搜档网
当前位置:搜档网 › 曲线拟合的最小二乘法matlab举例

曲线拟合的最小二乘法matlab举例

曲线拟合的最小二乘法matlab举例
曲线拟合的最小二乘法matlab举例

【VIP专享】MATLAB插值与拟合的几个函数整理

MATLAB插值与拟合 2015.4.19 19:21 【目录】 1. 线性拟合函数:regress() 2. 多项式曲线拟合函数:polyfit( ) 3. 多项式曲线求值函数:polyval( ) 4. 多项式曲线拟合的评价和置信区间函数:polyconf( ) 5. 稳健回归函数:robustfit( ) §1曲线拟合 实例:温度曲线问题 气象部门观测到一天某些时刻的温度变化数据为: t 0 1 2 3 4 5 6 7 8 9 10 T 13 15 17 14 16 19 26 24 26 27 29 试描绘出温度变化曲线。 曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。 1. 线性拟合函数:regress() 调用格式:b=regress(y,X) [b,bint,r,rint,stats]= regress(y,X) [b,bint,r,rint,stats]= regress(y,X,alpha) 说明:b=regress(y,X)返回X处y的最小二乘拟合值。该函数求解线性模型:y=Xβ+ε; β是p′1的参数向量;ε是服从标准正态分布的随机干扰的n′1的向量;y为n′1的向量;X为n′p矩阵。bint返回β的95%的置信区间。r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。 例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。即y=10+x+ε;求线性拟合方程系数。 程序:x=[ones(10,1) (1:10)’] y=x*[10;1]+normrnd(0,0.1,10,1)

曲线拟合最小二乘法c++程序

课题八曲线拟合的最小二乘法 实验目标: 在某冶炼过程中,通过实验检测得到含碳量与时间关系的数据如下,试求含碳量y与时间t #include #include<> using namespace std; int Array(double ***Arr, int n){ double **p; int i; p=(double **)malloc(n*sizeof(double *)); if(!p)return 0; for(i=0;i>n; cout<<"请输o入¨节¨2点ì值|ì(ê?§Xi)ê:êo"<>X[i]; } cout<<"请输o入¨节¨2点ì函?¥数oy值|ì(ê?§Yi)ê:êo"<>Y[i]; } if(!Array(&A,3)) cout<<"内¨2存?分¤配失o?ì败?¨1!ê"; else { for(i=0;i<3;i++){ for(j=0;j<3;j++){ A[i][j]=0; } } for(i=0;i

最小二乘法曲线拟合 原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ?来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ?最好地逼近()x f ,而不必满足插值原则。因此没必要取)(i x ?=i y ,只要使i i i y x -=)(?δ尽可能地小)。 原理: 给定数据点},...2,1,0),,{(m i y x i i =。求近似曲线)(x ?。并且使得近似曲线与()x f 的偏差最小。近似曲线在该点处的偏差i i i y x -=)(?δ,i=1,2,...,m 。 常见的曲线拟合方法: 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小 3.使偏差平方和最小 最小二乘法: 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。 推导过程: 1. 设拟合多项式为: 2. 各点到这条曲线的距离之和,即偏差平方和如下: 3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到 了: ....... 4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵: 5. 将这个范德蒙得矩阵化简后可得到:

6. 也就是说X*A=Y,那么A = (X'*X)-1*X'*Y,便得到了系数矩阵A,同时,我们也就得到了拟合曲线。 MATLAB实现: MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) [p,s,mu]=polyfit(x,y,n) x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x必须是单调的。矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。 [p,s,mu]=polyfit(x,y,n)在拟合过程中,首先对x进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。 polyval( )为多项式曲线求值函数,调用格式: y=polyval(p,x) [y,DELTA]=polyval(p,x,s) y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。 [y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。 如下给定数据的拟合曲线: x=[0.5,1.0,1.5,2.0,2.5,3.0], y=[1.75,2.45,3.81,4.80,7.00,8.60]。 解:MATLAB程序如下: x=[0.5,1.0,1.5,2.0,2.5,3.0]; y=[1.75,2.45,3.81,4.80,7.00,8.60]; p=polyfit(x,y,2) x1=0.5:0.05:3.0; y1=polyval(p,x1); plot(x,y,'*r',x1,y1,'-b') 运行结果如图1 计算结果为: p =0.5614 0.8287 1.1560 即所得多项式为y=0.5614x^2+0.08287x+1.15560 图1 最小二乘法曲线拟合示例 对比检验拟合的有效性: 例:在[0,π]区间上对正弦函数进行拟合,然后在[0,2π]区间画出图形,比较拟合区间和非拟合区间的图形,考察拟合的有效性。 在MATLAB中输入如下代码: clear x=0:0.1:pi; y=sin(x); [p,mu]=polyfit(x,y,9)

基于MATLAB的数值计算_插值及曲线拟合

基于MATLAB的数值计算一插值及曲线拟合摘 要:本文基于MATLA的数值计算功能,重点介绍了插值及曲线拟合的应用及特点. 关键词:MATLAB;数值计算;插值及曲线拟合本文从MATLAB的功能特点出发,阐述了它在数值计算中的基本要素和相关函数,以工程计算中常用到的数据插值和曲线拟合为主旨,通过三个实例,验证、分析了用MATLAB进行数据的插值和曲线拟合的合理性、可靠性和 准确性。 1插值及曲线拟合 插值与拟合是来源于实际、又广泛应用于实际的两种重要方法.随着计算机的不断发展及计算水平的提高,它们在国民经济和科学研究等方面扮演着越来越重要的角色。 1 .1插 值 插值计算在数据拟合和数据平滑等方面应用普遍。插值计算的目的是通过离散的数据点来获得更为丰富的信息,它可以细分为一维插值和二维插值。一维插值是在线的方向上对数值点进行插值:二维插值则可以理解为在面的方向上进行插值。比较典型的例子就是在绘图过程中,当绘制二维曲线时,利用一维插值从少量数据中获得足够的信息进行描点;在绘制三维曲线时,则必须对两个方向的数据进行插值来获得其他点的信息。 1.2曲线拟合 很多的时候,在工程研究与计算中得到的原始数据往往只是在某些点上的离散值,它们所代表的函数关系不易得出一个容易表示的数学表达式;或者所得出的数据的函数表达式比较复杂,不易计算,这样在计算这些函数其他所需要的数值方面就带来了诸多不便.解决这个难题的方法之一就是利用一些性质相对“好”的简单函数,在某种规定和标准之下,去拟合或逼近这些“困难”函数,然后通过这些简单函数去获得所希望得到的结果。曲线拟合根据拟合方法的不同,有参数拟合和非参数拟合。参数拟合,曲线不通过所有点,采用最小二乘法:非参数拟合,曲线通过所有点,采用插值法。 2插值及曲线拟合应用实例 2. 1一维插值与拟合应用 一维插值是进行数据分析和曲线拟合的重要手段,interp 1函数使用多项式技术,用多项式函数拟合所提供的数据,计算目标插值点上的

曲线拟合的最小二乘法讲解

实验三 函数逼近与曲线拟合 一、问题的提出: 函数逼近是指“对函数类A 中给定的函数)(x f ,记作A x f ∈)(,要求在另一类简的便于计算的函数类B 中求函数A x p ∈)(,使 )(x p 与)(x f 的误差在某中度量意义下最小”。函数类A 通常是区间],[b a 上的连续函数,记作],[b a C ,称为连续函数空间,而函数类B 通常为n 次多项式,有理函数或分段低次多项式等,函数逼近是数值分析的基础。主要内容有: (1)最佳一致逼近多项式 (2)最佳平方逼近多项式 (3)曲线拟合的最小二乘法 二、实验要求: 1、构造正交多项式; 2、构造最佳一致逼近; 3、构造最佳平方逼近多项式; 4、构造最小二乘法进行曲线拟合; 5、求出近似解析表达式,打印出逼近曲线与拟合曲线,且打印出其在数据点上的偏差; 6、探讨新的方法比较结果。 三、实验目的和意义: 1、学习并掌握正交多项式的MATLAB 编程; 2、学习并掌握最佳一致逼近的MATLAB 实验及精度比较;

3、学习并掌握最佳平方逼近多项式的MATLAB 实验及精度比较; 4、掌握曲线拟合的最小二乘法; 5、最小二乘法也可用于求解超定线形代数方程组; 6、 探索拟合函数的选择与拟合精度之间的关系; 四、 算法步骤: 1、正交多项式序列的生成 {n ?(x )}∞ 0:设n ?(x )是],[b a 上首项系数a ≠n 0的n 次多项式,)(x ρ为],[b a 上权函数,如果多项式序列{n ?(x )} ∞0 满足关系式???=>≠==?.,0,, 0)()()()(),(k j A k j x d x x x k k j b a k j ??ρ?? 则称多项式序列{n ?(x )}∞ 0为在],[b a 上带权)(x ρ正交,称n ?(x )为],[b a 上带权)(x ρ 的n 次正交多项式。 1)输入函数)(x ρ和数据b a ,; 2)分别求))(),(()),(,(x x x x j j j n ???的内积; 3)按公式①)()) (),(()) (,()(,1)(1 0x x x x x x x x j n j j j j n n n ??? ???∑-=- ==计算)(x n ?,生成正交多项式; 流程图: 开始

(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合 实际中,通常需要处理实验或测量得到的离散数据(点)。插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。 1.如果要求近似函数经过所已知的所有数据点,此时称为插值问 题(不需要函数表达式)。 2.如果不要求近似函数经过所有数据点,而是要求它能较好地反 映数据变化规律,称为数据拟合(必须有函数表达式)。 插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。【拟合】要求得到一个具体的近似函数的表达式。 因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。

一、数据插值 根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值) (2)分段线性插值 (3)Hermite (4)三次样条插值 Matlab 插值函数实现: (1)interp1( ) 一维插值 (2)intep2( ) 二维插值 (3)interp3( ) 三维插值 (4)intern( ) n维插值 1.一维插值(自变量是1维数据) 语法:yi = interp1(x0, y0, xi, ‘method’) 其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。 注:(1)要求x0是单调的,xi不超过x0的范围; (2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;

数值计算_第6章 曲线拟合的最小二乘法

第6章曲线拟合的最小二乘法 6.1 拟合曲线 通过观察或测量得到一组离散数据序列,当所得数据比较准确时,可构造插值函数逼近客观存在的函数,构造的原则是要求插值函数通过这些数据点,即。此时,序列与 是相等的。 如果数据序列,含有不可避免的误差(或称“噪音”),如图6.1 所示;如果数据序列无法同时满足某特定函数,如图6.2所示,那么,只能要求所做逼近函数最优地靠近样点,即向量与的误差或距离最小。按与之间误差最小原则作为“最优”标准构造的逼近函数,称为拟合函数。 图6.1 含有“噪声”的数据

图6.2 一条直线公路与多个景点 插值和拟合是构造逼近函数的两种方法。插值的目标是要插值函数尽量靠近离散点;拟合的目标是要离散点尽量靠近拟合函数。 向量与之间的误差或距离有各种不同的定义方法。例如: 用各点误差绝对值的和表示: 用各点误差按模的最大值表示: 用各点误差的平方和表示: 或(6.1) 其中称为均方误差,由于计算均方误差的最小值的方法容易实现而被广泛采用。按 均方误差达到极小构造拟合曲线的方法称为最小二乘法。本章主要讲述用最小二乘法构造拟合曲线的方法。 在运筹学、统计学、逼近论和控制论中,最小二乘法都是很重要的求解方法。例如,它是统计学中估计回归参数的最基本方法。

关于最小二乘法的发明权,在数学史的研究中尚未定论。有材料表明高斯和勒让德分别独立地提出这种方法。勒让德是在1805年第一次公开发表关于最小二乘法的论文,这时高斯指出,他早在1795年之前就使用了这种方法。但数学史研究者只找到了高斯约在1803年之前使用了这种方法的证据。 在实际问题中,怎样由测量的数据设计和确定“最贴近”的拟合曲线?关键在选择适当的拟合曲线类型,有时根据专业知识和工作经验即可确定拟合曲线类型;在对拟合曲线一无所知的情况下,不妨先绘制数据的粗略图形,或许从中观测出拟合曲线的类型;更一般地,对数据进行多种曲线类型的拟合,并计算均方误差,用数学实验的方法找出在最小二乘法意义下的误差最小的拟合函数。 例如,某风景区要在已有的景点之间修一条规格较高的主干路,景点与主干路之间由各具特色的支路联接。设景点的坐标为点列;设主干路为一条直线 ,即拟合函数是一条直线。通过计算均方误差最小值而确定直线方程(见图6.2)。 6.2线性拟合和二次拟合函数 线性拟合 给定一组数据,做拟合直线,均方误差为 (6.2) 是二元函数,的极小值要满足

Matlab插值与拟合教程

MATLAB插值与拟合 §1曲线拟合 实例:温度曲线问题 曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。 1. 1.线性拟合函数:regress() 调用格式:b=regress(y,X) [b,bint,r,rint,stats]= regress(y,X) [b,bint,r,rint,stats]= regress(y,X,alpha) 说明:b=regress(y,X)返回X处y的最小二乘拟合值。该函数求解线性模型: y=Xβ+ε β是p?1的参数向量;ε是服从标准正态分布的随机干扰的n?1的向量;y为n?1的向量;X为n?p矩阵。 bint返回β的95%的置信区间。r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。 例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。即y=10+x+ε;求线性拟合方程系数。 程序:x=[ones(10,1) (1:10)’] y=x*[10;1]+normrnd(0,0.1,10,1) [b,bint]=regress(y,x,0.05) 结果:x = 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 y = 10.9567 11.8334

13.0125 14.0288 14.8854 16.1191 17.1189 17.9962 19.0327 20.0175 b = 9.9213 1.0143 bint = 9.7889 10.0537 0.9930 1.0357 即回归方程为:y=9.9213+1.0143x 2. 2.多项式曲线拟合函数:polyfit( ) 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) 说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。矩阵s用于生成预测值的误差估计。(见下一函数polyval) 程序: x=0:.1:1; y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2] n=3; p=polyfit(x,y,n) xi=linspace(0,1,100); z=polyval(p,xi); %多项式求值 plot(x,y,’o’,xi,z,’k:’,x,y,’b’) legend(‘原始数据’,’3阶曲线’) 结果: p = 16.7832 -25.7459 10.9802 -0.0035 多项式为:16.7832x3-25.7459x2+10.9802x-0.0035 曲线拟合图形:

Matlab中的拟合与差值

您正在看的MATL AB是:曲线拟合与插值。 在大量的应用领域中,人们经常面临用一个解析函数描述数据(通常是测量值)的任务。对这个问题有两种方法。在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。这种方法在下一节讨论。这里讨论的方法是曲线拟合或回归。人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。图11.1说明了这两种方法。标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。 11.1 曲线拟合 曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。数学上,称为多项式的最小二乘曲线拟合。如果这种描述使你混淆,再研究图11.1。虚线和标志的数据点之间的垂直距离是在该点的误差。对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。最小二乘这个术语仅仅是使误差平方和最小的省略说法。 图11.12阶曲线拟合 在MATLAB中,函数polyfit求解最小二乘曲线拟合问题。为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。

?x=[0.1.2.3.4.5.6.7.8.91]; ?y=[-.4471.9783.286.167.087.347.669.569.489.3011.2]; 为了用polyfit,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。如果我们选择n=1作为阶次,得到最简单的线性近似。通常称为线性回归。相反,如果我们选择n=2作为阶次,得到一个2阶多项式。现在,我们选择一个2阶多项式。 ?n=2;%polyno mial order ?p=poly fit(x, y, n) p = -9.810820.1293-0.0317 polyfit的输出是一个多项式系数的行向量。其解是y= -9.8108x2+20.1293x-0.0317。为了将曲线拟合解与数据点比较,让我们把二者都绘成图。 ?xi=linspace(0, 1, 100);%x-axis data for plotting ?z=polyval(p, xi); 为了计算在xi数据点的多项式值,调用MATLAB的函数polyval。 ?plot(x, y, ' o ' , x, y, xi, z, ': ') 画出了原始数据x和y,用'o'标出该数据点,在数据点之间,再用直线重画原始数据,并用点' : '线,画出多项式数据xi和z。 ?xlabel('x '), y label('y=f(x) '), title('Second Order Curv e Fitting ') 将图作标志。这些步骤的结果表示于前面的图11.1中。

matlab实现插值法和曲线拟合电子教案

m a t l a b实现插值法和 曲线拟合

插值法和曲线拟合 电子科技大学 摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟 合,用不同曲线拟合数据。 关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合 引言: 在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。 正文: 一、插值法和分段线性插值 1拉格朗日多项式原理 对某个多项式函数,已知有给定的k + 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: [3] 拉格朗日基本多项式的特点是在上取值为1,在其它的点 上取值为0。 2分段线性插值原理 给定区间[a,b], 将其分割成a=x 0

MATLAB插值与拟合实验报告材料

实用标准文档 MATLAB实验报告 题目:第二次实验报告 学生姓名: 学院: 专业班级: 学号: 年月

MATLAB第二次实验报告 ————插值与拟合插值即在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn}通过调整该函数中若干待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最小二乘意义)最小。 一、插值 <1>拉格朗日插值(课上例子) m=101; x=-5:10/(m-1):5; y=1./(1+x.^2);z=0*x; plot(x,z,'r',x,y,'LineWidth',1.5), gtext('y=1/(1+x^2)'),pause n=3; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y1=fLagrange(x0,y0,x); hold on,plot(x,y1,'b'),gtext('n=2'),pause, hold off n=5;

x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y2=fLagrange(x0,y0,x); hold on,plot(x,y2,'b:'),gtext('n=4'),pause, hold off n=7; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y3=fLagrange(x0,y0,x);hold on, plot(x,y3,'r'),gtext('n=6'),pause, hold off n=9; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y4=fLagrange(x0,y0,x);hold on, plot(x,y4,'r:'),gtext('n=8'),pause, hold off n=11; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y5=fLagrange(x0,y0,x);hold on, plot(x,y5,'m'),gtext('n=10') 运行后得

MATLAB中的曲线拟合与插值

MATLAB中的曲线拟合和插值 在大量的使用领域中,人们经常面临用一个分析函数描述数据(通常是测量值)的任务。对这个问题有两种方法。在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。这种方法在下一节讨论。这里讨论的方法是曲线拟合或回归。人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。图11.1说明了这两种 方法。标有’0'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。 11.1 曲线拟合 曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用 许多不同的方法定义最佳拟合,并存在无穷数目的曲线。所以,从这里开始,我们走向何方?正如它证实的那样, 当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。数 学上,称为多项式的最小二乘曲线拟合。如果这种描述使你混淆,再研究图11.1。虚线和标志的数据点之间的垂直距离是在该点的 误差。对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。这条虚线是使 误差平方和尽可能小的曲线,即是最佳拟合。最小二乘这个术语仅仅是使误差平方和最小的省略说法。 图11.1 2阶曲线拟合 在MATLAB中,函数polyfit求解最小二乘曲线拟合问题。为了阐述这个函数的用法, 让我们以上面图11.1中的数据开始。 ? x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]; ? y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; 为了用polyfit,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的 阶次或度。如果我们选择n=1作为阶次,得到最简单的线性近似。通常称为线性回归。相反,如果我们选择n=2 作为阶次,得到一个2阶多项式。现在,我们选择一个2阶多项式。 ? n=2; % polyno mial order ? p=polyfit(x, y, n)

Matlab 曲面插值和拟合

Matlab 曲面插值和拟合 插值和拟合都是数据优化的一种方法,当实验数据不够多时经常需要用到这种方法来画图。在matlab中都有特定的函数来完成这些功能。 这两种方法的确别在于: 当测量值是准确的,没有误差时,一般用插值; 当测量值与真实值有误差时,一般用数据拟合。 插值: 对于一维曲线的插值,一般用到的函数yi=interp1(X,Y,xi,method) ,其中method包括nearst,linear,spline,cubic。 对于二维曲面的插值,一般用到的函数 zi=interp2(X,Y,Z,xi,yi,method),其中method也和上面一样,常用的是 cubic。 拟合: 对于一维曲线的拟合,一般用到的函数p=polyfit(x,y,n)和yi=polyval(p,xi),这个是最常用的最小二乘法的拟合方法。 对于二维曲面的拟合,有很多方法可以实现,但是我这里自己用的是Spline Toolbox里面的函数功能。具体使用方法可以看后面的例子。 对于一维曲线的插值和拟合相对比较简单,这里就不多说了,对于二维曲面的插值和拟合还是比较有意思的,而且正好胖子有些数据想让我帮忙处理一下,就这个机会好好把二维曲面的插值和拟合总结归纳一 下,下面给出实例和讲解。 原始数据 x=[1:1:15]; y=[1:1:5]; z=[0.2 0.24 0.25 0.26 0.25 0.25 0.25 0.26 0.26 0.29 0.25 0.29; 0.27 0.31 0.3 0.3 0.26 0.28 0.29 0.26 0.26 0.26 0.26 0.29; 0.41 0.41 0.37 0.37 0.38 0.35 0.34 0.35 0.35 0.34 0.35 0.35; 0.41 0.42 0.42 0.41 0.4 0.39 0.39 0.38 0.36 0.36 0.36 0.36; 0.3 0.36 0.4 0.43 0.45 0.45 0.51 0.42 0.4 0.37 0.37 0.37]; z是一个5乘12的矩阵。 直接用原始数据画图如下: surf(x,y,z) title(’Original data Plot’); xlabel(’X'), ylabel(’Y'), zlabel(’Z'), colormap, colorbar; axis([0 15 0 6 0.15 0.55])

最小二乘法多项式拟合

最小二乘法多项式拟合 对于给定的数据点N i y x i i ≤≤1),,(,可用下面的n 阶多项式进行拟合,即 为了使拟合出的近似曲线能尽量反映所给数据的变化趋势,要求在所有数据点上的残差 都较小。为达到上述目标,可以令上述偏差的平方和最小,即 称这种方法为最小二乘原则,利用这一原则确定拟合多项式)(x f 的方法即为最小二乘法多项式拟合。 确定上述多项式的过程也就是确定)(x f 中的系数n k a k ≤≤0,的过程,根据最小二乘原则,则偏差平方和应该是这些系数的函数,即 为使上式取值最小,则其关于n k a k ≤≤0,的一阶导数应该为零,即有 将上面各等式写成方程组的形式可有 写成矩阵形式有 上述方程组可以通过克莱姆法则来计算,从而解出各系数n k a k ≤≤0,得到拟合方程。 考虑到一般情况提高拟合多项式的阶数并不能提高拟合精度,所以常用的多项拟合阶数为一阶和二阶,即线性拟合和二次拟合。两者的计算公式如下: 关于线性拟合,除上面按克莱姆法则来计算外,还可以有另一思路,下面对此进行说明。由于是线性拟合,最后得到的是一条直线,因此,直线可以由斜率和截距两个参数来确定,因此,求出这两个参数即可。首先对克莱姆法的求解结果进行展开可以得到 下面考虑先计算斜率再计算截距的方法,从下图可见,斜率计算与坐标系的位置无关,所以可以将坐标原点平移到样本的i x 和i y 坐标的均值所在点上 图中 则在新的坐标系),(y x ''下斜率的计算公式与前面1a 的计算公式相同,将其中的坐标),(y x 换成),(y x ''即可得到下面的计算公式 由样本在新坐标系下的坐标i x '和i y '的均值为零,或者由下面推导可知 x '

使用matlab2014a做数据曲线拟合

Matlab有一个功能强大的曲线拟合工具箱cftool ,使用方便,能实现多种类型的线性、非线 性曲线拟合。下面结合我使用的Matlab R2007b 来简单介绍如何使用这个工具箱。 假设我们要拟合的函数形式是y=A*x*x + B*x, 且A>0,B>0 。 1、在命令行输入数据: 》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475] 》y=[5 10 15 20 25 30 35 40 45 50] 2、启动曲线拟合工具箱 》cftool 3、进入曲线拟合工具箱界面“Curve Fitting tool” (1)点击“Data”按钮,弹出“Data”窗口; (2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数 据集的曲线图; (3)点击“Fitting”按钮,弹出“Fitting”窗口; (4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单 选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类 型有: Custom Equations:用户自定义的函数类型 Exponential:指数逼近,有2种类型,a*exp(b*x) 、a*exp(b*x) + c*exp(d*x) Fourier:傅立叶逼近,有7种类型,基础型是a0 + a1*cos(x*w) + b1*sin(x*w) Gaussian:高斯逼近,有8种类型,基础型是a1*exp(-((x-b1)/c1)^2) Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape- preserving Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~ Power:幂逼近,有2种类型,a*x^b 、a*x^b + c Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型 Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思) Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是a1*sin(b1*x + c1) Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b) 选择好所需的拟合曲线类型及其子类型,并进行相关设置: ——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改

关于曲线拟合与最小二乘法原理的探讨

2013届本科毕业论文(设计) 论文题目:关于曲线拟合与最小二乘法原理 的探讨 学院:数学科学学院 专业班级: 学生姓名: 指导老师: 答辩日期:年月日 新疆师范大学教务处

目录 引言 (2) 1 最小二乘法拟合 (5) 1.1 最小二乘法 (5) 1.2 最小二乘多项式曲线拟合的基本原理 (5) 1.2.1 线性拟合原理 (6) 1.2.2 多项式拟合原理 (8) 2 分段曲线拟合的原理 (10) 2.1 分段曲线拟合 (11) 2.2 分段三次曲线拟合 (11) 3 几种具体的拟合曲线类型 3.1指数函数拟合.......................................................................................... 3.2幂函数拟合............................................................................................. 3.3双曲型拟合............................................................................................... 4 总结 (20) 参考文献 (21)

引言 在物理实验中,经常要把离散的测量数据转化为直观的便于研究的曲线方程,即曲线拟合。正交基函数因涵盖了幂函数,切比雪夫多项式,拉盖尔函数,多元正交函数系列等而常被采用为拟合函数。如在曲线拟合中最常见的二次曲线,采用二元正交基函数系列:1,x,y,x2,y2,xy,…进行拟合。最小二乘法在确定各拟合函数的系数时,尽管拟合的次数不是很高,但它可使误差较大的测量点对拟合曲线的精度影响较小,而且实现简单,便于物理分析和研究,故成为最常用的方法之一。本文从最小二乘法的基本原理出发,给出了多元正交函数拟合的实现方法,并结合实例给出了最常用的二次曲线拟合的程序流程图。

曲线拟合的最小二乘法

曲线拟合的最小二乘法 吕英楷 1014202033 在物理实验中经常要观测两个有函数关系的物理量。根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。这类问题通常有两种情况:一种是两个观测量x 与y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是x 与y 之间的函数形式还不知道,需要找出它们之间的经验公式。后一种情况常假设x 与y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。 一、曲线拟合的最小二乘法原理: 由已知的离散数据点选择与实验点误差最小的曲线 )(...)()()(1100x a x a x a x S n n ???+++= 称为曲线拟合的最小二乘法。 若记 ),()()(),(0 i k i j m i i k j x x x ??ω??∑== k i k i m i i k d x x f x f ≡=∑=)()()(),(0 ?ω? 上式可改写为),...,1,0(;),(n k d a k j n o j j k -=∑=??这个方程成为法方程,可写成距阵 形式 d Ga = 其中,),...,,(,),...,,(1010T n T n d d d d a a a a == ???? ?? ??????=),(),(),()(),(),(),(),(),(10 1110101000n n n n n n G ?????????????????? 。 它的平方误差为:.)]()([)(||||20 22i i m i i x f x S x -= ∑=ωδ

利用最小二乘法求解拟合曲线

实验三函数逼近 一、 实验目标 1.掌握数据多项式拟合的最小二乘法。 2.会求函数的插值三角多项式。 二、实验问题 ( (2)求函数()2cos f x x x =在区间[,]ππ-上的插值三角多项式。 三、 实验要求 1.利用最小二乘法求问题(1)所给数据的3次、4次拟合多项式,画出拟合曲线。 2.求函数()2cos f x x x =在区间[,]ππ-上的16次插值三角多项式,并画出插值多项式的图形,与()f x 的图形比较。 3.对函数()2cos f x x x =,在区间[,]ππ-上的取若干点,将函数值作为数据进行适当次数的最小二乘多项式拟合,并计算误差,与上题中的16次插值三角多项式的结果进行比较。 《数值分析》实验报告 项式,画出拟合曲线 【实验目标】 (1)加深对用最小二乘法求拟合多项式的理解 (2)学会编写最小二乘法的数值计算的程序; 【理论概述与算法描述】 在函数的最佳平方逼近中()[,]f x C a b ∈,如果()f x 只在一组离散点集{,0,1,,}i x i m =???上给出,这就是科学实验中经常见到的实验数据{(,),0,1,,}i i x y i m =???的曲线拟合,这里 (),0,1,,i i y f x i m ==???,要求一个函数*()y S x =与所给数据{(,),0,1,,}i i x y i m =???拟合,若 记误差*()(0,1,,)i i i S x y i m δ=-=???,()01,,,T m δδδδ=???,设01(),(),,()n x x x ??????是[,]C a b 上的线性无关函数族,在01{(),(),,()}n span x x x ????=???中找一个函数*()S x ,使误差平方和

最小二乘法曲线拟合原理及maab实现

曲线拟合( curve-fitting ):工程实践中,用测量到的一些离散的数据 {( X, yj,i 0,1,2,...m}求一个近似的函数(x)来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使(x)最好地逼近f x,而不必满足插值原则。因此没必要取(X)=y i,只要使i (X i) y i尽可能地小)。 原理: 给定数据点{( x i,y i),i 0 ,1 , 2, . . . m} 。求近似曲线( x) 。并且使得近似曲线与f x 的偏差最小。 近似曲线在该点处的偏差i(x i ) y i,i=1,2,...,m 。 常见的曲线拟合方法: 1. 使偏差绝对值之和最小 2. 使偏差绝对值最大的最小 3. 使偏差平方和最小 最小二乘法: 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。推导过程: 1. 设拟合多项式为: 2. 各点到这条曲线的距离之和,即偏差平方和如下: 3?问题转化为求待定系数a0...a k对等式右边求q偏导数,因而我们得到了: 4、把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵: 5. 将这个范德蒙得矩阵化简后可得到: 6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。 MATLAB 实现: MATLAB 提供了polyfit ()函数命令进行最小二乘曲线拟合。 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) [p,s,mu]=polyfit(x,y,n) x,y 为数据点,n 为多项式阶数,返回p 为幂次从高到低的多项式系数向量p。x 必须是单调的。矩阵s包括R (对x进行QR分解的三角元素)、df(自由度)、 normr(残差)用于生成预测值的误差估计。 [p,s,mu]=polyfit(x,y,n) 在拟合过程中,首先对x 进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。polyval( ) 为多项式曲线求值函数,调用格式:y=polyval(p,x)

相关主题