搜档网
当前位置:搜档网 › 复变函数课后习题答案

复变函数课后习题答案

复变函数课后习题答案
复变函数课后习题答案

习题一答案

1. 求下列复数的实部、虚部、模、幅角主值及共轭复数: (1)132i +(2)(1)(2)

i i i -- (3)131i i i --(4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310

i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32

z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+

因此,Re 1, Im 3z z =-=,

2. 将下列复数化为三角表达式与指数表达式:

(1)i

(2)1-+

(3)(sin cos )r i θθ+ (4)(cos sin )r i θ

θ-(5)1cos sin (02)i θθθπ-+≤≤ 解:(1)2cos sin 22i

i i e π

π

π

=+=

(2)1-+23222(cos sin )233

i i e πππ=+= (3)(sin cos )r i θ

θ+()2[cos()sin()]22i r i re πθππθθ-=-+-=

(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-= (5)21cos sin 2sin 2sin cos 222i i θθθ

θθ-+=+ 3. 求下列各式的值:

(1)5)i -(2)100100(1)(1)i i ++-

(3)(1)(cos sin )

(1)(cos sin )i i i θθθθ-+--(4)2

3(cos5sin 5)(cos3sin 3)i i ????+-

:(1)5)i -5[2(cos()sin())]66i ππ

=-+-

(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-

(3)(1)(cos sin )

(1)(cos sin )i i i θθθθ-+-- (4)2

3(cos5sin 5)(cos3sin 3)i i ????+-

=

=4.

设12 ,z z i ==-试用三角形式表示12z z 与1

2

z z

解:12cos sin , 2[cos()sin()]4466z i z i π

π

ππ

=+=-+-,所以

12z z 2[cos()sin()]2(cos sin )46461212i i π

π

π

π

π

π

=-+-=+,

5. 解下列方程:

(1)5()1z i +=(2)440 (0)z a a +=>

:(1)z i +=由此

2

5k i z i e i π=-=-,(0,1,2,3,4)k =

(2)z ==1

1

[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的

4个根分别

(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,z x iy =+

z x y ≤≤+

证明:首先,

显然有

z x y =≤+; 其次,因222,x

y x y +≥固此有2222()(),x y x y +≥+

从而z =≥。

(2)对任意复数12,,z z 有2221212122Re()z z z z z z +=++

证明:验证即可,首先左端221212()

()x x y y =+++, 而右端2222112211222Re[()()]x y x y x iy x iy =+++++-

2222112212122()x y x y x x y y =+++++221212()()x x y y =+++, 由此,左端=右端,即原式成立。

(3)若a bi +就是实系数代数方程101100n n n a z a z a z a --++++=L

的一个根,那么a bi -也就是它的一个根。 证明:方程两端取共轭,注意到系数皆为实数,并且根据复数的乘法运算规则,()n n z

z =,由此得到:10110()()0n n n a z a z a z a --++++=L

由此说明:若z 为实系数代数方程的一个根,则z 也就是。结论得证。

(4)若1,a =则,b a ?≠皆有1a b a ab

-=- 证明:根据已知条件,有1aa =,因此:

11()a b a b a b a ab aa ab a a b a

---====---,证毕。 (5)若

1, 1a b <<,则有11a b ab -<- 证明:222()()a b a b a b a b ab ab -=--=+--,

复变函数试题及答案

1、复数i 212--的指数形式是 2、函数w = z 1将Z S 上的曲线()1122 =+-y x 变成W S (iv u w +=)上 的曲线是 3.若01=+z e ,则z = 4、()i i +1= 5、积分()?+--+i dz z 22 22= 6、积分 ?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11--的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得 z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续 B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数

4、根式31-的值之一是( ) A i 2321- B 2 23i - C 223i +- D i 2321+- 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ? =-12 3z z dz B ? =-1 2 1z z dz C ?=++1242z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-02121n n n n z (z <1) B ()∑∞ =+-0 1221n n n n z (z <1) C ()∑∞ =++-012121n n n n z (z <1) D ()∑∞=-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1w 的分式线性变换是( ) A )1(1>--=a z a a z e w i β B )1(1<--=a z a a z e w i β C )1(>--=a a z a z e w i β D )1(<--=a a z a z e w i β 三、判断题(每小题2分)

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

复变函数经典习题及答案

练习题 一、选择、填空题 1、下列正确的是( A ); A 1212()Arg z z Argz Argz =+; B 1212()arg z z argz argz =+; C 1212()ln z z lnz lnz =+; D 10z Ln Ln Lnz Lnz z ==-=. 2、下列说法不正确的是( B ); A 0()w f z z =函数在处连续是0()f z z 在可导的必要非充分条件; B lim 0n n z →∞=是级数1 n n z ∞=∑收敛的充分非必要条件; C 函数()f z 在点0z 处解析是函数()f z 在点0z 处可导的充分非必要条件; D 函数()f z 在区域D 内处处解析是函数()f z 在D 内可导的充要条件. 3、(34)Ln i -+=( 45[(21)arctan ],0,1,2,3ln i k k π++-=±± ), 主值为( 4 5(arctan )3 ln i π+- ). 4、2|2|1 cos z i z dz z -=? =( 0 ). 5、若幂级数0n n n c z ∞=∑ 在1(1)2z = +处收敛,那么该级数在45 z i =处的敛散性为( 绝对收敛 ). 6、 311z -的幂级数展开式为( 30n n z ∞=∑ ),收敛域为( 1z < ); 7、 sin z z -在0z =处是( 3 )阶的零点; 8、函数221 (1)z z e -在0z =处是( 4 )阶的极点; 二、计算下列各值 1.3i e π+; 2.tan()4i π -; 3.(23)Ln i -+; 4 . 5.1i 。 解:(略)见教科书中45页例2.11 - 2.13

大学复变函数期末考试试卷及答案(理工科所有专业)

dz C 2

2.设2 2-+= ni ni n α),3,2,1(ΛΛ=n ,则=∞→n n αlim ( ) A. 0; B. 1; C. -1+i ; D. 1+i 。 3.满足不等式3211≤-+≤i z 的所有点z 构成的集合是( )。 A .有界单连通区域; B. 无界单连通区域; C .有界复连通闭域; D.无界复连通闭域。 4.下列函数中,不在复平面内解析的函数是( ) A.1 )(+=z e z f ; B .- =z z f )( ; C .n z z f =)( ; D .)sin (cos )(y i y e z f x +=。 5 A. ∑∞ =+08)56(n n n i ; C. ∑∞ =02n n i ;三.计算题(每小题71.设z 1+=

2.判定函数)2()()(222y xy i x y x z f -+--=在何处可导,在何处解析。 3.计算积分? - C dz z z 4 )2 (sin π 4.计算积分 4=。

5.设,)1(2y x u -=试求解析函数iv u z f +=)(,使得i f -=)2(。 6.将函数) 2)(1(1 )(--=z z z f ,在圆环域21<

7.利用留数计算积分?C 四.证明函数yi x z f 2)(+=在复平面内不可导。(7分)

参考答案 一、填空题(本大题共8小题,每小题3 1.109 , 2. 4 ,3. 0 ,4. 1,5. -3或 二、单项选择题(本大题共7小题,每小题31. B ,2. B ,3.C,4. B,5. B . 三、计算题(本大题共7小题,15-19 1.解:由i z 31+=得:) sin (cos 2π π i z +=, (1分) 6 24 (cos 23166ππ k i z k +=+=所以)18sin 18(cos 260ππi z +=,)1813sin 1813(cos 262ππi z += , )25sin 1825(cos 264ππi z +=,5z 7分) 2. 解 ) 2()2y xy i x -+,则 (),(22y x y x u -= y u x x u ,12=??-=?? 只在2 1 = y ,x v ??-(6分) 故只在2 1 =y 处可导,处处不解析。(7分) 3z 在2=z 内解析,(2分)

复变函数论第三版课后习题答案解析

1.设 z 1 3i ,求 z 及 Arcz 。 解:由于 z 1, Arcz 2k , k 0, 1, 。 3 (z 1 z 2)( z 1 z 2) z 1z 1 z 2z 2 (z 1z 2 z 2z 1) 2 z 1z 2 z 1 z 2 3 第一章习题解 答 (一) 2.设 z 1 i , z 3 1 ,试用指数形式表示 1 2 2 z 1z 2 及 z 1 。 z 2 4 i 6i 1 i i 解:由于 z 1 e 3 4 , z 2 3 i 2e 1 2 2 i i ( )i i 所以 z1z2 e 4i 2e 6i 2e ( 4 6)i 2e 12i i z 1 e 4 1 e (4 6)i i z 2 2e 6 2 5i 1 1 e 12 。 2 3.解二项方程 z 4 a 4 0,(a 0) 。 2k i 解: z 4 a 4 (a 4e i )4 ae 4 ,k 0,1,2,3 。 4.证明 z 1 2 2 z 1 z 2 z 1 z 2 证明:由于 2 2 z 1 z 2 z 1 2 2 z 2 2 z 1 z 2 2( z 1 所以 z 1 z 2 其几何意义是: z 2 ) 2 2 ,并说明其几何意义。 2 2 Re(z 1 z 2) z 2 2Re(z 1 z 2) z 1 z 2 2( z 1 z 2 ) 平行四边形对角线长平方和等于于两边长的和的平方。 5.设 z 1, z 2,z 3三点适合条件: z1 z2 z3 0 z 1 z 2 z3 1 。证明 z 1,z 2, z 3是内 接于单位 圆 z 1 的一个正三角形的顶点。 证 由于 z 1 z 2 z3 1 ,知 z 1z 2z 3 的三个顶点均在单位圆上。 因为 所以, z 1z 2 z 1z 2 1 , 所以 z 1 z 2

复变函数试题与答案

复变函数试题与答案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2 321+- (D )i 2 1 23+- 3.复数)2 (tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ) )]2 3sin()23[cos( sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小

5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i -- 4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无 界闭区域 10.方程232=-+i z 所代表的曲线是( )

复变函数_期末试卷及答案

一、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括 号内。错选、多选或未选均无分。 1.下列复数中,位于第三象限的复数是( ) A. 12i + B. 12i -- C. 12i - D. 12i -+ 2.下列等式中,不成立的等式是( ) 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部 B. Re()0z >表示上半平面 C. 0arg 4 z π << 表示角形区域 D. Im()0z <表示上半平面 4.关于0 lim z z z z ω→=+下列命题正确的是( ) A.0ω= B. ω不存在 C.1ω=- D. 1ω= 5.下列函数中,在整个复平面上解析的函数是( ) 6.在复平面上,下列命题中,正确..的是( ) A. cos z 是有界函数 B. 2 2Lnz Lnz = 7 .在下列复数中,使得z e i =成立的是( ) 8.已知3 1z i =+,则下列正确的是( ) 9.积分 ||342z dz z =-??的值为( ) A. 8i π B.2 C. 2i π D. 4i π 10.设C 为正向圆周||4z =, 则10()z C e dz z i π-??等于( ) A. 1 10! B. 210! i π C. 29! i π D. 29! i π- 11.以下关于级数的命题不正确的是( ) A.级数0327n n i ∞ =+?? ?? ?∑是绝对收敛的 B.级数 212 (1)n n i n n ∞ =??+ ?-??∑是收敛的 C. 在收敛圆内,幂级数绝对收敛 D.在收敛圆周上,条件收敛 12.0=z 是函数(1cos ) z e z z -的( ) A. 可去奇点 B.一级极点 C.二级极点 D. 三级极点

复变函数论第四版答案钟玉泉

复变函数论第四版答案钟玉泉 (1)提到复变函数,首先需要了解复数的基本性质和四则运算规则。怎么样计算复数的平方根,极坐标与 xy 坐标的转换,复数的模之类的。这些在高中的时候基本上都会学过。 (2)复变函数自然是在复平面上来研究问题,此时数学分析里面的求导数之类的运算就会很自然的引入到 复平面里面,从而引出解析函数的定义。那么研究解析函数的性质就是关键所在。最关键的地方就是所谓 的Cauchy—Riemann 公式,这个是判断一个函数是否是解析函数的关键所在。 (3)明白解析函数的定义以及性质之后,就会把数学分析里面的曲线积分的概念引入复分析中,定义几乎 是一致的。在引入了闭曲线和曲线积分之后,就会有出现复分析中的重要的定理:Cauchy 积分公式。这 个是复分析的第一个重要定理。 (4)既然是解析函数,那么函数的定义域就是一个关键的问题。可以从整个定义域去考虑这个函数,也可 以从局部来研究这个函数。这个时候研究解析函数的奇点就是关键所在,奇点根据性质分成可去奇点,极 点,本性奇点三类,围绕这三类奇点,会有各自奇妙的定理。(5)复变函数中,留数定理是一个重要的定理,反映了曲线积分和

零点极点的性质。与之类似的幅角定理 也展示了类似的关系。 (6)除了积分,导数也是解析函数的一个研究方向。导数加上收敛的概念就可以引出Taylor 级数和 Laurent 级数的概念。除此之外,正规族里面有一个非常重要的定理,那就是Arzela 定理。 (7)以上都是从分析的角度来研究复分析,如果从几何的角度来说,最重要的定理莫过于Riemann 映照 定理。这个时候一般会介绍线性变换,就是Mobius 变换,把各种各样的区域映射成单位圆。研究 Mobius 变换的保角和交比之类的性质。 (8)椭圆函数,经典的双周期函数。这里有Weierstrass 理论,是研究Weierstrass 函数的,有经典的 微分方程,以及该函数的性质。 以上就是复分析或者复变函数的一些课程介绍,如果有遗漏或者疏忽的地方请大家指教。

复变函数测试题及答案

第一章 复 数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )

(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 i (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z

(C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 0) Im()Im(z z -) 1 1.设) 2)(3() 3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.设4 3)arg(,5π = -=i z z ,则=z

复变函数习题答案第4章习题详解

第四章习题详解 1. 下列数列{}n a 是否收敛?如果收敛,求出它们的极限: 1) mi ni a n -+= 11; 2) n n i a -?? ? ? ?+=21; 3) ()11++ -=n i a n n ; 4) 2i n n e a π-=; 5) 21i n n e n a π-= 。 2. 证明:??? ????≠==>∞<=∞→1111110a a a a a a n n ,,,,lim 不存在, 3. 判别下列级数的绝对收敛性与收敛性: 1) ∑∞ =1n n n i ; 2) ∑∞ =2n n n i ln ; 3) ()∑∞=+0856n n n i ; 4) ∑∞=0 2n n in cos 。 4. 下列说法是否正确?为什么? 1) 每一个幂级数在它的收敛圆周上处处收敛;

2) 每一个幂级数的和函数在收敛圆内可能有奇点; 3) 每一个在0z 连续的函数一定可以在0z 的邻域内展开成泰勒级数。 5. 幂级数()∑∞ =-02n n n z c 能否在0=z 收敛而在3=z 发散? 6. 求下列幂级数的收敛半径: 1) ∑∞ =1n p n n z (p 为正整数); 2) ()∑∞=12n n n z n n !; 3) ()∑∞=+01n n n z i ; 4) ∑∞=1n n n i z e π; 5) ()∑∞=-??? ??1 1n n z n i ch ; 6) ∑∞=??? ? ?1n n in z ln 。 7. 如果 ∑∞=0n n n z c 的收敛半径为R ,证明()∑∞=0n n n z c Re 的收敛半径R ≥。[提示:()n n n n z c z c

复变函数论第四版第四五章练习

复变函数 第四、五章 练习 一、 掌握复级数收敛,绝对收敛的判别 1. 判断下列级数是否收敛,是否绝对收敛。 (1)2ln n n i n ∞ =∑ (2)01cos 2n n in ∞=∑ (3)0(1)2n n n n i ∞=+∑ 2.如果级数1n n c ∞=∑收敛,且存在0,,..,|arg |,2n s t c πααα><≤证明级数1n n c ∞ =∑绝对收敛. 二、充分掌握幂级数,及解析函数的泰勒展开式 3. 证明级数11n n n z z ∞ =-∑在||1z ≥上发散;在||1z <内绝对收敛且内闭一致收敛 4. 试证:黎曼函数 11(),(ln 0)z n z n n ζ∞ ==>∑,在点2z =的邻域内可展开为泰勒级数,并求收敛半径。 5.求下列幂级数的收敛半径: (1)0()n n n n a z ∞=+∑ (2)0[3(1)](1)n n n n z ∞=+--∑ (3)(1)0()(1)n n n n i z n ∞ +=-∑ 6.设0n n n a z ∞ =∑的收敛半径为R , 证明:0[Re()]n n n a z ∞=∑的收敛半径大于等于R 。 7.若幂级数∑∞=0n n n z c 在i z 21+=处收敛,试回答该级数在2=z 处的敛散性。 8.设函数z e z cos 的泰勒展开式为∑∞=0n n n z c ,求幂级数∑∞=0 n n n z c 的收敛半径。 9. 将函数31()z f z z -= 在点1z =-展成泰勒级数。 10.证明:若1||,2z ≤则2|ln(1)|||z z z +-≤. (这里ln(1)z +取主值支) 三、充分掌握解析函数零点阶数的求法、具有零点的解析函数的表达 式、零点的孤立性、惟一性定理、最大模原理

第一章复变函数习题及解答

第一章 复变函数习题及解答 1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π 2π,0,1,2,3k k +=±±;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 1.2 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 1.3计算下列复数 (1 (2 答案 (1) (2)(/62/3) i n e ππ+ 1.4 已知x 的实部和虚部.

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 22 1,(p q pq p x q x ?-=??=??=±==±+ 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 1.5 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 1() ()1||||| |||||||1()az b az b az b z az b az b z bz a bz a z z bzz az b az b az +++++=====+++++ 1.6 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得 ()( ) 00i i =≡+=+b a P b a P 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 1.7 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.

有答案复变函数与积分变换期末考试试卷

华南农业大学期末考试试卷(A 卷) 2007-08 学年第1学期 考试科目: 复变函数与积分变换 考试类型:(闭卷) 考试时间: 120 分钟 学号 姓名 年级专业 一、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括 号内。错选、多选或未选均无分。 1.下列复数中,位于第三象限的复数是( ) A. 12i + B. 12i -- C. 12i - D. 12i -+ 2.下列等式中,不成立的等式是( ) 4.34a rc ta n 3 A i π-+-的主辐角为 .a rg (3)a rg () B i i -=- 2 .rg (34)2a rg (34)C a i i -+=-+ 2 .||D z z z ?= 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部 B. R e ()0z >表示上半平面 C. 0a rg 4 z π << 表示角形区域 D. Im ()0z <表示上半平面 4.关于0 lim z z z z ω→=+下列命题正确的是( ) A.0ω= B. ω不存在 C.1ω=- D. 1ω= 5.下列函数中,在整个复平面上解析的函数是( ) .z A z e + 2 s in . 1 z B z + .ta n z C z e + .s i n z D z e + 6.在复平面上,下列命题中,正确.. 的是( ) A. c o s z 是有界函数 B. 2 2L n z L n z = .c o s s in iz C e z i z =+ .||D z = 7.在下列复数中,使得z e i =成立的是( )

复变函数及积分变换试题及答案

第一套 第一套 一、选择题(每小题3分,共21分) 1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。 A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。 2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。 A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C + 3. 2|2|1(2)z dz z -==-?( ) 。 A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。 A. 1 01 ()2()n n f d c i z ξξ πξ+= -? B. 0()!n n f z c n = C. 2 01()2n k f d c i z ξξπξ= -? D. 210! ()2()n n k n f d c i z ξξ πξ+= -? 5. z=0是函数z z sin 2 的( )。 A.本性奇点 B.极点 C. 连续点 D.可去奇点 6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。 A.1 z z w -= B. z 1z w -= C. z z 1w -= D. z 11 w -= 7. sin kt =()L ( ),(()Re 0s >)。 A. 22k s k +; B.22k s s +; C. k s -1; D. k s 1 . 二、填空题(每小题3分,共18分) 1. 23 (1)i += [1] ; ---------------------------------------- 装 --------------------------------------订 ------------------------------------- 线 ----------------------------------------------------

复变函数课后习题答案(全)

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=--(3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=--

2. 将下列复数化为三角表达式和指数表达式: (1)i (2 )1-+ (3)(sin cos )r i θθ+ (4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤ 解:(1)2 cos sin 2 2 i i i e π π π =+= (2 )1-+2 3 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+--

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π =+z arc ,6 5)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2123+- 3.复数)2( tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]2 3sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3 π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )

(A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得22z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +-43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232=-+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A )22 1=+-z z (B )433=--+z z (C ))1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0)Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

复变函数试题及答案

一、填空题(每小题2分) 1、复数i 212-- 的指数形式是 2、函数w =z 1将Z S 上的曲线()1122=+-y x 变成W S (iv u w +=)上 的曲线是 3.若01=+z e ,则z = 4、()i i +1= 5、积分()?+--+i dz z 2222= 6、积分 ?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11- -的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续

B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数 4、根式31-的值之一是( ) A i 232 1- B 2 23i - C 223i +- D i 2 3 21+ - 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1 cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ? =- 1 2 3 z z dz B ?=- 1 2 1 z z dz C ?=++12 42z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-0 2121n n n n z (z <1) B () ∑∞ =+-0 1 221n n n n z (z <1) C ()∑∞ =++-0 1 2121n n n n z (z <1) D () ∑∞ =-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1

复变函数与积分变换试题及答案(2)

复变函数与积分变换试题与答案 1.(5)复数z与点(,) x y对应,请依次写出z的代数、几何、三角、指数表达式和z的3次方根。 2.(6)请指出指数函数z e w=、对数函数z w ln =、正切函数=的解析域,并说明它们的解析域是哪类点集。 z w tan 3.(9)讨论函数2 2i =的可导性,并求出函数)(z z f+ ) (y x f在可导点的导数。另外,函数) f在可导点解析吗?是或否请说明 (z

理由。 4.(7)已知解析函数v u z f i )(+=的实部y x y u 233-=,求函数 v u z f i )(+=的表达式,并使0)0(=f 。 5.(6×2)计算积分: (1)?+-C n z z z 1 0) (d ,

其中C 为以0z 为圆心,r 为半径的正向圆周, n 为正整数; (2)?=+-3||2d ) 2()1(e z z z z z 。 6.(5×2)分别在圆环 (1)1||0<

7.(12)求下列各函数在其孤立奇点的留数。 (1) 3 sin )(z z z z f -=; (2) z z z f sin 1)(2=; (3) 11 e )(-=z z z f . 8.(7)分式线性函数、指数函数、幂函数的映照特点各是什么。

9.(6分)求将上半平面 0)Im( z 保形映照成单位圆 1|| w 的分式线性函数。 10.(5×2)(1)己知 F )()]([ωF t f =,求函数)52(-t f 的傅里叶变换; (2)求函数) i 5)(i 3(2 )(ωωω++= F 的傅里叶逆变换。

大学复变函数期末考试试卷及标准答案(理工科所有专业)

大学复变函数期末考试试卷及答案(理工科所有专业)

————————————————————————————————作者:————————————————————————————————日期: 2

第 3 页 共 10 页 年 级 重庆××大学《复变函数》期末考试 专业:理工科 课程名:复变函数 考核方式:闭卷 专 业 : 班 级 : 姓 名 : 学 号 : 题号 一 二 三 四 五 总分 分数 评卷 人 装 线 订 一. 填空题(每小题4分,共24分) 1. =+++-)1 21 311Re(i i i . 2. 若函数())6()1(232222y x xy i y m xy x z f +-+--+=在复平面内处处解析,那么实常数m = 。 3.设C 为1<=r z ,那么? --C z z dz ) 1)(1(3 2= 。 4.幂级数∑∞ =03n n n z 的收敛半径=R 。 5.设C 是沿2x y =自原点到i +1的曲线段,求dz z C ?= 。 6.函数3 41 )(-=z z f 在0=z 处的泰勒级数为 。 二.单项选择题(每小题4分,共20分) 1.的主值为)1(i Ln -() A .4 2ln π i + B. 4 2ln π i - C .2ln 4i +π D. 2ln 4 i -π

第 4 页 共 10 页 2.设2 2-+= ni ni n α),3,2,1(ΛΛ=n ,则=∞→n n αlim ( ) A. 0; B. 1; C. -1+i ; D. 1+i 。 3.满足不等式3211≤-+≤i z 的所有点z 构成的集合是( )。 A .有界单连通区域; B. 无界单连通区域; C .有界复连通闭域; D.无界复连通闭域。 4.下列函数中,不在复平面内解析的函数是( ) A.1 )(+=z e z f ; B .- =z z f )( ; C .n z z f =)( ; D .)sin (cos )(y i y e z f x +=。 5.下列级数中,条件收敛的级数是() A. ∑∞ =+0 8)56(n n n i ; B. ∑∞ =??? ?? ?+-03)1(n n n i n ; C. ∑∞ =02 n n i ; D. ∑∞ =+0 )1(1n n i n . 三.计算题(每小题7分,共49分) 1.设i z 31+=求6 1z 。

相关主题