力系数及阻力系数都不大,但加上机身等部件的阻力系数以后,总的升阻比便会大为降低,与此相反,对升力系数及阻力系数都较大的B-6358翼型,加上其他阻力后影响会较少。例如,一架模型飞机其他部分总的阻力系数是0.08,现比较一下采用B-6358翼型或B-10355翼型时整架模型飞机的升阻比。

首先从图3-9上查出,在有利迎角时,B-6358翼型的C L=1.6,C D=0.038;B-10355翼型C L=0.8,C D=0.02。计算总的升阻比时只要把其他阻力系数与翼型阻力系数相加,再相比即可

B-6358:K max=1.6/(0.038+0.08)=1.60/0.1l8=13.6

B-10355:K max =0.80/(0.02+0.08)=0.80/0.10=8.0

通过计算可以很明显地看出,虽然两种翼型最大升阻比很接近,而且B-10355还靠近纵轴,最小阻力系数比较小,但如用在竞时模型飞机上,加上其他的阻力系数以后,还是最大升阻比具有较大升力系数的B-6358翼型要好得多。

此外,极曲线当中部分愈垂直愈好(图3-9中的B-8306比B-10355好)。这样的极曲线表示机翼在很大的迎角范围下阻力系数增加很小,模型飞机用这样的翼型特别容易调整。图3-9中的B-10355翼型则很难调整到正好在合适的迎角下飞行,升力系数有一点小小的变化便会引起升阻比较大的改变。这就是航模爱好者们通常听说的“过分灵敏”。

2. 根据翼型的几何形状选择翼型

对于模型飞机来说,单纯根据风洞试验结果来选择翼型未必能得到完全正确的结论,因为根据风洞试验数据确定的性能只是相当于气流平静的条件,而模型飞机的实际飞行条件不可能那么“平静”,会遇到风,也会遇到上升气流和下降气流。气流的紊乱程度影响模型飞机的实际飞行结果,有时与根据风洞试验数据做出的选择有很大出入。例如,根据风洞试验数据,G O-417a翼型的性能比N-60翼型好,但是只要有风,G O-4l7a翼型的性能便会急剧下降。

此外,有很多适合模型飞机采用的翼型并没有进行过风洞试验,我们只能知道翼型的形状,而不知道翼型的极曲线。因此最好能够根据翼型的外形特点来估计翼型的主要特性。

在估计翼型性能前,首先把翼型画好,而且最好画大一些(弦长150毫米以上)。利用小圆规,在翼型内做很多小圆与上下弧相切,这些小圆的连接起来就是翼型的中弧线。画出中弧线以后,便可以量出中弧线的最大弯度、弧位(中弧线最高点距前缘的距离)和中弧线形状等。在所有小圆中,最大的直径表示翼型的最大厚度,如图3-10所示。

利用作图法还可以把零升力迎角估计出来。首先把翼型及中弧线画好,从前缘向后量出40%弦长的地方,在翼弦上得一点。从这点作垂直于翼弦的直线与中弧线相交于一点,如图3-11所示的B点。将这点与A点连一直线,这条直线便称为零升力弦。气流从这个方向吹过来,翼型将不产生升力。这条直线与翼弦所成的角度就是零升力迎角。用 0表示。

实际上用这个方法决定零升力迎角不很准确,只有在找不到资料时才这样做。当机翼的雷诺数超过翼型的临界雷诺数时(即模型飞机飞得很快,弦长在150毫米以上),每种翼型零升力迎角是不变的;但如低于临界雷诺数,雷诺数越小、越接近于零。从图3-12知道零升力迎角后,便可以估计不同迎角时产生的升力系数。其计算方法后面会介绍。

总的来说,对于竞时模型飞机,选择怎样的翼型才能获得良好的飞行性能呢?经过广大航模爱好者的

试验和研究,对它的外形特点得出如下看法。

(1)中弧线的形状

一般是椭圆形或抛物线形的一部分。中弧线弯度越大,在

相同迎角时产生的升力系数越大,但阻力也稍微增大。竞时模

型飞机翼型用弯度大的翼型(即凹翼型)较好。一般中弧线弯度应

为4%~8%(如B-5356翼型是6%,NACA-6409翼型也是6%)。

中弧线弯度太大时,阻力增大很多,压力中心移动很多,所以

不很适宜。至于中弧线最高点位置,一般是在25%~50%之间。

但中弧线弯度增大会使压力中心移动较多,合力位置在不同迎

角时变化很大,因此对弹射模型飞机很不适宜。要求稳定性好

的模型,其翼型中弧线越接近直线越好。无尾飞机或飞翼用的

翼型中弧线应为横放的S形。必须注意,这种翼型的中弧线呈S

形,不等于说翼型外形也像横放的S形,要仔细观察甚至画出中弧线后才能认出来。

(2)翼型上弧线的形状

翼型上弧线的形状及上弧线最高点的位置对于气流流过翼型的情况有很大影响,在Re=20000~100000范围内,翼型上弧线最高点位置最好离前缘25%~30%翼弦。上弧线高度可以为9%~10%弦长。有人认为,从翼型前缘到上弧线最高点这一部分上弧线的形状最好是一段近似于直线的曲线,但这个理论尚未得到证实。

(3)翼型下弧线的形状

翼型下弧线的形状不及上弧线那么重要,但如果设计得不好,对翼型的性能也会有不良影响。翼型下弧线最高点位置最好在离前缘50%~60%翼弦处。翼型下弧线最高点到弦线的距离(高度)最好在5%~7%弦长之间。如果小于这个数值,在平静气流中的滑翔性能不够理想;如果大于这个数值,在有风和有上升气流时的滑翔性能会变差。从翼型前缘到翼型下弧线最高点的这一段曲线形状,对于凹凸翼型,最好也是近乎直线,但稍微向下凸起的曲线。从翼型下弧线最高点到后缘这一段弧线最好是逐渐向上弧线接近,最后和上弧线重合。

(4)前缘半径

模型飞机翼型前缘部分的形状对于机翼上表面边界层的状态有很大的影响。如果前缘比较“尖锐”,就很容易在机翼上边面获得湍流边界层。但事物总是一分为二的,前缘太尖,又会使机翼只能在很窄的迎角范围内具有较好的性能。经过一些试验后,有人提出一个数据范围,见表3-2。

综合上面所提到的各点,适合牵引、

橡筋和活塞式发动机自由飞等竞时模型飞

机的翼型,如图3-13所示。应当指出,这

仅是对竞时模型飞机翼型的一般要求。符

合上述几何参数的翼型,一般都能获得好

的性能。但并不等于说,凡是不符合这些

要求的翼型就一定不好,也许经过迸一步

的研究,可能会得出更合理的设计要求。

此外,随着模型的类型及尺寸不同,所选的翼型几何参数也有所不同。一般牵引·橡筋及活塞式发动机自由飞模型机翼翼型的参考数据见表3-3。

最后还必须指出:为模型飞机设计或选择性能优良的翼型只是提高飞行成绩的一个必要条件,但还不完备,因为性能优异的翼型本身只足为获得良好飞行成绩提供一种可能性,而要把这种可能性变成现实,还要求合理地设计和精细地制作模型飞机,并且认真地进行试飞调整。只有这样,才能充分发挥高性能翼型的优点,获得优异的成绩。

(五)提高翼型性能的一些途径

要提高模型飞机翼型性能就要设法使翼型上表面的边界层从层流变为湍流以便延迟气流分离,增大最大升力系数和升阻比。边界层的转变与雷诺数、机翼的翼型形状、机翼上表面的粗糙程度,以及气流本身紊乱程度有关。由于雷诺数低是模型飞机固有的特点,所以各种提高翼型性能的办法围绕如下几个方面进行。

l. 低雷诺数下边界层的人工扰乱

用增加流过机翼上表面气流紊乱程度来促使边界层从层流转变为湍流的方法是一种提高机翼性能简便有效的途径。目前采用的办法有三种。

(1) 在机翼上表面前缘部分贴上细砂纸或粘上细木屑

表3-4是用这种方法进行试验的结果。从这个试验可以看到不但升力系数有所增大,阻力系数也有所减小;在迎角9.3 时机翼的最大升阻比从7.3提高到9.0。问题是到底粗糙部分应贴到哪里为止?粗糙的程度如何?对于每个具体的翼型都需要进行试验才能获得良好的结果,弄得不好反而会增加阻力和质量,而未必能提高性能。

(2) 在机翼上表面近前缘部分粘上一条细木条或粗的扰流线

日本航模爱好者曾经对上弧线为圆弧形的翼型用改变扰流线直径和位置的方法进行了系统的试验,试验结果见表3-5。从这个试验的结果可以看到,对这种翼型来说扰流线直径以0.2毫米为最好。当位置在30%时,最大升阻比从8.8提高到10.5。这个例子还充分说明当扰流线用得不合适(譬如太粗),升阻比反而大为降低,甚至只有原来的一半(从8.8减到4.9)。过粗的扰流线不但没有把边界层从层流变为湍流,延迟气流分离,相反地,却使气流就在扰流线上分离。如果扰流线直径为0.8毫米或1.6毫米时,扰流线放在50%的地方反而比放在前面好。扰流线的直径大小与翼弦长度有关。翼弦长度大,扰流线可以粗一些,扰流线的位置则与翼型形状及迎角大小有关,最好能放往翼型最高点前面一些,放得太靠近前缘也不好,

如图3-14所示。

(3) 在机翼前缘前方安装一根有弹性的扰流

线

扰流线可用钢丝、细橡筋条或有弹性的尼龙

线制成,一般装在距前缘约1/10-1/8弦长的地方,

如图3-15所示,而且是在翼弦平面上或比翼弦平

面稍微低一些。装的时候要把扰流线绷紧。扰流

线愈粗,振动愈剧烈,扰乱气流的作用则愈好,

可是本身的阻力也愈大。细的扰流线阻力小,但

扰流作用不好。将这两种影响加以比较,有人认

为0.4毫米直径的最好,但也有用1毫米的。对于

不同的模型飞机,必须根据试验来决定最好的扰

流线的直径及位置。(07.11.26)

如图3-16和图3-17所示,为加了扰流线后机翼特性的变化情况。从这些曲线可以看到扰流线的作用是很大的。可能这种翼型的雷诺数正好在84000,所以加了扰流线后,性能突然提高很多。在低雷诺数时,扰流线的作用并没有这样显著。

从图3-17可看到扰流线在大迎角下的效果较

为显著。没有扰流线的翼型在迎角2.4?时,机翼上表面

的气流就开始分离了(由图可见,所谓的气流分离,就

是指曲线上,升力突然间小,而阻力突然增大的突变

点-张注),最大升力系数只有0.96左右,相应的阻力

系数达0.17之多,而安装了扰流线后,迎角9.9?时翼

型上表面才开始出现分离,最大升力系数提高到1.4,

而此时的阻力系数仅0.11左右。

2. 采用很薄而弯的翼型

有人致力于改变翼型上弧线外形来改善翼型性能。实际经验也证明,在低雷诺数时 (如二级模型飞机或更小型的橡筋模型飞机),很薄而弯的翼型最好。很多小模型飞机只在机翼上表面蒙纸,相当于一个十分薄的翼型,性能往往很好。薄而弯的翼型能保证在雷诺数不大时,使边界层从层流变为湍流。有的人认为翼型最高点应在距前缘25%弦长左右,也有人认为应在50%弦长左右,现在尚无定论。

3. 采用弯后缘的翼型

自从1953年

有人采用明显而

且突然弯后缘的

翼型获得成功以

来,这种翼型开始

广泛受到重视。很

多牵引模型滑翔

机的翼型都把后

缘稍向下弯,如图

3-18所示。这样的翼型增大了下表面靠近后缘部分的压力,而不过多地增大阻力,所以升阻比增大。现代高速客机采用的“后加载”翼型也是根据类似的原理设计的。发现后缘向下弯的翼型后,给研究模型飞机翼型的人开辟了一条新的道路。但这种翼型还有很多问题,例如,这类翼型的后缘下弯角度多大,下弯部分占多少等还需要进一步的试验和研究。

二 、机翼形状的影响

前面着重介绍了翼型的问题。事实上只有机翼做成无限长时,机翼的性能才能和翼型完全一样,所以

还必须进一步了解实际机翼形状对机翼空气动力特性的影响。

机翼的形状包括机翼的平面形状和正面形状。机翼的平面形状指的是机翼的几何形状 (例如长方形、梯形和椭圆形等)。机翼的正面形状主要由上反角的大小和形状决定,机翼的平面形状影响机翼产生的空气动力大小和分布,而机翼正面形状主要影响模型飞机的飞行稳定性。在机翼平面形状的选择过程中有一个很重要的参数称为展弦比λ。它就是机翼的翼展与平均翼弦的比值。展弦比愈大表示机翼愈狭长。

(一) 展弦比与翼尖涡流的影响

要了解这个问题首先必须知道机翼的长度是有限的。在机翼翼尖部分,上下压强不同的气流会产生流动,下表面高压强的气体可绕过翼尖向上表面流动。气体的这种流动形成翼尖涡流,使整个机翼的气流流动情况都受到影响。这种影响可分三方面:

(l) 使机翼上下压强分布产生变化,减小了压力差 (而愈近翼尖部分影响便愈大),结果升力减小;

(2) 使机翼各部分实际迎角减小,长方形机翼愈近翼尖部分迎角减小愈多;

(3) 使机翼后面的气流向下倾斜 (即下洗流),增大了阻力。

总的来说,翼尖涡流使机翼在相同迎角下产生的升力减小,增大了阻力,使空气动力性能变坏。可以想象得到,为避免这种影响,最好把翼尖上下隔开来,这样便不再会产生翼尖涡流了,可惜这种方法只能在风洞中办得到,在模型飞机上就不行。如在模型飞机翼尖上加上垂直隔板,翼尖涡流影响虽然减小,但

垂直隔板本身的摩擦阻力却

使总阻力增大,而且增加质

量,不一定合适。现在常用

的办法是尽量使机翼左右翼

尖相隔远一些。由于这些麻

烦是从翼尖开始引起然后影

响到全机翼的,翼尖相隔愈

远,当然影响会愈小。同样

面积的机翼,如果翼弦愈小,

翼展愈大,两翼尖相隔的距离

便愈远,翼尖涡流的影响便愈

小,这种又狭又长的机翼就是

展弦比很大的机翼。

一般在计算时可以用机

翼翼展的平方除以机翼面积

来求展弦比A(λ),这样可以

省去求平均翼弦的麻烦。计算

公式为

S L A 2

= (3-2)

式中:L -机翼翼展,单位:厘

米;

S -机翼面积,单位:厘

米2。

展弦比是机翼的一个很重要的几何参数。机翼翼尖涡流对机翼气动特性的影响,实质上很大程度是与展弦比有关的。下面再进一步讨论翼尖涡流的这种影响。

l. 翼尖涡流引起的诱导阻力

在前面所说的空气动力中没有提到一种与机翼升力并存的

特殊阻力-诱导阻力。这种阻力在模型飞机飞行时占很重要的

地位,差不多占总阻力的l/3以上。

诱导阻力指由于机翼上下表面压力不同引起翼尖涡流产

生的阻力。机翼上下表面的压力差产生升力,而升力是与这种

阻力同时并存,好像是由于有了升力才诱导出来的阻力,所以

称为诱导阻力。机翼升力愈大诱导阻力也愈大,机翼升力为零时,诱导阻力也减小到零。

机翼的诱导阻力与机翼展弦比有关,展弦比大的机翼,翼尖涡流相对较弱,诱导阻力也小一些,根据理论推算证明,诱导阻力系数与展弦比成反比,而与机翼升力系数平方成正比。诱导阻力系数可用下面的公式计算

A C C L Di π2= (3-3) 式中:C L -机翼的升力系数;

C Di —诱导阻力系数;

A —机翼展弦比。

从式(3-3)中可看到,展弦比愈大诱导阻力便愈小。现代的牵引模型飞机展弦比一般都在10以上,就是这个道理。不过必须注意,用这个公式计算时,还要考虑到机翼的平面几何形状,这个公式适用于椭圆形和梯形机翼,如为长方形加椭圆翼尖的机翼,诱导阻力比用这公式算出来的值大5%-10%,也就是说还应乘上1.05-1.10。

2. 翼尖涡流形成的下洗流

翼尖涡流对模型飞机的另一个影响是形成下洗流。尾翼通常是在机翼所影响的气流之内,所以下洗流主要对尾翼产生作用,即改变了吹到尾翼上的气流方向。下洗角就是机翼前面吹过来的气流方向与机翼后气流的方向所成的角度,如图3-19所示。当机翼产生升力愈大,即翼尖涡流愈强时,下洗角愈大。这个影

响也随着展弦比的加大而减小。根据理论研究

结果,距机翼后缘较远处的下洗角可用下式计

A C L 5.36=ε (3-4)

式中:ε一下洗角,(?)。

事实上机翼后面的气流相当混乱,下洗角各处大小不同,这个公式只是一个最粗略的估计而已,同时机翼后面气流的速度也只有原来速度的90%左右。也就是说,如果没有螺旋桨的气流作用,尾翼的相对气流速度只有模型飞机飞行速度的90%。

3. 翼尖涡流使机翼产生的升力减小

翼尖涡流不但与诱导阻力及下洗角有关,而且还会影响到

升力系数的大小。由于翼尖涡流的影响,机翼的实际迎角比没

有翼尖涡流时的迎角小。原来用翼弦线与相对气流的夹角所形

成的迎角是测量机翼性能所用作依据的迎角。但翼尖涡流使机

翼气流发生变化,减小了机翼的相对气流与翼弦线所成的角度,

使机翼产生的升力系数减小。如机翼无限长时,迎角为8?,升

力系数为1.2。当展弦比为8,同一机翼(具有同样的翼型)迎角也

为8?,产生的升力系数只有0.96。因为对后一种机翼来说,气

流作用的实际迎角没有8?。由图3-20可看到,相同翼型的机翼

在相同迎角时,展弦比愈小,升力系数也愈小。同时可以看到,机翼产生的最大升力系数一般不随着展弦比的改变而改变,所以展弦比愈小的机翼临界迎角却愈大。

机翼产生的升力系数在小迎角时与绝对迎角成正比,所以升力系数曲线开头都像一根直线,如图3-20所示。所谓绝对迎角就是零升力迎角与迎角数值之和,也就是零升力弦与相对气流的夹角(见图3-l1)。用代数式表示绝对迎角等于α-α0,因为α0通常是负值,用负的α0代人式中正好是两个角度相加。

由于翼尖涡流使机翼迎角减小的数值称为诱导迎角(?α),也有人称为诱导下洗角。理论上这角度的大小正好等于下洗角的一半。计算式为

A

C L 2.18=?α (3-5) 式中: ?α-诱导迎角,单位:度。

从图3-20可以看到,当展弦比从无限大改为8肘,升力系数曲线便向右偏斜,对应同一升力系数,两者迎角相差是?α。角度的大小可用式(3-5)计算。用这个办法可以把翼型的升力系数曲线(展弦比无限大的曲线)改为展弦比符合我们机翼情况的曲线。图3-20有两种展弦比(12和8)的升力系数曲线。

至于展弦比减小后,临界迎角的变化情况就比较复杂了,但近似地也可以用式(3-5)计算,不过计算时的C L 要用C Lmax 。

4. 展弦比用多大合适

根据以上的计算及考虑,模型飞机机翼的展弦比应该愈大愈好(诱导阻力较小),但大展弦比机翼是很难制作得又轻又坚固的。对于模型飞机来说,考虑展弦比的时候还应该同时考虑到雷诺数的影响。模型飞机机翼的面积往往有一定的限制,所以用大展弦比就要求短翼弦,也就是小雷诺数。前面早已说过,雷诺数愈大,机翼的性能便愈好,尤其是最大升力系数受雷诺数的影响更大。小雷诺数时机翼容易失速,从这方面考虑机翼应该用小展弦比。

到底应谦用多大的展弦比?这个问题要根据不同的模型情况而定。一般来说,最好争取机翼的雷诺数在30000以上,这就相当于翼弦是100毫米左右 (模型飞机飞行速度大约是5米/秒)。但对于弹射模型飞机来说很难办得到,所以弹射模型飞机应当尽量争取长一点的翼弦,展弦比最好不超过5,其他的模型飞机可以在构造坚固的条件下用大的展弦比。

例如,要制作一架牵引模型滑翔机,机翼面积是1500厘米2,飞行速度是5米/秒。展弦比应该用多少呢?要解决这个问题,先从机翼的性能考虑,然后研究构造上的可

行性。

制作面积1500厘米2的机翼,可以用90毫米的翼弦,1670毫

米的翼展;或者120毫米的翼弦,1250毫米的翼展;也可以用150

毫米的翼弦和1000毫米的翼展。第一种情况展弦比是18.5,第二种

是10.4,第三种是6.6。这三种机翼的雷诺数分别为:31000、41400

和51800。假如都用相同的翼型NACA-6412,那么从有关模型飞机

翼型的资料中可查到这三种雷诺数下翼型的阻力系数分别为0.026、

0.023和0.021。假如模型飞机用大迎角飞行,升力系数为0.9,诱导

阻力系数分别为0.017、0.031和0.049。机翼的总阻力系数是0.043、

0.054或0.070。很明显,从阻力大小的观点来看展弦比是愈大愈好。

如果考虑机翼的最大升力系数情况便不同了。模型飞机飞行

(滑翔)时最好用大的迎角,这样可使飞行速度和下沉速度减小。一

般来说模型飞机的最大升阻比愈大,飞行的性能也愈好。对于相同

的翼型,雷诺数愈大,最大升力系数也愈大。尤其是当雷诺数在临

界值附近(40000-50000之间)时,争取大雷诺数很重要。超过临界雷

诺数,机翼上表面的边界层就可从层流转为湍流。如果雷诺数在

20000-30000之间,一般是不可能成为湍流层的,这样机翼容易失速。

翼弦90毫米的机翼最大升力系数可能到不了0.9。如果用120毫米的翼弦,雷诺数在40000左右,最大升力系数是1.35,飞行时可用8?迎角,离临界迎角12?还有一定距离,所以比较理想。至于用150毫米理弦,虽然雷诺数更大,但由于展弦比太小,阻力很大,比较起来不合算。

从结构的观点来比较这三种机翼时,当然展弦比愈小愈好,事实上展弦比大到18以上的机翼是很难制作的。即使做得坚固,机翼本身也一定很重。

总之,模型飞机机翼展弦比的大小应该结合雷诺数、诱导阻力和强度/重量的影响来考虑。机翼面积小干500厘米2时,展弦比最好作6左右。较大面积的机翼,应争取翼弦长度在120毫米以上。牵引模型飞机的展弦比不妨超过12。橡筋模型飞机保恃在10以下为好。至于线操纵模型飞机由于坚固性要求高,展弦比往往在6以下。

(二) 机翼的平面形状(12.3晚上到此)

模型飞机机翼的平面形状种类不多,从空气动力学的观点看,椭圆形的机翼诱导阻力最小(这就是为什么真飞机多采用这种平面形状),但无论是竞时模型飞机或竞速模型飞机却很少采用这种外形,原因主要是制作不方便(在采用AutoCAD和激光切割机后,使这个问题基本不存在),大多数无线电操纵模型飞机及线操纵竞速模型飞机的机翼都采用梯形的平面形状;而竞时模型飞机的机翼一般都采用长方形中段加梯形翼尖。因为从理论上讲梯形机翼的诱导阻力较接近理想的椭圆机翼,而且翼肋大小变化有规律,制作起来虽

不及长方形的方便,但也不十分麻烦。几种常见机翼的平

面形状,如图3-21所示。

竞时模型飞机机翼采用长方形加梯形形状,除了考虑

制作比较方便和诱导阻力比较小外,还有一个原因是这种

平面形状的机翼,可提高模型飞机进人上升气流的能力。

由于机翼涡流的影响,沿着机翼翼展方向每个翼剖面产生

的升力是不相同的,而且与机翼的平面形状有很大的关系,

如图3-22所示。图中横轴是半翼展长度相对值,0是机身

中线、1.0是翼尖。

一般所称的机翼升力系数,实际上是沿着翼展方向各

个翼剖面所产生的升力系数的平均值。梯形机翼升力分布

的特点是:靠近翼尖处剖面的升力系数比机翼平均升力系数大很多。如果模型飞机飞行时右机翼翼尖遇到了上升气流,使右机翼的迎角增大,由于翼尖附近翼剖面的升力系数已经很大了,再增大迎角后便有可能先达到临界迎角,于是在右机翼翼尖处先出现气流分离,升力下降;左、右机翼升力不相同,翼尖离重心距离远,模型飞机便朝右机翼方向倾侧,于是使模型飞机进人这股上升气流中。

(三) 上反角

机翼上反角就是从正面看机翼向上翘的角度,严格地说,就是机翼翼弦平面与通过翼根弦而垂直于机身对称面的平面所夹的角度。为简单起见,也可以看作是机翼没有左右倾斜时,机翼前缘与水平面的夹角。

上反角主要用来使模型飞机具有横侧稳定性。

当模型飞机由于外界突然的影响(如突风)以至倾斜

时,上反角的作用是使机翼产生使模型飞机从倾斜

中恢复过来的力矩。

模型飞机机翼的上反角形状一般有四种:V 形上反角 (一折上反角),U 形上反角 (双折上反角),双V 形上反角 (三折上反角) 和海鸥形上反角,如图3-23所示。

具有上反角的机翼之所以会起稳定的作用,是由

于模型飞机倾斜后会自动向倾斜的一方侧滑,这时相

对气流从斜前方吹过来。有上反角的机翼左右两侧迎

角便不同,产生的升力也就不同,于是形成恢复力矩

把模型飞机从倾斜中恢复过来。

在侧滑时,如果侧滑角是β,机翼上反角是Γ,那么

一侧机翼的迎角改变量为

3.57Γ

?βα= (3-6)

例如,机翼上反角是10?,倾斜后产生侧滑角6?,

那么向下倾斜的机翼迎角加大(6?10)/57.3,约为1?;而

向上的机翼迎角减小1?,机

翼两侧升力便不同。从这个

计算可以看到,上反角角度

愈大,迎角的变化便愈大,

也就是恢复倾斜作用愈大。

不过另一方面也可以

想象得到,使模型飞机从倾

斜恢复的是升力差产生的力矩,与作用的“力臂”大小也有关系。具有上反角

的机翼离中轴愈远,两侧机翼升力不同时产生的力矩就愈大。因此,从这一观

点来看,U 形上反角效率最好。

现代的竞时模型飞机多数用U 形或双V 形上反角。后一种上反角的优点

是:它一方面具有U 形上反角的效率 (因上反角大的部分布翼尖),同时机翼中

部也有一点上反角,若外翼在侧滑角太大、迎角增加过多以至失速时,机翼中

部还能起一定作用。所以,这种上反角虽然制作上稍微困难一些 (多一个折点)

但使用仍十分广泛。

事实上具有上反角的机翼不一定要作模型飞机倾斜时才起作用。当有侧风

时,或者模型飞机飞行方向与机身不重合时也起作用,这时,相对气流吹到机

翼上也有一个偏斜的角度,即侧滑角β, 如图3-24所示,这种情况也称为侧滑(即当模型飞机稳定飞行时,如果有一阵风吹到飞机的左翼上,使左翼抬起,右翼下沉,飞机绕纵轴发生倾斜。使飞机沿合力的方向向右下方滑过去,这就是所谓的“侧滑”)。如果模型飞机在飞行中机头向左偏不与飞行方向重合,这时模型飞机是在右侧滑,机翼的上反角使得右侧机翼升力加大,左侧机翼升力减小,模型飞机会向左倾斜,因此上反角虽然可以使模型具有横侧稳定性,却使模型在保持方向上不利,也就是影响方向稳定性。要保持方向稳定性还需要足够大的垂直尾翼,两者的作用必须协调。这个问题将在第六章中再进行讨论。

(四) 机翼性能的换算方法

如果找到好的翼型资料或其他的模型飞机数据,一定要先把数据换算为适合你自己的模型飞机几何特点数据才能应用。在这里将介绍利用翼型的性能曲线及本章前面一些公式获得不同展弦比机翼的升力系数及阻力系数的方法。

l. 机翼的升力系数

设翼型的升力系数曲线是巳知的(可查翼型集),可以求出升力系数曲线的斜率(B 0),即升力系数C L 与绝对迎角(αabs )的比值。计算式为

abs L

C B α=0 (3-7)

如果你的机翼展弦比是A ,那么升力系数曲线的斜率受诱导迎角的影晌也将改变,现在斜率为

αα?+=abs L A C B (3-8) 利用式(3-5),?α= 18.2 C L /A

代人式(3-8)中得

A

C C B L abs L a 2.18+=

α 所以,对于这样的机翼,在迎角α时的升力系数应该为

A

C C B C L abs abs L abs A L 2.18+==ααα 将公式右侧分数上下用αabs 除,变为

A B B A C C C abs abs L abs abs L

L 002.1812.181+=?+?=αααα (3-9)

式中:C L -在迎角为α,展弦比为A 时的升力系数;

B 0-展弦比无限大时升力系数曲线斜率。

这个公式可用来估计翼型的性能,也可以用来计算展弦比不同的机翼的升力系数。例如,只知道翼型形状和机翼展弦比,没有翼型的资料,那么根据图3-11的作图法可求出翼型的零升力迎角α0,大部分良好的翼型的升力系数曲线斜率B 0等于0.084左右(雷诺数为60000时)。将该数值代人上式(0.084?18.2=1.529,这里用1.5计算),即可得到另一公式用来估计机翼在迎角α时的升力系数 5.1084.05.11084.0+=+=A A A C abs abs L αα (3-10)

利用式(3-10)时必须注意,当迎角逐渐增大,迎角与

升力系数的直线关系便不准确了,尤其是在临界迎

角附近,升力系数曲线的斜率逐渐减小,所以不能

使用式(3-10)。

当机翼的雷诺数大于60000时,B 0的数值是常

数,对任何好的翼型都差不多,一般在0.08-0.09之

间(对称翼型0.1,理论上限值是2π/57.3-0.1097)。但

雷诺数很低时情况就不同了。

如图3-25所示,当Re=42000时,各种不同的

翼型具有各种各样的升力系数曲线,而升力系数曲

线的斜率各不相同。幸而大部分模型飞机用的凹凸

型翼型B 0变化不大,所以公式还可以用来修正机翼

的资料,算出机翼在不同展弦比时的升力系数。

例如,已知翼型的资料(展弦比无限大时的资料),要把升力系数换算为适合展弦比为A 的情况,可以代入前式,得

()5.1/0,+=A A B C abs A L α

其中,C L,A 表示机翼展弦比为A 时的C L 。

若从已知资料中查到迎角α时翼型的升系数为C L ∞ (展弦比无限大时的C L ),那么根据公式C L ∞=B 0αabs ,代人上式可得

5.1C ,+=∞A A C L A L (3-11) 这便是机翼升力性能换算的基本关系式。只要知道在展弦比无限大时翼型的升力系数C L ∞,代人式(3-11)中,便可求出展弦比为A 时的机翼在相同迎角下产生的升力系数C L,A 。

例如,机翼展弦比为8.5,用G 0-417a 翼型,试求迎角6?时的升力系数(机翼Re=42000)。从图3-25可查出展弦比为无限大时,翼型在6?迎角下升力系数是1.05?根据以上公式得

C L = (1.05?8.5)/(8.5+1.5)=0.89

另一种情况是在已知A=A 1时,试验出来的翼型资料,现在要求展弦比为A 2时的C L 。这情况可用下式换算为

()5.15.1C 21!21,2,++?

=A A A A C A L A L (3-l2) 式中:C L,A1-机翼展弦比为A 1时的升力系数;

C L,A2-机翼展弦比为A 2时的升力系数。

2. 不同展弦比下的阻力系数

现在机翼的阻力系数应包括诱导阻力系数在内,所以相同的翼型,当展弦比不同时,同一迎角下阻力系数也不同。从曲线中所查到的翼型阻力系数称为废阻力系数C DO ,或称翼型阻力系数。机翼的阻力系数应为废阻力系数 (即零升阻力系数)与诱导阻力系数之和。根据式(3-3) C Di =C L 2/πA 得

A C C C C C L DO Di DO D π2+=+= (3-13) 式中:C D —机翼阻力系数;

C DO -翼型阻力系数;

C Di -诱导阻力系数。

如果已知的翼型资料是由展弦比A 1试验时而得,现在的机翼展弦比为A 2,那么阻力系数的换算可根据前述换算公式,得

???? ??-+=1221,2,1132.0A A C C C L A D A D (3-14) 式中:C D,A2一展弦比A 2时的机翼阻力系数;

C D,A1-展弦比A 2时的机翼阻力系数。

[例] Go-417a 翼型,A=5,C L =0.7时,阻力系数C D =0.15,求A=l0时,在同样C L 下,阻力系数为多少? 解:将已知数值代人式 (3-14)中

()134.0511017.032.015.02

=-?+=D C 第三章 思考题(12.11晚上-本学期最后一次,到此)

1. 对良好的机翼有那些要求?

2.有哪些因素来决定机翼的升力系数和阻力系数?

3.什么叫“升阻比”?

4.什么叫“翼型”,翼型主要有哪几种?

5.掌握翼型各部分的名称;

6.影响翼型性能最大的因素是什么?

7.通常翼型的形状是如何来表示的?计算翼型的基准长度基准长度和基准点是什么?

8.熟练掌握翼型的画法翼型的画法,尤其是AutoCAD的画法,以及如何根据激光切割机的激光切割线宽

来修正图形的尺寸?

9.熟悉班尼狄克和NACA翼型编码所表示的几何特性的含义;

10.翼型的性能指的是哪些参数?

11.常用的用于表示翼型性能的曲线有哪3种?

12.什么叫临界迎角?什么叫有利迎角?什么叫最大升阻比?

13. 是什么?

14.什么叫压力中心?它有什么意义?

15.什么叫机翼焦点?什么叫焦点力矩?

16.在根据翼型极曲线来选择翼型时,首先要考虑的因素是什么?其次要考虑的因素是什么?最后要考虑

的因素是什么?

17.根据风洞实验所得的数据只相当于在什么气流条件下所得的数据?

18.如何根据翼型的外形特点来估计翼型的主要特性?

19.如何得到零升力弦?什么叫零升力迎角?零升力迎角与机翼的实际雷诺数有什么关系?

20.中弧线一般是什么形状?中弧线的弯度增大时,对升力和阻力有什么影响?

21.要求升阻比较大的竞时航模翼型的中弧线的弯度范围一般应为多少?要求稳定性良好的弹射模型飞机

对中弧线有什么要求?无尾或飞翼航模对中弧线的要求是什么?

22.掌握典型的竞时模型飞机的翼型外形;

23.提高翼型性能的总的出发点是什么?

24.用增加流过机翼上表面气流紊乱程度,来促使边界层从层流转变为湍流的方法有哪三种?

25.在低雷诺数时,很薄而弯的翼型能起到什么作用?

26.弯后缘的翼型有什么好处?

27.一般来说,只有符合什么条件,机翼的性能才能和翼型的一样?

28.对机翼的性能来说,机翼的形状包括哪两部分?其含义是什么?影响是什么?

29.什么叫机翼的展弦比?

30.什么叫翼尖涡流?它有什么影响?克服它的常用的方法是什么?

31.什么叫诱导阻力?它与那些因素有关?

32.什么叫下洗角?它与那些因素有关?如果没有螺旋桨的气流作用,尾翼的相对气流速度与模型飞机的

飞行速度有什么关系?

33.为什么说,翼尖涡流会使机翼产生的升力减小?

34.机翼的临界迎角与展弦比有什么关系?而在小迎角时,机翼的升力系数与绝对迎角有什么关系?

35.什么叫绝对迎角?

36.什么叫诱导迎角?它与那些因素有关?

37.如何从展弦比为无限大的升力系数曲线得到展弦比为某一固定值的升力特性曲线?

38.理论上,在考虑展弦比时,主要考虑哪两个矛盾方面?在实际上,又要考虑哪些因素?

39.对于相同的翼型,雷诺数与最大升力系数之间有什么关系?

40.层流机翼有什么缺点?

41.最终,展弦比的确定应考虑到那些因素?

42.从空气动力学,减小诱导阻力的角度来看,那种机翼的平面形状的诱导阻力最小,那种的其次,哪种

的最大?

航模相关书籍

电子版图书详细目录: 《10类航模飞机制作》 作者:边莫行编页数:113 科学普及出版社,1988 《21世纪学校科技活动创新设计与探索全书》 作者:朴哲松等主编页数:3145页内蒙古少年儿童出版社,1999 《1954年国际航空模型竞赛》 作者:(苏)巴巴耶夫(Н.Бабаев)等著黄永良,程乾译页数:103页人民体育出版社,1956 《1978年全国航海模型比赛中学科技特辑》 作者:《中学科技》编辑部编辑国家体委军体局审定页数:111页上海教育出版社,1979 《1978年全国航空模型比赛》 作者:《中学科技》编辑部编辑页数:198页上海教育出版社,1979 《产品模型制作》 作者:谢大康编著页数:178页化学工业出版社,2003 《车模精品鉴赏手册》 作者:蔡葵编著页数:161 福建科学技术出版社,2003 《初级无线电操纵模型飞机第二版》 作者:陶考德编著页数:119页人民体育出版社,1962 《初级无线电操纵模型飞机》 作者:陶考德编著页数:90页人民体育出版社,1958 《船舰模型的无线电远距离控制》 作者:(苏)布鲁因斯马(А.Х.Бруинсма)著页数:62页国防工业出版社,1958 《创纪录模型飞机》 作者:(苏)考斯钦科,(苏)密基尔吐莫夫著中央国防体育俱乐部编页数:1册人民体育出版社,1956 《弹射滑翔》 作者:体育运动委员会航空运动司编著页数:39 人民体育出版社,1960 《弹射模型飞机》 作者:周嵚著页数:36 青年出版社,1952 《电动模型车》 作者:冯立编著页数:97 万里书店,1978 《电动模型制作》 作者:伯章编著页数:112页上海人民出版社,1975 《电动起重机模型》 作者:伯章编著页数:78 少年儿童出版社,1961 《飞机模型制造法》 作者:(苏)考斯钦克) 页数:1册开明书店,1952 《飞机模型制造法》 作者:毕云编译页数:1册中国文化事业社,1952 《飞机潜艇及其他模型制作法》 作者:(苏)阿柏拉摩尔著符其珣译页数:95页开明书店,1949 《光电控制模型》 作者:谢耀德译页数:130 华联出版社,1978 《航海模型》

航模知识题参考答案汇总

航模基础知识题参考答案 一、选择题 1. 航模包括 ( A ) A)航空模型航天模型B)航空模型航天模型及车模船模 C)航空模型航天模型和船模 D)航空模型 2. 相同上反角以下布局稳定性最大的是(A ) A)上单翼 B) 中单翼 C)下单翼D) A和C 3. 电动航模最常采用哪种电池提供动力( B ) A) 镍氢电池 B) 锂电池C) 铅蓄电池 D) 干电池 4.垂尾的作用是什么( A ) A)控制航向 B) 减小阻力 C) 增加阻力 D) 控制飞机俯仰5.下列那种形式的飞机最省电( D ) A) 涵道飞机 B) 3D飞机 C)腰推飞机 D)滑翔机 6.常见的飞机的可靠转向方式是什么?( C ) A. 副翼 B.方向舵 C.副翼+升降舵 D.差速 7.锂电池1S在充满电的情况下正常电压是多少( C ) A)1.2V B)3.8V C)4.2V D)12V 8.常规飞机的升力中心大概在哪个位置( A ) A) 机翼前三分之一平均弦长处 B) 机翼后缘处 C) 机身二分之一处D) 机翼前缘处 9 .电子调速器需要与哪些设备连接( D ) A)电池 B)电机 C) 接收机 D) ABC

10. 在航模飞行之前,正确的操作是( A ) A) 先打开遥控再接通动力电源 B) 先接通动力电源再打开遥控 C) 同时打开遥控接通动力电源 D) 都不对 11.当航模出现意外炸机时对于设备的操作正确的是( A ) A) 先拔掉电源B) 先关掉遥控 C) 先检查飞机 D) 先收完油门 12.常用锂电池飞行电压一般不得低于( B ) A)2.8V B)3.7V C) 4.0V D)4.2V 13.下列那种设计适用于高速飞机( D )。 A) 直翼飞机B)下单翼飞机 C) 双凸翼形的飞机 D) 后掠角大的飞机 14.翼尖涡流产生的原因是什么( B ) A)飞机飞行速度过快 B)机翼上下表面的压力差 C)螺旋桨气流影响 D)机翼上下表面的粗糙度差距 15.襟翼的基本效用是什么?( B ) A) 减速 B) 增加升力 C)增加稳定性 D) 增加机动性 16.下了说法正确的是( A ) A)无刷电机配备无刷电子调速器 B)有刷电机配备无刷电子调速器 C)无刷电机配备有刷电子调速器 D)都可以混合使用 17.现在你在用KT板作为材料制作一架飞机,在综合考虑强度和重量

航模DIY-群基础知识(翼型)

机翼 机翼是模型飞机产生升力的主要部件。模型飞机性能的好坏往往决定于机翼的好坏,良好的机翼应该能产生很大的升力和很小的阻力,并有足够的强度和刚性,不容易变形而且容易制作。决定机翼产生升力大小的因素很多,与机翼面积、速度等直接有关,不过这些因素往往不能够或不便于改变,譬如空气密度,我们不能改变;机翼两积、通常受到比赛规则的限制;飞行速度不容易控制,而且对竞时的模型飞机来说,速度愈小愈好。这样一来,要想增大升力只能从增大升力系数着想了。在减小机翼阻力方面也是这样,主要是设法减小机翼产生的阻力系数。决定机翼升力系数及阻力系数的是机翼截面形状(即翼型)、机翼平面形状和当时的迎角。好的翼型能够在同样的迎角下有较大的升力系数和较小的阻力系数,这两种系数的比值(称升阻比)可达到18以上。 一、翼型 翼型就是机翼的截面形 状。现代模型飞机所用的翼型 一般可分为六类:平凸型、对 称型、凹凸型、双凸型、S型和 特种型,如图3-1所示。这六种 翼型各有各的特点,每种翼型 一般能符合某几种模型飞机的 要求。 翼型各部分的名称如图3-2所示。其中影响翼型性能最大的是中弧线(或中线)的形状、翼型的厚度和翼型厚度的分布。中弧 线是翼型上弧线与下 弧线之间的距离中点 的连线。如果中弧线是 一根直线与翼弦重合, 那就表示这个翼型上 表面和下表面的弯曲 情况完全一样,这种翼 型称为对称翼型。普通 翼型中弧线总是向上 弯的,S翼型的中弧线 成横放的S形。 要表示翼型的厚度、中弧线的弯曲度和翼型最高点在什么地方等通常不用长度计算,因为各种大小不同的飞机都可以用同样的翼型。翼型形状如用具体长度表示,在设计计算时很不方便,现在的翼型资料对这些长度都用百分数表示,不用厘米或米来计算,基准长度是翼弦,例如翼型厚度是1.2厘米,弦长10厘米,那么翼型厚度用(1.2/10)来表示,即翼型厚度是翼弦的12%。这样的表示方法很方便,不管用在大飞机或小飞机上,这种翼型的厚度始终是12%。大家只要牢记基准长度是弦长便可以很容易算出实际的翼型厚度来,此外计算前后距离也用百分数,也以弦长为基准,而且都是从前缘做出发点。例如,翼型最高点在30%弦长处,那就表示翼型最高的地方离前缘的距离等于全翼弦的30%。 下面我们分别把翼型的画法、性能的表示法和性能的计算等问题加以讨论。 (一)翼型的画法 适合于模型飞机上使用的翼型现在巳有一百多种,每种翼型的形状都不相同。幸而每种翼型的形状都用同一办法(外形坐标表)表示,所以我们只要把翼型外形坐标表找到,这种翼型的形状便完全决定了。某翼型坐标见表3-1。

乡村学校少年宫手册

乡村学校少年宫基本知识解答 1、乡村学校少年宫的概念 乡村学校少年宫是指依托农村中小学校现有场地、教室和设施,进行修缮并配备必要的设备器材,依靠教师和志愿者进行管理,在课余时间和节假日组织开展普及性课外活动的公益性活动场所。建设乡村学校少年宫,为农村未成年人开展实践活动、提高综合素质创造条件,是改善农村未成年人课外活动场所薄弱状况的重要举措,是加强新形势下农村未成年人思想道德建设的基本途径,是未成年人思想道德建设的基础性、长期性工程。 乡村学校少年宫的建设使用要坚持三个原则: 一是公益性原则。免费为未成年人提供文化服务,组织道德实践活动,不开展任何赢利性的经营活动,不开办收费特长班、培训班,坚决避免成为应试教育的第二课堂。 二是普及性原则。对未成年人普遍进行兴趣爱好和基本技能的培养,结合民族优秀文化和地域文化形成特色。 三是资源整合原则。充分利用学校现有资源、周边公共设施和社会各界力量,实现资源整合,切实服务农村未成年人。 2、乡村学校少年宫的主要特点 “覆盖广、花钱少、抓得住”,这是乡村学校少年宫的主要特点,也是实际推进乡村学校少年宫建设过程中的基本思路和工作要领。 一是“覆盖广”,即场所布局与学校合二为一,做到哪里有学校,哪里就有活动场所,农村孩子们都可以就地、就近、就便参加课外活动。

二是“花钱少”,即充分依托农村学校现有资源,通过修缮、改造、置换、共享等办法,闲置利用、一室多用,教室就是活动室,操场就是活动场,课桌就是活动台,不另起炉灶、不重新建设。同时,善于调动和运用社会力量支持,在设施、技术、人才等方面提供帮助。不仅建设花钱少,运行花钱也少,符合当前农村经济社会发展水平,办得成、做得到。 三是“抓得住”,即工作项目抓得住、服务对象抓得住、农村未成年人思想道德建设工作抓得住。工作项目抓得住,主要指乡村学校少年宫依托学校进行建设,实行学校管理体制,由校长兼任主任,学校老师兼任辅导员和管理人员,“一师两用、一表双用”,实行课外活动制度化管理,有阵地、师资保证,能够确保组织到位、长期开展。服务对象抓得住,主要指乡村学校少年宫面向本校和周边学校学生开展活动,工作对象集中,能够吸引未成年人主动参与,有效解决农村未成年人放学后、节假日无处可去、无事可干的问题,使农村未成年人的课外时间由分散状态转变为有组织状态,为我们进行正面教育引导提供有力抓手。农村未成年人思想道德建设工作抓得住,主要指通过抓乡村学校少年宫这个载体,能够努力改善农村未成年人思想道德建设的基础条件,壮大农村未成年人工作队伍,丰富农村未成年人精神文化生活,切实加强农村“留守儿童”教育管理,推动农村未成年人思想道德建设工作不断深入。 3、乡村学校少年宫的活动内容和功能定位 乡村学校少年宫的活动内容包括三类: 一是开展丰富多彩的文体娱乐活动,以乐促智。要针对未成年人的身心特点,因地制宜,广泛开展未成年人喜闻乐见、乐于参与的歌咏、乐器、舞蹈、绘画等艺术活动,球类、武术、棋艺、跳绳等体育活动,以及滚铁环、猜灯谜、放风筝、舞龙灯等乡土文化特色活动,使文体娱乐活动成为乡村学校少年宫最普遍开展、最基

航模无刷电机调速器说明书

航模无刷电机调速器说明书 尊敬的用户:感谢您使用飞盈佳乐有限公司设计、制造的航模无刷马达智能动力控制器(ESC)。因本产品在启动使用时产生的功率强大,错误的使用及操作可能造成人身伤害和设备损坏,我们强烈建议客户在使用本产品前仔细阅读本使用手册,严格按操作规定使用。我们不承担因使用本产品而引起的的任何责任,包括但不限于附带损失或者间接损失的赔偿责任。同时,不承担使用人擅自拆装及修改本产品引起的任何责任和因第三方产品所造成的任何责任。 我们有权不预先通知变更产品,包括外观,性能参数及使用要求;对本产品是否适合使用者特定用途不作任何保证、申明或承诺。 一、航模无刷电机控制器主要特性: ●采用功能强大、高性能MCU处理器,用户可以针对自身需求设置使用功能,充分体现我们产品独具优势的智能特点 ●支持无刷电机无限制最高转速 ●支持定速功能。 ●精心的电路设计,抗干扰性超强 ●启动方式可设置,油门响应速度快,并具有非常平稳的调速线性,兼容固定翼飞机及直升飞机。 ●低压保护阀值可设置 ●内置SBEC,带舵机负载功率大 ●具备多种保护功能:输入电压异常保护/电池低压保护/过热保护/油门信号丢失降功率保护 ●通电安全性能好:接通电源时无论遥控器油门拉杆在任何位置不会立即启动电机 ●过温保护:控制器工作时温度到达120℃时功率输出会自动降低一半,低于120℃时功率输出自动恢复 ●兼容所有遥控器操作设置和支持编程卡设置 ●设置报警音判断通电后工作情况 ●本公司对此产品具备完整知识产权,产品可持续升级更新。并可根据客户的需求量身定制产品。 调速器产品规格 1)OPTO调速器没有内置BEC, 工作时需单独给舵机、接收机供电 2)S BEC调速器,给舵机供电是开关电源模式,输出电压5.5V,舵机可以带4A负载,瞬间2秒可达8A 3)UBEC调速器,给舵机供电是线性电源模式

翼型航模DIY基础知识

翼型航模DIY基础知识

翼型航模DIY基础知识 机翼 机翼是模型飞机产生升力的主要部件。模型飞机性能的好坏往往决定于机翼的好坏,良好的机翼应该能产生很大的升力和很小的阻力,并有足够的强度和刚性,不容易变形而且容易制作。决定机翼产生升力大小的因素很多,与机翼面积、速度等直接有关,不过这些因素往往不能够或不便于改变,譬如空气密度,我们不能改变;机翼两积、通常受到比赛规则的限制;飞行速度不容易控制,而且对竞时的模型飞机来说,速度愈小愈好。这样一来,要想增大升力只能从增大升力系数着想了。在减小机翼阻力方面也是这样,主要是设法减小机翼产生的阻力系数。决定机翼升力系数及阻力系数的是机翼截面形状(即翼型)、机翼平面形状和当时的迎角。好的翼型能够在同样的迎角下有较大的升力系数和较小的阻力系数,这两种系数的比值(称升阻比)可达到18以上。 一、翼型 翼型就是 机翼的截面形 状。现代模型飞 机所用的翼型 一般可分为六类:平凸型、对称型、凹凸型、双凸型、S型和特种型,如图3-1所示。这六种翼型各有各的特

点,每种翼型一般能符合某几种模型飞机的要求。 翼型各 部分的名称 如图3-2所 示。其中影 响翼型性能 最大的是中 弧线(或中线)的形状、翼型的厚度和翼型厚度的分布。中弧线是翼型上弧线与下弧线之间的距离中点的连线。如果中弧线是一根直线与翼弦重合,那就表示这个翼型上表面和下表面的弯曲情况完全一样,这种翼型称为对称翼型。普通翼型中弧线总是向上弯的,S翼型的中弧线成横放的S形。 要表示翼型的厚度、中弧线的弯曲度和翼型最高点在什么地方等通常不用长度计算,因为各种大小不同的飞机都可以用同样的翼型。翼型形状如用具体长度表示,在设计计算时很不方便,现在的翼型资料对这些长度都用百分数表示,不用厘米或米来计算,基准长度是翼弦,例如翼型厚度是1.2厘米,弦长10厘米,那么翼型厚度用(1.2/10)来表示,即翼型厚度是翼弦的12%。这样的表示方法很方便,不管用在大飞机或小飞机上,这种翼型的厚度始终是12%。大家只要牢记基准长度是弦长便可以很容易算出实际的翼型厚度来,此外计算前后距离也

航模飞机设计基础知识

第一步,整体设计 1、确定翼型 我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度的上反效果。三角翼制作复杂,翼尖的攻角不好做准确,翼根受力大,根部要做特别加强。这种机翼主要用在高速飞机上。纺锤翼的受力比较均匀,制作难度也不小,这种机翼主要用在像真机上。翼梢的处理。由于机翼下面的压力大于机翼上面的压力,在翼梢处,从下到上就形成了涡流,这种涡流在翼梢处产生诱导阻力,使升力和发动机功率都会受到损失。为了减少翼梢涡流的影响,人们采取改变翼梢形状的办法来解决它。 2、确定机翼的面积 模型飞机能不能飞起来,好不好飞,起飞降落速度快不快,翼载荷非常重要。一般讲,滑翔机的翼载荷在35克/平方分米以下,普通固定翼飞机的翼载荷为35-100克/平方分米,像真机的翼载荷在100克/平方分米,甚至更多。还有,普通固定翼飞机的展弦比应在5-6之间。确定副翼的面积机翼的尺寸确定后,就

航模校本教材

前言 少年儿童是祖国的未来,科学的希望。培养有理想、有道德、有文化、有纪律的社会主义公民,提高整个中华民族的思想道德素质和科学文化素质,必须从少年儿童抓起,必须从引导少年儿童开展有意义的实践活动抓起。科技活动已证明是课堂教育的补充、扩大和发展。尤其航模设计制作活动,它符合少年儿童好奇、好动、好胜的心理特征,活泼新颖,又富有时代气息,对少年儿童富有强烈的吸引力。 通过航模活动,将使少年儿童接触到广阔的知识领域:从空气动力到材料结构等有关知识:从加工工艺到调整试飞等有关技能;从现实飞机到新型飞机的创造构思。航模活动的动手又动脑的特性,将带来很多可贵的特殊教育效果。少年儿童在实践活动中获得积极的情感体验,或通过自己的发现而享受创造的喜悦,或在克服困难获得成功中体察到自身的价值和满足感,这些无疑有利于培养少年儿童的自主、自立、自信、自强、自律等优秀的个性品格。尤其针对当前教育上存在的弊端和独生子女的现实情况,更具有它特殊的现实意义。 航模活动的实践性,不仅带来智能上的发展,而且有助于少年儿童树立远大的理想。少年儿童为了制作出一架预想的模型飞机,必须按客观规律办事,建立起科学的、求实的思想方法;必须有坚定的意志和顽强的毅力,经受困难和挫折的考验;必须善于群体相处,善于学习别人的长处,建立起集体主义观念。在小小的航模兴趣小组活动中,会逐步学会正确的观察和分析,逐步提高思辨能力和认识水平,从而萌发出高尚的、理性的、为人民服务、为科学献身的远大理想和事业心。 千里之行始于足下,亲爱的同学们,希望你们能用好这本教材。它将引导你走向科技制作活动的大门,也将引导你爱科学、爱劳动,培养起善于动脑、动手和勇于进取的好品质,使自己德、智、体、美、劳全面发展,时刻准备着,为祖国美好的明天,为 21世纪做出贡献!

航空模型发动机完全手册范本

航空模型发动机完全手册 前言 目前,航空模型上采用的动力装置主要有:橡筋条、活塞式发动机、喷气式发动机、电动式发动机和压缩气体发动机等数种。其中活塞式发动机按照混合气着火方法分为:压缩燃烧式(压燃式)、电热式(热火栓式)和电火花点燃式三种。 本书主要介绍在我国使用较广的压燃式发动机。最后在附录中简要介绍一下电热式和电火花点燃式发动机。 活塞式航空模型发动机是一种小型燃机,一般称为小发动机。它的基本组成部分和工作原理,与中学物理书上介绍的燃机(包括柴油机和汽油机)大体相同,也和日常见到的手扶拖拉机、摩托车或汽车上使用的发动机大体相同,不过要简单得多。小发动机的体积虽然很小,并且只有一、二十个零件,但它已经是一种精密机器了,必须很仔细地科学地去学习它和使用它。 航模爱好者在使用小发动机的过程中,要注意理论联系实际,将书本上学到的有关发动机的基本知识,运用到具体实践中去。要学懂小发动机的工作原理、燃料组成、起动步骤和调整方法,学会怎样排除故障,并注意养成正确的操作方法,为今后在农业机械化运动中,或在工矿和科学试验等工作中,更好地学习和运用各种机械设备打下良好的基础。 一构造和原理 (一)小发动机的构造: 图1是轴进气压燃式小发动机的解剖图。现将它的各个零件和功用分别说明如下: 1.气缸和活塞——气缸是燃料和空气的混合气体进行燃烧的地方,也是将燃料燃烧后放出来的热能转换为机械能的地方。气缸呈圆筒形,表面非常光滑,近似镜面。气缸的混合气体燃烧膨胀时,产生很高的压力,作用在活塞顶上,推动活塞向下运动;经过曲轴连杆机构,使曲轴转动并带动螺旋桨旋转,产生拉力使飞机前进。发动机转动时,活塞以很高的速度在气缸中来回运动。气缸壁上开有排气口和转气口等配气孔。活塞在气缸往复运动时,同时控制了排气口和转气口等配气孔的开闭。 气缸和活塞是小发动机上最主要也是最精密的零件,它们之间的配合非常精确,以保证密封和压缩性能。如果使用不当,或让灰沙等脏物进入气缸部,那就会使气缸和活塞很快磨损,影响密封性能,造成发动机转速下降,甚至不能起动等不良后果。 活塞在气缸来回运动时,由于受到曲臂长度的限制,有两个极限位置。活塞能达到的最高位置,即距曲轴旋转中心最远的位置,叫做上止点;最低的位置,叫做下止点(图2)。活塞从上止点移动到下止点(或从下止点移动到上止点)所经过的路程,也就是上止点至下止点之间的距离,叫做活塞行程(冲程)。当活塞在上止点时,由活塞顶面、反活塞的下表面和气缸周围侧壁所包含的容积,叫做燃烧室容积。活塞在下止点时,由活塞、反活塞和气

航模基础知识介绍

航模基础知识介绍一一航模培训理论课 航模概念:在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器”。1什么叫飞机模型 一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。2、什么叫模型飞机 般称能在空中飞行的模型为模型飞机,叫航空模型。 航模飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架、发动机和控制系统六部分组成。 1机翼------- 是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧稳定。 2、尾翼----- 包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰稳 定,垂直尾翼保持模型飞机飞行时的方向稳定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。也有模型飞机使用V型尾翼,需要 混合控制,一般航模遥控器都有此功能。两片向外倾斜的尾翼联合控制方向舵与升降舵。最特殊的情况是机翼采用S翼型的无动力滑翔机,这类机只有垂直尾翼而没有水平尾翼。 3、机身----- 将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架------ 供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面各一个起落架叫前三点式,前部两面各一个起落架,后面一个起落架叫后三点式。 5、发动机------ 它是模型飞机产生飞行动力的装置。模型飞机常用的动力装置有:橡筋束、 活塞式发动机、涡轮喷气式发动机、电动机。较少使用的有:脉冲喷气发动机(重量大,油耗大)、转子发动机(只有OS的一款)空气发动机(上世纪70年代用于室内模型与活塞 发动机类似。 6、太阳能板及各类电池也可作为模型飞机的动力来源。

航模社团教案

航模制作教案 航模制作属于手、脑并用的综合性劳动教育技术。本项目所使用的材料是木条、木板和木片,其比例是依据飞机的比例缩小而制作的。以其知识性、实践性、趣味性深受参训学生的喜爱。 学情分析 本活动主要针对初一、初二学生。处于这个年龄段的学生正值喜欢探索事物,勇于挑战,愿意动手,他们同时也具备了一定的知识能力,但缺少展现自我和动手制作的机会。另外,随着人类航天事业的发展,越来越多的学生开始感兴趣于航天事业,针对学生这些特点,我们开设这项活动。 活动目标 ⑴简要介绍飞机发展史和认真分析飞机基本构造。 ⑵通过测量分析图形增强学生的识图能力,在动手操作中锻炼其动手能力,通过放飞,培养学生发现问题和解决问题的能力。 ⑶激发兴趣,培养合作精神。 活动方式 教、学相互交流探讨,学生分组合作。 活动重点、难点 重点:机翼的打磨及固定位置 难点:机翼打磨的程度 活动材料、工具 木条、木板、木片、锯、铅笔、锉、钢尺、砂纸、美工刀、101胶水。 材料工具图 活动过程组织设计

情境导入→了解原理→动手制作→放飞→总结 一、情境导入 教师讲解飞机发明人(莱特兄弟)的小故事,然后请学生谈谈感想? 教师思考:利用古人发明飞机的故事,激发学生在当前情况下,想要创作的激情,培养他们的挑战精神,使他们在目标驱动下更好的进行学习。二、了解原理 教师引导学生观察鸟飞行图,请学生分析其结构特征。然后再引导学生观察航模示意图,并分析其机构,两者对比分析,更明确飞机的基本组成部分:机身、机翼、尾翼(包括水平尾翼和垂直尾翼)。 鸟空中飞行图 翘翼航模示意图 总结各部分的作用: 机身:固定连接机翼、尾翼和起到承载作用 机翼:为飞行提供动力 尾翼:控制飞机飞行方向和保持飞机飞行平衡

航模的基本原理和基本知识

一、航空模型的基本原理与基本知识 1)航空模型空气动力学原理 1、力的平衡 飞行中的飞机要求手里平衡,才能平稳的飞行。如果手里不平衡,依牛顿第二定律就会产生加速度轴力不平衡则会在合力的方向产生加速度。飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞。升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称x及y方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。 图1-1 飞机会偏航、Z 图 2 在这里当然是指空气,设法使机翼上部空气流速较快,静压 1-3﹞,于是机翼就被往上 一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。? 图1-3 图1-4 图1-5 3、翼型的种类

1全对称翼:上下弧线均凸且对称。 2半对称翼:上下弧线均凸但不对称。 3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。 4S型翼:中弧线是一个平躺的S型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。 5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所有的鸟类除蜂鸟外都是这种翼型。 基本航模的翼型选测规律: 2厚的翼型阻力大,但不易失速。 6 4、飞行中的阻力 一架飞行中飞机阻力可分成四大类: 1磨擦阻力:空气分子与飞机磨擦产生的阻力,这是最容易理解的阻力但不很重要,只占总阻力的一小部分,当然为减少磨擦阻力还是尽量把飞机磨光。 2形状阻力:物体前后压力差引起的阻力,平常汽车广告所说的风阻系数就是指形状阻力系数﹝如图3-3﹞,飞机做得越流线形,形状阻力就越小,尖锥状的物体形状阻力不见得最小,反而是有一点钝头的物体阻力小,读者如果有机会看到油轮船头水底下那部分,你会看到一个大

航模的基本原理和基本知识

航模的基本原理和基本 知识 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

一、航空模型的基本原理与基本知识 1)航空模型空气动力学原理 1、力的平衡 飞行中的飞机要求手里平衡,才能平稳的飞行。如果手里不平衡,依牛顿第二定律就会产生加速度轴力不平衡则会在合力的方向产生加速度。飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞。升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称 x 及 y 方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。 图1-1 弯矩不平衡则会产生旋转加速度,在飞机来说,X轴弯矩不平衡飞机会滚转,Y轴弯矩不平衡飞机会偏航、Z轴弯矩不平衡飞机会俯仰﹝如图1-2﹞。 图1-2 2、伯努利定律 伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力越小,速度越小,静压力越大,流体一般是指空气或水,在这里当然是指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢,静压力较大,两边互相较力﹝如图1-3﹞,于是机翼就被往上推去,然后飞机就飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应

在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。 图1-3 图1-4 图1-5 3、翼型的种类 1全对称翼:上下弧线均凸且对称。 2半对称翼:上下弧线均凸但不对称。 3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y 翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。 4S型翼:中弧线是一个平躺的S型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。 5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所有的鸟类除蜂鸟外都是这种翼型。 基本航模的翼型选测规律: 1薄的翼型阻力小,但不适合高攻角飞行,适合高速机。 2厚的翼型阻力大,但不易失速。

中学生综合素质等级评价操作说明

郴州亚星学校学生综合素质评价 操作说明 初中学生综合素质评价是学生初中阶段发展的综合评价,其意义不仅在于评价学生的综合素质,促进学生全面发展,还在于通过对学生的评价完善教师的教学行为,促使教育教学质量的全面提高。综合素质评价是一项艰巨的、繁琐的工作,需要教师们具有足够的耐心和细心。下面是关于操作程序和评价细则的一些说明,希望对学校的具体操作有所帮助。 一、评价内容和结果呈现 六个维度(15个评价要素,38项主要表现):道德品质、公民素养、学习能力、合作与交流、审美与表现、运动与健康状况。评价结果以优、良、合格和不合格四个等级呈现,分别用A、B、C、D表示。 二、评价过程 学生自评——学生小组互评(同学互评)——教师小组评价(师评)——学校评价工作委员会审查、认定、签字——家长、学生认定签字。 三、评价前的准备 1、各方面的荣誉实证材料,小制作、艺术作品,活动记录,学习计划、总结、反思材料,作业本,校本课程学习考勤记录等。 2、《中学生成长记录册》由各县(市、区)自行制作,内容包含有:每期获奖情况、期末评语、各科学习期中和期末成绩等级、各科学习日常表现情况、社会实践活动参与情况、道德品质表现与公益活动参加情况、学生体质健康状况等。 3、自我评价报告。

四、操作说明 (一)自评 1、完成初中阶段的自我评价报告。学生根据六个维度的主要表现,搜集并整理相关资料,写出初中阶段自我评价报告,记入成长记录册。自我评价报告将作为同学互评和师评的依据之一。 2、自评过程:学生对照六个维度和评价标准逐项列出有关实证材料,并写上相应的评价等级。如“道德品质”一项,若某学生是下列情况:①活动参与率约98%;②两次评为“优秀学生干部”,一次评为“学雷锋标兵”;③《记录册》评价均为“优”。将上述情况在“实证材料”一栏中写明,然后在“评价结果”的“自评”栏中写上“A”。其它维度的评价同样。逐项评出等级。 (二)互评 1、小组成员:同学互评小组必须由8人组成,小组成员由抽签确定。每组推举一名组长负责组织和记录。互评时当事人回避。互评所列条件必须同时具备,经小组评议得出互评结果。 2、互评过程:①以主要表现、评价标准和实证材料为依据,依次对评价对象的六个维度逐项进行评价;②根据“评价标准”中的“同伴互评结果”控制条件,统一确定评价对象某维度最后的互评等级,填入“互评”栏右边的空格内。其它维度的评价同样,逐项评出等级。 (三)师评 1、小组成员及职责:①各班教师评价小组由该班班主任和四名科任教师组成(最好有英语教师、音体美教师代表、理化生教师代表、语政史地教师代表)。班主任任组长。②师评小组负责审核学生的实证材料,对全班学生进行综合素质等级评价并写出综合性评语。 2、评价过程:①以学生互评小组为单位,每次评价8人。②以评价标准、实证材料和学生的日常表现为依据,对互评小组成员逐一

第一讲航模基础知识

第一讲航模基础知识 什么叫航空模型 在国际航联制定的竞赛规则里明确规定“航空模 型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。其技术要求是: 最大飞行重量同燃料在内为五千克; 最大升力面积一百五十平方分米; 最大的翼载荷100 克/ 平方分米; 活塞式发动机最大工作容积10 亳升。 1、什么叫飞机模型 般认为不能飞行的,以某种飞机的实际尺寸按 一定比例制作的模型叫飞机模型。 2、什么叫模型飞机 般称能在空中飞行的模型为模型飞机,叫航空 模型。 二、模型飞机的组成 模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。 1、机翼——是模型飞机在飞行时产生升力的装 置,并能保持模型飞机飞机飞行时的横侧安定。

2、尾翼——包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。 3、机身——将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架——供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。 5、发动机——它是模型飞机产生飞行动力的装 置。模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。 三、航空模型技术常用术语 1、翼展——机翼(尾翼)左右翼尖间的直线距离。 穿过机身部分也计算在内)。 2、机身全长——模型飞机最前端到最末端的直线

航模基础知识及模型教练飞机结构详细讲解

一、什么叫航空模型 在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。 其技术要求是: 最大飞行重量同燃料在内为五千克; 最大升力面积一百五十平方分米; 最大的翼载荷100克/平方分米; 活塞式发动机最大工作容积10亳升。 1、什么叫飞机模型 一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。 2、什么叫模型飞机 一般称能在空中飞行的模型为模型飞机,叫航空模型。 二、模型飞机的组成 模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。 1、机翼———是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧安定。 2、尾翼———包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。 3、机身———将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架———供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。 5、发动机———它是模型飞机产生飞行动力的装置。模型飞机常用的动装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。 三、航空模型技术常用术语 1、翼展——机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内)。

2、机身全长——模型飞机最前端到最末端的直线距离。 3、重心——模型飞机各部分重力的合力作用点称为重心。 4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。 5、翼型——机翼或尾翼的横剖面形状。 6、前缘——翼型的最前端。 7、后缘——翼型的最后端。 8、翼弦——前后缘之间的连线。 9、展弦比——翼展与平均翼弦长度的比值。展弦比大说明机翼狭长。 练习飞行的要素与原则分析 玩模型飞机和玩模型大脚车完全是两种不同的运动,模友们千万别想当然,买来了就上天,否则就只能看着飞机的残骸落泪了。在开展模型飞机运动前,最需要有一套合理、简单的教程来指导你学会为什么这么飞和怎么样飞,让你更快更安全的把爱机送上蓝天。 开篇还是先把基础飞行练习的要素与原则强调一下,这与你能否成功的掌握飞行技能有直接的关系。 第一:飞行练习的要素 掌握飞行技巧,需要以掌握最基本的要素为基础,不断的练习,最终实现自己对飞机启动、助跑、起飞、航线和降落等环节的控制,达到这种境界,模型界称之为“单飞”。 单飞的要素有以下几点: 1、一架精心调整的遥控上单翼教练机(飞机的调整我们在专门的板块里详细说明) 2、理解各种操纵对飞机控制的作用 3、飞机起飞 4、学会直线飞行与航线控制 5、学会转弯飞行与转弯控制 6、地面参照物对航线的辅助

遥控电动固定翼入门手册无水印

遥控电动固定翼 ——入门教程 任伟著

目录 前言 (3) 第1讲飞机为什么会飞 (4) 1.1飞机的组成部分 (4) 1.2飞机的组成部分 (7) 第2讲什么是航模 (10) 2.1航空模型运动 (10) 2.2航空运动 (10) 2.3航模 (10) 第3讲航模部件解析 (13) 3.1遥控器 (13) 3.2电机及桨 (14) 3.3电调 (16) 3.4舵机 (17) 3.5锂电池 (18) 3.5其他配件 (19) 第4讲kt板遥控纸飞机制作 (20) 4.1工具、材料及配件 (20) 4.2画图、裁板 (21) 4.3制作副翼 (22) 4.4喷漆上色 (23) 4.5组装模型 (24) 4.6装配件 (26) 4.7对码、调试 (29) 第5讲固定翼练习机制作 (31) 5.1工具、材料及配件 (31) 5.2认识图纸 (31) 5.3各部件的制作 (31) 第6讲飞行基础训练 (43) 6.1模拟飞行训练 (43) 6.1.1软件的安装和设置 (43) 6.1.2飞行操作方法 (47) 6.2实践训练 (49)

前言 当前国内的航模运动日趋普遍,随着航模的个人玩家和各类组织增多,相应的各类航模比赛也随之增多。针对青少年的全国比赛有全国青少年航模锦标赛、“飞向北京-飞行太空”全国青少年航空航天模型教育竞赛等,对应的各省、市也会有各类选拔赛,这些比赛都是教育行政部门认可的。加之航模比赛历经24年再次加入全运会,更进一步推动了航模运动的发展。 目前全国各地级市以上城市的大部分中小学及大学都有开始航模社团或者航模兴趣小组,以培养学生对于航空航天的兴趣,及动手能力和创新能力。而在县级的中小学就很少有关于航模的社团或者兴趣小组,个别小学只有一些基础的航模类器材应付上级检查。在我省(陕西省)只有个别县比较重视航模的发展,笔者所在的渭南市大荔县也只有同州中学有航模社团,虽然成立时间短,但是在校长及负责领导的大力支持下发展迅速,已在省赛中获奖。 航模运动对于学生的发展意义重大,在应试教育的阴霾暂未散去的情况下,航模的制作和操纵无疑是培养学生的人生规划意识、创新意识和动手能力最好的方式之一。很多学校或者家长可能认为学习航模对上高中、上大学没有用处,其实不然,很多高中都招收航模特长生,北航、南航等一些可自主招生航空类大学对航模特长生都有优惠政策,降分最大幅度可达到60分,这也是任何数学、英语类竞赛无法比拟的。 航模运动在县级中小学为什么难以普及?究其原因,总结为三点:一、学校经济紧张,航模的原材料和制作过程都是不断的花钱,虽然学生的模型是学生自己花钱,但是学校的资金投入也不少,并且模型种类繁多,价格上不封顶,选择哪一种还是多种,都是学校需要从经济投入方面考虑的问题。二、学校没有专门负责航模的老师,如果外聘,理由同第一条所述。笔者是在担任物理教师,完成正常课时量的前提下,利用课余时间进行航模训练的。这就需要老师有足够的兴趣,才能坚持下来。三、教育行政部门没有硬性要求。航模运动的推行需要一定的资金,学生花钱就需要和家长沟通,过程过于复杂,教育行政部门难以干涉。很多城市的航模运动也是在一些组织,如航模协会推广到一定能够程度了予以支持,如此就发展起来了。 笔者通过长时间的积累,包括航模制作、试飞、教学以及学生制作和试飞过程发现的问题,最后在考虑到学生家庭经济不宽裕的情况下,确定了两个模型的制作和飞行训练,通过这两个模型的制作和飞行训练,学生已基本掌握模型的制

多旋翼无人机知识手册

[键入文字] V1.1版 翎航智能科技工作室 培训 教材 多旋翼无人机知识手册

前言 随着多旋翼无人机的应用日趋广泛,多旋翼无人机的入门门槛越来越低,“到手飞”、个人航拍机等对操作人员的要求几乎是零,对毫无基本常识和经验的人来说也可以操作。但这些都为人身和财产安全埋下了巨大的隐患,出于以上考虑,本教材阐述了多旋翼无人机的基本原理、总结了飞行过程中的注意事项、操作方法、以及如何规避风险。这是一本适合飞行初学者的教材,旨在普及航空知识、和飞行常识等基本理论,根据经验提出在飞行中应该注意的问题和如何规避风险、应急处置等。 本教材的材料有些基于无人机方面的书籍,有些则基于航模飞行的经验,很多都是十分难得的第一手资料,因此可以作为飞行初学者的基础教程,也可以作为以拓宽知识面、开拓思路为主要目的的广大无人机爱好者的学习资料。 由于水平有限,时间仓促,书中疏漏之处在所难免,敬请读者朋友批评指正,以使我们在再版时修订。 作者

目录 前言................................................................................................... - 2 - 目录................................................................................................... - 3 - 第一章绪论 ....................................................................................... - 4 - 第二章系统组成及原理.................................................................... - 7 - 第三章飞行器 ................................................................................. - 18 - 第四章操作方法实例...................................................................... - 26 - 第五章其他细节 ............................................................................. - 45 - 第六章多旋翼无人机的作用与意义 .............................................. - 53 - 第七章与多旋翼无人机有关的航空法规及航空气象 ................... - 54 - 总结................................................................................................... - 66 - 参考文献 ........................................................................................... - 66 -

相关主题