搜档网
当前位置:搜档网 › 天文科学小知识银河系太阳系火星

天文科学小知识银河系太阳系火星

天文科学小知识银河系太阳系火星

天文科学小知识银河系太阳系火星

许许多多的恒星合在一起,组成一个巨大的星系,其中太阳系所在的星系叫银河系。银河系像一只大铁饼,宽约8万光年,中心厚约1.2万光年,恒星的总数在1000颗以上。

天文摄影后期入门教程天文入门资料、教程、知识

天文摄影后期入门教程 阅读提示:本文使用蓝色文字做为章节标识,红色文字做为重点标识,黑色加粗文字为软件菜单的原文。 行星摄影后期 行星叠加: 行星摄影后期的第一步就是进行叠加处理,叠加软件只能打开没有压缩过的无损视频文件,普通数码相机拍的视频文件都是压缩过的,即使解压后能被叠加,细节也会损失很多!AutoStakkert2是很专业的天文叠加软件,这个软件的界面非常简单。1)Open打开文件。选择Surface(面)或Planet(行星)模式。月面、日面和深空的片子选Surface,木星、土星这类行星的片子选择Planet。然后根据片子的质量选择Noise Robust(噪声强度),点右侧那两个小箭头(↑/↓)进行设置,2是质量最好,3~5是质量一般,6~8是对焦不好(晕,对焦不好还叠什么啊!)。2)Analyse分析。分析完成后进行叠加参数的设置,主要是生成文件类型、叠加比例、保存目录、放置对齐网格这些,下图标有部分操作说明。Drizzle 这一项是用来放大图片的,这个功能适用于品质较好的片子,1.5X就相当于放大1.5倍,如果片子的品质不好则可能发生画片撕裂的现象,请大家酌情使用。3)Stack叠加,这一步真没什么好说的了,一个字‘等’! 行星后期: 因为叠加只是把很多细节堆积在一起,叠加出来的原片会显得很模糊,所以要通过软件将细节提取出来才能得到一张清楚的图片。Astra Image4.0这个软件在细节提取时,用到了非常经典的反卷积和小波锐化功能,操作简单,效果惊艳!详细的操作说明都在图中做了标注,请大家认真看图。

彩色摄像头因为是RGB一次性成像,而RGB的合焦点往又有所不同,所以对主镜的要求更高,只有APO这种复消色差的镜子才能尽量的让RGB的合焦点在一个位置上。黑白摄像头则因为使用LRGB滤镜单独拍摄,每个通道都可以单独对焦,所以不存在色差的问题。在彩色合成前对各通道的单独后期处理也使合成后的彩色更为精准,但看惯了彩色相机RGB一次成像的人可能会感觉这种合成后的图片颜色不那么真实!如果你用的是彩色摄像头,经过上述后期处理就可以直接出图了。但如果你用的是黑白摄像头,并且用了LRGB滤镜拍摄,就需要进行LRGB彩色合成才能得到彩色的效果。当然,那些用于深空摄影的Ha等窄带滤镜也需要做这种彩色合成,MDL里有专门的窄带合成选项。在进行彩色合成之前,要先分别做好各通道文件的叠加和锐化工作,然后才用这些处理好的黑白图片进行彩色合成。 除了使用各种滤镜拍摄彩色信息的办法之外,黑白摄像头还有一种办法得到彩色信息,这就是借色。可以借自己的色,很多同好采用双炮的方式,彩色相机拍颜色,黑白相机拍细节,这也一种高效率的办法。也可以借别人的色,只要是同一目标,区域大致相同就行。行星因为自转等因素,很难保证画面细节完全一样,所以借色只适用于深空摄影。 以上所说的具体操作方法,请看下面的MDL5之LRGB彩色合成及MDL5之借色。

太阳系成员简介

太阳在浩瀚的宇宙中谈不上有什么特殊性。组成银河系的有大约两千亿颗恒星,而太阳只是其中中等大小的一颗。太阳已的年龄有五十亿岁,正处在它一生中的中年时期。作为太阳系的中心,地球上所有生物的生长都直接或间接地需要它所提供的光和热。太阳内核的温度高达摄氏一千五百万度,在那儿发生着氢-氦核聚变反应。核聚变反应每秒钟要消耗掉约五百万吨的物质,并转换成能量以光子的形式释放出来。这些光子从太阳中心到达太阳表面要花一百多万年。光子从太阳中心出发后先要经过辐射带,沿途在与原子微粒的碰撞丢失能量。 水星距太阳五千八百万公里,是太阳系中和太阳最近的行星。水星没有卫星,它的体积在太阳系中列倒数第二位,仅比冥王星大。因为水星与太阳非常接近,所以它的白昼地表温度可高达摄氏四百二十七度;而到晚上又骤降至摄氏零下一百七十三度。 美国水手10号探测器发回的近距离水星图片。这是水星的一个半球,上北下南。 金星分别在早晨和黄昏出现在天空,古代占星家一直认为存在着两颗这样的行星,于是分别将它们称为“晨星”和“昏星”。在英语中,金星——“维纳斯”是古罗马的女神,像征着爱情与美丽。而一直以来,金星都被卷曲的云层笼罩在神秘的面纱中。 地球(我们的家):地球这颗有着广阔天空和蓝色海洋的行星始终给人以坚实巨大的感觉。而在宇宙中,地球给人的印象却并非如此:这个在一层薄薄而脆弱的大气笼罩下的星球并不见得有多大。在太空中,地球的特征是明显的:漆黑的太空、蓝色海洋、棕绿色的大块陆地和白色的云层。地球是太阳的从里往外数第三颗行星,距太阳大约有 150000000 公里。地球每 365.256 天绕太阳运行一圈,每 23.9345 小时自转一圈。它的直径为 12756 公里,只比金星大了一百多公里。人们梦想能在太空中旅行,能欣赏宇宙的奇观。而从某种意义上说,我们都是太空旅行者。我们的宇宙飞船是地球,飞行速度是每小时 108000 公里。 火星是地球的近邻。它与地球有许多相同的特征。它们都有卫星,都有移动的沙丘、大风扬起的沙尘暴,南北两极都有白色的冰冠,只不过火星的冰冠是由干冰组成的。火星每24小时37分自转一周,它的自转轴倾角是25度,与地球相差无几。 木星,太阳系九大行星中最大的一颗,按离太阳由近及远的次序为第五颗。中国古代就认识到木星约12年运行一周天,而把周天分成十二份,称十二次,木星每年行经一次,用木星所在的星次可以纪年,因此木星被称为岁星。是天空中的第三亮星,最亮时达-2.4等,只有金星和冲日时的火星比它亮。木星有众多的卫星,

天文学基础的论文

天文学基础 摘要:天文学是一门最古老的科学,它一开始就同人类的劳动和生存密切相关。它同数学、物理、化学、生物、地学同为六大基础学科。天文学家观测从行星、恒星、星系等各种天体来的辐射,小到星际的分子,大到整个宇宙。天文学家测量它们的位置,计算它们的轨道,研究它们的诞生,演化和死亡,探讨它们的能源机制。由于科技的不断发展,人们对天文学的定义,研究对象,研究范畴,学科分支,论研究等方面都取得了突破性的进展。天文学正朝着高、精、尖的方向发展。我们期待着天文学的进一步发展为科学事业和人们的社会生活造福。 关键字:天文学,研究对象,研究理论,天文学四大发现,矮行星,中子星,黑洞 通过听天文学基础的课使我对天文学有了一定的了解。天文学是研究天体、宇宙的结构和发展的自然科学,内容包括天体的构造、性质和运行规律等。人类生在天地之间,从很早的年代就在探索宇宙的奥秘,因此天文学是一门最古老的科学,它一开始就同人类的劳动和生存密切相关。它同数学、物理、化学、生物、地学同为六大基础学科。天文学主要通过观测天体发射到地球的辐射,发现并测量它们的位置、探索它们的运动规律、研究它们的物理性质、化学组成、内部结构、能量来源及其演化规律。随着人类社会的发展,天文学的研究对象从太阳系发展到整个宇宙。现在天文学按研究方法分类已形成天体测量学、天体力学和天体物理学三大分支学科。按观测手段分类已形成光学天文学、射电天文学和空间天文学几个分支学科。“几乎所有的自然科学分支研究的都是地球上的现象,只有天文学从它诞生的那一天起就和我们头顶上可望而不可及的灿烂的星空联系在一起。天文学家观测从行星、恒星、星系等各种天体来的辐射,小到星际的分子,大到整个宇宙。天文学家测量它们的位置,计算它们的轨道,研究它们的诞生,演化和死亡,探讨它们的能源机制。 自古以来,人类一直对恒星和行星十分感兴趣。古代的天文学家仅仅依靠肉眼观察天空,1608年,人们发明了望远镜,此后,天文学家就能够更清楚的观察恒星和行星了。意大利科学家伽利略,就是最早使用望远镜研究太空的人之一。今天天文学家使用许多不同类型的望远镜来收集宇宙的信息。有些望远镜可以收集到来自遥远天体的微弱亮光,如X射线。绝大多数望远镜是安放在地球上的,但也有些望远镜被放置在太空中,沿着轨道运转,如哈勃太空望远镜。现在,天文学家还能够通过发射的航天探测器来了解某些太空信息。天文学的研究范畴和天文的概念从古至今不断发展。在古代,人们只能用肉眼观测天体。2世纪时,古希腊天文学家托勒密提出的地心说统治了西方对宇宙的认识长达1000多年。直到16世纪,

教科版-科学-六年级下册-【原创】《太阳系》教案

《太阳系》教案 【教学目标】 科学概念: 太阳和围绕它运动的行星、矮行星和小天体组成了太阳系。太阳系是一个较大的天体系统。 过程与方法: 1、收集资料认识和了解太阳系。 2、按一定比例对数据进行处理,并在此基础上用一定的材料建立太阳系的模型。 情感态度与价值观: 1、认识到收集和整理资料,并进行交流,是科学学习的一种方式。 2、学会与他人合作,并能在合作中发挥自己的作用。 3、意识到太阳系中天体的运动是有规律的,并可以逐渐被人们认识的。 【教学重点】太阳和围绕它运动的行星、矮行星和小天体组成了太阳系。 【教学难点】根据八大行星距太阳的平均距离及各行星赤道直径数据表建立太阳系的模型。 【教学准备】 教师准备:太阳系图片、多媒体资料、八大行星数据表、八个铁丝制成的支架、橡皮泥、小皮球、直尺等;教师事先考察制作太阳系模型的室外场地。 学生准备:课前收集有关太阳系的资料,小组内先进行交流。 【教学过程】 一、认识太阳系。(10分钟) 1、提出问题:我们知道地球在不停的围绕太阳运动,那么还有哪些天体也在不停地围绕着太阳运动呢? 2、课前同学们都进行了有关太阳系资料的收集,现在让我们来开个有关太阳系的交流会,请各组派代表进行全班交流,资料可以是文字的,也可以用图片的形式展示。说说:(1)哪些天体在围绕着太阳运动? (2)这些天体有哪些特点? (3)它们之间是如何排列的? 3、教师展示自己收集的资料做补充。(有关太阳系的科普录像资料) 4、小结:太阳系是以太阳为中心,包括围绕它转动的八大行星(及围绕行星转动的卫星)、矮行星、小天体(包括小行星、流星、彗星等)组成的天体系统。 二、建立太阳系模型。(30分钟)

六年级下册科学太阳系

太阳系 【教学目标】 科学概念: 太阳和围绕它运动的行星、矮行星和小天体组成了太阳系。太阳系是一个较大的天体系统。 过程与方法: 1、通过网络收集资料认识和了解太阳系。 2、分享自己对八大行星的了解。 情感态度与价值观: 1、认识到收集和整理资料,并进行交流,是科学学习的一种方式。 2、学会与他人合作,并能在合作中发挥自己的作用。 3、意识到太阳系中天体的运动是有规律的,并可以逐渐被人们认识的。【教学重点】太阳和围绕它运动的行星、矮行星和小天体组成了太阳系。 【教学难点】根据八大行星距太阳的平均距离及各行星赤道直径数据表建立太阳系的模型。 【教学准备】 教师准备:平板电脑、八大行星多媒体资料和网络链接、八大行星数据表 学生准备:平板电脑八大行星资料电子教材 【教学过程】 一、明确目标创景激趣 1、提出问题:地球在不停的围绕太阳运动,那么还有哪些天体也在不停地围绕着太阳运动呢? 2、拿出平板,课前同学们都进行了有关太阳系资料的收集,现在让我们来开个有关太阳系的交流会,请各组派代表进行全班交流,对你收集到的关于太阳系的了解进行展示。说说: (1)哪些天体在围绕着太阳运动?(2)这些天体有哪些特点?(3)它们之间是如何排列的? 是否还有补充的?

3、教师投影展示自己收集的资料做补充。(最好是有关太阳系的科普录像资料) 4、小结:太阳系是以太阳为中心,包括围绕它转动的八大行星(及围绕行星转动的卫星)、矮行星、小天体(包括小行星、流星、彗星等)组成的天体系统。 二、自主探究合作学习建立太阳系模型。 1、谈话:我们已经对太阳系有了初步的了解,为了能更好地认识太阳系,让我们用试着画一个太阳系的模型。 2、讨论:怎样才能建好模型?需要哪些相关数据才能保证我们建的模型相对准确? 3、阅读电子课本中有关八大行星的数据资料。 4、尝试根据八大行星与太阳的距离来建模型,思考: (1)如何在平板上将八大行星摆列出来? (2)如果要对八大行星与太阳距离的数据进行处理,该如何处理? (4)建好之后有何发现?与我们平时看到的太阳系的示意图有何不同? 三、汇报交流排疑解惑 1、尝试依据八大行星与太阳的距离,以及八大行星的赤道直径进行画图: 2、投影交流在建造模型过程中的体会。 四、回归教材评价小结 五、拓展延伸巩固应用 在建太阳系模型的过程中,你们有什么体会或发现吗? (学生根据处理后的数据建立的太阳系模型,可以清晰地认识到:八大行星在太阳系的空间分布不是均匀的;八大行星的大小差异很大;在太阳系中,八大行星是十分渺小的。)

bernese实例教程

Bernese处理概述 之前介绍Bernese GPS Software 5.0软件时提到过,与GAMIT不同,它既可以处理双差数据,也可以处理非差数据。求差法是一种在卫星观测数据间作差来减少处理工作量和复杂程度的方法,并且可以保持原有的精度。根据相互间求差的次数,求差法分为单差、双差和三差。在GNSS测量中广泛采用双差固定解,原因是双差处理过程中消去了卫星钟差参数和接收机相对钟差等等参数;每个历元中双差观测方程的数量均比单差观测方程少一个;而三差法的数据利用率低等。 使用Bernese软件进行GNSS数据处理时,分别有非差处理和双差处理两种方式,它们的相应流程和需要用到的软件子程序如下表所示。

Bernese处理数据前的准备工作(一)——建立项目和定义时段在Bernese处理数据之前,首先要定义一个项目并激活为它当前使用项目,生成项目下的子目录,然后将数据文件拷贝进这些子目录中,还要收集并指定一些与项目有关的其它基础信息。从Bernese的5.0版本开始,用户还不得不为即将处理的数据选择处理时段。 先来定义一个项目。首先选择"Campaign>Edit list of campaigns",出现如下图所示的界面。 这里要求输入项目存在的路径和名称。值得一提的是,上图表示了两种路径的表示方法。第一个项目Intro很显然是即将生成在D盘的根目录下,而第二个项目Intro_01的路径则为软件规定项目存在的默认路径。也就是说,${P}符号的意义就是将项目生成在软件规定的默认目录下,至于默认目录在哪里,下面将给出解答。点击^Save进行保存。 然后选择"Campaign>Select active campaign",选择一个当前激活的项目。

天文学基础知识

天文学基础知识 1.什么是宇宙? 宇宙是天地万物,是广漠空间和其中存在的各种天体以及弥漫物质的总称。 辨证唯物主义哲学认为,世界的本质是物质的,物质可以转换不同的存在形式,但在本质上是永久存在,永久不灭的。宇宙是普遍永恒的物质世界,在空间和时间上都是无限的。从空间看宇宙是无边无际,它没有边界,没有形状,也没有中心,如果承认宇宙以外还有什么东西,就否认了世界的物质本性;从时间看宇宙无始无终,它没有起源,没有年龄,也不会终结,如果承认宇宙有起源,就会导致创世说,实际上也否认了世界的物质本性。 但具体事物的有限性也不能否认。宇宙的无限与具体事物的有限并不矛盾,因为只有无数具体的有限才能构成全部的无限。人类观察到的宇宙是动态的,随着科学技术的进步,人类所知的宇宙在不断扩大。18世纪以前人类认识宇宙的范围只限于太阳系,随后认识到太阳系以外还有千亿个恒星,它们组成了银河系。19世纪人类又发现了河外星系,发现银河系在宇宙大家庭中只不过是相当渺小的一员。20世纪50年代的光学望远镜、60年代的射电天文望远镜把人类对宇宙的探测距离猛增,人类可以永远扩大自己对物质世界的观察视野,不会停留于某一固定的边界上,这有力证明宇宙是无限的。 天文学上通常将天文观测所及的整个时空范围称为“可观测宇宙”,有

时又叫“我们的宇宙”,或简称“宇宙”。现代科学的基本观念之一,就是可观测宇宙也像其他事物一样,有它诞生发展的历史。据现代宇宙学说估算,宇宙年龄是极其漫长的,约为150亿岁;可观测的全部宇宙空间是极为庞大的,已观测到的最远的星系距离我们大约150亿光年。 宇宙既有统一性又有多样性。宇宙的统一性在于它的物质性,宇宙的多样性在于物质的表现形式千差万别,组成宇宙的物质在存在状态、质量和性质上有着极大的差异。 宇宙是由各类天体和弥漫物质组成的。宇宙中有形形色色的天体,恒星、星云、行星、卫星、彗星、流星等天体都是宇宙物质的存在形式。2.什么是恒星和星云? 宇宙中最主要的天体是恒星和星云,因为它们拥有巨大的质量。恒星是由炽热气态物质组成,能自行发热发光的球形或接近球形的天体。恒星是像太阳一样本身能发光的星球,晴夜用肉眼看到的许多闪闪发光的星星中,绝大多数是恒星。星云是由极其稀薄的气体和尘埃组成的,形状很不规则,似云雾状的天体。 3.什么是星系? 由无数恒星和星际物质构成的巨大集合体称为星系。它们的尺度可以从几千到几十万光年。星系或称恒星系,是宇宙系统中的重要一环。星系数量众多。到目前为止,人们已在宇宙中观测到了约1000亿个星系。地球就处在由1000多亿颗恒星以及银河星云组成银河系中。有的星系离银河系较近,可以清楚地观测到它们的结构。离银河系最

地理信息系统教程

地理信息系统教程 第一章概论第一节GIS概念 (一)地理信息 1.数据 2.信息 3.地理信息 4.地理数据 5.地理信息特征 (1)空间相关性(2)空间区域性(3)空间多样性(4)空间层次性 (二)信息系统 1.概念 2.类型 (三)地理信息系统 1.定义基本内涵(4)2.基本特征 (1)数据的空间定位特征(2)空间关系处理的复杂性(3)海量数据管理能力,来自:1)地理数据2)空间分析 (四)外延 第二节GIS功能 (一)基本功能需求 1.位置2.条件3.趋势4.模式5.模拟 (二)GIS基本功能 1.数据采集功能 2.数据编辑处理 3.数据存储、组织与管理功能 4.空间查询与空间分析功能 5.数据输出功能 第三节GIS组成 (一)硬件系统 (二)软件系统 (三)网络 (四)空间数据 1.数据类型:(1)某个已知坐标系中的位置 (2)实体间的空间相关性 (3)与几何位置无关的属性 (五)人员 第四节GIS类型 1

(一)与相关学科关系 (二)与其他信息系统区别与联系1.GIS与机助制图系统的区别与联系2.GIS与数据库系统的区别与联系3.GIS与CAD的区别与联系 4.GIS与遥感图像处理系统的区别与联系(三)GIS应用范畴 1.测绘、地图制图2.资源管理3.灾害监测4.环境保护5.精细农业6.电子商户7.电子政务 (四)地理信息系统发展历程 1.地理信息系统的开拓期(20世纪五六十年代) 2.地理信息系统的巩固发展期(20世纪70年代) 3.地理信息系统技术大发展时期(20世纪80年代) 4.地理信息系统的应用普及时代(20世纪90年代至今) 第二章地理空间数学基础 第一节地球空间参考 (一)三类地球表面几何模型 1.地球的自然表面 2.相对抽象的面:大地水准面大地体 3.地球椭球面:地球椭球 4.数学模型 (二)坐标系统 1.坐标系统的分类及基本参数 2.球面坐标系统建立 (1)天文地理坐标系 (2)大地地理坐标系 (3)空间直角坐标系 3.平面坐标系 (1)高斯平面直角坐标系 (2)地方独立平面直角坐标系 (三)高程基准 1.概念高程是表示地球上一点至参考基准面的距离,就一点位置而言,它和水平量值一样是不可缺少的。它和水平量值在一起,统一表达点的位置。 2.我国主要高程基准 (1)1956年黄海高程系 (2)1985年国家高程基准 2

太阳系行星介绍

水星(英语:Mercury,拉丁语:Mercurius)是太阳系八大行星最内侧也是最小的一颗行星,也是离太阳最近 的行星。水星是一颗类地行星,由于其非常靠近太阳,所以只会出现在凌晨成为晨星,或是黄昏出现作为昏星。除 非有日食,否则在阳光的照耀下通常是看不见水星的。 内部构造 水星是太阳系内与地球相似的4颗类地行星之一,有着与地球一样的岩石个体。它是太阳系中最小的行星,在赤道的半径是2,439.7公里。水星由大约70%的金属和30%的硅酸盐材料组成,水星的密度是5.427克/cm3,在太阳系中是第二高的,仅次于地球的5.515克/cm3。 地形地貌 美国发射的“水手10号”在1974年3月、9月和1975年3月探测了水星,并向地面发回5000多张照片,为我们了解水星提供了珍贵的信息。从照片上我们看出,水星的外貌酷似月球,有许多大小不一的环形山,还有辐射纹、平原、裂谷、盆地等地形。水星的表面很像月球,满布着环形山、大平原、盆地、辐射纹和断崖。1976年,国际天文学联合会开始为水星上的环形山命名。 水星表面上有着星罗棋布的大大小小的环形山,既有高山,也有平原,还有令人胆寒的悬崖峭壁。据统计,水星上的环形山有上千个,这些环形山比月亮上的环形山的坡度平缓些。 水星表面平均温度约452K,变化范围从90-700K,是温差最大的行星。白天太阳光直射处温度高达427℃,夜晚太阳照不到时,温度降低到-173℃。可以比较一下地球,地球上的度温变化只有11K(这里只是太阳辐射能量,不考虑“季节”,“天气”)。水星的表面的日照比地球强8.9 倍,总共辐照度有9126.6W/㎡。 令人惊讶地是,在1992年所进行的雷达观察显示,水星的北极有冰。一般相信这些冰存在于阳光永无法照射到的环形山底部,由于彗星的撞击或行星内部的气体冒出表面而积累的。由于没有大气调节,这些地方的温度一直维持在华氏零下280度(约合-173℃)左右。 大气层 水星上有极稀薄的大气,大气压小于2×10百帕,大气中含有氦、氢、氧、碳、氩、氖、氙等元素。由于大气非常稀薄,水星的表面白天和夜晚的温度相差很大,实际上水星大气中的气体分子与水星表面相撞的频密程度比它们之间互相相撞要高。出于这些原因,水星应被视为是没有大气的。 水星的大气非常少,主要成份为氦(42%)、汽化钠(42%)和氧(15%),而且在白天气温非常高,平均地表温度为179℃,最高为427℃,最低为零下173℃,因此水星上看来不可能存在水;但1991年科学家在水星的北极发现了一个不同寻常的亮点,造成这个亮点的可能是在地表或地下的冰。水星上真的有可能存在冰吗?由于水星的轨道比较特殊,在它的北极,太阳始终只在地平线上徘徊。在一些陨石坑内部,可能由于永远见不到阳光而使温度降至零下161℃以下。这样低的温度就有可能凝固从行星内部释放出来的气体,或积存从太空来的冰。 真正发现水星有冰 2014年,美国航天局派往水星的探测器信使号,早前传来的照片中,却发现北极地区一个陨石坑附近有冰的存在,是首次真正发现水星有冰。 学者早于两年前已透过间接的分析指水星上存在着冰,但这次则是首次直接看到。专家估计冰块有数以十米厚,但亦可能延伸至坑洞内。虽然水星围绕太阳转一圈需时58个地球日,几乎整个大地都被阳光照射,但水星的极地则永远无法被太阳照到,温度低得有机会让冰形成。

天文学基础作业概要

1、大地天文学基本概念 (2) 2、大地天文学的发展概况 (3) 3、大地天文学的方法及应用 (3) 4、天球的基本概念 (4) 4.1天球的定义 (4) 4.2天球的分类 (4) 4.3天球的两个特性 (5) 4.4 关于天球的基本知识 (5) 5、天球与地球的相关关系 (6) 5.1 天球上与地球公转有关的圈、线、点 (6) 5.2 天球上与地球自转有关的圈、线、点 (8) 6、天球坐标系 (10) 6.1 天球坐标系分类 (10) 6.1.1 地平天球坐标系 (11) 6.1.2 时角天球坐标系 (13) 6.1.3 赤道天球坐标系 (14) 6.1.4 黄道天球坐标系: (14) 6.2 天球坐标系之间的转换 (15) 6.2.1 天文坐标与天球坐标之间的关系 (15) 6.2.2 地平坐标与时角坐标之间的关系 (16) 6.2.3 天球直角坐标系及其转换 (18)

大地天文学 1、大地天文学基本概念 大地天文学是天文学的一个分之,也是大地测量的一个重要组成部分。它的重要任务,是用天文方法观测天体的位置来确定地面点在地球上的位置(经纬度)和某一方向的方位角,以供大地测量和其他有关的科学技术部门使用. 这是天体测量学与大地天文学的边缘学科,在测站(通常称为天文点)使用天体测量仪器观测天体以测定天文经度和纬度,也可测定测站至相邻固定目标的方位角从而确定测站的子午线。 大地天文学的传统课题包括:①测定地面点的天文经度,就是在同一瞬间测定地面上一点与本初子午线上的地方时之差。该点上的时刻可使用经纬仪、中星仪、棱镜等高仪以及照相天顶筒等仪器测定;本初子午线上的地方时则可通过收录无线电时号求得。②测定地面点的天文纬度。这等同于测定地面点的天极高度。该点的纬度可使用带有纬度水准的经纬仪、天顶仪、棱镜等高仪以及照相天顶筒等仪器测定。③地面目标方位角的测定。这等同于确定某天文点的子午线方向。观测恒星,测定其时角,算出它的方位角,然后测定该瞬间恒星与地面目标之间的水平角,从而得到目标的方位角。这些任务都包含对各种误差的分析及对削弱和消除误差的研究。近代已能测定地面点在以地心为原点的三维直角坐标系中的地心直角坐标,用诸如甚长基线干涉测量、激光测距、全球定位系统测量等技

中学生科学小知识介绍八大行星是哪八大

中学生科学小知识介绍八大行星是哪八大中学生科学小知识介绍八大行星 八大行星其实指的就是在太阳系中的;水星、金星、地球、火星、木星、土星、天王星、海王星,这颗八行星,而其中只有地球、火星、木星、土星、天王星、海王星这六颗行星有自己的卫星。 我给你一一介绍认识,那么就先从水星开始吧,水星是最接近太阳的,它也是太阳系中最小最轻的行星。常和太阳同时出没。早在公元前3000年的苏美尔时代,我们的祖先便发现了水星,在水星上温差是整个太阳系中最大的,温度变化的范围为90到700。相比之下,金星的温度略高些,但更为稳定。金星在史前就已被人所知晓。它是在太阳系除了太阳外,它是最亮的一颗的。金星是一颗内层行星,从地球用望远镜观察它的话,会发现它有位相变化。告诉你在金星上大气压力为90个标准大气压(相当于地球海洋深1千米处的压力)人一上去就是死啊,大气大多由二氧化碳组成的,金星表面温度大约在400度,你知道吗温度超过了740开时(足以使铅条熔化)。金星表面自然比水星表面热,虽然金星比水星离太阳要远两倍。 火星这或许是由于它鲜红的颜色外表而得来的;火星有时被称为“红色行星”。火星是在史前时代为人类所知。由于它被认为是太阳系中人类最好的住所(除地球外),它受到科幻小说家们的喜爱。火星的两极永久地被固态二氧化碳(干冰)覆盖着。这个冰罩的结构是层叠式的,它是由冰层与变化着的二氧化碳层轮流叠加而成。在北部的夏天,二氧化碳完全升华,留下剩余的冰水层。由于南部的二氧化碳从没有完全消失过,所以我们无法知道在南部的冰层下是否也存在着冰水

层。这种现象的原因还不知道,但或许是由于火星赤道面与其运行轨道之间的夹角的长期变化引起气候的变化造成的。或许在火星表面下较深处也有水存在。这种因季节变化而产生的两极覆盖层的变化使火星的气压改变了25%左右。 木星在太阳系中是最大的一颗除了太阳,是所有其他的7颗行星总和质量的2.5倍,是地球的318倍,体积为地球的1316倍。所以被人们被称为“行星之王”。木星表面的云层是多彩的可能是由于大气中化学成分的微妙差异及其作用造成的,可能其中混入了硫的混合物,造就了五彩缤纷的视觉效果,色彩的变化与云层的高度有关:最低处为蓝色,跟着是棕色与白色,最高处为红色。我们只能通过高处云层的洞才能看到低处的云层。 土星它是太阳系上密度最小的行星,甚至它可以浮在水上。通过小型的望远镜观察也能明显地发现土星是一个扁球体。它赤道的直径比两极的直径大大约10%。这其实是因为它快速的自转和流质地表的结果。其他的气态行星也是扁球体,不过没有这样明显。还有土星是最疏松的一颗行星,它的比重比水星的还要小。但是与木星一样,土星是由大约75%的氢气和25%的氦气以及少量的水,甲烷,氨气和一些类似岩石的物质组成。这些组成类似形成太阳系时,太阳星云物质的组成。而且土星内部和木星一样,由一个岩石核心,一个具有金属性的液态氢层和一个氢分子层,同时还存在少量的各式各样的冰。 天王星的体积比海王星大,质量却比海王星的小。大多数的行星总是围绕着几乎与黄道面垂直的轴线自转,可天王星的轴线却几乎平行于黄道面。在卫星旅行者2号探测的那段时间里,天王星的南极几乎是接受太阳直射的。这一奇特的事实表明天王星两极地区所得到来自太阳的能量比其赤道地区所得到的要高。然而天王星的赤道地区仍比两极地区热,这其中的原因还不为人知。

天文学漫步——天文理论与实践选修课课程纲要

浙江省第三批普通高中推荐选修课程 宁波市中小学校天文科普教材 《天文学漫步——天文理论与实践》课程纲要

一、课程简介 《天文学漫步——天文理论与实践》课程兼具兴趣爱好型和知识扩展型两类课程性质,以通俗易懂的语言介绍天文学中的基础知识和天文观测方法,首次突出以理论学习和实践观测相结合的方式,既增加学生的天文常识又激发学生的动手能力。本课程的基本理念是通过课程知识渗透和实践能力培养,促使学生对浩瀚的宇宙、无穷的奥秘产生浓厚兴趣,使学生通过对天文的兴趣而转化为对探索自然、主动探究问题的兴趣,提高学生思维能力和综合知识的运用能力。 本课程以扩大学生视野,丰富学生课余生活为目的,主要介绍了内容包括:国内外天文竞赛内容、天文热点、天文现象、天文仪器操作、星盘星图使用、观测绘图、星座与星空、天象观测、太阳系内天体概况、宇宙起源等讲授天文学常识,结合英语、数学、物理、化学、地理等方面知识,综合提高学生的天文文化内涵和应用能力,不断开拓和挖掘学生的潜能。 课程依托荣获全国中学生天文奥林匹克竞赛优秀组织奖、浙江省学校天文活动优秀组织奖、宁波市学校天文活动优秀组织奖、两次蝉联宁波市天文教育实践基地、鄞州区十佳社团、鄞州区中小学优秀社团等多项荣誉的同济中学为载体,以先进的观测拍摄设备、专业的天文实践指导团队、丰富的天文观测活动为平台,为省市各类天文活动和天文科普教育提供支持,也为本课程的开发和开展提供了可能。本课程作为《普通高中天文特色校本文化构建的实践研究》重要组成部分,该课题获得宁波市教育科学规划研究课题立项并顺利结题。 本课程研发团队实力雄厚,教师搭配层次清晰。 课程总负责人:邱展峰,中学地理高级教师,同济中学校长。 课程开发负责人:毛锦旗,中学地理一级教师。浙江师范大学天文协会的创始人之一,2007年毕业于浙江师范大学地理科学专业。现为中学一级教师,任浙江省宁波市天文爱好者协会常务理事、秘书处成员,宁波市科普报告团成员。曾先后获得浙江省优秀天文指导教师、宁波市优秀天文指导教师、宁波市气候酷派绿色校园行动优秀指导教师、鄞州区十佳社团指导教师。 课程开发参与者:马雪亚,中学二级地理教师。多次获得市、区优秀指导教师,多次 组织宁波市教育局主办的宁波市天文夏令营活动,参与课程的开发 和实践指导。 课程开发与指导:庄启宁,小学高级教师,浙江省天文学会理事、宁波市天文爱好者 协会副会长兼秘书长、全国天文奥赛优秀指导教师。

2014六年级科学下册 太阳与太阳系教案 湘教版

太阳与太阳系 教学目标 科学探究 能从资料中获取太阳与太阳系的有关知识。 学会用间接的方法来观察太阳。 情感、态度与价值观 理解没有太阳,地球上就没有生命。 科学知识 1.知道太阳是一个温度很高的大火球。 2.知道太阳系的组成及行星的排列顺序。 3.了解金星的基本情况。 教学准备 有关太阳、太阳系的图像资料或课件、望远镜、铁架台、纸板、白纸、卡片纸等。 课时安排:2课时 第1课时 一.教学导入 本课的教学导入可以让学生先来说一说他们所知道的有关太阳知识。 二.理解:万物生长靠太阳 1.讨论:怎样去完成并补充示意图?用此来表示太阳与地球上万物的关系。 2.展示与交流:太阳对地球的影响,进而到对人的影响。教学可围绕“如果没有太阳……”展开讨论。讨论时,教师可启发学生首先分析:如果没有太阳,地球会是什么样的?当学生认识到如果没有太阳,就没有地球上风云雨雪等自然现象;没有植物,没有动物……地球成为一个阴冷的“死球”后,这样人也不能生存。 三.了解太阳 1.组织学生观看课件。 2.强调“恒星”的初步概念——像太阳这样自己能发光发热的星球叫恒星。 四.观察太阳 1.介绍器材和观察方法 2.安全教育: (1)我们不能直接用肉眼观察太阳,否则太阳光会伤害我们的眼睛。 (2)不能用望远镜去直接观察太阳,以免出现意外事故。 组织学生室外观察 4.交流发现

第2课时 一.出示课件,谈话引入 师:今天我们要乘坐一辆神奇校车,开始我们奇妙的太阳系之旅。 旅途中请大家弄清楚太阳系的组成,并了解组成太阳系的一些星球的知识,填写好资料卡。二.观看课件,了解太阳系的组成,填写资料卡 课件模仿著名丛书《神奇校车》制作 课件中除了显示教材内容外,还加进很多的数据和比喻,让学生更容易理解;特别补充:2006年8月24日第26届国际天文学联合会大会对行星进行了重新定义,冥王星已经不再属于行星,而是矮行星。大会规定现在太阳系的天体包括:八大行星,矮行星和小天体。 三.组织交流 1.什么是太阳系?由哪些星体组成? 2.请介绍你印象最深的内容 3.教师说明书本中定义的太阳系组成:因为教材是在2005年通过国家审查的,所以教材上关于太阳系的组成仍然沿用的是历史上的规定。 四.阅读,了解有关观察流星与彗星的科技史。 五.课外作业观察金星 1.提示学生特别注意安全。 2.教师告知学生金星是很明亮的星体,它常常出现在朝阳和落日的附近。有时,金星在日出前4小时或日落后4小时出现在空中。在深夜是看不到金星的。

太阳系介绍

太阳系Solar System 一、太阳系的组成The composition of the solar system 太阳系由太阳、行星和其他物质组成。 The solar system is made up of the sun, the planets, and other objects. 四个较小的内行星,水星,金星,地球和火星,是陆地行星,主要由岩石和金属组成。 The four smaller inner planets, Mercury, Venus, Earth and Mars, are terrestrial planets, being primarily composed of rock and metal. 四个外行星都是巨大的行星,木星和土星是两个最大的气态巨星,主要由氢和氦组成。两个最外层的行星,天王星和海王星,都是冰巨星。 The four outer planets are giant planets. The two largest, Jupiter and Saturn, are gas giants, being composed mainly of hydrogen and helium; the two outermost planets, Uranus and Neptune, are ice giants.

二、太阳与行星的尺寸比较Size comparison of the Sun and the planets 太阳直径相当于地球直径的109倍,体积大约是地球的130万倍,其质量大约是地球的330000(33万)倍。 The diameter of the sun is 109 times the diameter of the earth, its volume is about 1 million 300 thousand times that of the earth, its mass is about 330 thousand times that of the earth. 太阳系的八个行星尺寸由大到小是木星、土星、天王星、海王星、地球、金星、

【科普】宇宙天文学必须知道的基本知识

【科普】宇宙天文学必须知道的基本知识 ! ! 2019-07-15 21:07 宇宙是如何形成的? 1.科学家认为它起源为137亿年前之间的一次难以置信的大爆炸。这是一次不可想像的能量大爆炸,宇宙边缘的光到达地球要花120亿年到150亿年的时间。大爆炸散发的物质在太空中漂游,由许多恒星组成的巨大的星系就是由这些物质构成的,我们的太阳就是这无数恒星中的一颗。原本人们想象宇宙会因引力而不在膨胀,但是,科学家已发现宇宙中有一种 “暗能量”会产生一种斥力而加速宇宙的膨胀。 2.宇宙学说认为,我们所观察到的宇宙,在其孕育的初期,集中于一个体积极小、温度极高、密度极大的奇点。在141亿年前左右,奇点产生后发生大爆炸,从此开始了我们所在的宇宙的诞生史。 3.宇宙大爆炸后0.01秒,宇宙的温度大约为1000亿度。物质存在的主要形式是电子、光子、中微子。以后,物质迅速扩散,温度迅速降低。大爆炸后1秒钟,下降到100亿度。大爆炸后14秒,温度约30亿度。35秒后,为3亿度,化学元素开始形成。温度不断下降,原子不断形成。宇宙间弥漫着气体云。他们在引力的作用下,形成恒星系统,恒星系统又经过漫长的演化,成为今天的宇宙。 宇宙是什么?宇宙有多大?宇宙年龄是多少? 宇宙是万物的总称,是时间和空间的统一。从最新的观测资料看,人们已观测到的离我们最远的星系是130亿光年。也就是说,如果有一束光以每秒30万千米的速度从该星系发出,那么要经过130亿年才能到达地球。根据大爆炸宇宙模型推算,宇宙年龄大约200亿年。

宇宙有多少个星系?每个星系有多少颗恒星? 在这个以130亿光年为半径的球形空间里,目前已被人们发现和观测到的星系大约有1250亿个,而每个星系又拥有像太阳这样的恒星几百亿到几万亿颗。因此只要做一道简单的数学题,你就不难了解到,在我们已经观测到的宇宙中拥有多少星星。地球在如此浩瀚的宇宙中,真如沧海一粟,渺小得微不足道。 太阳和地球的年龄? 据估计太阳的年龄比地球大1000万-2000年年,而通过放射性计年,地球的年龄是45亿年,因此太阳的年龄是45.1亿年。 银河系简介? 是地球和太阳所属的星系。因其主体部分投影在天球上的亮带被我国称为银河而得名。银河系呈旋涡状,有4条螺旋状的旋臂从银河系中心均匀对称地延伸出来。银河系中心和4条旋臂都是恒星密集的地方。从远处看,银河系像一个体育锻炼用的大铁饼,大铁饼的直径有10万光年,相当于946080000亿公里。中间最厚的部分约3000~12000光年。银河系整体作较差自转,太阳位于一条叫做猎户臂的旋臂上,距离银河系中心约2.5万光年。在银河系里大多数的恒星集中在一个扁球状的空间范围内,扁球的形状好像铁饼。扁球体中间突出的部分叫“核球”,半径约为7千光年。核球的中部叫“银核”,四周叫“银盘”。在银盘外面有一个更大的球形,那里星少,密度小,称为“银晕”,直径为7万光年。银河系是一个旋涡星系,具有旋涡结构,即有一个银心和两个旋臂,旋臂相距4500光年。其各部分的旋转速度和周期,因距银心的远近而不同。1971年英国天文学家林登·贝尔和马丁·内斯分析了银河系中心区的红外观测和其他性质,指出银河系中心的能源应是一个黑洞,但是由于目前对大质量的黑洞还没有结论性的证据。

天文漫谈教程考试

天文漫谈教程考试 ?名称天文漫谈 ?对应章节 ?成绩类型分数制 ?截止时间 2016-05-29 23:59 ?题目数50 ?迟交处理 ?总分数 100 ?说明:(1)课程平台(系统)设定了限时,学生“开启考试”后系统即开始自动计时——即便未完成而退出、关闭考试界面或断网、关机,系统也会继续计时,直至考试限时时间到而自动结束考试,若未作好考试准备勿轻易开启考试!并建议在网络状态良好条件下答题;(2)本课程无补考、重考,请慎重对待结束性考试 ?评语: 100 ?第1部分 ?总题数:50 ? 1 【单选题】(2分) 关于距离单位,1 天文单位比 1 秒差距尺度大? A. 是 B. 否 正确答案是:B 查看答案解析 2 【单选题】(2分) 天体“视星等”数值越大,其视亮度越暗? A. 是 B. 否 正确答案是:A

3 【单选题】(2分) 天文及天象意义上的“残月”出现在傍晚时分——“残月伴残阳”? A. 是 B. 否 正确答案是:B 查看答案解析 4 【单选题】(2分) 与月食不同,发生日食时各地所见时间、食分(遮掩程度)都不一样 A. 是 B. 否 正确答案是:A 查看答案解析 5 【单选题】(2分) 月食只能发生在“望”也就是满月时 A. 是 B. 否 正确答案是:A 查看答案解析 6 【单选题】(2分) 目前月球的引潮力会使地球自转周期越来越长 A. 是 B. 否 正确答案是:A

7 【单选题】(2分) 太阳的氢核聚变基本上发生其辐射层 A. 是 B. 否 正确答案是:B 查看答案解析 8 【单选题】(2分) “东有启明,西有长庚”——《诗经》中所说的启明星、长庚星分别是水星、金星 A. 是 B. 否 正确答案是:B 查看答案解析 9 【单选题】(2分) 从地球上看,金星可能发生凌日现象,火星不可能发生 A. 是 B. 否 正确答案是:A 查看答案解析 10 【单选题】(2分) 行星中密度最小、据说能飘在海水上的是海王星 A. 是 B. 否 正确答案是:B

天文学一些基本名词

天文学一些基本名词 任何一门学科,一个知识体系都是由一些较基本较抽象的新的概念和名词组成的。天文学也一样。下面为了能够初步接触一下天文学, 先介绍几个天文学的基本名词,作为入门的第一步。 它们分别是天球,周日视运动,子午圈,中天,黄道和目视星等。 1、天球 天球就是以观测者为球心,以无限大为半径所描绘出的假想球 面,我们看到的天体(星星、月亮、太阳)是其在这个巨大的圆球的球面上的投影位置。 2、周日视运动 由于地球自转(自西向东),所以地面上的观测者看到的天体在 天中在天球上自东向西沿着与转轴垂直的平面内的小圆转过一周。 3、子午圈 过观测者的天顶和南北天极的大圆。 4、中天 天体经过观测者的子午圈时,叫做中天。由于地球的自转,天体 天要穿过子午圈两次,其中离观测者天顶较近一次(一般是晚上的那一次)叫上中天。另外那一次叫下中天 5、黄道 简单的说就是太阳在天球中的运行轨迹。由于运动的相对性,所以黄道也就是地球公转轨道与天球的交线。 6、目视星等

公元前2世纪,希腊天文学家喜帕恰斯(伊巴谷)将恒星按照其亮度分为六等。亮度越大,星等越小。后来发现,一等星比六等星约亮10 0倍,所以定义"星等"每差一等,亮度差2.512倍。如果 比一等星还亮2.512倍为0等,比0等星还要亮2.512倍的为- 1 等... ...?依次类推。 面是一些较亮天体的目视星等 天狼星(大犬座a )-1.45 等 金星大距时)-4.4 等 木星-2.7 满月-12. 7等 太阳—2 6. 74等 天体的视亮度不仅与天体本身的发光强度有关,还和天体离我们的距 离有关。为了能够反映天体本身的真实发光强度,我们把天体假想置于距离地球10秒差距处所得到的目视星等就是该天体的绝对星等。 太阳的目视星等是- 26.74 等,但如果假想把太阳移到离我们1 0秒差距处,我们将发现它只不过是一颗非常普通的五等小星。太阳的绝对星等是+ 4.85 等。 根据天球的理论,我们将地球的赤道面无限延伸,令其与天球相交的大圆为天赤道。地球自转轴与天球的交点分别为南北天极。过两天极的大圆称为赤经圈或时圈。图中虚线所画为黄道,它与天赤道有两个交点,其中的升交点(即春分点)被定为赤经零度。赤纬的定义方法与地球纬度的定位相同,天赤道以北为正,以南为负。这样,每个天

相关主题