搜档网
当前位置:搜档网 › Development of new buffer layers for CIGS solar cells

Development of new buffer layers for CIGS solar cells

Development of new buffer layers for CIGS solar cells
Development of new buffer layers for CIGS solar cells

Pure Appl.Chem., Vol.80, No.10, pp.2091–2102, 2008.

doi:10.1351/pac200880102091

?2008 IUPAC

Development of new buffer layers for

Cu(In,Ga)Se2solar cells*

Byung Tae Ahn?, Liudmila Larina, Ki Hwan Kim, and Soong Ji Ahn

Department of Materials Science and Engineering, Korea Advanced Institute of

Science and Technology, Daejeon 305-701, South Korea

Abstract: Recent progress in the field of Cu(In,Ga)Se2(CIGS) thin film solar cell technol-

ogy is briefly reviewed. New wide-bandgap In x(OOH,S)y and ZnS x(OH)y O z buffers for

CIGS solar cells have been developed. Advances have been made in the film deposition by

the growth process optimization that allows the control of film properties at the micro- and

nanolevels. To improve the CIGS cell junction characteristics, we have provided the inte-

gration of the developed Cd-free films with a very thin CdS film. Transmittances of the de-

veloped buffers were greatly increased compared to the standard CdS. In x(OOH,S)y buffer

has been applied to low-bandgap CIGS devices which have shown poor photovoltaic prop-

erties. The experimental results obtained suggest that low efficiency can be explained by un-

favorable conduction band alignment at the In x(OOH,S)y/CIGS heterojunction. The appli-

cation of a wide-gap Cu(In,Ga)(Se,S)2absorber for device fabrication yields the conversion

efficiency of 12.55%. As a result, the In x(OOH,S)y buffer is promising for wide-bandgap

Cu(In,Ga)(Se,S)2solar cells, however, its exploration for low-bandgap CIGS devices will not

allow a high conversion efficiency. The role played by interdiffusion at the double-

buffer/CIGS heterojunction and its impact on the electronic structure and device performance

has also been discussed.

Keywords: solar energy conversion; CIGS; thin film solar cells; Cd-free buffer layer; chemi-

cal bath deposition.

INTRODUCTION

Cu(In,Ga)Se2(CIGS) thin film semiconductors have bandgaps near the optimum value of terrestrial solar energy conversion, 1–1.7eV. These chalcopyrite compounds are direct bandgap semiconductors which minimize the requirement for long minority carrier diffusion lengths. Such p-type semiconduc-tors with high absorption coefficient are the promising absorbing materials for thin film photovoltaic technology.

When manufacturing thin film solar cells based on CIGS absorber layer, one of the critical com-ponents is the buffer layer which is positioned between CIGS absorber and ZnO window layer. Conventional CIGS solar cells typically comprise n-type CdS film serving as the buffer layer. These chalcopyrite compounds can be paired with CdS to make efficient p-n-type heterojunction solar cells because they have compatible lattice structures with acceptable lattice mismatches, and favorable dif-ferences of electron affinities. Thin film solar cells based on CIGS absorber layer and CdS buffer layer

2091

B.T.AHN et al.

2092

prepared by chemical bath deposition (CBD) have been a subject of intensive investigations for many years. Such devices are well known and have been the topic of numerous publications [1–7]. The state of the art in this technology is reviewed in [1].

The performance of CIGS photovoltaic devices has been optimized by adjusting the interface structure parameters. Employing the co-evaporation of Cu, In, Ga, and Se elements through a three-stage process and CBD CdS buffer layer, CIGS-based solar cells have achieved a high-energy conver-sion efficiency level of 19.5% on a laboratory scale [3]. However, from environmental standpoint, the replacement of CdS is demanded for commercial production of CIGS cells. Due to this problem, con-siderable interest has recently been directed toward fabrication of Cd-free buffer layers for CIGS solar cells [8–20].

The other critical problem that faces the designers of CIGS solar cells involves the necessity to improve the light energy collection efficiency of the device. CdS buffer layer prepared by CBD is rec-ognized as a superior buffer material for CIGS solar cells. However, the CIGS solar cells of the con-ventional art had the problem of undesired low CdS bandgap. The short wavelength response of CIGS solar cell is limited by low CdS bandgap of around 2.4 eV. As can be appreciated, the buffer layer for CIGS thin film solar cells must be transparent to the solar spectrum in order to provide the maximum of the light energy collection ability of the solar cells.

Prior efforts in development of such devices have generally been directed to wide-bandgap semi-conductor materials. So far, several sulfide and selenide compounds such as ZnS, ZnSe, Zn(OH,S), Zn(OH,Se), and In(OH,S)x In2S3, In x(OOH,S)y are possible alternative Cd-free materials for CIGS buffers [7–22]. These II–VI group compound semiconductors have relatively great energy bandgaps. The value of bandgap can be varied with the chemical composition of the film in the range between 2.0and 3.7eV. CIGS solar cells that use ZnS(O,OH) buffer layer grown by using CBD technique ex-hibit conversion efficiency up to 18.5% [11,12]. Recently, the efficiency of approximately 14 % has been achieved for large-scale Cu(In,Ga)(S,Se)2(CIGSS) solar cells based on Zn(Se,OH)/Zn(OH)2and Zn(O,S,OH)x buffer layers [16,21]. Cd-free CIGS cells are relatively efficient. However, the efficiency of Cd-free CIGS cells is not high enough to compete with the exceptional efficiency of CIGS cells that employ Cd compound buffer. The advantages of the CdS buffer layer can be explained by a favorable conduction-band alignment at the CdS/CIGS heterojunction and compatible with CIGS lattice structure [4–6]. Recently, excellent results have been attained for thin film CIGS solar cells utilizing the mixed metal compound (Cd1–x Zn x S) buffer layer formed by CBD [22,23]. An efficiency of 19.52 % achieved in such cells is presently the highest known efficiency reported for a thin film solar cell [23].

For this purpose, we have been studying to find new buffer materials to replace the CdS buffer layer. In this paper we review some recent research conducted in our laboratory.

NEW BUFFER LAYERS FOR CIGS SOLAR CELLS

New wide bandgap Cd-free buffer layers have been developed in our laboratory. The buffer layers were grown by CBD method on either indium tin oxide (ITO) substrates or CIGS absorbers. The composi-tion of CIGS absorber was adjusted as Cu0.9(In0.7Ga0.3)Se2.1. The details of the evaporation procedure for the CIGS absorbers have been described in our publication [24]. The film that was grown from a chemical bath employed zinc sulfate as the metal ion source is referred to as Zn-based film. The film that was grown from a chemical bath employed indium chloride as the metal ion source, and is hence-forth referred to in this investigation as In-based film. In view of the foregoing, we also have designed a buffer structure wherein the buffer layer has a desirable optical transmittance, while simultaneously having a favorable impact of the CdS on the electronic structure of the buffer/CIGS heterojunction. The above general purpose was accomplished by formation of a high-quality CdS thin film and In- or Zn-based film of the buffer being deposited in sequence on substrate.

In-based layers were deposited from the acetic aqueous solution containing indium(III) chloride and thioacetamide. Zn-based and CdS films were grown from the alkaline aqueous solutions. The al-

?2008 IUPAC, Pure and Applied Chemistry80, 2091–2102

kaline aqueous solutions employed zinc sulfate, cadmium sulfate, and thiourea as zinc, cadmium, and sulfide ion sources, respectively. CBD processing parameters were optimized to improve the film qual-ity and exclude the creation of morphology defects. The optimized deposition procedures have been de-scribed previously in detail [15,25].

The growth processes of In- and Zn-based by CBD are more complicated than that of CdS film.In particular, it is evident that there exists a large variety of conditions by which In(OH)3, In 2O 3, or In 2S 3can be deposited concurrently. The chemical composition of a metal compound film can be con-veniently controlled by varying the CBD processing parameters. This possibility opens the wide op-portunity to match the bandgap of metal compound films to the solar spectrum. In spite of the many re-search papers on the subject [17–20], the molecular formulas of the compounds deposited as thin film have not been well defined. The clarification of the composition, the structure, and the optical proper-ties of CBD films of metal compounds are of great importance in connection with their use as buffer layers in thin film solar cells.

SURFACE MORPHOLOGY AND GROWTH KINETICS

We have studied the growth kinetics for all the developed buffer layers. The film thickness as a function of deposition time was estimated by scanning electron microscopy (SEM)measurements. The thickness of the film was shown to be strongly influenced by the deposition time and obeys linear dependence.

First, we have studied the evolution of CdS film morphology with film thickness. The morphol-ogy was shown to be strongly influenced by the film thickness. Optimized CBD process has been found to give uniform CdS coverage on either ITO or CIGS substrates with controllable thickness down to ap-proximately 25 nm.

However, the CBD process for growth of Zn- and In-based films is more complicated than that of CdS film due to the difference in the values of solubility products. And lattice constant mismatch is likely to affect the film morphology and the coverage quality. SEM studies have shown that a good adhesive Zn-based film with tightly connected grain structure can be fabricated under optimized bath condition only with a thickness up to 60 nm (Figs. 1a-1, 1a-2). The increased film thickness results in defective films with cracks (Figs. 1b-1, 1b-2).

?2008 IUPAC, Pure and Applied Chemistry 80, 2091–2102

Buffer layers for CIGS solar cells 2093

Fig. 1SEM plane image (a-1) and tilt image (a-2) of the Zn-based film grown on ITO substrate with a thickness of 60 nm. SEM plane images (b-1, b-2) of the Zn-based film grown on ITO substrate with a thickness of 120 nm.SEM plane images (c-1, c-2) of the Zn-based film grown on ITO substrate by using the three-runs deposition process with a thickness of 130 nm.

The In-based film grown for 15 min exhibited a tightly connected dispersive grain structure with good adhesion to the substrates (Figs. 2a-1, 2a-2, 2a-3). When the deposition time increased, the indi-vidual grains formed a chaotic porous structure, which resulted in the porous film with bad adhesion to the substrates (Figs. 2b-1, 2b-2, 2b-3).

The application of the multi-run deposition process enabled the success of the thickness growth of both types of films—Zn- and In-based. Zn-based buffer layer was grown under optimized CBD para-meters by using sequential deposition of three very thin films on the substrate. In this way, high com-pact film structure was formed with a uniform covering of ITO substrate as well as the CIGS (Figs.1c-1, 1c-2). SEM studies have shown that three-runs deposition allows the formation of a good adhesive In-based film with worm-shaped grains (Figs. 2c-1, 2c-2, 2c-3). The films with a thickness up to 500 nm exhibited a uniform covering of ITO substrate as well as glass. No cracking or peeling was observed in the films (Figs. 2c-1, 2c-2, 2c-3).

Finally, we have provided the integration of the Zn- or In-based film with a very thin CdS film to improve the CIGS cell junction characteristics. The developed double buffer layer comprises two lay-ers deposited in a selected sequence on a substrate. Initially, about 20–40-nm-thick CdS film was de-posited onto the surface of substrate, then about 60–200-nm-thick Zn- or In-based film was formed over CdS film. The same deposition procedure for growth of both layers of Zn- and In-based film was ap-plied for forming double buffer layers. A homogeneous and pinhole-free double buffer layer was formed to a thickness within the range of 80–200 nm. Figures 3 and 4 provide the excellent illustration of the morphology for both double buffers—In-based/CdS and Zn-based/CdS.

B.T .AHN et al.

?2008 IUPAC, Pure and Applied Chemistry 80, 2091–2102

2094Fig. 2 SEM plane image (a-1, a-2) and cross-sectional image (a-3) of the In-based film grown on glass substrate for 15 min with a thickness of 40 nm. SEM plane image (b-1, b-2) and cross-sectional image (b-3) of the In-based film grown on glass substrate for 30 min with a thickness of 160 nm. SEM plane image (c-1, c-2) and cross-sectional image (c-3) of the In-based film grown on glass substrate by using the three-runs deposition process with a thickness of 570 nm.

The growth kinetics and morphology of Zn- and In-based films was shown to be strongly influ-enced by the substrate nature. The above-mentioned results are in complete agreement with the predic-tions of the solution growth process [26].

In summary, we have succeeded in the growth of high-quality Zn- and In-based films through the optimization of CBD parameters and the use of the multi-run deposition. Advances have been made in the formation of the double buffer layer through the improvement of the individual layer surface prop-erties and its control at the micro- and nanolevels.

STRUCTURE AND COMPOSITIONAL ANALYSES

The X-ray diffraction (XRD) pattern of the In-based film shows well-defined peaks, suggesting a high crystallinity of the film. By the combination of the X-ray photoelectron spectroscopy (XPS) and XRD we have shown the existence of the InOOH and In 2S 3phases in the In-based film [15]. The annealing of the film above 500°C in N 2leads to the dehydration of the InOOH phase into the In 2O 3phase. The result indirectly confirms the existence of an InOOH phase in the as-grown film. In the structural analy-sis summary, the In-based films contain In 2S 3and InOOH phases and the overall chemical formula can be written as In x (OOH,S)y . The value of the In/S atomic ratio in the film suggests that the film consists of about 75% In 2S 3and about 25% InOOH.

The XRD studies of as-deposited Zn-based films have indicated that the developed buffer layer possesses an amorphous structure. Auger sputter depth profile for Zn-based/CIGS interface revealed that the developed Zn-compound film can be described as the quaternary compound ZnS x (OH)y O z on the surface and as ZnS throughout the interface.

The elemental and chemical state identification of the double buffer layer formed of a first semi-conductor CdS which is deposited in a thin film of about 25 nm on CIGS absorber, and a second ZnS ?2008 IUPAC, Pure and Applied Chemistry 80, 2091–2102

Buffer layers for CIGS solar cells 2095

Fig. 3 SEM tilt image (a), and SEM plane image (b, c) of the Zn-based/CdS double buffer layer deposited on ITO substrate with a thickness of around 95 nm by using three-runs deposition process. CdS film was deposited on the surface of substrate with a thickness of around 25 nm.

Fig. 4 SEM cross-sectional image (a), and SEM plane images (b, c) of the In-based/CdS double buffer layer deposited on Corning glass substrate with a thickness of around 215 nm by using two-runs deposition process. CdS film was deposited on the surface of substrate with a thickness of around 25 nm.

film was provided. Auger data have shown that the Zn-based/CdS/CIGS interface region does not con-sist of two abrupt interfaces, but it was a highly intermixed region with gradually changing composi-tion. The Zn/S and O/Zn-S atomic ratios yield the surface ZnS and Zn(OH)2content of around 84and 16%, respectively. The estimated ZnS content ranges in the film from 98% in the surface area to 57%throughout the CdS/CIGS interface while CdS content ranges from 2% in the vicinity of surface to 43% throughout the CdS/CIGS interface.Finally, the film can be characterized as the ternary com-pounds ZnS x (OH)y and Zn x Cd (1–x )S on the surface and throughout the buffer layer/CIGS interface, re-spectively.

It is well known that the band alignment is influenced by bandgaps of CIGS and buffer layer, and by the impact of intermixing effect at the buffer/CIGS interface. Taking into account the above-men-tioned, we expect that a high intermixing will strongly influence the conduction-band offset (CBO) and Cd impact will decrease the CBO at the double buffer/CIGS interface compared to the large CBO for a single ZnS buffer.

OPTICAL ANALYSES

Figure 5a compares the optical transmittance spectra of the In x (OOH,S)y and CdS films. The optical transmittance of In x (OOH,S)y film is higher than that of the reference CdS film, approaching on the order of 90% in the 550–420 nm wavelength range. An increase in optical transmittance of the In x (OOH,S)y film of 27.9% in the spectral range of 380–600 nm compares to the standard CdS film is achieved. As a result, the application of In x (OOH,S)y film as a buffer layer for CIGS solar cells can pro-vide the effective collection of the incident light in the short wavelength region of solar spectra. The ab-sorption coefficient was derived from the measurements of the specular reflection, and the transmittance spectra of the In x (OOH,S)y films [27]. We have shown that both types of transitions, direct and indirect,are observed in the film. It is considered that the direct and indirect bandgap of the In x (OOH,S)y film is close to 3.5 and 2.1 eV , respectively. The estimated value of indirect bandgap is well fitted to that of In 2S 3[28], but the value of the direct bandgap does not fit to previously known values and is believed to be originated from the InOOH phase. The difference in the direct bandgap between In x (OH)y S z and In x (OOH,S)y indicates that the previously reported In x (OH)y S z films do not contain an InOOH phase

[17,18].

B.T .AHN et al.

?2008 IUPAC, Pure and Applied Chemistry 80, 2091–2102

2096Fig. 5(a) Optical transmittance spectra of the In x (OOH,S)y and CdS films deposited on ITO substrates. (b) Optical transmittance spectra of CdS and ZnS x (OH)y O z films with the same thickness deposited on ITO substrates.

Figure 5b compares the optical transmittance spectra of a 80-nm-thick film of CdS and ZnS x (OH)y O z film with the same thickness. Referring now to Fig. 5b, we have shown that the absorp-tion edge of the ZnS x (OH)y O z film shifts to a short wavelength side compares to the standard CdS film.An increase in optical transmittance of the ZnS x (OH)y O z film of 29.4 % in the spectral range of 380–600 nm compares to the standard CdS buffer is achieved.

In order to form controlled transmittance of double layers, the thicknesses of CdS film of the dou-ble buffer layer were varied. Figure 6a represents the optical transmittance spectra of a 80-nm-thick film of ZnS x (OH)y O z and the CdS films with different thickness. It is seen that the absorption edge of ZnS x (OH)y O z film shifts to a short wavelength side compared to CdS film as the thickness of CdS film exceeds 25 nm.

Figure 6b presents the excellent illustration of the optimized result to obtain the desirable optical transmittance spectra of the double buffer layer. It is seen that the optical transmittance of the double buffer layer is higher than that of the standard CdS buffer. As a result of the design optimization, an in-crease in optical transmittance of 24.9% in the spectral range of 380–600 nm compared to the refer-ence CdS layer was achieved.

The same optimization procedure was applied to growth of In x (OOH,S)y /CdS double buffer layer with high optical transmittance. Referring now to Fig. 7, we have shown that absorption edge of In x (OOH,S)y /CdS double buffer is shifted to a short wavelength side compared to the reference CdS film. And its optical transmittance is significantly higher than that of the standard CdS buffer.

Finally, by optimization of the double layer design we have formed buffer layers which enabled the transmission of the short wavelength of the solar spectrum for CIGS adsorption. Thus, we have suc-ceeded in the growth of buffer layers, which can provide the maximum of the energy collection ability for CIGS thin film solar cell and also have a favorable Cd impact on its electronic structure.?2008 IUPAC, Pure and Applied Chemistry 80, 2091–2102

Buffer layers for CIGS solar cells 2097

Fig. 6(a) Optical transmittance spectra of the CdS films with different thickness and 80-nm-thick film of ZnS x (OH)y O z grown on ITO substrates. (b) Optical transmittance spectra of the ZnS x (OH)y /CdS double buffer layers and the CdS film grown on ITO substrates.

PHOTOVOLTAIC PROPERTIES

We have fabricated CIGS solar cells of the conventional art by using the co-evaporation of Cu, In, Ga,and Se elements through a three-stage process. A Ga/(Ga + In) atomic ratio in CIGS absorbers was ad-justed to be 0.3, which corresponds to bandgap of 1.12 eV . In our laboratory the energy conversion ef-ficiency level of 18.37% has been achieved, and the current–voltage characteristics of the photovoltaic devices are given in Fig. 8.

The developed In x (OOH,S)y buffer has been applied to solar cell as alternative for the standard CdS/CIGS device configuration. A set of CIGS solar cells utilizing the In x (OOH,S)y buffer was fabri-cated. A standard CIGS cell with the CBD CdS buffer was prepared as a reference. CIGS cells were characterized by current–voltage and quantum efficiency (QE) measurements.

The devices that utilized In x (OOH,S)y buffer layers have shown poor photovoltaic properties. The reference solar cell exhibited efficiency of 16.63%, while the efficiency of the cell based on the In x (OOH,S)y /CIGS heterojunction was estimated to be only 3.39%. The current–voltage curves of both solar cells under AM 1.5 illumination are given in Fig. 9a. The devices have demonstrated very similar

B.T .AHN et al.

?2008 IUPAC, Pure and Applied Chemistry 80, 2091–2102

2098Fig. 7Optical transmittance spectra of the In x (OOH,S)y /CdS double buffer layer and the CdS films with different thickness grown on Corning glass substrates.

Fig. 8J –V curves for CIGS solar cells with the CBD CdS buffer under AM 1.5 illumination.

Buffer layers for CIGS solar cells2099

Fig. 9J–V curves obtained under AM 1.5 illumination: (a) for CdS/CIGS and In x(OOH,S)y/CIGS heterojunction-based solar cells with the Ga/(In + Ga) ~ 0.3, and (b) for In x(OOH,S)y/CIGS heterojunction-based solar cells with the different Ga content in CIGS absorber.

values of the open-circuit voltage (V oc), however, the short-circuit current (J sc) dropped significantly in the CIGS solar cell that utilized In x(OOH,S)y buffer. QE spectra for both devices show a considerable difference in response in a wavelength range of 500–1150 nm. The reference cell exhibits high QE, at the same time, the QE of the In x(OOH,S)y/CIGS heterojunction-based device decreases significantly as the wavelength increases.

A considerable QE decrease within the wavelength region of high In x(OOH,S)y buffer transmit-tance points out that the carrier transport was hindered at the In x(OOH,S)y/CIGS interface. The prob-lem of a low current collection is closely linked with impeded electron transport in the In x(OOH,S)y/CIGS structure, suggesting a spike barrier caused by the large conduction band offset at the In x(OOH,S)y/CIGS interface. As a result, this factor tends to decrease the conversion efficiency.

It has been reported elsewhere that the bandgap of the quaternary alloy system of Cu(In1–x Ga x)Se2varies with Ga content over a range of 1.04–1.67eV and the bandgap increases due to an upwards shift of the conduction band minimum [7,29,30]. To facilitate charge transfer across a In x(OOH,S)y/CIGS interface by lowering the energy barrier, we increased a value of Ga content in CIGS absorber. We have found that the increase in the solar cell conversion efficiency was consistent with the increase of Ga content in the CIGS absorber layer. The efficiency and V oc raised to a maximum of 5.61%, and 750 mV, respectively, for the Ga/(In + Ga) ratio of 0.45 (Fig. 9b). However, the benefit of increased Ga content was limited due to deterioration of the quality of CIGS absorber, leading to a poor device performance [1,6,31].

To facilitate electron transport across a In x(OOH,S)y/CIGS interface, the reverse bias was applied. Indeed, under the reverse bias condition, the In x(OOH,S)y/CIGS-based device has shown a considerable improvement of the QE. Furthermore, this effect was enhanced significantly with increase of the reverse bias, suggesting the voltage–dependence of the current collection efficiency. In fact, when the energy barrier is present, charge transport can be facilitated by a stronger junction field. However, the effi-ciency of the reference cell was not affected by the reverse bias, indicating a flat conduction band alignment at the CdS/CIGS interface. And as result, the favorable CBO leads to an unimpeded electron transport across the heterojunction. These findings are in line with the literature [5]. The application of the reverse bias to the device with high Ga content [Ga/(In + Ga) ~ 0.45] in CIGS absorber yields a bet-ter spectral response, but the reverse bias effect was substantially less than that in a low-bandgap CIGS ?2008 IUPAC, Pure and Applied Chemistry80, 2091–2102

device. The experimental data obtained prove an unfavorable band offset at the In x (OOH,S)y /CIGS heterojunction.

To verify the conduction band offset, an XPS depth profile analysis of the ZnO/In x (OOH,S)y /CIGS interface structure was carried out. The measured value of CBO was found to be 1.0 eV at the In x (OOH,S)y /CIGS interface. Such a large CBO is consistent with the experimental re-sults, described in the above paragraphs. Indeed, the estimated spike barrier is high enough to block the carrier transport across an In x (OOH,S)y /CIGS heterojunction, and to cause the sharp drop in the J sc and fill factor (FF).

To overcome this problem, the pentenary alloy system Cu(In,Ga)(Se,S)2(CIGSS) was applied as a wide-gap absorber for device fabrication.The central R&D laboratory of Showa Shell Sekiyu K.K.,Japan, has provided the CIGSS absorbers [21]. A standard CIGSS cell with the CBD CdS buffer was prepared as a reference. For comparison purposes, Fig. 10 represents the current–voltage curves of the reference CIGSS solar cell and the cell based on the In x (OOH,S)y /CIGSS heterojunction. The conversion efficiency of the CIGSS cell with the In x (OOH,S)y buffer is 12.55 % with a J sc of 33.17 mA/cm 2, V oc of 574.3 mV , and FF of 65.89 % for an active area of 0.19 cm 2. The values of con-version efficiency and J sc are higher than that in the reference cell (12.10%, 30.69 mA/cm 2). Both de-vices have shown similar spectral responses in the long wavelength region. However, the short wave-length response in the CIGSS cell with the In x (OOH,S)y buffer is higher compared to that in the reference cell. The strong short wavelength response can be assigned to high optical transmittance of the In x (OOH,S)y buffer in the short wavelength region (see Fig. 5a).

CONCLUSION

We have succeeded in the growth of buffer layers, which could allow the maximum of the energy col-lection ability for CIGS thin film solar cells in the short wavelength region. The integration of devel-oped In x (OOH,S)y and ZnS x (OH)y film with a very thin CdS film has been provided to improve the junction characteristics of CIGS devices. CIGS solar cells that employ the newly developed double buffer layer utilize a negligible quantity of hazardous material. The experimental results obtained sug-gest that the limitation of a J sc that was found in low-bandgap CIGS devices can be explained by a large CBO at the In x (OOH,S)y /CIGS heterojunction. The application of a wide-bandgap CIGSS absorber and In x (OOH,S)y buffer for device fabrication yields the energy conversion efficiency of 12.55%. This ef-ficiency is competitive with the best efficiency observed in CIGSS solar cells of the conventional art.

B.T .AHN et al.

?2008 IUPAC, Pure and Applied Chemistry 80, 2091–2102

2100Fig. 10J –V curves for CIGSS solar cells with the CdS and In x (OOH,S)y buffer layers under AM 1.5 illumination.

Buffer layers for CIGS solar cells2101

As a result, the developed In x(OOH,S)y buffer layer is promising for wide-bandgap CIGSS solar cell application, however, its exploration for low-bandgap CIGS devices will not allow a high conversion ef-ficiency. Our experimental results clearly show that the formation of the heterojunction is a key issue in the fabrication of high-efficiency CIGS solar energy conversion devices.

ACKNOWLEDGMENTS

The authors are grateful to the Center for Nanointerface Technology, KAIST for a partial supporting of this work. This work was also supported by the Korea Research Foundation Grant (KRF-2005-005-J09072).

REFERENCES

1.M. Turcu, O. Pakma, U. Rau. Appl. Phys. Lett.80, 2598 (2002).

2.N. G. Dhere. Sol. Energy Mater. Sol. Cells90, 2181 (2006).

3.M. A. Contreras, K. Ramanathan, J. A. Shama, F. Hasoon, D. L. Young, B. R. Egaas. Prog.

Photovolt. Res. Appl. 13, 209 (2005).

4.K. Ramanathan, M. Contreras, C. Perkins, S. Asher, F. Hasoon, J. Keane, D. Young, M. Romero,

W. Metzger, R. Noufi, J. Ward, A. Duda. Prog. Photovolt. Res. Appl. 11, 225 (2003).

5.M. Morkel, L. Weinhardt, B. Lohmuller, C. Heske, E. Umbach, W. Riedl, S. Zweigart, F. Karg.

Appl. Phys. Lett.79, 4482 (2001).

6.G. Hanna, A. Jasenek, U. Rau, H. W. Schock. Phys. Status Solidi A179, R7 (2000).

7.K. Kushiya, Y. Ohtake, A. Yamada, M. Konagai.Jpn. J. Appl. Phys. 33, 6599 (1994).

8. A. Ennaoui, S. Siebentritt, M. Lux-Steiner, W. Riedl, F. Karg. Sol. Energy Mater. Sol. Cells 67,

31 (2001).

9.R. Bayon, C. Guillen, M. A. Martinez, M. T. Gutierrez, J. Herrero. J. Electrochem. Soc.145, 2775

(1998).

10.T. Nakada, M. Mizutani. Jpn. J. Appl. Phys. 41, 165 (2002).

11.M. A. Contreras, T. Nakada, M. Hongo, A. O. Pudov, J. R. Sites. Proc. 3rd World Conf.

Photovoltaic Energy Conv.,Osaka, Japan, 2LN-C-08 (2003).

12.R. N. Bhattacharya, M. A. Contreras, G. Teeter. Jpn. J. Appl. Phys. 43, L1475 (2004).

13.N. Naghavi, R. Henriquez, V. Laptev, D. Lincot. Appl. Surf. Sci.222,65 (2004).

14.Y. Tokita, S. Chaisitsak, A. Yamada, M. Konagai. Sol. Energy Mater. Sol. Cells75, 9 (2003).

15.L. Larina, K. H. Kim, K. H. Yoon, M. Konagai, B. T. Ahn. J. Electrochem. Soc.151, C789 (2004).

16.W. Eisele, A. Ennaoui, P. Schubert-Bischoff, M. Giersig, C. PettenKofer, J. Krauser, M. Lux-

Steiner, S. Zweigar, F. Karg. Sol. Energy Mater. Sol. Cells75, 17 (2003).

17. C. H. Huang, S. S. Li, W. N. Shafarman, C.-H. Chang, E. S. Lambers, L. Rieth, J. W. Johnson, S.

Kim, B. J. Stanbery, T. J. Anderson, P. H. Holloway. Sol. Energy Mater. Sol. Cells69, 131 (2001).

18.T. Nakada, M. Hongo, E. Hayashi. Thin Solid Films 431–432, 242 (2001).

19.R. Bayon, J. Herrero. Thin Solid Films 387, 111 (2001).

20.R. Bayon, J. Herrero. Appl. Surf. Sci.158, 49 (2000).

21.K. Kushiya, M. Tachiyaki, Y. Nagoya, A. Fujimaki, B. Sang, D. Okumura, M. Satoh, O. Yamase.

Sol. Energy Mater. Sol. Cells 67, 11 (2001).

22.R. N. Bhattacharya, K. Ramanathan, L. Gedvilas, B. Keyes. J. Phys. Chem. Solids 66, 1862

(2005).

23.R. N. Bhattacharya, M. A. Contreras, B. Egaas, R. N. Noufi, A. Kanevce, J. R. Sites. Appl. Phys.

Lett.89, 253503 (2006).

24.K. H. Kim, K. H. Yoon, J. H. Yun, B. T. Ahn. Electrochem. Solid-State Lett. 9, A382 (2006).

25.L. Larina, K. H. Kim, K. H. Yoon, B. T. Ahn. South Korea Patent 10-0625082, Filed 25 October

2004, Issued 11 September 2006.

?2008 IUPAC, Pure and Applied Chemistry80, 2091–2102

B.T.AHN et al.

2102

26.K. L. Chopra, S. R. Das. Thin Film Solar Cells,p. 225, Plenum Press, New York (1983).

27.J. I. Pankove. Optical Processes in Semiconductors,p. 93, Dover, New York (1987).

28.G. A. Kitaev, V. I. Duoinin, A. V. Ustyantseva, M. N. Belyaeva, L. G. Skorgakow. Neorg. Mater.

12, 1760 (1976).

29. A. D. Katnani, G. Margaritondo. Phys. Rev.B28, 1944 (1983).

30.M. Gloeckler, J. R. Sites. Thin Solid Films480–481, 241 (2005).

31.W. N. Shafarman, R. Klenk, B. E. McCandless.J. Appl. Phys. 79,7324 (1996).

?2008 IUPAC, Pure and Applied Chemistry80, 2091–2102

塑料配方

塑料配方设计的基本原则 配方设计的关键为选材、搭配、用量、混合四大要素,表面看起来很简单,但其实包含了很多内在联系,要想设计出一个高性能、易加工、低价格的配方也并非易事,需要考虑的因素很多,作者积多年的配方设计经验提供如下几个方面的因素供读者参考。 1、树脂的选择 (1)树脂品种的选择 树脂要选择与改性目的性能最接近的品种,以节省加入助剂的使用量。如耐磨改性,树脂要首先考虑选择三大耐磨树脂PA、POM、UHMWPE;再如透明改性,树脂要首先考虑选择三大透明树脂PS、PMMA、PC。 (2)树脂牌号的选择 同一种树脂的牌号不同,其性能差别也很大,应该选择与改性目的性能最接近的牌号。如耐热改性PP,可在热变形温度100~140℃的PP牌号范围内选择,我们要选用本身耐热140℃的PP牌号,具体如大韩油化的PP-4012。 (3)树脂流动性的选择 配方中各种塑化材料的粘度要接近,以保证加工流动性。对于粘度相差悬殊的材料,要加过渡料,以减小粘度梯度。如PA66增韧、阻燃配方中常加入PA6作为过渡料,PA6增韧、阻燃配方中常加入HDPE作为过渡料。 不同加工方法要求流动性不同。 不同品种的塑料具有不同的流动性。由此将塑料分成高流动性塑料、低流动性塑料和不流动性塑料,具体如下: 高流动性塑料——PS、HIPS、ABS、PE、PP、PA等。 低流动性塑料——PC、MPPO、PPS等。 不流动性塑料——聚四氟乙烯、UHMWPE、PPO等。 同一品种塑料也具有不同的流动性,主要原因为分子量、分子链分布的不同,所以同一种原料分为不同的牌号。不同的加工方法所需用的流动性不同,所以牌号分为注塑级、挤出级、吹塑级、压延级等。 不同改性目的要求流动性不同,如高填充要求流动性好,如磁性塑料、填充目料、无卤阻燃电缆料等。

G 试验和 GM 试验检测原理和临床应用

G 试验和 GM 试验检测原理和临床应用 首都医科大学附属北京安贞医院左大鹏 G 试验和 GM 试验的检测原理和临床应用。目前我们国际合国内都对侵袭性真菌病的诊断制订了标准,其中有权威的是欧洲癌症研究和治疗组织暨侵袭性真菌病感染协作组,我们简称叫欧洲标准所制订的一个标准。这个标准它对侵袭性真菌病它分了三个不同的诊断层次。一个叫确诊,一个叫临床诊断,一个叫疑诊。 我们国家的很多的专业委员会也都根据欧洲标准就结合我们国家和专业的特点制订了我们国家各个专业的诊断标准。比如说中国侵袭性真菌感染工作组在 2010 年第 3 次修订的血液病和恶性肿瘤患者侵袭性真菌感染的诊断,诊断标准和治疗原则,这第 3 次修订,第一次是 2006 ,第二次 2008 , 2010 年是第 3 次修订了。这应该是血液里的肿瘤病人所用的一个标准。中华医学会器官移植学分会制订的实体器官移植患者侵袭性真菌感染的诊断和治疗指南。这可能是实体器官移植的这个方面的诊断标准。中华医学会儿科学会,中华医学会呼吸病学会,中华医学会急诊协会,中华妇产科学会也都根据自己的专业制订了的相应的侵袭性真菌感染的诊断和治疗指南。这作为我们从事这些方面的医务工作者所遵循的一个标准。 那我们看不管是国内和国际现在都采用这样一种方式。首先要看这个病人有没有宿主因素,它是不是容易发生侵袭性真菌,真菌感染的高危人群,你要是这样的,你要一个健康人这就不具备了,起码有一些原因它容易得侵袭性真菌感染要具备这样一个高危因素。第二它有临床表现,当然包括临床症状和影像学,比如说胸片, CT ,颅片等等。还有有微声学的检查,还有一个病理学检查,如果你只有宿主因素有临床表现我们叫做拟诊,不叫疑诊,疑似诊断。如果说你在这两个基础上又多了一条有微生物学证据,或者是培养的,或者是非培养的技术凡是证明他有真菌性感染的这种可能性就要临床诊断,临床诊断。如果再加上从肺的组织,从脏器的组织取出病理来确定,那叫确诊。所以侵袭性真菌感染根据宿主因素临床表现微生物学真菌,组织病理的结果,可以把它分成为拟诊,临床诊断跟确诊三个层次。确诊了当然就已经是确定了,治疗起来更有针对性。临床诊断基本是确定了,大方向也没有问题。拟诊是不能,不叫,就是说我们只能是一种预防性的治疗,或者是一种抢先的有干预的治疗,还不能说它一定有真菌感染。比如说我们高度怀疑,高度怀疑。 不管我们前面讲了,就是你要做到临床诊断你就必须有微生物学的真菌。在欧洲标准和我们国家各个专业把脑脊液能够找到隐球菌抗原这个阳性结果作为真菌性脑膜炎或者叫播散性真菌隐球菌病的一个确诊的依据。这时候确诊就不需要组织学了,它只要脑脊液里面找到隐球菌的抗原就确诊。血清的 1 、 3 β D 葡聚糖的检测我们称为 G 试验和这个曲霉菌的半乳甘露聚糖的 GM 试验,那就这个 G 试验和 GM 试验作为临床诊断侵袭性真菌病的依据。当然它不是确诊,它是临床诊断。 我们来看这是中华内科杂志 2007 年中国,中华这个重症协会所制定的关于重症患者侵袭性真菌感染的诊断语言,它在这个微生物学检查里面它要求所有的标本应该是新鲜的,

PVC塑料配方的设计方案

PVC塑料配方的设计方案 纯的聚氯乙烯(PVC)树脂属于一类强极性聚合物,其分子间作用力较大,从而导致了PVC软化温度和熔融温度较高,一般需要160~210℃才能加工。另外PVC分子内含有的取代氯基容易导致PVC树脂脱氯化氢反应,从而引起PVC的降解反应,所以PVC对热极不稳定,温度升高会大大促进PVC脱HCL反应,纯PVC在120℃时就开始脱HCL 反应,从而导致了PVC降解。 鉴于上述两个方面的缺陷, PVC在加工中需要加入助剂,以便能够制得各种满足人们需要的软、硬、透明、电绝缘良好、发泡等制品。在选择助剂的品种和用量时,必须全面考虑各方面的因素,如物理—化学性能、流动性能、成型性能,最终确立理想的配方。 另外,根据不同的用途和加工途径,我们也需要对树脂的型号做出选择。不同型号的PVC树脂和各种助剂的配搭组合方式,就是我们常说的PVC配方设计了。那具体怎样进行具体的配方设计呢?下面将通过对各原辅料的选择加以阐述的方式加以说明,希望能对大家有所裨益。 一、树脂的选择 工业上常用粘度或K值表示平均分子量(或平均聚合度)。树脂的分子量和制品的物理机械性能有关。分子量越高,制品的拉伸强度、冲击强度、弹性模量越高,但树脂熔体的流动性与可塑性下降。 同时,合成工艺不同,导致了树脂的形态也有差异,我们常见的是悬浮法生产的疏松型树脂,俗称SG树脂,其组织疏松,表面形状不规则,断面输送多孔呈网状。因此,SG型树脂吸收增塑剂快,塑化速度快。悬浮法树脂的主要用途见下表。乳液法树脂宜作PVC糊,生产人造革。 悬浮法PVC树脂型号及主要用途 型号级别主要用途

SG1 一级A 高级电绝缘材料 SG2 一级A 电绝缘材料、薄膜 一级B、二级一般软制品 SG3 一级A 电绝缘材料、农用薄膜、人造革表面膜 一级B、二级全塑凉鞋 SG4 一级A 工业和民用薄膜 一级B、二级软管、人造革、高强度管材 SG5 一级A 透明制品 一级B、二级硬管、硬片、单丝、导管、型材 SG6 一级A 唱片、透明片 一级B、二级硬板、焊条、纤维 SGG7 一级A 瓶子、透明片 一级B、二级硬质注塑管件、过氯乙烯树脂 二、增塑剂体系 增塑剂的加入,可以降低PVC分子链间的作用力,使PVC塑料的玻璃化温度、流动温度与所含微晶的熔点均降低,增塑剂可提高树脂的可塑性,使制品柔软、耐低温性能好。 增塑剂在10份以下时对机械强度的影响不明显,当加5份左右的增塑剂时,机械强度反而最高,是所谓反增塑现象。一般认为,反增塑现象是加入少量增塑剂后,大分子链活动能力增大,使分子有序化产生微晶的效应。加少量的增塑剂的硬制品,其冲击强度反而比没有加时小,但加大到一定剂量后,其冲击强度就随用量的增大而增大,满足普适规律了。

抗凝血酶Ⅲ测定试剂盒(发色底物法)产品技术要求meichuang

抗凝血酶Ⅲ测定试剂盒(发色底物法) 适用范围:本产品用于体外定量测定人血浆中抗凝血酶III的活性。 1.1产品型号:产品为冻干型和液体型,试剂规格如下: 2.性能指标 2.1外观 .产品外包装应完整,无破损,标识、标签清晰; .冻干型:凝血酶试剂、发色底物为白色冻干品,复溶后为清晰无色液体,缓冲液为无色透明液体。 .液体型:凝血酶试剂、发色底物为无色液体,缓冲液为无色透明液体。 2.2装量(液体) 液体试剂的装量应不低于产品标示量。 2.3残留水分(冻干型) 凝血酶试剂、发色底物的含水量应≤3%。 2.4准确性

用试剂盒测试定值血浆,测量结果与定值血浆标示值相对偏差应≤±10%。 2.5 重复性 用正常值血浆重复测定的结果变异系数(CV%)均应≤6%。 用异常值血浆重复测定的结果变异系数(CV%)均应≤8%。 2.6批间差 用3个不同批号的试剂测试正常值血浆,所得结果的批间差应≤10%。 2.7瓶间差(冻干型) 用正常值血浆测试的瓶间变异系数(CV)应≤8%。 2.8 线性 线性范围为30%~150%,相关系数r≥0.98 2.9稳定性 a)冻干型制剂复溶稳定性:复溶后样品在2-8℃条件下,保存24小时,取该样品检测外观、准确性、重复性应符合2.1、2.4、2.5的要求。 b)液体制剂效期稳定性:在2-8℃条件有效期为12个月。取到效期后的样品检测外观、准确性、重复性,线性应符合2.1、2.4、2.5、2.8的要求。 c)冻干型制剂效期稳定性:在2-8℃条件有效期为12个月。取到效期后的样品检测外观、残留水分、准确性、重复性,瓶间差、线性应符合2.1、2.3、2.4、2.5、2.7、2.8的要求。

血、尿常规检测原理

一、血常规 1.网织红细胞仪器测定法原理:目前国内外使用仪器法测定网织红细胞,一般采用流式细胞术。流式细胞术法是将红细胞经特殊荧光染料染色后,使含RNA的网织红细胞被计数,进而得出网织红细胞的百分率和绝对值。 2.血细胞分析仪的原理 (—)细胞计数及体积测定原理 流式细胞术加光学测定原理:利用流式细胞术使单个细胞随着流体动力聚集的鞘流液在通过激光照射的检测区时,使光束发生折射、散射和衍射,散射光由光检测器接收后产生脉冲,脉冲大小与产生的细胞大小成正比,脉冲的数量代表了被照细胞的数量。 (二)白细胞分类的原理 光散射与细胞化学技术联合白细胞分类技术此类仪器联合利用激光散射和过氧化酶染色技术进行血细胞分类计数。嗜酸性粒细胞有很强的过氧化酶活性,依次为中性粒细胞、单核细胞,而淋巴细胞和嗜碱性粒细胞无此酶。如果待测物质中含有过氧化物酶,能催化一种供氢体,通常是苯胺或酚等脱氢,当其脱氢后,供氢体分子结构发生了变化,从而出现了色基显色,即可使4氯仿-苯酚显色并沉淀后定位于酶反应部位。利用酶反应强度不同(阴性、弱阳性、强阳性)和细胞体积不同,激光光束射到细胞上所产生的前向角和散射角不同,以X轴为吸光率(酶反应强度),Y轴为光散射(细胞大小),每个细胞产生两个信号并结合定位在细胞图上。仪器每分钟可测定上千个细胞,经计算机处理得出细胞分类结果。 (三)红细胞测试原理 红细胞(RBC)和血细胞比容(HCT)原理同(一) 血红蛋白测定(Hb)细胞悬液加入溶血剂后,红细胞溶解释放出Hb,并与溶血剂中的某些成分形成Hb衍生物,在540nm波长的下比色,吸光度与Hb含量成正比,可直接反应Hb的浓度。 各项红细胞指数检测原理红细胞平均体积(MCV)、红细胞平均血红蛋白含量(MCH)、平均红细胞血红蛋白的浓度?(MCHC)及红细胞体积分布宽度(RDW)均根据仪器检测的RBC、HCT和Hb的实验数据,经仪器内存电脑换算出来。 (四)血小板分析原理 血小板随着红细胞一起在一个系统内进行检测,根据阈值不同,分别技术血小板与红细胞数。血小板储存于64个通道内,根据所测血小板体积大小自动计算出血小板的平均体积(MPV)。血小板直方图也是反应血小板体积的,横坐标表示体积,范围一般为2-30fl,纵坐标表示不同体积血小板出现的相对频数。但要注意不同的仪器血小板直方图范围存在差异,为了使血小板技术更准确,有些意气专门设置了增加血小板准确性的技术,如鞘流技术浮动界标复合曲线等。 3.全自动五分类连接网织红细胞仪 二、血凝仪原理:凝固法--磁珠法+光学法 免疫法--乳胶颗粒法,免疫浊度分析 发色底物法--比色法 在血栓/止血检验中最常用的凝血酶原时间(PT)、活化部分凝血活酶时间(APTT)、纤维蛋白原(FIB)、凝血酶时间(TT)、内源凝血因子、外源凝血因子、高分子量肝素、低分子量肝素、蛋白C、蛋白S等均可用凝固法测量。所以目前半自动血凝仪基本上都是以凝固法测量为主,而在全自动血凝仪中也一定有凝固法测量。

塑料配方设计要点

塑料配方设计要点 塑料配方设计的关键为选材、搭配、用量、混合四大要素,表面看起来很简单,其实包含了很多内在联系,要想设计出一个高性能、易加工、低成本的配方也并非易事,要考虑的因素很多,下面将介绍配方设计的基本原则。 1、树脂的选择 (1)树脂品种的选择树脂要选择与改性目的最接近的品种,以节省加入助剂的使用量。 如耐磨改性,树脂要首先考虑选择三大耐磨树脂PA、POM、UHMWPE。 如透明改性,树脂要首先考虑选择三大透明树脂PS、PMMA、PC。 如改善冲击韧性,树脂可首先选择HDPE;改善断裂伸长率,树脂可首先选择LDPE。改善成型加工性能,可首先选择PS、PA。 (2)树脂牌号的选择同一种树脂的牌号不同,其性能差别也很大,应该选择与改性目的性能最接近的牌号。如耐热改性PP,可在热变形温度100~140℃的PP牌号范围内选择,如大韩油化的PP-4012, (3)树脂流动性的选择 ①配方中各种塑化材料的粘度要接近,以保证加工流动性。对于粘度相差悬殊的材料,要加过渡料,以减少粘度梯度。如PA6增韧、阻燃配方中常加入HDPE作为过渡料。 ②不同加工方法要求流动性不同 不同品种的塑料具有不同的流动性,按此将塑料分为高流动性塑料、低流动性塑料和不流动性塑料,具体如下所述。 高流动性塑料——PA、PP、PE、PS、ABS、HIPS等。 低流动性塑料——PC、PVC、MPPO、PPS等。 不流动性塑料——PTFE、UHMWPE、PPO等。 同一品种塑料也具有不同的流动性,主要原因为分子量、分子链分布的不同,所以同一种原料分为不同的牌号,如注塑级、挤出级、吹塑级、压延级等。 ③不同改性目的要求流动性不同,如高填充要求流动性好,如磁性塑料、无卤阻燃电缆料等。 (4)树脂对助剂的选择性 ①如PPS不能加入含铅和含铜助剂,否则会引起铅、铜污染。 ② PC的阻燃改性中不能加入三氧化二锑,否则会导致PC解聚。 ③助剂的酸碱性,应与树脂的酸碱性一致,否则会引起两者的反应。 2、助剂的选择 (1)加入的助剂应能充分发挥其功效,并达到规定指标。规定指标一般为国家标准、国际标准,或客户提出的性能要求。助剂的具体选择范围如下。 ①增韧选弹性体,热塑性弹性体如:MBS、SBS、CPE、POE、EPDM、EV A、TPU、ACR等,刚性增韧材料如纳米CaCO3。 ②增强选玻璃纤维、碳纤维、晶须和有机纤维。 ③阻燃溴类,如:十溴二苯醚、十溴二苯乙烷、四溴双酚A、六溴环十二烷等。磷类,如:磷酸一铵、磷酸二铵、红磷、芳基磷酸酯类等。水合金属氢氧化物类,如:氢氧化铝、氢氧化镁。 ④导电碳类(炭黑、石墨、碳纤维、碳纳米管)、金属纤维、金属氧化物。 ⑤耐热玻璃纤维、无机填料。 ⑥耐磨PTFE、石墨、二硫化钼。 ⑦绝缘煅烧高岭土。 (2)助剂对树脂具有选择性 ①红磷阻燃剂对PA、PBT、PET有效。 ②氮系阻燃剂对含氧类有效,如PA、PBT、PET等。 ③成核剂对共聚聚丙烯效果好。 ④玻璃纤维耐热改性对结晶性塑料效果好,对非结晶性塑料效果差。

浅谈聚合物配方设计

“十一五”期间,改性塑料行业的发展重点是通用塑料的工程化和工程塑料的高性能化,这两点目前在塑料改性行业里得到了各界同仁的一致认可。如何实现通用塑料的工程化和工程塑料的高性能化呢?这就需要塑料改性技术的创新,塑料技术创新中一个最重要的课题之一就是配方创新。配方创新和配方的设计是密不可分的,如何开发一个新产品,如何设计一个新配方,相信每个塑料改性企业和塑料改性技术人员都十分关心。本人多年在一线从事科研工作,我愿意结合自己的设计配方的经验和心得,同大家探讨和分享。 要设计一个好的塑料改性配方,成为一个真正的优秀技术人员,必须要有扎实的基本功。有了扎实的基本功,才能够进行技术创新。因此我在这里首先浅谈一下配方设计需要具备哪些基本功,供大家参考,不足请指正。 熟悉各种基础树脂的物性、用途以及相关背景 每种基础树脂都有其各自的特点,你只有熟悉它,了解它,才能用好它。这需要长期的基础学习和实践才能做到。在不同的配方里,根据不同的性能指标的要求,选择不同的基础树脂十分重要。这是在配方设计中的基础,譬如盖一栋房子,基础树脂就像是它的基石。因此,要想成功的设计一个配方,必须熟悉各种基础树脂的物性、用途以及相关背景。 (一)、熟悉各种基础树脂的物性 既然是熟悉,就不是一般的简单的了解,要求全面细致,以下举例说明: 例1:聚乙烯类塑料 聚乙烯是指由乙烯单体自由基聚合而成的聚合物,英文名简称PE。PE的合成原料来自石油,自1965年以来一直高居世界树脂产量第一位。目前,聚乙烯的主要品种有:低密度聚乙烯(LDPE),高密度聚乙烯(HDPE),线性低密度聚乙烯(LLDPE),(超)高分子量聚乙烯(UHMWPE),金属聚乙烯(m-PE) 还有其改性品种: 乙烯—乙酸乙烯酯(EVA)氯化聚乙烯(CPE)。 1、聚乙烯类塑料的结构性能 PE为线性聚合物,属于高分子长链脂肪烃;分子对称无极性,分子间作用力小,力学性能不高、电绝缘性好、熔点低、印刷性不好。PE的结构规整,线性度高,因而易于结晶。结晶度从高到低排序:HDPE,LLDPE,LDPE。随结晶度的提高,PE制品的密度、刚性、硬度和强度等性能提高,但冲击性能下降。 (1) 一般性能:PE树脂为无味、无毒的白色粉末或颗粒,外观呈乳白色,有似蜡的手感;吸水率低,小于0.01%。PE膜透明,透明度随结晶度提高而下降。PE膜的透水率低但透气性较大,不适于保鲜包装而适于防潮包装。PE易燃,氧指数仅为17.4%,燃烧时低烟,有少量熔融滴落,火焰上黄下蓝,有石蜡气味。 PE的耐水性较好,制品表面无极性,难以粘合和印刷,须经表面处理才可改善。 (2)力学性能:PE的力学性能一般,其拉伸强度较低,抗蠕变性不好,耐冲击性能较好。PE的耐环境应力开裂性不好,但随分子量增大而改善。PE耐穿刺性好,并以LLDPE最好。 (3)热学性能:PE的耐热性不高,随分子量和结晶度的提高而改善。PE的耐低温性好,脆化温度一般可达-50℃以下;随分子量的增大,最低可达-140℃。PE的线膨胀系在塑料中属较大的。PE的热导率属塑料中较高的。 (4)电学性能:PE无极性,因此电性能十分优异。介电损耗很低,且随温度和频率变化极小。PE是少数耐电晕性好的塑料品种,介电强度又高,因而可用做高压绝缘材料。 (5) 环境性能:PE具有良好的化学稳定性。在常温下可耐酸、碱、盐类水溶液的腐蚀,具

《诊断学》 第五节 纤溶活性检测

第五节纤溶活性检测纤维蛋白溶酶(纤溶酶)可将已形成的血凝块加以溶解,产生纤维蛋白(原)的降解产物,从而反映纤溶活性。纤溶活性增强可致出血,纤溶活性减低可致血栓。 一、筛检试验 (一)优球蛋白溶解时间 【原理】 血浆优球蛋白(euglobulin)组分中含有纤维蛋白原(Fg)、纤溶酶原(PLG)和组织型纤溶酶原激活剂(t-PA)等,但不含纤溶酶抑制物(plasmin inhibitor)。受检血浆置于醋酸溶液中,使优球蛋白沉淀,经离心除去纤溶抑制物,将沉淀的优球蛋白溶于缓冲液中,再加入适量钙溶液(加钙法)或凝血酶(加酶法),使Fg转变为纤维蛋白凝块,观察凝块完全溶解所需时间。 【参考值】 加钙法:(129.8±41.1)min;加酶法:(157.0±59.1)min。一般认为<70rain为异常。 【临床意义】 本试验敏感性低,特异性高。 1.纤维蛋白凝块在70 min内完全溶解表明纤溶活性增强,见于原发性和继发性纤溶亢进,后者常见手术、应激状态、创伤、休克、变态反应、前置胎盘、胎盘早期剥离、羊

水栓塞、恶性肿瘤广泛转移、急性白血病、晚期肝硬化、DIC 和应用溶血栓药(rt-PA、UK)。 2.纤维蛋白凝块在超过120 min还不溶解表明纤溶活性减低,见于血栓前状态、栓性疾病和应用抗纤溶药等。 (二)D-二聚体定性试验 【原理】 D-二聚体(D-dirner,D-D)是交联纤维蛋白降解产物之一,为继发性纤溶特有的代谢物。抗D-D单克隆抗体包被于胶乳颗粒上,受体血浆中如果存在D-二聚体,将产生抗原-抗体反应,胶乳颗粒发生聚集现象。 【参考值】 胶乳颗粒比阴性对照明显粗大者为阳性,正常人为阴性。 【临床意义】 D-D阴性是排除深静脉血栓(DVT)和肺血栓栓塞(PE)的重要试验,阳性也是诊断DIC和观察溶血栓治疗的有用试验。凡有血块形成的出血,本试验均可阳性,故其特异性低,敏感度高;但在陈旧性血块时,本试验又呈阴性。 (三)血浆纤维蛋白(原)降解产物定性试验 【原理】 于受检血浆中加入血浆纤维蛋白(原)降解产物[fibrin (agen)degradationproduct,FDPs]抗体包被的胶乳颗粒悬液,若血液中FDPs浓度超过或等于5μg/ml,胶乳颗粒发生凝集。

临床检验诊断学专业学位

临床医学硕士专业学位研究生 临床检验诊断学培养方案 、培养目标 要求培养德智体全面发展,在临床检验诊断学领域具有坚实的理论基础和系 统的专业知识,熟练的操作技能。具有较强的临床分析和思维能力, 熟练掌握临 床检验的常规检查项目、参考值和临床意义。熟悉各类自动化仪器的性能、使用、 维护、保养和有关的计算机知识。能够做好实习医师的带教工作,能对下级医师 进行业务指导,达到高年住院医师的临床工作水平。掌握一门外语,能熟练地阅 读本专业的外文资料。具备文献检索、资料收集、数据统计处理的能力,完成相 关专业综述一篇,通过学位论文答辩。 二、 学习年限 三年 三、 培养方式及要求 (一)课程学习 硕士学位研究生课程学习实行学分制,总学分要求不少于18学分。 专业课:以自学与专题讲座相结合的方式进行,参加研究生院组织的专业课 考试。 自学参考书及有关文献:《全国临床检验操作规程》(第二版)、《今日临床检验学》、 《当代血液分析技术与临床》、《临床化学诊断方法大全》、《临床微生物手册》(美 国、第六版)。 1、学位课程 政治理论课:自然辩证法 科学社会主义理论与实践 医学英语 医学统计学 临床流行病学 专业课 40学时 2学分 30学时 1.5学分 90学时 4学分 50学时 2学分 30学时 1.5学分 60学时 3学分

专题讲座:参加本学科专业的专题讲座,题目附后。 (6)专业基础课:至少两门,从免疫学、生物化学与分子生物学等专业开设的研究生课程中选修。 2、非学位课程(选修课,至少选2门) 医学信息检索与应用20学时1学分 计算机文化基础与应用30学时1学分 科研方法学20学时1学分除专业课外,均由学院在研究生入学后的第一学期,统一安排集中学习,第二学期进入临床后由各专业点组织专业课教学,以自学与专题讲座相结合的方式进行,在第二学年未结束。 (二)临床能力训练理论知识与技能要求:掌握临床检验诊断学基本理论知识,了解新进展、新知识和新技能。 (2)掌握本专业基本实验诊断、方法和技术,内科系统常见病、多发病的病因、发病机理、临床表现、实验诊断和鉴别诊断,临床教学等技能。 2、轮转安排:本阶段为二级学科基础训练,以二级学科的各专业轮转为主,兼顾相关科室。培训方法为在检验科范围内轮转,并参加相关科室的专业查房和科巡诊。 轮转专业:临床常规检查4个月(门诊2个月,病房2个月),临床化学检验5个月,临床免疫学检验5个月,临床血液学检验6个月(包括输血1个月),临床微生物学检验5个月,急诊检验3个月。选择参加专业查房和巡诊的科室为感染病房、消化病房、肾内病房各2个月。必要时可结合与检验项目有关的科室参加查房。三年共要求参加查房20次,参加科巡诊4次。论文答辩及考核2个月。

出凝血191蛋白C(PC)活性测定(发色底物法)(第四版)(精)

出凝血19.1蛋白C(PC)活性测定(发色底物法)(第四版) 出凝血19.2 原理: 标本中的PC在特异的激活剂作用下被激活,PCa作用于特异的发色底物释放出产色基团,在405nm波长下比色,其显色深浅与其活性呈线性关系。 出凝血19.3标本处理: 患者处于休息状态下,采空腹静脉血(急诊病人除外)。采血者应技术熟练,“一针见血”,以防止组织损伤,使外源性凝血因子进入标本。最好不与其它实验一起采集而使血液停留在针管的时间延长。采完血后,将血液沿管壁缓缓注入试管,避免产生气泡;然后迅速将血液和抗凝剂轻轻颠倒混匀,避免用力震荡。 全血要在1小时内分离血浆。分离乏血小板血浆时,要在室温下3000rpm离心10分钟,室温下可存放4小时。全部试验不能在4小时内完成,应将乏血小板血浆分装在0.5~1.0ml的小试管中快速冷冻,储存于-20℃冰箱中。-20℃可保存30天。冷冻过的标本不能再次冷冻,否则结果会不准确。冷冻血浆融化时,应将盛冷冻血浆的容器置于37℃水浴中,并轻轻摇动,使其迅速融化。 出凝血19.4 试剂: 蛋白C试剂盒购于天津威士达公司,试剂盒代号OUVV 15。试剂包括3×10ml蛋白C激活剂;3×3ml底物试剂;1×30ml缓冲液。蛋白C激活剂每瓶用10ml缓冲液复溶,37℃平衡30分钟。底物试剂每瓶用3ml蒸馏水复溶,37℃平衡30分钟。

出凝血19.5仪器:使用Sysmex公司的CA-7000型全自动血液凝固仪。出凝血19.6 操作:按仪器操作步骤执行标准操作。 出凝血19.6.1开机:按下机器侧面的POWER 按钮。开机后机器进行自检,当屏幕上边显示“Ready:”时可以进行试验。 出凝血19.6.2检查消耗品: 1、准备反应杯:打开仪器上盖装反应杯的盖子查看反应杯是否够量,不足时,需及时添加。(一次性最多可放1000 个杯子) 2、准备试剂:按照仪器对试剂的要求,把试剂准备好,放到仪器内相应位置,注意查看试剂的量和有效期。如还不熟悉试剂位置时,可在主屏幕上选Reagent Setting,按屏幕显示放置试剂。 3、查看仪器的洗液瓶和废液瓶 出凝血19.6.3准备标本:将样本放入样本架,再将样本架放到仪器进样器上。 出凝血19.6.4输入检测项目:主菜单上按下Work List 键,进入工作菜单,输入PC项目。 出凝血19.6.5输入样本号:按屏幕下菜单的ID No.键,按顺序输入样本的序号。 出凝血19.6.6开始检测:录入完所有测试信息,按下屏幕右上角START 键,开始检测。 出凝血19.7 计算:仪器自动计算出结果。 出凝血19.8 参考值:70~140%(0.7~1.4)

发色底物法

发色底物法检测原理 首先人工合成可以被待测凝血活酶催化裂解的化合物,且化合物连接上产色物质,在检测过程中产色物质可被解离下来,使被检样品中出现颜色变化,根据颜色变化可推算出被检凝血活酶的活性。产色物质一般选用连接对硝基苯胺(PNA)。游离的PNA呈黄色,其测定波长选用405nm。在这一波长下,其它物质对光的吸收小于PNA对光吸收的1%。具体检测方法即可采用动态法、也可采用终点法。动态法即是连续记录样品的吸光度变化,算出单位时间吸光度的变化量,并以每分钟吸光度的变化来报告结果。终点法即是指在活性酶同产色物质作用一段时间后,加入乙酸终止反应,检测此段时间内吸光度的变化,进而推算出待检酶的活性。凝血仪上多数采用动态法,因为它比终点法简单、结果更为准确。其优点主要表现在: 用酶学方法直接定量、测定结果准确、重复性好、便于自动化和标准化、所需样品量小。凝血仪使用产色物质在检测血栓/止血指标时大致可分成三种模式。 ①对酶的检测: 即在含酶的样品中直接加入产色物质,因为酶可裂解产色物质释放PNA,监测由于PNA释放而导致被检样品在405nm处光吸收的变化,就可推算样品中酶的活性。如对凝血酶、纤溶酶等的检测。 ②对酶原的检测: 要对某种酶原进行测定,必须先用激活剂将其激活,使其活化位点暴露,才可将产色物质上的PNA裂解下来。加入的激活剂必须过量,因为只有这样才能使酶原被全部激活,酶原的量才会同样品中酶的活性成一定的数量关系。样品中酶的活性可通过PNA释放,即样品吸光度的变化反应出来,由此则可推算出样品中酶原的含量。 ③对酶抑制物的检测: 首先往待检样品中加入过量对应的酶中和该抑制物,剩余的酶可裂解产色物质释放PNA,监测由于PNA释放而导致光吸收的变化,就可测出酶的活性,进而可推算出样品中抑制物的含量。如对抗凝血酶Ⅲ(AT-Ⅲ)等。

PVC配方设计

PVC塑料配方的设计 纯的聚氯乙烯(PVC)树脂属于一类强极性聚合物,其分子间作用力较大,从而导致了PVC 软化温度和熔融温度较高,一般需要160~210℃才能加工。另外PVC分子内含有的取代氯基容易导致PVC树脂脱氯化氢反应,从而引起PVC的降解反应,所以PVC对热极不稳定,温度升高会大大促进PVC脱HCL反应,纯PVC在120℃时就开始脱HCL反应,从而导致了PVC 降解。鉴于上述两个方面的缺陷, PVC在加工中需要加入助剂,以便能够制得各种满足人们需要的软、硬、透明、电绝缘良好、发泡等制品。在选择助剂的品种和用量时,必须全面考虑各方面的因素,如物理—化学性能、流动性能、成型性能,最终确立理想的配方。另外,根据不同的用途和加工途径,我们也需要对树脂的型号做出选择。不同型号的PVC 树脂和各种助剂的配搭组合方式,就是我们常说的PVC配方设计了。那具体怎样进行具体的配方设计呢?下面将通过对各原辅料的选择加以阐述的方式加以说明,希望能对大家有所裨益。 一、树脂的选择 工业上常用粘度或K值表示平均分子量(或平均聚合度)。树脂的分子量和制品的物理机械性能有关。分子量越高,制品的拉伸强度、冲击强度、弹性模量越高,但树脂熔体的流动性与可塑性下降。同时,合成工艺不同,导致了树脂的形态也有差异,我们常见的是悬浮法生产的疏松型树脂,俗称SG树脂,其组织疏松,表面形状不规则,断面输送多孔呈网状。因此,SG型树脂吸收增塑剂快,塑化速度快。悬浮法树脂的主要用途见下表。乳液法树脂宜作PVC糊,生产人造革。 悬浮法PVC树脂型号及主要用途 型号级别主要用途 SG1 一级A 高级电绝缘材料 SG2 一级A 电绝缘材料、薄膜 一级B、二级一般软制品 SG3 一级A 电绝缘材料、农用薄膜、人造革表面膜 一级B、二级全塑凉鞋 SG4 一级A 工业和民用薄膜 一级B、二级软管、人造革、高强度管材 SG5 一级A 透明制品 一级B、二级硬管、硬片、单丝、导管、型材 SG6 一级A 唱片、透明片 一级B、二级硬板、焊条、纤维 SGG7 一级A 瓶子、透明片 一级B、二级硬质注塑管件、过氯乙烯树脂 二、增塑剂体系 增塑剂的加入,可以降低PVC分子链间的作用力,使PVC塑料的玻璃化温度、流动温度与所含微晶的熔点均降低,增塑剂可提高树脂的可塑性,使制品柔软、耐低温性能好。

HemosIL Heparin(发色底物法测定肝素)

HemosIL? In-vitro Diagnostikum De uso diagnóstico in vitro Dispositif mèdical de diagnostic in vitro Per uso diagnostico in vitro Dispositivo médico para utiliza??o em diagnóstico in vitro Chargen-Bezeichnung Identificación número de lote Désignation du lot Numero del lotto Número de lote Verwendbar bis Caducidad Utilisable jusqu’à Da utilizzare prima del Data límite de utiliza??o Festgelegte T emperatur T emperatura de Almacenamiento T empératures limites de conservation Limiti di temperatura Límite de temperatura Beilage beachten Consultar la metódica Lire le mode d’emploi Vedere istruzioni per l’uso Consultar as instru??es de utiliza??o Kontrollen Control Contr?le Controllo Controlo Biologisches Risiko Riesgo biológico Risque biologique Rischio biologico Risco biológico Hergestellt von Fabricado por Fabricant Prodotto da Fabricado por Bevollm?chtigter Representante autorizado Mandataire Rappresentanza autorizzata Representante autorizado Aplicación T est Cromogénico automatizado para la determinación cuantitativa de la actividad de Heparina no Fraccionada (UFH) y de Heparina de Bajo Peso Molecular (LMWH) en plasma humano citratado para los Sistemas de Coagulación IL. Principio glicosaminoglicano reside en su habilidad para acelerar (hasta 2000 veces) el efecto inhibidor de la antitrombina sobre las proteasas de la coagulación. En los últimos a?os se ha demostrado que la LMWH, además de ser tan útil terapéuticamente como la UFH, tiene una vida media más larga. El kit Heparina es una técnica basada en un substrato cromogénico sintético y la inactivación del FXa. El nivel de la Heparina en el plasma de los pacientes es medido automáticamente en los sistemas de coagulación IL en dos etapas: 1. La Heparina es analizada como un complejo con la antitrombina presente en la muestra. La concentración de este complejo es dependiente de la disponibilidad de antitrombina. Para obtener una concentración más constante de antitrombina, se a?ade antitrombina humana purificada al plasma del test.1 El Factor Xa se a?ade en exceso y es neutralizado por el complejo antitrombina-heparina. 2. El Factor Xa residual es cuantificado con un sustrato cromogénico sintético. La Paranitroanilina liberada es medida cinéticamente a 405 nm siendo su nivel inversamente proporcional a la actividad de la Heparina de la muestra.2 Dado que las diferentes clases de Heparina (tanto UFH como LMWH) tienen su propia actividad específica anti-factor Xa, la misma clase de heparina usada en el tratamiento del paciente debe usarse en la calibración de la curva estándar.3,4 Composición El kit Heparin consta de: S Chromogenic substrate (N° Cat. 00020009410): 1 x 4 mL vial de substrato cromogénico liofilizado S-2765, N-α-Z-D-Arg-Gly-Arg-pNA.2HCL (3 mg/vial) y estabilizantes. E Factor Xa reagent (N° Cat. 00020009420): 1 x 5 mL vial de una preparación liofilizada que contiene Factor bovino Xa (68 nkat/vial), tampón T ris, EDT A, cloruro sódico y Albúmina de suero bovino. A Antithrombin (N° Cat. 00020009430): 1 x 3 mL vial de una preparación liofilizada que contiene Antitrombina humana (3 IU/vial), tampón T ris, EDT A, cloruro sódico y Albúmina de suero bovino. B Buffer (N° Cat. 00020009440): 1 x 8 mL vial de solución concentrada que contiene tampón T ris, pH 8,4, EDT A, cloruro sódico y detergente. PRECAUCIóN: El material usado en este producto ha sido verificado por los métodos aprobados por la FDA y encontrado no reactivo al Antígeno de Superficie de la Hepatitis B (HBsAg), Anti-HCV y anticuerpos HIV. Manejar con precaución como si fuese potencialmente infeccioso.5 Indicaciones de Peligro: Ninguna Frases de Riesgo: Ninguna Frases de Seguridad: Ninguna T odos los productos derivados de animales deberán manejarse como potencialmente infecciosos. Este reactivo es para diagnóstico in vitro. Preparación Chromogenic substrate: Disolver el contenido de cada vial con 4 mL de agua tipo CLR de CLSI.6 Cerrar el vial y homogeneizar suavemente. Asegurarse de la completa disolución del producto. Mantener el reactivo entre 15 y 25°C durante 30 minutos. Mezclar por inversión del vial antes de su uso. Factor Xa reagent: Disolver el contenido de cada vial con 5 mL de agua tipo CLR de CLSI.6 Cerrar el vial y homogeneizar suavemente. Asegurarse de la completa disolución del producto. Mantener el reactivo entre 15 y 25°C durante 30 minutos. Mezclar por inversión del vial antes de su uso. Antithrombin: Disolver el contenido de cada vial con 3 mL de agua tipo CLR de CLSI.6 Cerrar el vial y homogeneizar suavemente. Asegurarse de la completa disolución del producto. Mantener el reactivo entre 15 y 25°C durante 30 minutos. Mezclar por inversión del vial antes de su uso. Buffer: Diluir la cantidad necesaria de T ampón concentrado 1:10 (1+9) con agua tipo CLR de CLSI.6 Mezclar antes de su uso. Working buffer (Diluyente funcional): A 24 mL de T ampón diluido, a?adir 1 mL de reactivo reconstituido de Antitrombina. Nota: Una opalescencia instantánea ocurrirá temporalmente al reconstituir los reactivos liofilizado, pero desaparecerá en un par de minutos.Conservación y estabilidad de los reactivos Los reactivos que no hayan sido abiertos son estables hasta la fecha de caducidad indicada en el vial si se mantienen a 2-8°C. Chromogenic substrate - Estabilidad después de la reconstitución: 7 días a 15°C, 3 meses a 2-8°C en el vial original ó 48 horas a 15°C en los sistemas ACL Futura/ACL Advance y Familia ACL TOP?. Factor Xa reagent - Estabilidad después de la reconstitución: 7 días a 15°C, 3 meses a 2-8°C en el vial original ó 48 horas a 15°C en los sistemas ACL Futura/ACL Advance y Familia ACL TOP. Antithrombin - Estabilidad después de la reconstitución: 3 meses a 2-8°C en el vial original. Buffer - El reactivo abierto es estable 3 meses a 2-8°C. Working buffer (Diluyente funcional) - Estabilidad después de su preparación: 7 días a 15°C y 2-8°C en un vial cerrado ó 48 horas a 15°C en los sistemas ACL Futura/ACL Advance y Familia ACL TOP. Para obtener una estabilidad óptima del reactivo reconstituido, sugerimos que acabado el trabajo, conserve el reactivo en su vial original almacenado en nevera entre 2 y 8°C. Método de Ensayo Seguir las instrucciones de la técnica de acuerdo al Manual del Operador de los instrumentos IL o bien al Manual de Aplicaciones. Nota: Se recomienda un ciclo de lavado después de cada sesión de ensayos de Heparina en los modelos ACL Clásicos (100-7000). Recolección y Preparación de las muestras trisódico. Para la recolección, manejo y conservación del plasma seguir las recomendaciones del documento H21-A5 de la CLSI.7 Estandarización Para la preparación del estándar de 0.8 U/ml utilice la misma heparina que la empleada para la terapia del paciente. Atención: para preparar el estándar de 0.8 U/mL deberá utilizarse plasma calibrador o un Pool de Plasma Normal (NPP), dependiendo del analizador que se vaya a emplear. Familia ACL TOP: preparar el estándar de 0.8 U/ mL utilizando Pool de Plasma Normal (NPP). ACL Futura/ACL Advance: tal y como indica el Manual del Operador, para preparar el estándar de 0.8 U/ mL deberá utilizarse plasma calibrador. ACL ELITE/ELITE PRO/8/9/10000: tal y como indica el Manual del Operador, para preparar el estándar de 0.8 U/ mL debería utilizarse plasma calibrador. ACL Clásico (100-7000): tal y como indica el Manual del Operador, para preparar el estándar de 0.8 U/ mL debería utilizarse Pool de Plasma Normal (NPP). Reactivos adicionales y plasmas de control Los siguientes reactivos no se suministran con el kit y deberán pedirse por separado. Américas y Pacific Rim Europa N° Cat. N° Cat. Plasma de Calibración 0020003700 0020003700 Agente de Limpieza 0009831700 0009831700 Agente de Limpieza 0009832700 0009832700 Control de Calidad Para realizar un programa completo de control de calidad, se recomienda el uso de dos niveles de control.8 T anto el Control Heparina Bajo*, como el Control Heparina Alto* están dise?ados específicamente para este programa. Cada laboratorio debe establecer su propia media y desviación estándar, asimismo establecer un programa de Control de Calidad para monitorizar los resultados de su laboratorio. Los controles deben ser usados como mínimo una vez dentro del turno de 8 horas, de acuerdo a la normativa de Buenas Prácticas en el Laboratorio. Referirse al Manual del Operador para información adicional. Consultar la publicación de Westgard y col. para una identificación y resolución de situaciones anormales del Control de Calidad.9 Resultados Los resultados de la Heparina se informan en U/mL. Referirse al Manual del Operador para información adicional. Limitaciones/Interferencias Concentraciones de Hemoglobina hasta 200 mg/dL, Bilirrubina hasta 20 mg/dL y T riglicéridos hasta 700 mg/dL no alteran los resultados de la Heparina en los ACL Futura/ACL Advance. Concentraciones de Hemoglobina hasta 375 mg/dL, Bilirrubina hasta 25 mg/dL y T riglicéridos hasta 1630 mg/dL no alteran los resultados de la Heparina en la Familia ACL TOP. Valores esperados actividad de la heparina debe estar en el rango de actividad recomendado por el fabricante del fármaco.10 Características técnicas Precisión: Se evaluó la precisión intraserie y total (serie a serie y dia a dia) a partir de múltiples series utilizando dos niveles de muestras tanto para la Heparina UFH como para la Heparina LMWH. Familia ACL Media (U/mL) CV % (Intraserie) CV % (Total) UFH 0,77 1,84 2,18 UFH 0,23 7,76 8,23 LMWH 0,79 2,68 3,09 LMWH 0,23 7,99 9,69 ACL Futura/ACL Advance Media (U/mL) CV % (Intraserie) CV % (Total) UFH 0,79 3,0 6,6 UFH 0,52 5,7 7,3 UFH 0,26 9,1 10,0 LMWH 0,76 4,1 4,5 LMWH 0,42 6,2 7,9 LMWH 0,22 10,7 11,9 Familia ACL TOP Media (U/mL) CV % (Intraserie) CV % (Total) UFH 0,82 1,8 6,4 UFH 0,53 3,4 4,3 UFH 0,25 4,6 8,5 LMWH 0,86 2,4 4,4 LMWH 0,49 6,1 8,2 LMWH 0,25 5,7 11,3 Correlación: Sistema Pendiente Intersección r Método de Comparación Familia ACL 0,968 0,014 0,988 IL Heparina (Xa) ACL Futura/ 0,944 0,035 0,989 IL Heparina (Xa) ACL Advance Familia ACL TOP 1,012 -0,005 0,992 HemosIL Heparina (Xa) en ACL Advance Estos resultados de precisión y correlación se obtuvieron utilizando lotes específicos de reactivos y controles. Linealidad: Sistema Familia ACL y ACL Futura/ACL Advance 0 - 1,0 U/mL Familia ACL TOP 0 - 1,1 U/mL Verwendung Automatisierter chromogener T est zur quantitativen Bestimmung der Aktivit?t von unfraktionierten oder niedermolekularen Heparinen in menschlichem Plasma auf IL-Analysensystemen. Testprinzip und Zusammenfassung Heparin ist der am h?ufigsten eingesetzte antithrombotische Wirkstoff. Die biologische Aktivit?t der sulfatierten Glykosaminoglykane beruht auf ihrer F?higkeit den inhibitorischen Effekt des Antithrombin auf die Gerinnungsproteasen um das bis zu 2000-fache zu beschleunigen. In den letzten Jahren wurde gezeigt, dass niedermolekulare Heparine ebenso wie unfraktionierte Heparine zur Therapie eingesetzt werden k?nnen und zudem eine l?ngere Halbwertszeit besitzen. Der Heparin T estkit basiert auf einem synthetischen chromogenen Substrat über die Inaktivierung von Faktor Xa. Der Heparin-Spiegel des Patientenplasmas wird mit IL Gerinnungssystemen automatisch gemessen: 1. Heparin bildet mit dem in der Probe vorhanden Antithrombin einen Komplex. Die Konzentration dieses Komplexes ist von der Verfügbarkeit des Antithrombin abh?ngig. Um eine m?glichst konstante Konzentration an Antithrombin zu erhalten, wird gereinigtes menschliches Antithrombin der Probe zugeführt.1 Faktor Xa wird im überschuss zugegeben und durch den Heparin-Antithrombin-Komplex neutralisiert. 2. Die Restaktivit?t von Faktor Xa wird mit einem synthetischen chromogenen Substrat gemessen. Das freigesetzte Paranitroanilin wird kinetisch bei einer Wellenl?nge von 405 nm erfasst und ist umgekehrt proportional zum Heparin Spiegel der Probe.2 Da verschiedene Arten von unfraktionierten und niedermolekularen Heparinen unterschiedliche spezifische Anti-Faktor Xa-Aktivit?ten aufweisen, sollte bei der Kalibration der Standardkurve immer dasselbe Heparin wie in der Patientenprobe eingesetzt werden.3,4 Inhalt Die Heparin Packung enth?lt: S Chromogenic substrate (Art. Nr. 00020009410): 1 Flasche x 4 mL lyophilisiertes chromogenes Substrat [S-2765, N-α-Z-D-Arg-Gly-Arg-pNA.2HCl (3 mg/Flasche)]. E Factor Xa reagent (Art. Nr. 00020009420): 1 Flasche x 5 mL eines lyophilisierten Pr?parates, das Faktor Xa bovinen Ursprungs (68 nkat/Flasche), T ris-Puffer, EDT A, Natriumchlorid und bovines Serum-Albumin enth?lt. A Antithrombin (Art. Nr. 00020009430): 1 Flasche x 3 mL eines lyophilisierten Pr?parates, das Human- Antithrombin (3 IU/Flasche), T ris-Puffer, EDT A, Natriumchlorid und bovines Serum-Albumin enth?lt. B Buffer (Art. Nr. 00020009440): 1 Flasche x 8 mL einer konzentrierten L?sung, die T ris-Puffer, pH 8,4, EDT A, Natriumchlorid und Detergenz enth?lt. WARNUNG: Das verwendete Material wurde mit FDA anerkannten T estmethoden auf HIV 1/2-Antik?rper, Hepatitis-B-Antigen und HCV-Antigen geprüft. Bitte beachten Sie die Bestimmungen zum Umgang mit potentiell infekti?sen Materialien.5 Gefahrenklasse: keine Risikoeinstufung: keine Sicherheitseinstufung: keine Alle Tierprodukte sollten als potentiell infekti?s behandelt werden. Dieses Produkt ist nur für die in vitro Diagnostik geeignet. Herstellung Chromogenic substrate: Zum Inhalt einer Flasche wird 4 mL CLSI Wasser (CLRW) oder vergleichbares (z. B. Aqua bidest.) pipettiert und durch leichtes Schwenken gel?st.6 Nach vollst?ndiger Rekonstitution wird das Reagenz 30 Minuten bei 15-25°C inkubiert und dann unter vorsichtigem Schwenken erneut gemischt. Factor Xa reagent: Zum Inhalt einer Flasche wird 5 mL CLSI Wasser (CLRW) oder vergleichbares (z. B. Aqua bidest.) pipettiert und durch leichtes Schwenken gel?st.6 Nach vollst?ndiger Rekonstitution wird das Reagenz 30 Minuten bei 15-25°C inkubiert und dann unter vorsichtigem Schwenken erneut gemischt. Antithrombin: Zum Inhalt einer Flasche wird 3 mL CLSI Wasser (CLRW) oder vergleichbares (z. B. Aqua bidest.) pipettiert und durch leichtes Schwenken gel?st.6 Nach vollst?ndiger Rekonstitution wird das Reagenz 30 Minuten bei 15-25°C inkubiert und dann unter vorsichtigem Schwenken erneut gemischt. Buffer: Die ben?tigte Menge des konzentrierten Diluents 1:10 (1+9) mit CLSI Wasser (CLRW) oder vergleichbares (z. B. Aqua bidest.) verdünnen.6 Vor dem Gebrauch mischen. Working buffer (Arbeitsl?sung): Zu 24 mL verdünntem Puffer wird 1 mL des rekonstituierten Antithrombin Reagenzes zugegeben. Hinweis: Auftretende T rübungen verschwinden innerhalb kurzer https://www.sodocs.net/doc/a63406858.html,gerung und Haltbarkeit Die unge?ffneten Reagenzien sind bei Lagerung zwischen 2-8°C bis zu dem auf dem Etikett angegebenen Verfallsdatum haltbar. Chromogenic substrate - Haltbarkeit nach Rekonstitution: - bei 15°C in der Originalflasche: 7 T age - bei 2-8°C in der Originalflasche: 3 Monate - bei 15°C in ACL Futura/ACL Advance und Systemen der ACL TOP? Familie: 48 Stunden Factor Xa reagent - Haltbarkeit nach Rekonstitution: - bei 15°C in der Originalflasche: 7 T age - bei 2-8°C in der Originalflasche: 3 Monate - bei 15°C in ACL Futura/ACL Advance und Systemen der ACL TOP? Familie: 48 Stunden Antithrombin - Haltbarkeit nach Rekonstitution: - bei 2-8°C in der Originalflasche: 3 Monate Buffer - ge?ffnetes Reagenz: - bei 2-8°C in der Originalflasche: 3 Monate Working buffer (Arbeitsl?sung) - Haltbarkeit nach Herstellung: - bei 15°C im geschlossenen Beh?lter: 7 T age - bei 2-8°C im geschlossenen Beh?lter: 7 T age - bei 15°C in ACL Futura/ACL Advance und Systemen der ACL TOP? Familie: 48 Stunden Für eine optimale Haltbarkeit sollten die Reagenzien nach dem Gebrauch aus dem Ger?t entnommen und im Kühlschrank bei 2-8°C in der Originalflasche aufbewahrt werden. Bestimmungsansatz Die ausführliche Beschreibung des Bestimmungsansatzes ist dem Ger?te-Bedienerhandbuch und/oder dem Applikationshandbuch zu entnehmen. Hinweis: Es wird empfohlen im Anschluss an den Heparin T est einen Reinigungszyklus am ACL Classic (ACL 100-7000) durchzuführen. Probenmaterial und -gewinnung 9 T eile frisches ven?ses Blut und 1 T eil T rinatriumcitratl?sung werden sorgf?ltig in einem silikonisierten Glasr?hrchen gemischt. Hinweise zur Aufbereitung des Blutes sind den Empfehlungen des Deutschen Instituts für Normung - DIN 58 905 - oder dem CLSI Document H21-A5 zu entnehmen.7 Standardisierung Zur Herstellung des 0,8 U/mL Standards sollte dasselbe Heparin wie in der Patientenprobe eingesetzt werden. Hinweis: Zur Herstellung des 0,8 U/mL Standards wird in Abh?ngigkeit vom verwendeten Ger?t entweder Kalibrationsplasma oder Normalpoolplasma (NPP) eingesetzt. ACL TOP Familie: Normalpoolplasma (NPP) sollte zur Herstellung des 0,8 U/mL Standards eingesetzt werden. ACL Futura/ACL Advance: Wie dem Bedienerhandbuch zu entnehmen ist, sollte Kalibrationsplasma zur Herstellung des 0,8 U/mL Standards eingesetzt werden. ACL ELITE/ELITE PRO/8/9/10000: Wie dem Bedienerhandbuch zu entnehmen ist, sollte Kalibrationsplasma zur Herstellung des 0,8 U/mL Standards eingesetzt werden. ACL Classic (ACL 100-7000): Wie dem Bedienerhandbuch zu entnehmen ist, sollte Normalpoolplasma (NPP) zur Herstellung des 0,8 U/mL Standards eingesetzt werden. Zus?tzliche Reagenzien und Kontrollplasmen Die folgenden Reagenzien sind nicht in der Packung enthalten und müssen zus?tzlich bestellt werden: Amerikan. und Pazifischer Raum Europa Art. Nr. Art. Nr. Kalibrationsplasma 0020003700 0020003700 Reinigungsl?sung 0009831700 0009831700 Reinigungsl?sung 0009832700 0009832700 Qualit?tskontrolle pathologischen Bereich zu überprüfen.8 Es wird empfohlen, als Kontrollmaterial die oben angegebenen Kontrollen zu verwenden. Die Bereiche sind der jeweiligen Packungsbeilage zu entnehmen. Jedes Labor sollte seinen eigenen Kontrollbereich ermitteln. Sp?testens nach jeweils 8 Stunden sollte eine Qualit?tskontrolle durchgeführt werden. Algorithmen zur Beurteilung der Qualit?tskontrollergebnisse siehe z.B Westgard et al.9 Siehe auch “Richtlinien der Bundes?rztekammer zur Qualit?tssicherung quantitativer laboratoriumsmedizinischer Untersuchungen” in der jeweils gültigen Fassung. Ergebnisse Heparin Ergebnisse werden in U/mL dargestellt. Zus?tzliche Informationen sind dem Bedienerhandbuch zu entnehmen. Einschr?nkungen Heparin Ergebnisse auf ACL- und ACL Futura/ACL Advance-Analysensystemen werden durch Konzentrationen an H?moglobin bis zu 200 mg/dL, Bilirubin bis zu 20 mg/dL und T riglyceriden bis zu 700 mg/dL nicht beeinflusst. Heparin Ergebnisse auf Systemen der ACL TOP? Familie werden durch Konzentrationen an H?moglobin bis zu 375 mg/dL, Bilirubin bis zu 25 mg/dL und T riglyceriden bis zu 1630 mg/dL nicht beeinflusst. Referenzbereiche Um einen optimalen Effekt bei einem minimierten Risiko bezüglich Blutungen oder thrombotischen Komplikationen zu erzielen, sollte die Heparin-Aktivit?t in dem vom Heparin-Hersteller empfohlenen Bereich liegen.10 Testcharakteristik Pr?zision Die Pr?zision im Lauf und von T ag zu T ag wurde in mehreren L?ufen unter Verwendung von je zwei unterschiedlichen Konzentrationen mit unfraktioniertem (UFH) und niedermolekularem Heparin (LMWH) ermittelt. ACL Familie Mittelwert (U/mL) VK % (im Lauf) VK % (Tag zu Tag) unfrakt. Heparin 0,77 1,84 2,18 unfrakt. Heparin 0,23 7,76 8,23 niedermolek. Heparin 0,79 2,68 3,09 niedermolek. Heparin 0,23 7,99 9,69 ACL Futura/ ACL Advance Mittelwert (U/mL) VK % (im Lauf) VK % (Tag zu Tag) unfrakt. Heparin 0,79 3,0 6,6 unfrakt. Heparin 0,52 5,7 7,3 unfrakt. Heparin 0,26 9,1 10,0 niedermolek. Heparin 0,76 4,1 4,5 niedermolek. Heparin 0,42 6,2 7,9 niedermolek. Heparin 0,22 10,7 11,9 ACL TOP Familie Mittelwert (U/mL) VK % (im Lauf) VK % (Tag zu Tag) unfrakt. Heparin 0,82 1,8 6,4 unfrakt. Heparin 0,53 3,4 4,3 unfrakt. Heparin 0,25 4,6 8,5 niedermolek. Heparin 0,86 2,4 4,4 niedermolek. Heparin 0,49 6,1 8,2 niedermolek. Heparin 0,25 5,7 11,3 Korrelation: System Steigung Ordinatenabschnitt r Referenzmethode ACL Familie 0,968 0,014 0,988 IL Heparin (Xa) ACL Futura/ 0,944 0,035 0,989 IL Heparin (Xa) ACL Advance ACL TOP Familie 1,012 -0,005 0,992 HemosIL Heparin (Xa) am ACL Advance D ie Pr?zisions- und Korrelationsergebnisse sind mit spezifischen Reagenzien- und Kontrollchargen ermittelt worden. Linearit?t: System ACL Familie und ACL Futura/ACL Advance 0 - 1,0 U/mL ACL TOP Familie 0 - 1,1 U/mL Intended use Automated chromogenic assay for the quantitative determination of unfractionated heparin (UFH) and low molecular weight heparin (LMWH) activity in human citrated plasma on the IL Coagulation Systems. Summary and principle Heparin is the most frequently used antithrombotic drug. The biological activity of this sulphated glycosaminoglycan resides in its ability to accelerate (up to 2000-fold) the inhibitory effect of antithrombin on coagulation proteases. In recent years, it has been shown that LMWH, besides being as useful therapeutically as UFH, also has a longer half-life. The Heparin kit is an assay based on a synthetic chromogenic substrate and on Factor Xa inactivation. Heparin levels in patient plasma are measured automatically on IL Coagulation Systems in two stages. 1. Heparin is analyzed as a complex with antithrombin present in the sample. The concentration of this complex is dependent on the availability of antithrombin. In order to obtain a more constant concentration of antithrombin, purified human antithrombin is added to the test plasma.1 Factor Xa is added in excess and is neutralized by heparin-antithrombin complex. 2. Residual Factor Xa is quantified with a synthetic chromogenic substrate. The paranitroaniline released is monitored kinetically at 405 nm and is inversely proportional to the heparin level in the sample.2 Since different kinds of UF- and LMW- Heparins have their own specific anti-Factor Xa activity, the same kind of heparin as is used in the patient sample should also be used for calibrating the standard curve.3,4 Composition The Heparin kit consists of: S Chromogenic substrate (Cat. No. 00020009410): 1 x 4 mL vial of the lyophilized chromogenic substrate S-2765, N-α-Z-D-Arg-Gly-Arg-pNA.2HCl (3 mg/vial) and bulking agent. E Factor Xa reagent (Cat. No. 00020009420): 1 x 5 mL vial of a lyophilized preparation containing purified bovine Factor Xa (68 nkat/vial), T ris-buffer, EDT A, sodium chloride and bovine serum albumin. A Antithrombin (Cat. No. 00020009430): 1 x 3 mL vial of a lyophilized preparation containing human antithrombin (3 IU/vial), T ris-buffer, EDT A, sodium chloride and bovine serum albumin. B Buffer (Cat. No. 00020009440): 1 x 8 mL vial of a concentrated solution containing T ris-buffer, pH 8.4, EDT A, sodium chloride and detergent. PRECAUTIONS AND WARNINGS: The material in this product was tested with FDA cleared methods and found nonreactive for Hepatitis B surface Antigen (HBsAg), Anti-HCV and HIV antibodies. Handle as if potentially infectious.5 Hazard class: None Risk phrases: None Safety phrases: None All animal products should be treated as potentially infectious. This product is For in vitro Diagnostic Use. Preparation Chromogenic substrate: Dissolve the vial contents with 4 mL of CLSI T ype CLR water or equivalent.6 Replace the stopper and swirl gently. Make sure of the complete reconstitution of the product. Keep the substrate at 15-25°C for 30 minutes and invert to mix before use. Factor Xa reagent: Dissolve the vial contents with 5 mL of CLSI T ype CLR water or equivalent.6 Replace the stopper and swirl gently. Make sure of the complete reconstitution of product. Keep the reagent at 15-25°C for 30 minutes and invert to mix before use. Antithrombin: Dissolve the vial contents with 3 mL of CLSI T ype CLR water or equivalent.6 Replace the stopper and swirl gently. Make sure of the complete reconstitution of product. Keep the reagent at 15-25°C for 30 minutes and invert to mix before use. Buffer: Dilute the necessary quantity of concentrated buffer 1:10 (1+9) with CLSI T ype CLR water or equivalent.6 Mix before use. Working buffer: T o 24 mL of diluted buffer add 1 mL of reconstituted antithrombin reagent. Note: An instant opalescence will occur in the lyophilized reagents but it will fade away within 2 minutes.Reagent storage and stability Unopened reagents are stable until the expiration date shown on the vial when stored at 2-8°C. Chromogenic substrate - Stability after reconstitution: 7 days at 15°C, 3 months at 2-8°C in the original vial or 48 hours at 15°C on the ACL Futura/ACL Advance Systems and ACL TOP? Family. Factor Xa reagent - Stability after reconstitution: 7 days at 15°C, 3 months at 2-8°C in the original vial or 48 hours at 15°C on the ACL Futura/ACL Advance Systems and ACL TOP Family. Antithrombin - Stability after reconstitution: 3 months at 2-8°C in the original vial. Buffer - Opened reagent is stable 3 months at 2-8°C. Working buffer - Stability after preparation: 7 days at 15°C and 2-8°C in a closed container or 48 hours at 15°C on the ACL Futura/ACL Advance Systems and ACL TOP Family. For optimal stability remove reagents from the system and store them at 2-8°C in the original vial. Instrument/test procedures procedure instructions. Note: A cleaning cycle is recommended after running the Heparin assay on the ACL Classic (100-7000) Systems. Specimen collection and preparation Nine parts of freshly drawn venous blood are collected into one part trisodium citrate. Refer to CLSI Document H21-A5 for further instructions on specimen collection, handling and storage.7 Standardization For preparation of the 0.8 U/mL standard use the same heparin as used for patient therapy. Please Note: When preparing the 0.8 U/mL standard depending on the instrument being used either calibration plasma or Normal Pooled Plasma (NPP) should be used. ACL TOP Family: Normal Pooled Plasma (NPP) should be used in preparation of the 0.8 U/mL standard. ACL Futura/ACL Advance: As indicated in the Operator’s manual, calibration plasma should be used in preparation of the 0.8 U/mL standard. ACL ELITE/ELITE PRO/8/9/10000: As indicated in the Operator’s manual, calibration plasma should be used in preparation of the 0.8 U/mL standard. ACL Classic (100-7000): As indicated in the Operator’s manual, Normal Pooled Plasma (NPP) should be used in preparation of the 0.8 U/mL standard. Additional reagent and control plasmas The following are not supplied with the kit and must be purchased separately. Americas and Pacific Rim Europe Cat. No. Cat No. Calibration plasma 0020003700 0020003700 Cleaning solution 0009831700 0009831700 Cleaning agent 0009832700 0009832700 Quality control 8 establish its own mean and standard deviation and should establish a quality control program to monitor laboratory testing. Controls should be analyzed at least once every 8 hour shift in accordance with good laboratory practice. Refer to the instrument’s Operator’s Manual for additional information. Refer to Westgard et al for identification and resolution for out-of-control situations.9 Results Heparin results are reported in U/mL. Refer to the instrument’s Operator’s Manual for additional information. Limitations/interfering substances Heparin results on the ACL and ACL Futura/ACL Advance Systems are not affected by hemoglobin up to 200 mg/dL, bilirubin up to 20 mg/dL and triglycerides up to 700 mg/dL. Heparin results on the ACL TOP Family are not affected by hemoglobin up to 375 mg/dL, bilirubin up to 25 mg/dL and triglycerides up to 1630 mg/dL. Expected values T o obtain an optimal effect with minimum risk of bleeding or thromboembolic complications the heparin activity should be in the range recommended by the heparin manufacturer.10 Performance characteristics Precision: Within run and total (run to run and day to day) precision was assessed over multiple runs using two levels of sample of both UFH Heparin and LMWH Heparin. ACL? Family Mean (U/mL) CV % (Within run) CV % (Total) UFH 0.77 1.84 2.18 UFH 0.23 7.76 8.23 LMWH 0.79 2.68 3.09 LMWH 0.23 7.99 9.69 ACL Futura/ACL Advance Mean (U/mL) CV % (Within run) CV % (Total) UFH 0.52 5.7 7.3 UFH 0.26 9.1 10.0 LMWH 0.76 4.1 4.5 LMWH 0.42 6.2 7.9 LMWH 0.22 10.7 11.9 ACL TOP Family Mean (U/mL) CV % (Within run) CV % (Total) UFH 0.82 1.8 6.4 UFH 0.53 3.4 4.3 UFH 0.25 4.6 8.5 LMWH 0.86 2.4 4.4 LMWH 0.49 6.1 8.2 LMWH 0.25 5.7 11.3 Correlation: System slope intercept r Reference method ACL Family 0.968 0.014 0.988 IL Heparin (Xa) ACL Futura/ACL Advance 0.944 0.035 0.989 IL Heparin (Xa) ACL TOP Family 1.012 -0.005 0.992 HemosIL Heparin (Xa) on ACL Advance The precision and correlation results were obtained using specific lots of reagent and controls. Linearity: System ACL Family and ACL Futura/ACL Advance 0 - 1.0 U/mL ACL TOP Family 0 - 1.1 U/mL

相关主题