搜档网
当前位置:搜档网 › 水相合成的CdTe量子点在生物标记和基因转染中的研究

水相合成的CdTe量子点在生物标记和基因转染中的研究

水相合成的CdTe量子点在生物标记和基因转染中的研究
水相合成的CdTe量子点在生物标记和基因转染中的研究

中南大学

硕士学位论文

水相合成的CdTe量子点在生物标记和基因转染中的研究

姓名:尹翔

申请学位级别:硕士

专业:生物医学工程

指导教师:万小平

20070501

3.CdTe纳米粒的制备

将含有毓基丙酸为稳定剂的CdCh溶液的pH值用1moI/LNaOH溶液调节为11.2,用高纯N2气将该溶液在密闭体系中脱氧、保护。然后在适当的搅拌速度下,向上述溶液中加入新制备的无氧NaHTe溶液。each,NaHTe,巯基丙酸的摩尔比率为1:0.5:2.4。将此反应液加热到96"C,回流2-20h,即可得到尺度较均一的CdTe纳米粒子溶液而不需进行尺度分离。回流时间越长,所制备的量子点粒径越大,则所激发的荧光发射波长越长。

图2-l不同粒径的量子点可被激发不同颜色荧光的示意图

2.2结果与结论

新制备的CdTe前驱体溶液无荧光,回流几分钟以后,出现较强的绿色荧光。随着回流时间的增加,微粒的紫外吸收光谱发生红移,据此可以计算微粒的直径[40-42]o由于纳米晶具有量子尺寸效应,通过控制CdTe纳米粒的粒径,可以调节其荧光颜色[43,441。通过延长回流时间,可以得到不同粒径的CdTe纳米粒。当纳米粒直径从2.8rim、3.6nm、4.1nm,增加到6.5rim时,可以分别得到较高强度的绿、黄、橙及红色荧光,发射波长为540.610nm,如图2-2。而且这一光谱是连续的,原则上可以得到从绿光到红光之间的一系列发光。吸收光谱与荧光光谱随

回流时间的延长逐渐红移,一方面说明粒度在增长;另一方面,由于纳米粒具有大的比表面积,其荧光效率严重依赖于微粒的表面态。在我们实验中,荧光效率的显著增强说明了在微粒表面发生了结构的变化。我们认为CdTe纳米粒经回流以后荧光效应,从而有效地去除了很多的表面缺陷,将与表面相关的非辐射复合转变为辐射复合,从而提高发光效率。制备好的CdTe纳米粒水溶液可以在暗处放置一年以上而不出现聚集现象,这说明巯基丙酸对cdTe纳米粒具有很好的稳定作用。

图2-2不同颜色荧光的CdTe量子点溶液

2.3本章小结

有机溶剂中制备QDs,其制备条件比较苛刻,反应步骤也比较复杂,成本较高,而且在标记生物分子的过程中,需要将QDs从有机相转移到水相中。这一步骤涉及粒子的表面改性,易导致QDs发光效率的降低,同时操作复杂也不利于实际应用。水相合成QDs操作简便、重复性高、成本低、表面电荷和表面性质可控,很容易引入各种官能团分子,故水相合成方法成为当前研究的热点,水溶性QDs有望成为一种很有发展潜力的生物荧光探针1451。目前,多利用水溶性巯基试剂作稳定剂直接在水相合成QDs。巯基试剂对QDs的稳定性及功能化起重要作用,不同巯基分子使QDs具有不同表面结构,从而具有不同的发光效率。选择带有适当官能团的巯基化合物作稳定剂,对于控fl;tJQDs的表面电荷及其它表面特征极其重要,尤其当我们需要水溶性QDs做荧光标记时,稳定剂的选择就更为重要。

本章中,我们以CdTe为例,采用巯基丙酸为稳定剂,构建了一种在水溶液中制备半导体量子点的方法。我们所制备的水溶性量子点具备不同颜色的激发波

12

量子点与生物标记

量子点与生物标记 应化1002班王艳 荧光分析法是生物学研究中十分重要的方法之一,其检测灵敏度很大程度上取决于标记物的发光强度和光化学稳定性。目前使用的大多数荧光试剂如有机荧光染料等存在着光学稳定性较差、激发光谱范围窄、发射光谱较宽、与生物分子的背景荧光难以区分等不可忽视的弱点,导致应用中灵敏度下降。量子点作为一种新型的荧光纳米材料,弥补了有机染料的上述缺点,引起分析化学和生命科学领域的广泛关注。 量子点即半导体纳米粒子,也称半导体纳米晶,是指半径小于或接近于激子玻尔半径的半导体纳米晶粒。它们由n-VI族或n l-V族元素组成,性质稳定,能够接受激发光产生荧光,具有类似体相晶体的规整原子排布。在量子点中,载流子在三个维度上都受到势垒的约束而不能自由运动。需要指出的是,并非小到100nm以下的材料就是量子点,真正的关键尺寸取决于电子在材料内的费米波长。只有当三个维度的尺寸都小于一个费米波长时,才称之为量子点。 量子点独特的性质基于它自身的量子效应,当颗粒尺寸进入纳米量级时,尺寸限域将引起库仑阻塞效应、尺寸效应、量子限域效应、宏观量子隧道效应和表面效应,从而派生出纳米体系具有常观体系和微观体系不同的低维物性,展现出许多不同于宏观材料的物理化学性质 作为荧光探针,量子点的光学特性比在生物荧光标记中常用的传统有机染料有明显的优越性: (l)宽的激发波长范围及窄的发射波长范围,可以使用小于其发射波长的任意波长激发光来激发,并且可以通过改变QDs的物理尺寸对荧光峰位进行调控。这样就可以使用同一种激发光同时激发多种量子点,从而发射出不同波长的荧光,进行多元荧光检测。相反多种染料的荧光(多种颜色)往往需要用多种激光加以激发,这样不仅增加了实验费用,而且使分析系统变得更加复杂。此外,由于QDs的这种光学特性,可以在其连续的激发谱中选取更为合适的激发波长,从而使生物样本的自发荧光降到最低点,提高分辨率和灵敏度。 (2) 量子点具有较大的斯托克斯位移(stokes shift),能够避免发射光谱与激发光谱的重叠,从而允许在低信号强度的情况下进行光谱学检测。生物医学样本通常有很强的自发荧光背景,有机荧光染料由于其Stokes位移小,检测信号通常会被强的组织自发荧光所淹没,而Q Ds的信号则能克服自发荧光背景的影响,从背景中清楚地辨别检测信号。QDs的荧光发射光谱相对狭窄,因此能同时显现不同颜色而无重叠,这样就能在实验中同时进行不同组分的标记。 (3) 量子点的发射峰窄而对称,重叠小,相互干扰较小,在一定程度上克服了光谱重叠所带来的问题。 (4) 量子点的发射波长可通过控制其大小和组成调节,因而有可能任意合成发射所需波长的量子点,大小均匀的量子点谱峰为对称的高斯分布; 此外,量子点hiP、InAs能够发射700~1500nm多种波长的荧光,可以填补普通荧光分子在近红外光谱范围内种类很少的不足。对于一些不利于在紫外和可见区域进行检测的生物材料,可以利用半导体量子点在红外区域染色,进行检测,完全避免紫外光对生物材料的伤害,特别有利于活体生物材料的检测,同时大幅度降低荧光背景对检测信号的干扰。 (5) 量子点的抗光漂白能力强,有高度光化学稳定性,是普通荧光染料的100

量子点的应用—一种新型的荧光定量检测技术

中国兽医杂志2007年(第43卷)第6期69量子点的应用一一种新型的荧光定量检测技术 徐飞,丁双阳 (中国农业大学动物医学院,北京海淀100094) 中图分类号:¥859.84文献标识码:E文章编号:0529—6005(2007)06—0069—02 半导体量子点,简称量子点(quantumdots,QDS),即材料的尺寸在三维空间进行约束并达到一定的临界尺寸(,--I抽象为一个点),因此其表现出许多独特的光、电特性,特别是Ⅱ~yl族荧光量子点(如CdSe、CdTe、CdS等),一直以来都是人们研究的热点‘1|。 传统上,这些材料一般用于电子、物理和材料工程领域,而1998年美国加州伯克里大学的Alivisatos小组和印第安纳大学Nie小组几乎同时提出荧光量子点可应用于生物标记这一思想,并同时在((Science》发表了相应的研究结果,开创了荧光量子点在生物技术中研究应用的先河。随后,生物化学、分子生物学、细胞生物学、蛋白质组学、医学诊断、药物筛选和荧光检测等领域都不同程度的开展了相关的研究,取得了可喜的研究成果,而且荧光量子点在其他领域的新应用也如雨后春笋般涌现。本文重点综述了量子点的特性及其在荧光定量检测应用中的研究进展,并对其在食品安全检测方面的发展前景予以展望。 1与传统有机染料相比,量子点有以下的优势1.1量子点是无机半导体材料,激发谱宽,发射谱窄。可以通过单一波长激发,产生多种可被同时检测的发射颜色,因此可用于多色标记。而传统的有机染料正好与之相反。 1.2量子点的稳定性要远远高于有机染料分子。有资料表明,大约是100倍。这点足以实现对一些生物过程的长时间跟踪标记。 1.3量子点通过调整粒径的大小得到不同颜色的荧光,使用一种偶联方法就可实现多色标记。而对于有机染料分子是不可能达到的[1]。 2量子点在荧光检测中的应用 2.1常规荧光检测法量子点在常规的荧光检测中的应用主要是荧光淬灭法。一些本身不发荧光的被分析物质可以使某种荧光化合物发生荧光淬灭,通过测量荧光化合物荧光强度的下降,可以间接的测定该物质的浓度。目前,我国对这方面的研究比较多,主要针对一些毒离子定量和快速测定。 严拯宇等[23于2005年首次报道了应用量子点进行药物分析的研究,建立了一种测定中药饮片中 收稿日期:2006—09—11 项目来源:国家自然科学基金项目(30671585) 作者简介:徐飞(1981一),女,硕士生,主要从事兽医药理与毒理实验研究 通讯作者:丁双阳,E—mail:dingsy@cau.edu.cn微量铜残留的方法。CdSe/ZnS核壳型量子点表面用牛血清白蛋白修饰后作为荧光探针,而Cu2+在pH 7.4的缓冲液中的能使其发生荧光淬灭,因而间接测定了铜的含量。研究表明,Cu2+浓度在0.6~6.0 ng/ml范围内有良好的线性关系(r=0.9989),检测限为0.1ng/ml,回收率在93.6%~108.0%。而后,赖艳等[33于2006年也建立了一种测定微量铜的荧光检测方法并且对人发样品和茶叶样品做了检测。 研究表明,该方法干扰小,特异性强,反应灵敏,线性范围为41.5~248.8ng/ml(r=0.9921),检出限为 8.5ng/ml。 随着量子点在生物领域的应用日益广泛,人们也开始尝试着利用其进行生物大分子的测定。2006年徐靖等[4]应用水相合成的CdTe/CdS核壳型量子 点荧光探针成功的测定DNA的含量。以巯基丙酸(HS。CH:CH。COOH)为稳定剂水相合成了核壳型CdTe/CdS量子点。基于DNA对量子点荧光的淬灭 效应,建立了一种测定DNA的荧光分析法,同时详细研究了pH、量子点浓度、离子强度、温度等条件对量子点荧光及DNA测定的影响。研究表明,该方法 测定ctDNA线性范围为50.O~750.0ng/ml,检出限为20ng/ml,7次重复测定500ng/mlctDNA的相对标准偏差为2.0%。此方法简便快速,适用于合 成样品的测定。 2.2免疫荧光检测方法美国华盛顿的Goldman研究小组长期以来一直致力于量子点标记抗体进行 免疫荧光检测的研究并取得了卓著的成果。首先,他们使用了一种重组蛋白作为QDs和抗体的偶联物,通过静电作用完成对抗体的标记。而后,他们又寻找到了一种更为优秀的偶联物一生物素。生物素和亲和素既可偶联抗体等生物大分子,又可与多种标记物结合;生物素化的抗体还保持着原有的活性;1分子亲和素可与4分子的生物素结合,而结合力是抗原抗体反应的1万倍,从而产生多级放大效应,大大提高检测的灵敏度。2003年[5],他们应用此方法成功的检测了葡萄球菌B型肠毒素的含量,检测限为10ng/ml。2004年,Goldman等¨]用夹心免疫法同时检测霍乱毒素、蓖麻毒素、志贺样毒素1、葡萄球菌肠毒素B等4种毒素的混合物。实验表明,这种QDs一抗体偶联物,既能同时检测,又可以进行定量分析。 此外,MeganA等[7]也利用亲和素标记的CdSe/ZnS核壳型量子点,检测了大肠杆菌OⅢ:H,血清型病原的单个细胞,并把传统的有机染料和QDs的作用进行对比,结果发现,QDs标记的细胞检测限  万方数据

量子点标记链霉亲和素

量子点标记链霉亲和素 本品是CdSe/ZnS半导体量子点与链霉亲和素的结合物。 链霉亲和素(Streptavidin,SA,链霉抗生物素蛋白)是链霉菌Streptomyces avidinii 分泌的、分子量大小为66kD的同源四聚体蛋白质。链霉亲和素对生物素(即维生素B7或维生素H)具有极高的亲和力,解离常数约为10?14 mol/L,分子的每条肽链都能结合一个生物素,即一个链霉亲和素能结合四个生物素。与鸡蛋来源的亲和素(Avidin)相比,链霉亲和素呈弱酸性,等电点(pI)约6.0,不含糖基,生物素结合力稍弱但特异性更好,对多数生物素修饰的物质具有更高的亲和力;同时链霉亲和素-生物素复合物对有机溶剂、变性剂(如尿素)、洗涤剂(如SDS 与曲拉通)、蛋白水解酶类、极端温度以及pH具有良好耐受力,因此被广泛应用于分子生物学和生物纳米技术中。 本品采用CdSe和CdSe/ZnS核-壳型量子点,发射光谱从450nm到700nm可调,荧光颜色范围覆盖可见光区,从蓝色到红色,具有极好的化学稳定性和光学稳定性,质量稳定性好,量子产率高。可适用于生物检测、蛋白质、细胞或组织荧光标记、免疫组化、基因芯片或生物传感器等技术并满足各种科研需求。 我公司拥有世界一流的量子点研发团队,采用不同以往的先进生产工艺,所生产的CdSe和CdSe/ZnS核-壳型量子点,发射光谱从450nm到700nm可调,荧光颜色范围覆盖可见光区,从蓝色到红色,具有极好的化学稳定性和光学稳定性,质量稳定性好,量子产率高,品质已达到或超过世界先进水平,可提供不同规格、不同浓度的水溶性和油溶性量子点,还可根据客户要求对其进行特异性功能化。 传统的量子点制备工艺要求高温反应(~200-300 o C)和无水无氧等苛刻条件,并且所制备得到的量子点是油溶性的,并不能直接满足应用需求,要通过复杂的后处理过程,才能得到需要的产品,产品稳定性较差,容易产生集聚现象。中科物源量子点采用独特的生产工艺,在温和条件下直接反应制备得到所需产品,不需要苛刻的实验条件和后处理过程,具有工艺相对简单、易于操控等优点,所生产的产品稳定性好,粒径小,荧光峰误差小,量子产率高,其技术水平处于国际领先阶段 激发波长低于发射波长均可,推荐使用365 nm为最佳激发波长 发射波长500 nm 550 nm 600 nm 620 nm 并可按要求定制

合成生物学与生物燃料

济南大学研究生课程考查试卷 课程编号:QZ283001课程名称:信息与文献检索学时16 学分 1 学号:20172120470 姓名牛浩学科、领域生物工程 学生类别:全日制专业学位成绩:任课教师(签名) 1、考核形式(采用大作业、论文、调研报告、实验报告等): 课程论文 2、考查(内容、目的等)具体要求: 写一篇与所从事专业相关的综述性论文 字数在3000字左右 书写格式规范,论述清晰,层次分明 3、成绩评定说明(含平时成绩、考核成绩): 平时成绩主要包括考勤和平时作业,考勤共计10分,平时作业共计20分,占总成绩的30%。 期末课程论文共计70分,占总成绩的70%。 总成绩为平时成绩与课程论文成绩的加和,即100分。

合成生物学在生物燃料领域的研究 摘要:本文简要介绍了合成生物学的概念,生物燃料的研究现状、研究前景以及未来可能会遇到的一些挑战。探讨了合成生物学在生物燃料研究中的应用进展包括提高生物质原料的转化特性、开发绿色高效生物催化剂、构建微生物细胞工厂以及设计合成多种生物燃料产品。最后对合成生物学在生物燃料领域的研究做出了展望。 关键词:合成生物学;生物燃料;研究现状;前景;挑战;应用进展 1 合成生物学概述 合成生物学(synthetic biology) 是综合了科学与工程的一个崭新的生物学研究领域。它既是由分子生物学、基因组学、信息技术和工程学交叉融合而产生的一系列新的工具和方法,又通过按照人为需求( 科研和应用目标),人工合成有生命功能的生物分子( 元件、模块或器件)、系统乃至细胞,并自系统生物学采用的“自上而下”全面整合分析的研究策略之后,为生物学研究提供了一种采用“自下而上”合成策略的正向工程学方法[1]。它不同于对天然基因克隆改造的基因工程和对代谢途径模拟加工的代谢工程,而是在以基因组解析和生物分子化学合成为核心的现代生物技术基础上,以系统生物学思想和知识为指导,综合生物化学、生物物理和生物信息技术与知识,建立基于基因和基因组、蛋白质和蛋白质组的基本要素( 模块) 及其组合的工程化的资源库和技术平台,旨在设计、改造、重建或制造生物分子、生物部件、生物系统、代谢途径与发育分化过程,以及具有生命活动能力的生物部件、体系以及人造细胞和生物个体。 2 生物燃料研究现状与挑战 2.1 生物燃料的研究现状 生物燃料主要包括纤维素生物燃料(乙醇、丁醇等)、微藻生物燃料(生物柴油、航空生物燃料等),以及最近两年研究较热的新型优质生物液体燃料(高级醇、脂肪醇、脂肪烃等)和利用新技术路线合成的生物乙醇与生物柴油(蓝藻乙醇、微生物直接利用纤维素水解糖体内合成生物柴油等)等。“可持续性”是生物燃料的核

量子点标记技术在食品安全检测中的应用

量子点标记技术在食品安全检测中的应用 文学方1,2,杨安树1,2,*,陈红兵1,2 (1.南昌大学 食品科学与技术国家重点实验室,江西 南昌 330047;2.南昌大学中德联合研究院,江西 南昌 330047) 摘 要:近年来,量子点荧光标记技术已得到较快的发展,以其为基础开发的检测技术具有准确、灵敏、稳定、特异性高的特点,在生物医学方面已有广泛应用。本文阐述了量子点的特性和相关检测技术,及其在食品安全快速检测中的应用。 关键词:量子点;食品安全;快速检测 Application of Quantum Dots in the Detection of Food Safety: A Review WEN Xue-fang 1,2,YANG An-shu 1,2,*,CHEN Hong-bing 1,2 (1. State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China ; 2. Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China) Abstract :The labeling technology using quantum dots has gained quick development in recent years. Due to the characteristics of accuracy, high sensitivity, good stability and high specificity, this technology has been extensively used in the field of biomedicine. In this paper, properties and detection strategies of quantum dot technology are reviewed, which will extend its application in rapid detection for food safety. Key words :quantum dots ;food safety ;rapid detection 中图分类号:TS201.6 文献标识码:A 文章编号:1002-6630(2009)21-0399-04 收稿日期:2009-07-17 基金项目:江西省自然科学基金项目(2007GQY2010);江西省教育厅科学技术研究项目(赣教技字[2007]48号)作者简介:文学方(1985-),男,硕士研究生,研究方向为食品安全。E-mail :wxf198508@https://www.sodocs.net/doc/ae4088322.html, *通讯作者:杨安树(1972-),男,副教授,博士,研究方向为食品安全。E-mail :yanganshuxjh@https://www.sodocs.net/doc/ae4088322.html, “国以民为本,民以食为天,食以安为先”,食品安全关系到广大人民群众的切身利益,关系到经济的可持续发展和社会和谐稳定。近年来,国内外发生的“瘦肉精”、“苏丹红”、“三聚氰胺”等食品安全事件,给各国经济和人民生命财产造成重大损失,也使得消费者对食品安全忧心忡忡。为此,许多国家尤其是发达国家投入巨资,逐步建立了一整套预防、监督、评估的预警体系。而开展食品安全研究,发展准确、快速、简便、灵敏的食品安全检测技术是整个预警体系的重要组成部分,对于控制和解决食品安全隐患具有非常重要的意义。 目前,食品安全检测方法主要有化学分析法(CA)、薄层层析法(TLC)、气相色谱法(GC)、高效液相色谱法(HPLC)、GC-MS 联用法、酶联免疫吸附法(ELISA)等[1-2],这些方法存在检测时间长、灵敏度低、假阳性高、样品前处理复杂、样品基质干扰严重等制约因素,难以满足实际检测特别是现场快速检测的需要。现阶段,我国食品安全关键检测技术与发达国家差距较大,很大程度上为我国食品安全带来隐患,同时也限制了我国的食 品贸易。当前,面对国内外食品安全新形势,迫切需要研制和开发灵敏、准确、快速的食品安全检测新技术。1 量子点光学特性 量子点,又称半导体纳米微晶粒,粒径在1~100nm 之间,主要由Ⅱ~Ⅵ族或Ⅲ~Ⅴ族元素组成,其中,以C dX (X =S 、Se 、Te)研究较多,量子点接受激发光后能够产生荧光。与传统的有机荧光染料相比,量子点具有以下特点[3-6]:1)激发光谱宽且连续,发射光谱窄、对称、重叠小。激发光谱宽、连续可以使用一种激发光同时激发多种量子点而获得不同波长的荧光;发射峰窄、对称、重叠小,有利于提高测定的选择性和灵敏度;2)可通过控制量子点的大小和组成来调谐其发射波长,利用该特点可选择合适的量子点降低或避免背景干扰;3)荧光强度及稳定性高,可实现较长时间分析检测。 正因为具有如此独特的光学性能,量子点可作为一种优良的荧光探针应用于生物研究中。但是,直接制

量子点在生物标记中的应用

量子点在生物标记中的应用 【摘要】:生物医学检测领域,荧光标记分子是研究抗原-抗体,DNA链段、酶与底物等分子间相互作用的重要研究工具。荧光量子点作为一种新型荧光纳米材料,具有量子效率高,摩尔消光系数大,光稳定性好,可控的荧光发射波长和宽的荧光激发波长范围等优异的光学性能,因而在生物分析,检测等领域得到广泛应用。 前言 纳米量子点是准零维材料。当颗粒尺寸和电子的德布罗意波长相比拟的时候,尺寸限域将引起尺寸效应,小尺寸效应和宏观量子隧道效应,从而展现出不同于宏观材料的光学性质。 [1]由于其独特的发光性质,量子点在医学生物芯片,药物和基因载体、以及生物化学分析、疾病的诊断与治疗等方面的应用得到的广泛的关注。 与传统荧光染料相比,量子点存在以下优点:[2] (1)量子点的发射光谱可以通过改变量子点的尺寸大小来控制。通过改变量子点的尺寸和它的化学组成可以使其发射光谱覆盖整个可见光区。而传统的邮寄荧光染料激发光谱窄,发射光谱很宽。激发光谱窄导致每一个不同的荧光染料必须使用一种特定的激发波长来激发,限制了使用有机荧光染料作为荧光探针进行多色标记。而且其荧光发射峰的半峰宽很宽,导致不同波长的有机荧光染料的发射峰彼此重叠,大大限制了可以同时使用的荧光探针的数量。 (2)量子点具有良好的光稳定性,量子点的荧光强度比最常用的邮寄荧光材料“罗丹明6G”高20倍,稳定性是100倍以上,因此,量子点可以对标记的物体进行长时间的观察。有机荧光染料的荧光稳定性不好,见光极易分解,产生光漂白现象,导致量子产率下降,对检测过程造成影响。 (3)量子点具有宽的激发谱和窄的发射谱。使用同一激发光源就可实现对不同粒径的量子点进行同步检测,因而可用于多色标记,极大地促进了荧光标记在生物钟的应用。 (4)量子点具有较大的斯托克斯位移。可以避免发射光谱和激发光谱的重叠,有利于荧光光谱信号的检测。 (5)生物相容性好。量子点经过化学修饰之后,对细胞毒性低,对生物危害小,可进行生物活体标记和检测。 (6)量子点的荧光寿命长。有机荧光燃料的寿命一般为几纳秒,而量子点的荧光寿命可持续数十纳秒。这使得当光激发后,大多数的自发荧光已经衰变,但量子点荧光仍然存在,此时即可得到无背景干扰的荧光信号。 量子点进行生物标记的基础 1、量子点与生物分子的偶联[3] 量子点和生物分子的偶联是将量子点应用到生物领域的基础,生物分子可以通过各种作用力,如静电吸附,共价偶联,配位键和生物特异性吸附等,与量子点得到生物功能化的量

合成生物学在工业微生物菌种优势最小基因组改造中的应用

合成生物学在工业微生物菌种优势最小基因组改造中的应用 随着许多生物体全基因组测序的完成,兴起了最小基因组的研究,即一个能独立生活的生物体最少需要多少个基因。对最小基因组的研究将深入了解生命起源、生物进化和生物代谢调控;并在此基础上,以人类的意愿合成自然界不可能产生的生命体。依据核糖体RNA 序列,现存的生命形式被分为3个域,即真细菌、古细菌和真核生物。这些生物的遗传物质都是核酸,其基因组大小变化很大,从数十万碱基对到几十亿碱基对不等;所含基因数目则为数百乃至数万。而原核生物的基因组较小,基因结构和基因调控网络相对简单。因此最小基因组的研究主要以原核生物为研究对象。 细胞是生命活动的基本单位,细胞生命的3大特征是维持正常代谢平衡、进行繁殖(自我复制)以及进化。所谓最小基因组就是维持细胞三大特征的必需基因数,尽管不同物种间总基因数目变动很大,但维持自由生活细胞的必需基因数目大约为300个左右,相应的基因组大小约为300~400 kb。随着技术的进步,以大规模高通量分析为特征的各种组学应运而生,包括基因组学、转录组学、蛋白组学和代谢组学等,这些新生的研究体系将基因组复制、基因转录、翻译和基因调控网络、蛋白质相互作用和物质能量代谢等不同层次的的信息相互关联,以揭示错综复杂的生命活动。生物信息学、计算生物学和系统生物学就是为整合和诠释这些海量的数据而产生的,其重要性也日益突出。在人类基因组测序完成的后基因组时代,最小基因组的确切大小仍是未解之谜。与此同时,人工建立最小基因组的工作已经开始进行,其中最为突出的成果是“人造细胞”的诞生。 1 鉴定必需基因和最小基因组的方法 在一个生物体包含的全部基因中,有一部分是必需基因,必需基因是现代生物学研究的重中之重。必需基因是指在一定环境条件下,维持某种生物体的生命活动所必不可少的基因。这些基因所编码蛋白质的功能被认为是生命的基础,其突变通常是致死性的。由于细菌自身的特性,细菌特定基因的必要性还取决于环境条件。因为寄主细胞内环境条件稳定,营养供应充足,由此使得细胞内共(寄)生细菌细胞结构和代谢途径通常极度简化,细胞壁退化乃至消失。目前发现细菌Carsonellaruddii的基因组最小,仅为160 kb,基因分布非常致密,有182 个开放阅读框,90%的相邻开放阅读框间有所重叠。总体而言,细菌的必需基因是合成细胞结构成分、信息传递和加工不可或缺的基因。确定必需基因和最小基因组的方法主要有比较基因组学和系统性基因失活法。 1.1 比较基因组学方法 相对而言,原核生物基因组简单,重复序列较少,因此短枪测序法适合于微生物基因组测序。其基本思路是必需基因应该是在细菌基因组中非常保守的基因,而非必需基因则不会在所有基因组中出现。美国国家生物技术信息中心(NCBI)的Mushegian和Koonin通过对流感嗜血杆菌和生殖支原体基因组的比较分析,发现大约256个基因为两者所共有的保守基

量子点在生物医学领域的应用进展

量子点在生物医学领域的应用进展 【摘要】量子点是近年来发展起来的一种性能优异的新型荧光纳米材料,已成为纳米技术领域最受关注的研究对象之一,并成功应用于生命科学等领域。本文介绍了量子点的基本概念和性质,对量子点在生物医学领域的应用进行了综述和展望,指出了目前存在的问题和今后的发展方向。 【关键词】量子点;生物医学;荧光;纳米粒子 1量子点的概念及特性 量子点(Quantum dots, QDs) 又称半导体纳米微晶体,是半径小于或接近于激子玻尔半径的一类无机半导体纳米粒子,主要由ⅡB - ⅥA (如CdSe,CdTe,ZnSe 等) ,ⅢA-ⅤA( 如InAs,InP 等) 组成的,粒径在1—10nm,能够光致发光的半导体纳米晶。 QDs具有一般纳米微粒的基本性质如表面效应、体积效应和量子尺寸效应,具有宽的激发光谱、窄的发射光谱、可精确调谐的发射波长,正是基于量子点独特的光学性质使得它克服了传统的用于标记或衍生的荧光试剂如荧光素类、罗丹明类等有机化合物存在荧光量子产率低、易光漂白及发射光谱宽等缺点。QDs 所具有的优异的光谱性能,在生物化学、细胞生物学、分子生物学、生物分析化学等研究领域显示出极其广阔的应用前景,并逐步地应用于蛋白质及DNA的检测、药物靶向治疗、活细胞生命动态过程的示踪及动物活体体内肿瘤细胞的靶向示踪等生物分析与医学诊断领域,并取得了丰硕的研究成果[1]。 2量子点的应用 2.1 量子点在细胞成像中的应用 对单个活细胞的一些活动进程进行高效、灵敏的监测将有助于阐明一些重要的细胞生理过程和药物代谢机制,有利于了解生物体的复杂性以及动力学特征。发展特异性和选择性的QDs 是细胞和生物分子标记的一大挑战。经巯基乙酸修饰的QDs 连接到转铁蛋白上后,再把QDs-转铁蛋白同表面存在大量转铁蛋白识别受体的HeLa 细胞一起培养,发现其可以被HeLa 细胞表面的受体识别并吞噬进入细胞内部,首次实现了QDs 应用于离体活细胞实验[2]。Tokumasu等[3]用偶联了抗体的QDs 标记血红细胞膜上的Band3 蛋白,实验中观察到了Band3 蛋白在细胞膜上的分布,证实了可以通过QDs 的标记观察在疟原虫入侵时红血球细胞膜的变化情况。Orndorff 等[4]使用具有高亲合性的神经毒素修饰QDs,然后标记了内在表达的癌细胞蛋白,揭示了经神经毒素修饰的QDs 可以作为一种鉴定癌细胞存在的评估标签。 2.2 量子点在活体成像中的应用

半导体量子点及其应用概述_李世国答辩

科技信息2011年第29期 SCIENCE&TECHNOLOGY INFORMATION 0引言 近年来半导体材料科学主要朝两个方向发展:一方面是不断探索扩展新的半导体材料,即所谓材料工程;另一方面是逐步从高维到低维深入研究己知半导体材料体系,这就是能带工程。半导体量子点就是通过改变其尺寸实现能级的改变,达到应用的目的,这就是半导体量子点能带工程。半导体量子点是由少量原子组成的准零维纳米量子结构,原子数目通常在几个到几百个之间,三个维度的尺寸都小于100纳米。载流子在量子点的三个维度上运动受尺寸效应限制,量子效应非常显著。在量子点中,由于量子限制效应作用,其载流子的能级类似原子有不连续的能级结构,所以量子点又叫人造原子。由于特殊能级结构,使得量子点表现出独特的物理性质,如量子尺寸效应、量子遂穿效应、库仑阻塞效应、表面量子效应、量子干涉效应、多体相关和非线性光学效应等,它对于基础物理研究和新型电子和光电器件都有很重要的意义,量子点材料生长和器件应用研究一直是科学界的热点之一[1]。 1量子点制备方法 目前对量子点的制备有很多方法,主要有外延技术生长法、溶胶-凝胶法(Sol-gel 和化学腐蚀法等,下面简单介绍这几种制备方法: 1.1外延技术法 外延技术法制备半导体量子点,主要是利用当前先进的分子束外延(MBE、金属有机物分子束外延(MOCVD和化学束外延(CBE等技术通过自组装生长机理,在特定的生长条件下,在晶格失配的半导体衬底上通过异质外延来实现半导体量子点的生长,在异质外延外延中,当外延材料的生长达到一定厚度后,为了释放外延材料晶格失配产生的应力能,外延材料就会形成半导体量子点,其大小跟材料的晶格失配度、外延过程中的条件控制有很大的关系,外延技术这是目前获得高质量半导体量子点比较普遍的方法,缺点是对半导体量子点的生长都是在高真空或超高真空下进行,使得材料生长成本非常高。1.2胶体法

分子与合成生物学知识点总结

1.(生命的起源)三界的分类:古细菌、细菌、真核生物 2.小分子:氨基酸、糖类、核苷酸 77% 3.大分子:核酸、蛋白质、脂质 23% 4.古细菌更类似于真核细胞,原核细菌是真正的细菌 5.合成生物学的定义:设计和构建自然界中没有发现的生物功能和生物系统。构造生物零件装置和能量,药物以及科技系统中应用工程原则和数学模型。 组装各领域专业知识的研究领域为了理解,构建,修饰生物系统。 合成生物学的目标:①操纵基因元件,将基础生物分子整合到基因线路上,来创造新性状,表达复杂的生物功能。②从稳定、标准、已经改良好的基因模块来构建生物体系。 合成生物学的目的:改造系统、系统化构建 .合成生物学与其他学科的不同:抽象性、模块性、标准化、设计和模型 6.根据进化树,古细菌和真核生物都来自细菌。 7.生物膜的作用:隔离、储存能量、物质传递、信号传导、阻断毒性 8.内共生学说:古细菌的真核细胞吞噬异样细菌,成为它的线粒体。 吞噬自养细菌,成为它的叶绿体。 9.基因的概念:基因是生物有机体遗传的分子单元 基因在染色体上 是有机体中可以编码多肽和RNA的DNA序列 10.DNA的结构和功能: 遗传信息在DNA链的核苷酸序列中 遗传信息指导合成蛋白质 基因两条链碱基配对以氢键链接 一条链模板、半保留复制5-3、3端游离羟基、糖在外,碱基在内 11.染色体结构与基因表达: 染色质的基本组成单位是核小体 核小体是组蛋白八聚体2H2A 2H2B 2H3 2H4 H1与核小体间DNA链接 染色质改造:连接DNA长度可变,结合DNA结构可变 12.三个重要的DNA序列:端粒、复制起始区、着丝点 13.核小体的N端修饰(共价修饰): DNA甲基化和组蛋白去乙酰化协同作用共同参与转录阻遏。 磷酸化使生物学过程发生 14.转录抑制与异染色质有关 15.第三章总结:间期染色质解旋很难看见 基因表达loop结构处 常染色质结构疏松表达活跃,能编码蛋白质。 异染色质粘稠不编码。如端粒、中心粒、着丝粒 有丝分裂染色体是压缩的,有序的,染色体在细胞核中的存放时空间有序的 16.分子机器:调节DNA的蛋白质 DNA:连接酶、解旋酶(95℃)、拓扑异构酶 钳蛋白、结合蛋白

量子点作为荧光探针在生物医学领域的研究进展

Hans Journal of Nanotechnology纳米技术, 2016, 6(1), 9-13 Published Online February 2016 in Hans. https://www.sodocs.net/doc/ae4088322.html,/journal/nat https://www.sodocs.net/doc/ae4088322.html,/10.12677/nat.2016.61002 Advances of Quantum Dots as Fluorescent Probes in Biological and Medical Fields Guolong Song, Xiangdong Kong* Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou Zhejiang Received: Jan. 27th, 2016; accepted: Feb. 13th, 2016; published: Feb. 16th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.sodocs.net/doc/ae4088322.html,/licenses/by/4.0/ Abstract Quantum dots (QDs), three-dimensional (3-D) nanocrystals, possess a great deal of unique optical performances, such as wide excitation wavelength, narrow and symmetric emission wavelength, high quantum yield, long fluorescence lifespan, stable optical property. QDs can be used as fluo-rescent probes to label different components in biosystem, which contains tissues, cells, molecules and living animals imaging. A review on the advances of QDs as fluorescent probes in Biological and Medical fields is given in the paper. Keywords Quantum Dots, Biological Probes, In Vivo Imaging 量子点作为荧光探针在生物医学领域的 研究进展 宋国龙,孔祥东* 浙江理工大学生命科学学院,生物材料与海洋生物资源研究所,浙江杭州 收稿日期:2016年1月27日;录用日期:2016年2月13日;发布日期:2016年2月16日 *通讯作者。

荧光量子点探针及其标记技术_蒋飞荣

文章编号 :1004-0374(2010)04-0391-05 收稿日期:2009-10-09;修回日期:2009-12-09基金项目:国家高技术研究发展计划(“863”计划)(2007AA021809;2007AA021811); 国家重点基础研究发展计划(“973”计划)(2010CB833605); 湖南省科技厅资助项目(2008FJ3186); 2009年度新世纪优秀人才支持计划(NCET-10-0790)#共同第一作者 *通讯作者:E-mail :rencaiping@https://www.sodocs.net/doc/ae4088322.html,; Tel :0731-******** 荧光量子点探针及其标记技术 蒋飞荣1,2#,贾文婷1#,张兴燊2,任彩萍1* (1中南大学肿瘤研究所,长沙 410078;2广西中医学院,南宁 530001) 摘要:量子点作为一种新型荧光标记物,与有机染料和荧光蛋白质相比,它们具有可调谐且宽的吸收 光谱,激发可产生多重荧光颜色、强荧光信号、抗光漂白能力强等独特的光学特性,使其广泛应用在生物和医学领域。该文就量子点探针的表面修饰和功能化及其标记技术的研究进展进行了阐述。关键词:荧光量子点;探针;生物标记中图分类号:Q6-33 文献标识码:A Fluorescent quantum dots probes and their biological labeling JIANG Fei-rong 1, 2#, JIA Wen-ting 1#, ZHANG Xing-shen 2, REN Cai-ping 1* (1 Cancer Research Institute, Central South University, Changsha 410078, China; 2 Guangxi Traditional Chinese Medical University, Nanning 530001, China) Abstract: As emerging promising fluorescent labels, semiconductor quantum dots (QDs) have tremendous potential in the fields of biology and medicine because of their unique optical properties with size-tunable light emission, broad absorption spectra for simultaneous excitation of multiple fluorescence colors, superior signal brightness, resistance against photobleaching, etc. This article briefly discusses the recent progresses on fluorescent QDs probes and their biological labeling including their surface modification and functionalization.Key words: fluorescent quantum dots; probe; biological labeling 荧光半导体量子点(fluorescent semiconductor quantum dots ,QDs)是一种由II-VI 族(如CdSe 和CdTe)或III-V 族(如InP 和InAs)或IV-VI 族(如PbS 和PbSe)元素组成的、直径一般在1~100 nm 、能够接受激发光产生荧光的半导体纳米颗粒。Bruchez 等[1]通过在QDs 表面包裹SiO 2,再连接上羟基以及Chan 和Nie [2]采用巯基乙酸修饰QDs ,解决了QDs 的水溶性和生物兼容性问题。 QDs 独特的光学特性、表面修饰和生物功能化以及标记技术的优势使得QDs 在生物学、活细胞和体内成像、药物研究和筛选、生物芯片等领域得到了广泛应用。本文就QDs 探针的表面修饰和功能化及其标记技术进行阐述。 1 QDs的特征 一种典型的水溶性核壳型QDs 应该包括: (1)一 个半导体核(如CdSe),其直径决定荧光的波长;(2)一个半导体外壳(如ZnS),用来提高量子产率;(3)一个亲水层,用来保证其水溶性[3]。与传统的有机荧光标记物相比,QDs 具有以下特点:(1)激发波长范围宽、发射波长范围窄,可以采用同一波长激发光同时激发不同颜色QDs [4]; (2)QDs 的荧光强度高及核壳结构稳定性好,可以经受反复多次激发,荧 DOI:10.13376/j.cbls/2010.04.001

量子点总结

量子点总结

1.前言 在最近的几十年里,量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。量子点尺寸大约为1-10 纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点”。1998 年 , Alivisatos 和 Nie 两个研究小组首次解决了量子点作为生物探针的生物相容性问题, 他们利用MPA 将量子点从氯仿转移到水溶液,标志着量子点的生物应用的时代的到来。目前,量子点最引人瞩目的的应用领域之一就是在生物体系中做荧光探针。 与传统的有机染料相比,量子点具有无法比拟的发光性能,比如尺寸可调的荧光发射,窄且对称的发射光谱宽且连续的吸收光谱,极好的光稳定性。通过调节不同的尺寸,可以获得不同发

射波长的量子点。窄且对称的荧光发射使量子点成为一种理想的多色标记的材料。 由于宽且连续的吸收光谱,用一个激光源就可以同时激发一系列波长不同荧光量子点量子点良好的光稳定性使它能够很好的应用于组织成像等。量子点集中以上诸多优点是十分难得的,因此这就要求我们制备出宽吸收带,窄且对称的发射峰,高的量子产率稳定和良好生物兼容性的稳定量子点。 现在用作荧光探针的量子点主要有单核量子点(CdSe,CdTe,CdS)和核壳式量子点(CdSe/ZnS[39], CdSe/ZnSe[40])。量子点的制备方法主要分为在水相体系中合成和在有机相体系中合成。本文主要以制备量子点的结构及合成方法为主线分为两部分:第一部分综述了近十几年量子点在有机相中的制备方法的演变历程,重点包括前体的选择,操作条件和合成量子点结构。第二部分介绍了近十几年量子点在水相中制备方法的改进历程,重点包括保护剂的选择及水热法及微波辅助法合成方法。

蛋白标记技术详解

蛋白标记技术详解 蛋白质标记的主要目的是监测生物过程、辅助检测(例如化合物的可靠定量、蛋白质修饰的特异性检测)或者纯化蛋白及其结合对象。蛋白质的标记能够提高检测灵敏度以及简化检测工作流程。 目前有多种蛋白质标记技术来帮助我们研究感兴趣的蛋白质的丰度、位置、相互作用、翻译后修饰、功能,乃至监测活细胞中的蛋白质运输等问题。目前有多种类型的标记物和标记方式可供选择,但是针对特定的应用应当选择适合的标记策略。 1.代谢标记策略 代谢标记策略是一种体内标记方法,在这种方法中,细胞被“喂养”了化学标记的营养物,然后这些标记物被掺入新合成的蛋白质、核酸或代谢物中。然后,我们可以收集细胞并分离这些分子以获得细胞生物过程的全局视图。 蛋白同位素标记 原理 蛋白同位素标记是一种经典的蛋白示踪和蛋白组学定量技术,用天然同位素(轻型)或稳定同位素(重型)标记的必需氨基酸取代细胞培养基中相应氨基酸,这样细胞新合成的蛋白质可以在细胞生长期间通过掺入含有不同同位素的氨基酸进行标记。 应用举例 蛋白质组学研究方向流行的代谢标记方法是SILAC(Stable Isotope Labeling with Amino acids in Cell culture),即细胞培养中氨基酸的稳定同位素标记。结合质谱技术,SILAC 通过使用重型氨基酸(例如,15N-或13C-赖氨酸)标记其中一组培养物或细胞系,而向另一组添加正常的轻型氨基酸,从而量化两种培养物或细胞系之间蛋白质丰度的差异。然后将在这两种条件下生长的细胞的裂解蛋白按细胞数或蛋白量等比例混合,经分离、纯化后进行质谱鉴定,根据一级质谱图中两个同位素型肽段的

量子点与有机染料作为生物标记物的优缺点1

量子点与有机染料作为生物标记物的优缺点比较 及其改进方法 作者:林锦池 摘要:通过阅读文献,了解量子点的概念及其在生物标记方面的应用,并与传统的有机染料法比较说明其优缺点,提出改进方案。 现代量子点技术要追溯到上世纪70年代中期,它是为了解决全球能源危机而发展起来的。通过光电化学研究,开发出半导体与液体之间的结合面,以利用纳米晶体颗粒优良的体表面积比来产生能量。初期研究始于上世体80年代早期2个实验室的科学家:贝尔实验室的LoniSBrus博士和前苏联Y offe研究所的AlexanderEfros和A.I.Ekimov博士。Brus博士与同事发现不同大小的硫化镉颗粒可产生不同的颜色。这个工作对了解量子限域效应很有帮助,该效应解释了量子点大小和颜色之间的相互关系,也同时也为量子点的应用铺平了道路。 一、量子点的概念 量子点,又可称为纳米晶,是一种由II-VI族或III-V族元素组成的纳米颗粒。量子点的粒径一般介于1~10nm之间,由于电子和空穴被量子限域,连续的能带结构变成具有分子特性的分立能级结构,受激后可以发射荧光。 小的量子点,例如胶状半导体纳米晶,可以小到只有2到10个纳米,这相当于10到50个原子的直径的尺寸,在一个量子点体积中可以包含100到100,000个这样的原子.自组装量子点的典型尺寸在10到50 纳米之间。通过光刻成型的门电极或者刻蚀半导体异质结中的二维电子气形成的量子点横向尺寸可以超过100纳米。 二、量子点在生物标记方面的应用 1995年,AlivisatosI.Z.和Nie两个研究小组首次将量子点作为生物荧光标记,并且应用于活细胞体系,他们解决了如何将量子点溶于水溶液,以及量子点如何通过表面的活性基团与生物大分子偶联的问题,由此掀起了量子点的研究热潮。 从生物体系的发光标记物的差别上讲,量子点由于量子力学的奇妙规则而具有显著的尺寸效应,基本上高于特定域值的光都可吸收,而一个有机染料分子只有在吸收合适能量的光子后才能从基态升到较高的激发态,所用的光必须是精确的波长或颜色,这明显与半导体体相材料不同,而量子点要吸收所有高于其带隙能量的光子,但所发射的光波长(即颜色)又非常具有尺寸依赖性。所以,单一种类的纳米半导体材料就能够按尺寸变化产生一个发光波长不同的、颜色分明的标记物家族,这是染料分子根本无法实现的。 三、量子点与有机染料作为生物标记物的优缺点比较 与传统的染料分子相比,量子点确实具有多种优势: (l)量子点的发射光谱可以通过改变量子点的尺寸大小来控制。通过改变量子点的尺寸和它的化学组成可以使其发射光谱覆盖整个可见光区。 (2)量子点具有很好的光稳定性。量子点的荧光强度比最常用的有机荧光材料“罗丹明6G”高20倍,它的稳定性更是“罗丹明6G”的100倍以上。而且量子点抗光漂白能力强。所谓光漂白是指由光激发引起发光物质分解而使荧光强度降低的现象。有机荧光染料的光漂

相关主题