搜档网
当前位置:搜档网 › 三维人脸图像的数据采集

三维人脸图像的数据采集

三维人脸图像的数据采集
三维人脸图像的数据采集

三维人脸图像的数据采集

1三维人脸图像数据的采集

采集设备进行三维扫描的过程是一个实时曲面配准的过程。尽管这一

过程有一定的鲁棒性,但是扫描对象的姿态变化很容易干扰配准的准

确度7。因此在采集三维人脸图像前应和被采集人进行必要的沟通,防止采集过程中因被采集人说话或移动导致配准失效而中断操作。为了

在保证数据质量的同时减少重复数据量,使用手持式3D扫描仪时,需

要按照一定的移动顺序对人脸图像进行撷取8,9。采取的扫描顺序(见图2)是从被采集人的一侧耳部开始,上下S型经鼻面部向另一侧耳部移动,然后向下采集下巴被遮挡部位的图像,最后回到开始的部位完

成扫描(单帧曲面范围90mm×70mm~180mm×140mm)。这样做的好处,一是不会遗漏采集部位;二是符合人脸面部结构特点,如果采用横向S 型扫描则要多次经过鼻翼两侧,这就增加了扫描难度;三是固定了采

集顺序,在预处理时可以快速找到需要修改或删除的某一帧或几帧图像。对耳朵、鼻翼两侧、下唇至下巴中间结构比较复杂的曲面,在采

集时,可以采取小角度变换扫描仪打光角度。对下巴的采集,可以将

扫描仪从下方尽量接近被采集人身体并向上打光,以减少由于遮挡形

成的空洞。因手持式3D扫描仪的便携特点(≤1kg),采集现场只要

具备交流电,在明视照度下即可进行操作,所以非常方便在非实验室

环境进行采集。

2对采集数据的预处理

采集到的原始数据是一个曲面帧集合,根据采集时间、帧速率的不同

包含400~1500个曲面帧数据。将这些数据合成一个完整的三维人脸图

像之前需要一系列的模型处理。主要包括:整体配准、光顺合成、补洞、小型对象过滤、简化网格以及纹理映射等步骤7,10。对于大部分

一次性采集完成且自动配准较好的数据,使用上述自动处理都能够取

得良好效果。但由于光照条件的细微变化、脸部皮肤的光滑程度不同,或者曲面结构相互遮挡等因素,一些模型自动处理的结果并不理想,

如图3左所示,自动配准造成了明显的裂纹。这不但会影响视觉效果,还对后期的深入应用造成干扰11。这就需要经过人工干预配准获得理

想的效果(见图3右)。

人工干预配准主要包括三个步骤:第一步要先找出自动配准不理想的

帧或帧集合,将其选取移出成为新的帧集合。如图4所示,计算机在

自动配准扫描图像时出现了较大的偏离(见图4左),这就要对偏离

的曲面进行人工筛选,生成新的帧集合(见图4右)。有的采集图像

可能包含多个曲面的图像,分离出不止一个帧集合,可根据具体的采

集结果分离出二个或二个以上的帧集合,每个帧集合应保持在一个连

续的曲面内且互相包含重合区域。第二步是在分离出的帧集合之间进

行特征对齐,即在需要拼合的两部分帧集合上标记多个特征比较明显

的相同部位(同名点),例如眼角、嘴角、耳廓、鼻尖、鼻翼等部位(见图5)。如果分离图像没有共同的明显的特征,也可以通过人工交互移动待配准的帧集合与参考帧集合尽量对齐重合,其重合精度主要

依赖人眼。第三步是自动拼接网格。如果把“特征对齐”理解为对分

离图像的“粗拼”,那么“拼接网格”即是对分离图像的“细拼”。

在自动拼接网格的基础上再“允许图像纹理拼接”,这样就得出人工

拟合后的三维图像,后续可以重复整体配准和光顺合成的过程,达到

更好的处理效果。另外,人工干预也可以通过删除个别帧图像以获取

较好的图像质量。例如图6就是通过删除单帧,来修补眨眼造成的闭

眼图像。

由于光照条件的变化或者扫描过程中偶然出现的不稳定移动,可能会

对采集的三维人脸图像质量造成影响,自动配准和人工干预后仍由此

可见会出现裂纹或者其他不理想的质量问题(约占5.3%)。这种情况

下可以通过2D/3D擦除、修补和光滑处理来改善,但是应尽量减少图

像插值的处理,以免改变或消除人脸面部皮肤的原始细节特征。除此

之外,对三维图像的编辑还包括坐标变换、数据擦除、网格简化等,

对纹理图像的编辑包括亮度/对比度调整、色调、色饱和度以及图像灰

度校正等。使用的3D扫描仪的帧速率为7.5fps,采集一个样本的平均耗时在80~110s之间。为了说明采集帧数与图像质量的关系,记录预

处理过程中的部分数据。按照“优质、良好、一般”将处理前后的图像质量评价为三个等级,并按照采集帧数分类得出以下数据关系。由此可见,采集图像在500~700帧范围内的三维人脸图像的质量最好,需要人工干预处理的样本数较少,平均处理的时间也较短。700~900帧的图像需要较多的人工干预,但是预处理后也可以得到较高的图像质量。900帧以上的图像采集质量较一般,但是经预处理后图像质量有较大幅度提高,只是处理耗时较长。而500帧以下的图像质量在预处理前后都很难获得高质量的图像效果。

三维人脸图像的数据采集

一种高速数据采集记录装置的设计

一种高速数据采集记录装置的设计 【摘要】文章介绍了一种基于Flash的高速数据采集记录装置的实现方案;文中采用了Flash高速存储技术与FPGA的二级缓冲技术,提高了存储速度,突破存储芯片的瓶颈,成功实现了数据存储速率与传输速率完美的匹配;同时通过设计合理的电路降低了存储模块的功耗,利用可靠的通信协议,有效保证了信号数据的可靠接收和存储。 【关键词】数据记录仪;Flash;高速存储 1.系统方案设计 本文设计的数据记录系统由以下几部分组成:两台完全相同的数据记录仪、一个地面综合测试台、上位机、配套软件以及配套电缆。主要用于记录由雷达系统产生的视频回波、图像及遥测三路LVDS高速信号。系统工作时,由雷达系统首先发来启动记录信号,使已处于采集状态的两台记录仪同时工作,二者互为备份。地面测试台产生的模拟信号供记录仪存储,同时可以控制记录仪进入不同的工作状态,通过内置的USB接口读取记录仪的数据;上位机通过USB电缆与地面测试台相接,对回读的数据进行分析,同时验证记录仪是否正常工作。 2.系统硬件设计 该系统采用隔离变压器隔离接收三路LVDS数据,使得隔离前后的电路没有电气连接特性,然后再将隔离后的信号传送给存储模块;经过存储模块的均衡、解串后传给FPGA中心控制器,最后存入两片Flash中。 遥测系统输出的三路数据都有各自的启动记录信号。当记录仪接收到启动控制信号,开始记录对应路的数据,并存储到相应的存储模块中。飞行试验完毕后,可以利用备用读数电缆,将各个存储模块中数据通过测试台上传至上位机中进行分析,以便对记录仪的存储功能进行验证。在飞行模式下记录仪的供电由雷达系统完成。 记录仪由三个存储模块和一个接口模块组成。存储模块主要接收遥测系统的视频回波、图像及遥测三路LVDS信号,并对其中的有效数据进行实时存储。该模块主要包括以下几个部分:中心逻辑控制芯片FPGA、配置芯片PROM、LVDS 电缆均衡器、LVDS解串芯片、存储芯片Flash、电源模块以及60MHz晶振等[1]。如图2.1所示: 接口模块主要包括LVDS高速读数接口、RS-422长线接口、视频及图像遥测雷达信号输入接口、各个存储模块的LVDS输入接口以及数据上传和指令下发接口。高速读数接口与地面测试台主控卡的相应接口连接,通过LVDS接口高速读取其中的数据;422长线接口通过双绞线电缆与地面测试台连接,主要实现记录仪与地面测试台之间的通信。

激光雷达高速数据采集系统解决方案

激光雷达高速数据采集系统解决方案 0、引言 1、 当雷达探测到目标后, 可从回波中提取有关信息,如实现对目标的距离和空间角度定位,并由其距离和角度随时间变化的规律中得到目标位置的变化率,由此对目标实现跟踪; 雷达的测量如果能在一维或多维上有足够的分辨力, 则可得到目标尺寸和形状的信息; 采用不同的极化方法,可测量目标形状的对称性。雷达还可测定目标的表面粗糙度及介电特性等。接下来坤驰科技将为您具体介绍一下激光雷达在数据采集方面的研究。 1、雷达原理 目标标记: 目标在空间、陆地或海面上的位置, 可以用多种坐标系来表示。在雷达应用中, 测定目标坐标常采用极(球)坐标系统, 如图1.1所示。图中, 空间任一目标P所在位置可用下列三个坐标确定: 1、目标的斜距R; 2、方位角α;仰角β。 如需要知道目标的高度和水平距离, 那么利用圆柱坐标系统就比较方便。在这种系统中, 目标的位置由以下三个坐标来确定: 水平距离D,方位角α,高度H。 图1.1 用极(球)坐标系统表示目标位置

系统原理: 由雷达发射机产生的电磁能, 经收发开关后传输给天线, 再由天线将此电磁能定向辐射于大气中。电磁能在大气中以光速传播, 如果目标恰好位于定向天线的波束内, 则它将要截取一部分电磁能。目标将被截取的电磁能向各方向散射, 其中部分散射的能量朝向雷达接收方向。雷达天线搜集到这部分散射的电磁波后, 就经传输线和收发开关馈给接收机。接收机将这微弱信号放大并经信号处理后即可获取所需信息, 并将结果送至终端显示。 图1.2 雷达系统原理图 测量方法 1).目标斜距的测量 雷达工作时, 发射机经天线向空间发射一串重复周期一定的高频脉冲。如果在电磁波传播的途径上有目标存在, 那么雷达就可以接收到由目标反射回来的回波。由于回波信号往返于雷达与目标之间, 它将滞后于发射脉冲一个时间tr, 如图1.3所示。 我们知道电磁波的能量是以光速传播的, 设目标的距离为 R, 则传播的距离等于光速乘上时间间隔, 即2R=ct r 或 2 r ct R

三维人脸识别算法综述_柳杨

第18卷增刊1 系统仿真学报?V ol. 18 Suppl.1 2006年8月Journal of System Simulation Aug., 2006 三维人脸识别算法综述 柳杨 (浙江科技学院信息学院, 浙江杭州 310023) 摘要:三维人脸识别与二维人脸识别相比,由于其不受视角、光照、姿势等因素的影响,越来越 受到研究者的关注。综述主要是对目前已有的三维人脸识别算法,并且指出了目前三维人脸识别存 在的一些问题。 关键词:人脸识别;三维;算法 中图分类号:TP391.9文献标识码:A文章编号:1004-731X (2006) S1-0400-04 Survey of 3D Face Recognition Algorithms LIU Yang (Zhejiang University of Science and Technology, Hangzhou 310023, China) Abstract: Researchers pay more attention to 3D face recognition, because comparing with 2D face recognition it’s not affected by factors such as viewpoint, illumination, pose etc. This survey focuses on the relevant algorithms on 3D face recognition, and points out the challenges in 3D face recognition. Key words: face recognition; 3D; algorithms 引言 生物识别(Biometrics)技术目前越来越受到研究者的关注。手写识别是比较老的生物识别技术。人脸识别和指纹识别的研究也有比较长的一段历史了。最近,声音识别、步态识别、视网膜识别、虹膜识别以及三维人脸识别也发展比较快。 相比二维人脸识别而言,三维人脸识别具有不受视点、光照和表情等因素影响的优点,本文主要对三维人脸识别的算法做一个综述。 1 三维人脸识别算法 1.1Minimum Distance最小距离法 将与测试样本最近邻样本的类别作为决策的方法称为最近邻法。 Lao[11]利用从立体图像创建稀疏深度图来进行三维人脸识别。利用等亮度轮廓线进行立体匹配。利用等亮度轮廓线和2d边缘查找虹膜。利用虹膜的位置查找其它的特征点位置从而进行姿势标准化处理。当数据被转化成规范的数据后就可以利用相应点间的最近平均差分进行识别。 Cartoux[5]进行三维人脸识别的方法是,首先基于主曲率分割一个范围图片,并找到通过脸的双边对称平面用来对姿势进行归一化。 Beumier和Acheroy[3]利用3D和2D数据的加权相似测 收稿日期:2006-01-30 修回日期:2006-05-31 作者简介:柳杨(1978-), 女, 湖北武汉人, 助教, 硕士, 研究方向为计算机图形学, 虚拟人技术。量和进行多模态的识别。他们在3D和2D人脸中均使用一个中轴轮廓线和一个横向轮廓线,这样得到四个分区,利用加权相似矩阵和来进行三维人脸的识别。他们使用测试的数据库中包含有100个人, 每个人有几种不同姿势的照片。在这个试验中使用了图库中27人的照片和一个29人的搜索集,错误率低于1.4%。大体上说多模态的3D+2D识别比单纯的3D识别或2D识别要好。 Xu[31]使用了Beumier的图库。原始的3D点云被转化为正常网格。鼻子首先被找到,并作为一个锚点用来寻找其他的局部区域。从嘴、鼻子、左眼和右眼局部区域的数据中计算特征向量。特征空间的维度通过主成分分析降维。利用全局和局部形状成分,基于最近领域法进行配准。 1.2Correlation关联算法 每个三维模型都有一个扩展高斯球(EGI)与之对应。EGI记录了面片法向落入全空间各个方向的多边形面积大小。一般用一组向量来表示某个三维模型对应的EGI 特征:每个向量的长度正比与每个面片的面积,方向平行于面片的法向,将这些向量平移到坐标原点,形成一种球坐标系的下的矢量分布,构成了三维模型EGI 的向量表示。 Tanaka[27]对非多边形物体利用主曲率而不是面法线进行分割,利用扩展高斯球表征脸,利用EGI的球面相关性进行三维人脸的识别。 Lee和Milios[12]基于均值和高斯曲率的符号分割距离图像中的凸起,给每一个凸起区创建扩展高斯球。通过关联扩展高斯球对搜索图片和图库图片进行配准。扩展高斯球利用通过物体表面的表面法线分布状态来描述物体的形状。利用

高速数据采集系统设计

高速数据采集系统 设计

基于FPGA和SoC单片机的 高速数据采集系统设计 一.选题背景及意义 随着信息技术的飞速发展,各种数据的实时采集和处理在现代工业控制和科学研究中已成为必不可少的部分。高速数据采集系统在自动测试、生产控制、通信、信号处理等领域占有极其重要的地位。随着SoC单片机的快速发展,现在已经能够将采集多路模拟信号的A/D转换子系统和CPU核集成在一片芯片上,使整个数据采集系统几乎能够单芯片实现,从而使数据采集系统体积小,性价比高。FPGA为实现高速数据采集提供了一种理想的实现途径。利用FPGA高速性能和本身集成的几万个逻辑门和嵌入式存储器块,把数据采集系统中的数据缓存和控制电路全部集成在一片FPGA芯片中,大大减小了系统体积,提高了灵活性。FPGA 还具有系统编程功能以及功能强大的EDA软件支持,使得系统具有升级容易、开发周期短等优点。 二.设计要求 设计一高速数据采集系统,系统框图如图1-1所示。输入模拟信号为频率200KHz、Vpp=0.5V的正弦信号。采样频率设定为25MHz。经过按键启动一次数据采集,每次连续采集128点数据,单片机读取128点数据后在LCD模块上回放显示信号波形。

图1-1 高速数据采集原理框图 三.整体方案设计 高速数据采集系统采用如图3-1的设计方案。高速数据采集系统由单片机最小系统、FPGA最小系统和模拟量输入通道三部分组成。输入正弦信号经过调理电路后送高速A/D转换器,高速A/D 转换器以25MHz的频率采样模拟信号,输出的数字量依次存入FPGA内部的FIFO存储器中,并将128字节数据在LCD模块回放显示。 图3-1 高速数据采集系统设计方案 四.硬件电路设计 1.模拟量输入通道的设计 模拟量输入通道由高速A/D转换器和信号调理电路组成。信号调理电路将模拟信号放大、滤波、直流电平位移,以满足A/D转换器对模拟输入信号的要求。

人脸识别技术的主要研究方法

1、绪论 人脸识别是通过分析脸部器官的唯一形状和位置来进行身份鉴别。人脸识别是一种重要的生物特征识别技术,应用非常广泛。与其它身份识别方法相比,人脸识别具有直接、友好和方便等特点,因而,人脸识别问题的研究不仅有重要的应用价值,而且在模式识别中具有重要的理论意义,目前人脸识别已成为当前模式识别和人工智能领域的研究热点。本章将简单介绍几种人脸识别技术的研究方法。 关键词:人脸识别 2、人脸识别技术的主要研究方法 目前在国内和国外研究人脸识别的方法有很多,常用的方法有:基于几何特征的人脸识别方法、基于代数特征的人脸识别方法、基于连接机制的人脸识别方法以及基于三维数据的人脸识别方法。人脸识别流程图如图2.1所示: 图2.1人脸识别流程图 3、基于几何特征的人脸识别方法 基于特征的方法是一种自下而上的人脸检测方法,由于人眼可以将人脸在不此研究人员认为有一个潜在的假设:人脸或人脸的部件可能具有在各种条件下都不会改变的特征或属性,如形状、肤色、纹理、边缘信息等。基于特征的方法的目标就是寻找上述这些不变特征,并利用这些特征来定位入脸。这类方法在特定的环境下非常有效且检测速度较高,对人脸姿态、表情、旋转都不敏感。但是由于人脸部件的提取通常都借助于边缘算子,因此,这类方法对图像质量要求较高,对光照和背景等有较高的要求,因为光照、噪音、阴影都极有可能破坏人脸部件的边缘,从而影响算法的有效性。 模板匹配算法首先需要人TN作标准模板(固定模板)或将模板先行参数化(可变模板),然后在检测人脸时,计算输入图像与模板之间的相关值,这个相关值通常都是独立计算脸部轮廓、眼睛、鼻子和嘴各自的匹配程度后得出的综合描述,最后再根据相关值和预先设定的阈值来确定图像中是否存在人脸。基于可变模板的人脸检测算法比固定模板算法检测效果要好很多,但是它仍不能有效地处理人脸尺度、姿态和形状等方面的变化。 基于外观形状的方法并不对输入图像进行复杂的预处理,也不需要人工的对人脸特征进行分析或是抽取模板,而是通过使用特定的方法(如主成分分析方法(PCA)、支持向量机(SVM)、神经网络方法(ANN)等)对大量的人脸和非人脸样本组成的训练集(一般为了保证训练得到的检测器精度,非人脸样本集的容量要为人脸样本集的两倍以上)进行学习,再将学习而成的模板或者说分类器用于人脸检测。因此,这也是j 种自下而上的方法。这种方法的优点是利用强大的机器学习算法快速稳定地实现了很好的检测结果,并且

主动式光学三维成像技术

万方数据

万方数据

万方数据

万方数据

主动式光学三维成像技术 作者:周海波, 任秋实, 李万荣 作者单位:上海交通大学激光与光子生物医学研究所,上海,200030 刊名: 激光与光电子学进展 英文刊名:LASER & OPTOELECTRONICS PROGRESS 年,卷(期):2004,41(10) 被引用次数:6次 参考文献(23条) 1.Noguchi M;Nayar S K Microscopic shape from focus using active illumination[外文会议] 1994(01) 2.Cohen F S;Patel M A A new approach for extracting shape from texture,Intelligent Control,1990 1990 3.Nayar S K;Watanabe M;Noguchi M Real-time focus range sensor[外文期刊] 1996(12) 4.Ghita O;Whelan P F A bin picking system based on depth from defocus[外文期刊] 2003(04) 5.POSDAMER J L;Altschuler M D Surface measurement by space-encoded projected beam systems[外文期刊] 1982(01) 6.WOODHAM R J Photometric method for determining surface orientation from multiple images 1980(01) 7.Miyasaka T;Kuroda K;Hirose M High speed 3-D measurement system using incoherent light source for human performance analysis 2000 8.Carrihill B;Hummel R Experiments with the intensity ratio depth sensor 1985 9.Maruyama M;Abe S Range sensing by projecting multiple slits with random cuts[外文期刊] 1993(06) 10.Caspi D;Kiryati N;Shamir J Range imaging with adaptive color structured light[外文期刊] 1998(05) 11.Horn E;Kiryati N Toward optimal structured light patterns[外文期刊] 1999(02) 12.Rocchini C;Cignoni P;Montani M A low cost 3D scanner based on structured light 2001(03) 13.Inokuchi S;Sato K;Matsuda F Range imaging system for 3-D object recognition 1984 14.Horn B K P;Brooks M Shape from Shading 1989 15.Schubert E Fast 3D object recognition using multiple color coded illumination[外文会议] 1997 16.Pulli K Acquisition and visualization of colored 3D objects[外文会议] 1998 17.Sato K;Inokuchi S Three-dimensional surface measurement by space encoding range imaging 1985(02) 18.Daniel Scharstein;Richard Szeliski High-Accuracy Stereo Depth Maps Using Structured Light[外文会议] 2003 19.Batlle J;Mouaddib E;Salvi J Recent progress in coded structured light as a technique to solve the correspondence problem: a survey[外文期刊] 1998(07) 20.Yoshizawa T The recent trend of moiremetrology 1991(03) 21.Li Zhang;Curless B;Seitz S M Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming[外文会议] 2002 22.Sato T Multispectral pattern projection range finder 1999 23.EL-Hakim S F;Beraldin J A;Blais F A Comparative Evaluation of the Performance of Passive and Active 3-D Vision Systems 1995 本文读者也读过(2条) 1.欧阳俊华.OUYANG Jun-hua近距离三维激光扫描技术[期刊论文]-红外2006,27(3)

人脸识别及通道闸标准技术方案

智能人行通道闸系统 设计方案 科技有限公司 Bjing Partsonline Technology CO.Ltd.

一、概述 三辊闸、摆闸、翼闸是人行通道的现代化控制设备,用于人员出、入口需要进行控制的地方,如智能小区、饭堂、宾馆、博物馆、体育馆、俱乐部、地铁、车站、码头等场所。三辊闸、摆闸、翼闸的使用可以使人流井然有序。 三辊闸、摆闸、翼闸与智能卡、指纹、条码等身份识别系统设备结合使用,便构成智能门禁通道控制系统;它与计算机、门禁、考勤、收费管理、门票系统等软件结合使用,便构成智能通道闸综合管理系统,可以实现门禁、考勤、消费、售票、限流等功能。 本通道闸管理系统是智能一卡通系统的一部分,设置于小区、工厂、智能大厦、食堂等通道处,可以完成员工持卡通行管制、上下班考勤、就餐等各种管理功能。 ●系统运行环境 安装环境为大型现代化智能小区,要求针对小区大门处的进出人员进行管理,同时方便手推车人员的进出控制。 要求小区人员进出必须刷卡,经系统自动验证后方可进出,系统可自动记录人员进出资料及时间,方便统计查询。 ●设计思路 根据现场的要求,结合本公司多年的智能小区系统设计经验,设计采用智能通道闸结合射频卡技术,实现人员进出刷卡通行。 计划在小区大门处出入口各设一台智能摆闸1台,双向进出控制,即美观豪华又起到人员进出控制的功能。 系统配合智能卡身份验证设备,该设备全部内置安装,并与管理电脑联网,系统可对进出人员进行24小时监控管理,并方便将来的维和护扩展。 本系统主要包括:前端智能通道闸,前端内置身份识别系统设备,中间通讯及管线设备,后台软件及管理发卡系统,后台电脑及打印设备(自配)等几部分。 系统设计主要依据工程建设的总要求,利用现代计算机网络通信及大型数据库为技术基础,基于Windows管理平台建立统一的大楼“一卡通”综合管理系统。在系统设计时,硬件设备的选择和物理链路的建立尽量考虑了目前最先进和通用的设备、最大程度上保证了系统工程建设的后续可维护性和相当长的一段时期内的先进性。 从可靠性和安全性设计出发,考虑系统功能时采用模块化的设计方法,每个子系统的软硬件保持较大的冗余度。模块化的设计便于根据工程需要量体裁衣,保证系统资源的充分利用,又保证了系统的开放性和可扩展性,并且整个系统可作为一个子系统,通过中心服务器成为Internet的一个节点与其它系统可方便地进行数据交换。冗余度使系统运行于一个较为宽松的环境,确保系统在要求不高的环境条件下正常运行,某部分出现问题而不会影响其它子系统的正常运行,即使在网络电缆某处有断损时,系统仍可继续工作并告警。 1.1 系统设计原则 GB4706.1-1998家用和类似用途电器的安全通用要求; GB/T14536.1-1998家用和类似用途电自动控制器通用要求; GB/T14536.13-1996家用和类似用途电自动控制器电动门锁的特殊要求的规定; ISO 10536和ISO 15693国际标准

3D立体成像技术简介

3D立体成像技术简介 3D立体成像技术其实并不是一个新鲜事物。如果从时间上看,3D立体成像 技术早在上个世纪中叶就已经出现,比起现在主流的的液晶、等离子这些平板 显示技术,历史更加悠久。 那么现在的3D电视,到底使用了哪些方式来实现所谓的“全高清无闪烁”的立体影像呢? 色差式3D 历史悠久缺点最多 首先我们看看最早出现的也是最容易实现的一种3D立体成像技术:色差式 3D成像技术。 从技术层面上看色差式3D立体成像是比较简单的一种方法,这种3D成像 只需要通过一副简单的红蓝(或者红绿)眼镜就可实现,硬件成本不过几元钱。显示设备方面也无需额外的升级,现有的任何显示设备都可以直接显示。 色差式3D立体成像技术的原理是将两张不同视角上拍摄的影像分别以两种不同的颜色印制在同一副画面中,如果不戴眼镜,我们只能看到色彩重合的模 糊图像。但是戴上眼镜后,左右眼不同颜色的镜片分别过滤了对应的色彩,只 有红色的影像通过红色镜片蓝色通过蓝色镜片,最终两只眼睛看到的不同影像 在人脑中重叠产生了立体效果。 色差式3D立体成像原理简单,能达到的3D景深效果也还算不错。不过由 于采用的色度分离方式会给观看者带来比较严重的视觉障碍,舒适感始终不能 让人满意,同时画面的色彩还原效果也一直在较低的水准徘徊,这就导致了它 很难成为3D立体显示技术中的主流。 偏光式3D 影院主流家庭不易实现 在3D电视大量出现之前,3D影院其实已经进入我们的生活很长一段时间。而在3D影院之中最为常见的,就是偏光式3D技术。 偏光式3D技术主要利用偏振光分离技术实现3D立体成像。观看者通过佩 戴偏振眼镜,左右眼镜片就分别过滤掉不同偏振方向的光线,从而实现了左右 眼画面的分离。 影院方面在具体实施的时候主要有两种方式:双机3D和单机3D。双机3D 多用在IMAX 3D影院中,通过使用两台投影机,分别透射偏振方向不一样的左 右眼画面。单机3D相对简单,主要通过但抬头迎和快速切换的偏振器来分别高速切换左右眼画面,最终再通过偏振眼镜进行左右眼画面的分离。

高速数据采集技术发展综述

高速数据采集技术发展综述 摘要:高速数据采集系统广泛应用于军事、航天、航空、铁路、机械等诸多行业。区别于中速及低速数据采集系统,高速数据采集系统内部包含高速电路,电路系统1/3以上数字逻辑电路的时钟频率>=50MHz;对于并行采样系统,采样频率达到50MHz,并行8bit以上;对于串行采样系统,采样频率达到200MHz,目前广泛使用的高速数据采集系统采样频率一般在200KS/s~100MS/s,分辨率16bit~24bit。本篇文章主要简单介绍高速数据采集技术的发展,高速数据采集系统的结构、功能、原理、实现形式以及一些主要的应用。 关键词:高数数据采集系统、系统结构、系统原理、系统功能、实现形式、应用举例。 引言:高速数据采集技术在通信、航天、雷达等多个领域中广泛应用。随着软件无线电、通信技术、图像采集等技术的发展,对数据采集系统的要求越来越高,不仅要求较高的采集精度和采样速率,还要求采集设备便携化、网络化与智能化,并且需要将采集信息稳定的传输到计算机,进行显示与数据处理。同时,以太网协议已经成为当今局域网采用的最通用的通信协议标准。在嵌入式领域中,将以太网协议与数据采集系统相结合,形成局域网,实现方便可靠的数据传输与控制,是当前的研究热点。 1. 高速数据采集的发展 数据采集系统起始于20世纪50年代,由于数据采集测试系统具有高速性和~定的灵活性,可以满足众多传统方法不能完成的数据采集和测试任务,因而得到了初步的认可。到了70年代中后期,在数据采集系统发展过程中逐渐分为两类,一类是实验室数据采集系统,另一类是工业现场数据采集系统。就使用的总线而言,实验室数据采集系统多采用并行总线,工业现场数据采集系统多采用串行数据总线。随着微型机的发展,诞生了采集器、仪表等同计算机融为一体的数据采集系统。由于这种数据采集系统的性能优良,超过了传统的自动检测仪表和专用数据采集系统,因此获得了惊人的发展他3。随着计算机的普及应用,数据采集系统得到了极大的发展,基于标准总线并带有高速DSP的高速数据采集板卡产品也越来越多,技术先进、市场主流的厂商主要有Spectrum Signal Processing,SPEC,Signatec,Acquisition Logic,Blue Wave等公司 2001年Acquisition logic公司推出了基于PCI总线,采样率为500MS/s,1GS/s的8bit数据采集板卡AL500和AL51G,它的存储深度分别为64MB,256MB和1000MB三种。PCI 总线为主模式,数据宽度32bit,时钟频率33MHz,在突发模式下传输速率可达到133MB /s。两种板卡还同时具有数字信号处理功能:通过板卡上的现场可编程门阵列FPGA来实

一种高速数据采集系统的研究

第31卷第5期 唐山师范学院学报 2009年9月 Vol. 31 No. 5 Journal of Tangshan Teachers College Sep. 2009 ────────── 收稿日期:2008-12-12 作者简介:李洋(1982-),男,河北衡水人,唐山师范学院基础教育部教师。 -66- 一种高速数据采集系统的研究 李 洋,郭小松 (唐山师范学院 基础教育部,河北 唐山 063000) 摘 要:由于高速数据采集对信号完整性、信号干扰、高速布线及数据处理和高速实时存储要求极高,而其应用环境又往往非常复杂,所以在目前的实际应用中,很难实现一种既能进行长时间高速数据采集、又能进行大容量存储的数据采集系统。在此背景下,提出了一种高速数据采集及存储的解决方案,采用高速FPGA 加嵌入式微处理器作为中央处理器来进行高速数据传输和磁盘阵列数据存储,实现高速数据采集及大容量实时存储。 关键词:数据采集;模数转换;海量存储;RAID0 中图分类号: T N919.5 文献标识码:A 文章编号:1009-9115(2009)05-0066-03 Study of High-Speed Data Acquisition and Storage System LI Yang, GUO Xiao-song (Department of Foundation Education, Tangshan Teachers College, Tangshan Hebei 063000, China) Abstract: Because of the extreme requirements of signal integrity, noise jamming, high-speed layout, high-speed real-time storage and the complex application environments, it is very difficult to realize a high-speed data acquisition system which is suitable for long-time data acquisition and mass storage. Against this background, a solution of high-speed data acquisition and storage system is introduced in this thesis, which is using of high-speed FPGA and embedded microprocessors as the central processing device for high-speed data transfer and data storage of redundant array of inexpensive disks , realized on-time data acquisition and mass storage. Key words: data acquisition; A/D convert; mass storage; RAID 现代工业生产和科学研究对数据采集的要求日益提高,在雷达、声纳、软件无线电、瞬态信号测量等一些高速、高精度的测量中,需要进行高速数据采集。目前,数据采集系统在高速A/D 、D/A 器件发展的带动下,采集带宽在稳步提高,具有100MSPS 采集能力以上的高速数据采集系统产品己较成熟。然而国外厂商的高速采集系统往往都价格不菲,而且由于高速数据采集对信号完整性、信号干扰、高速布线及数据处理和高速实时存储要求极高,国内完全掌握这个技术的厂商并不多,所以在实际应用中,很难找到一种满足需要的高速采集系统。这种情况长期限制了高速数据采集技术在我国工业生产和科学研究中的应用。 在这样的背景下,本文提出一种高速数据采集与实时存储系统的解决方案,解决以往在高速技术、数据存储与传输技术等方面的几个技术难点,采用FPGA 作为核心器件,集成中央逻辑控制及硬盘接口,直接将高速数据存入有多块硬 盘组成的实时RAID 存储系统中,实现了高速采集和实时存储,并可脱机运行。这种方案成本低廉,能提高采集速度,增加系统可靠性,并大大提高可持续采集时间,具有较大的灵活性。 1 总体系统方案硬件设计 高速数据采集系统的主要目的是把采集到的模拟信号转化为数字信号,所以模拟信号进入数据采集系统的第一步就是通过AD 采集电路进行模数转换;采集到的数据为了以后研究调用,就需要存储到存储器中,所以系统的最后一步是使用高速海量存储器对数据进行存储;系统的启动、停止和数据传输的方式还需要使用中央逻辑控制电路,所以在AD 采集电路与高速海量存储器之间增加中央逻辑控制电路来作为AD 采集电路与高速海量存储器之间的桥梁;系统通过人机接口与PC 机连接,可以对数据采集系统进行调试,还方便调用存储数据进行研究测试,并实现

3d成像技术

3D 成像技术 人眼之所以观察到世界具有立体感,是因为人长有两只眼睛,当我们观察事物的时候,两只眼睛所造成的视差位移经过大脑的分析,就会区分出物体距离的远近,因而产生出强烈的立体感。物体离双眼越近,其上每一点对双眼的张角越大,视差位移也越大。相应地,当物体离眼睛很远时,由于视差位移几乎为零,就不会产生明显的立体感。 基于这种原理,人们利用两台并列的摄像机,便可以拍摄出两条带有水平视差的影像画面,实施画面的3D记录。 但实际上,3D画面的还原要比3D画面的拍摄要难得多,特别是要求低成本,高质量,而且便捷的方式。因此,有了下面要介绍的多种3D放映技术的出现。 (一)偏振分光技术 偏振分光技术多为电影院所采用,原理是在两台放映几前分别覆盖相互正交的偏振片,利用线偏振光经屏幕反射后偏振性质不改变,因此只要观众的左右眼分别戴有一双相互正交的偏振片,即可分别接受两台放映机所放出的带有视差位移的光线,实现产生立体视觉的效果。但这种方式的缺点是当观众的头部有偏向的时候,两种光线会有不同程度的掺杂,直接影响视觉效果。 鉴于此,后来人们利用圆偏振光取代线偏振光。用1/4波片+偏振片,制成左旋或右旋的圆偏振片,来代替本来单纯的线偏振片。这样做的好处是当观众的头部取向不同时,两偏振光仍保持各自的独立性。 此外,流行的还有IMAX立体电影,具体说就是利用一次性的偏振薄膜制成的大尺寸眼镜观看电影。由于眼镜尺寸的增大,观影的时候边缘不会有聚焦不清的感觉。而且,观影时观众也不需要脱下平时的眼镜,或改用隐形眼镜。 虽然偏振分光技术是当前3D放映技术中效果最好的手段,但也有其缺点,偏振镜片的成本不菲,偏振分光技术应用范围窄,放映系统成本高,只适于大型影院。 (二)红蓝滤光技术(光谱分光技术) 当观众看电影时需要带一个红蓝滤光眼镜,此时左放映机的画面通过红色镜片(左眼),拍摄时剔除掉的红色像素自动还原,当它通过蓝色镜片(右眼)时大部分被过滤掉,只留下非常昏暗的画面,这就很容易被人脑忽略掉;反之亦然,右放映机拍摄到的画面通过蓝色镜片(右眼),拍摄时剔除掉的蓝色像素自动还原,产生另一角度的画面,当它通过红色镜片(左眼)时大部分被过滤掉,只留下昏暗画面。这两个角度的画面经过滤光镜之后依然是偏色的,但当人眼传递给大脑后,又会被自动合成从而生成接近原始色彩的立体画面。 从整体的使用感受中来看,3D立体效果还是非常明显的,但是缺点也非常明显,毕竟这仅仅是通过对两种颜色的过滤实现的效果,无法避免的偏色让这种3D的效果大打折扣,而且如果立体位移较大的话,人脑就无法将两幅偏色的画面自动合成了,这样会导致立体感丧失。而且,红蓝滤光技术需要与放映机匹配的眼镜。

基于FPGA的高速图像采集系统设计.

基于FPGA的高速图像采集系统设计 引言 在低速的数据采集系统中,往往采用单片机或者DSP进行控制;而对于图像采集这种高速数据采集的场合,这种方案就不能满足需要。因此这种方案极大浪费了单片机或DSP的端口资源且灵活性差;若改用串口方式收集数据,则一方面降低了数据采集的速度,另一方面极大地耗费CPU的资源。本系统采用FPGA作为数据采集的主控单元,全部控制逻辑由硬件完成,速度快、成本低、灵活性强。为了增加缓冲功能,系统在FPGA外扩展了256Mb的RAM,不仅增大了缓冲区容量,而且极大地降低了读写频率,有效地减轻了上位机CPU的负担。在图像数据接口中,比较常见的是VGA、PCI—Express,而这些接口扩展性差、成本高。本系统采用高速的USB接口作为与上位机通信的端口,速度快、易安装、灵活性强。 1 系统框图 系统框图如图1所示。FPGA控制单元采用A1tera公司Cyclone II系列的EP2C5F256C6,主要由4个部分组成——主控模块、CMOS传感器接口、RAM 控制器以及EZ—USB接口控制器。传感器接口负责完成SCCB时序控制,RAM控制器用于实现RAM读写与刷新操作的时序,USB接口模块完成主控模块与EZ—USB之间的数据读写;而主控模块负责对从EZ—USB部分接收过来的上位机命令进行解析,解析完命令后产生相应的信号控制各个对应模块,如CMOS传感器传输的图像格式、RAM的读写方式、突发长度等。 2 OV7620模块设计 图像传感器采用OV7620,接口图如图2所示。该传感器功能强大,提供多种数据格式的输出,自动消除白噪声,白平衡、色彩饱和度、色调控制、窗口大小等均可通过内部的SCCB控制线进行设置。OV7620属于CMOS彩色图像传感器。它支持连续和隔行两种扫描方式,VGA与QVGA两种图像格式;最高像素为664×492,帧速率为30fps;数据格式包括YUV、YCrCb、RGB三种。 0V7620支持SCCB设置模式和自动加载默认设置模式,其选择由SCCB控制。本系统只需要支持SCCB模式,因此在设计的时候将SBB接地。上电后FP—GA通过SCCB总线对OV7620进行设置,系统也可接受上位机发过来命令,设置其工作模式。SCCB总线时序类似于I2C总线时序,SIO一O相当于SDA,SIO一1相当于SCL。OV7620工作于从模式,在写寄存器的过程中先发送OV7620的ID地址,然后发送写数据的目的寄存器地址,最后发送要写入的数据。 OV7620功能寄存器的地址为0x00~0x7C,通过设置相应的寄存器,可以使它工作于不同的模式。例如,设置OV7620为连续扫描、RGB原始数据16位输出方式,需要设置寄存器0x12、Oxl3、Ox20、Ox28分别为OX2D、0x01、Ox02、0x20。另外,图像输出的关键问题是帧同步,VO7620传感器中VSYNc、

3D模型的多姿态人脸识别

3D 模型的多姿态人脸识别 张小平,李夏忠,刘志镜 (西安电子科技大学计算机信息应用研究中心 陕西西安 710071) 摘 要:多姿态人脸识别是当前人脸识别中的难点,识别率普遍不是很高。本文提出了一种利用正面、侧面照片建立起三维虚拟人脸模型,然后对待识别照片进行角度估计,把模型库中的每一个3D 模型在该角度附近进行多次投影,搜索出与待识别照片相似度最高的照片。这种方法可以有效的提高人脸识别率,增强人脸识别系统的鲁棒性。 关键词:人脸识别;三维模型;多姿态;角度计算 中图分类号:T P 36811 文献标识码:B 文章编号:1004373X (2003)1405904 Pose var ied Face Recogn ition Ba sed on 3D m odel ZHAN G X iaop ing ,L I X iazhong ,L I U Zh ijing (Computer Info r m ati on R esearch Center ,X idian U niversity ,X i ′an ,710071,Ch ina ) Abstract :Po se varied Face R ecogn iti on is a nu t of face recogn iti on and has a low rati o of recogn iti on at p resen t 1A w ay is p resen ted by bu ilding the 3D virtual person model u sing fron t and side face pho to and then m ak ing the p ro jecti on of the each 3D model near the ro tating angle esti m ated by the unknow n pho to fo r m any ti m es and finding ou t the si m ilar pho to 1R ecogn iti on rati o can be raised effectively and system ′s robu st is increased also by th is m ethod Keywords :face recogn iti on ;3D model ;po se varied ;angle reckon 收稿日期:20030422 1 引 言 近年来,随着自动身份验证、视觉监视系统等应用领域的需求,计算机人脸识别技术受到了广泛的重视。但目前大多数研究集中在正面人脸图像的识别上,然而图像中人脸的姿态不一定是固定的,研究多姿态人脸识别是非常必要的。在这方面,B eym er 等采用引 入虚视点的方法,即将二维的图像和三维的人脸模型相结合,对多姿态的人脸图像进行识别,用这种方法进行识别计算非常复杂[1]。另外,L ades 等采用弹性匹配技术识别不同姿态的人脸[2],这种方法要求较为准确地定位特征,但是人脸通常缺乏足够的纹理信息难以满足这一要求。当前,处理人脸多姿态识别主要有3种方法:一是利用多姿态人脸数据库,通过定位两个 瞳孔点的位置加以配准,再对配准后特定姿态的人脸进行识别,这种方法需要很大的人脸数据库;二是利用与姿态无关的信息进行识别,如肤色模型,这种方法识别率不是很高;三是利用人脸三维几何特征进行识别,但对人脸旋转角度有限制。本文采用建立人脸的三维虚拟模型的方法对人脸进行识别,可以有效地 解决上述问题。2 三维虚拟人脸建模 本文采用从固定拓扑的一般人头模型变形的建模方法,由于人类面部特征的位置、分布基本上是一样的,特定人脸的模型可以通过对一个原始模型中特征和其他一些网格点位置进行自动或交互式的调整(保持拓扑不变)得到。为了使标准人脸网格体在形状上与特定人相吻合,在特征细节上仍需进一步地调整与修改。如果采用自动拟合方法,问题将转化为模式匹配问题,具体做法不在此讨论。自动拟合方法虽然自动化程度高,但计算时间长,而且由于噪声的影响,结果常常不是很理想。如果采用人机交互进行拟合,先将标准人脸图像的网格重叠到特定人的人脸图像上,然后利用鼠标拉动网格点使得标准人脸图像的眼眉、嘴、牙等主要对应部分尽可能地匹配,就可以使人脸模型更精确。 211 特定人脸3D 网格模型的建立 这里采用的是人机交互方式,系统的内部有一个原始的人头模型,以后所有特定模型的建立都是基于这个原始模型。假定包含整个原始模型的最小的立方体的高、宽、深度分别为h ,w ,d ,单位是象素点。可按 9 5

立体全息成像技术原理

OFweek光学网讯:全息摄影又称全像摄影(Holography),是光学上极富诱惑的一项技术。我们都有这样的体会,洒在马路的油膜在阳光下会呈现出多种色彩,而在吹起的肥皂泡上也会看到同样的情况,原因是由于肥皂泡两个面的反射光出现了干涉,称光的薄膜干涉现象。光是摄影的生命,而光有很多的特性,如色散和散射,有经验的摄影师可以充分利用这些现象变有害为有利,从而为作品添加一些新奇的效果。照相机镜头是由多组透镜合成的,为避免光在透镜表面的反射损失,人们发明出镜头的镀膜技术,使一定波长的光在反射时相互抵消,以增加进入镜头的光线使成像更清晰。同样,人们利用光波的干涉特性研究出了具有立体效果的全息摄影技术。全息摄影曾一度是科学家进行科研的专利技术,现在普通人经过一定的学习也可以掌握了,如普遍用于信用卡或图书封面的仿伪卡,那是一种立体显像的东西,在阳光下显示着五光十色的反射光。 “全息”这一词我们会感想到很熟悉,联想到耳针中的人体全息图。人耳是人体的一个缩影,上面对应人体各个器官,从这里人们进一步研究出人体的任何一局部都有整个身体的信息,所以称全息图,了解这点对全息摄影也就容易理解了。 全息摄影与普通摄影的区别 一、什么是光的干涉现象 在物理课的力学中我们做过水波的干涉实验,而根据光的波动特性,人们也成功地观察到了光波的干涉与衍射现象。为得到频率相同的二条光线,让光从一个狭缝中同时射向第二屏的两个小孔,两束光在屏后出现了干涉条纹,条纹的出现是因为二束光的波峰与波谷会由于叠加时(同相)光加强,相互抵消时(反相)光减弱。这一现象使美国麻省理工学院的物理学家Stephen Benton发现其后面隐藏着一项高科技,从而对这项技术做出进一步的研究。 二、全息图像的特点 有关全息的原理在1947年就已由英国物理学家丹尼斯伽柏提出了,科学家本人也因此获得了诺贝尔奖。在全息影像拍摄时,记录下光波本身以及二束光相对的位相,位相是由实物与参考光线之间位置差异造成的,从全息照片上的干涉条纹上我们看不到物体的成像,必须使用具有凝聚力的激光来准确瞄准目标照射全息片,从而再现出物光的全部信息。一个叫班顿的人后来又发现了更为简便使用白光还原影像的方法,从而使这项技术逐渐走向实用阶段。美国《国家地理杂志》第一次使用白色光全息片贴在封面时,销售量由一千万份增加到再版后的一千六百万份。这一技术后由美国传到欧洲和其它国家,广泛用于信用卡等仿伪技术。激光全息摄影技术也随之风靡全世界。 全息摄影是利用激光光波的干涉将影像与再现影像记录下来的一种摄影,它与一般的立

相关主题