搜档网
当前位置:搜档网 › 动态规划练习题及解答1

动态规划练习题及解答1

动态规划练习题及解答1
动态规划练习题及解答1

动态规划练习题

[题1] 多米诺骨牌(DOMINO)

问题描述:有一种多米诺骨牌是平面的,其正面被分成上下两部分,每一部分的表面或者为空,或者被标上1至6个点。现有一行排列在桌面上:顶行骨牌的点数之和为6+1+1+1=9;底行骨牌点数之和为1+5+3+2=11。顶行和底行的差值是2。这个差值是两行点数之和的差的绝对值。每个多米诺骨牌都可以上下倒置转换,即上部变为下部,下部变为上部。

现在的任务是,以最少的翻转次数,使得顶行和底行之间的差值最小。对于上面这个例子,我们只需翻转最后一个骨牌,就可以使得顶行和底行的差值为0,所以例子的答案为1。

输入格式:

文件的第一行是一个整数n(1〈=n〈=1000〉,表示有n个多米诺骨牌在桌面上排成一行。接下来共有n行,每行包含两个整数a、b(0〈=a、b〈=6,中间用空格分开〉。第I+1行的a、b分别表示第I个多米诺骨牌的上部与下部的点数(0表示空)。

输出格式:

只有一个整数在文件的第一行。这个整数表示翻动骨牌的最少次数,从而使得顶行和底行的差值最小。

[题2] Perform巡回演出

题目描述:

Flute市的Phlharmoniker乐团2000年准备到Harp市做一次大型演出,本着普及古典音乐的目的,乐团指挥L.Y.M准备在到达Harp市之前先在周围一些小城市作一段时间的巡回演出,此后的几天里,音乐家们将每天搭乘一个航班从一个城市飞到另一个城市,最后才到达目的地Harp市(乐团可多次在同一城市演出).

由于航线的费用和班次每天都在变,城市和城市之间都有一份循环的航班表,每一时间,每一方向,航班表循环的周期都可能不同.现要求寻找一张花费费用最小的演出表.

输入: 输入文件包括若干个场景.每个场景的描述由一对整数n(2<=n<=10)和k(1<=k<=1000)开始,音乐家们要在这n个城市作巡回演出,城市用1..n标号,其中1是起点Flute市,n是终点Harp市,接下来有n*(n-1)份航班表,一份航班表一行,描述每对城市之间的航线和价格,第一组n-1份航班表对应从城市1到其他城市(2,3,...n)的航班,接下的n-1行是从城市2到其他城市(1,3,4...n)的航班,如此下去.

每份航班又一个整数d(1<=d<=30)开始,表示航班表循环的周期,接下来的d个非负整数表示1,2...d天对应的两个城市的航班的价格,价格为零表示那天两个城市之间没有航班.例如"3 75 0 80"表示第一天机票价格是75KOI,第二天没有航班,第三天的机票是80KOI,然后循环:第四天又是75KOI,第五天没有航班,如此循环.输入文件由n=k=0的场景结束.

输出:

对每个场景如果乐团可能从城市1出发,每天都要飞往另一个城市,最后(经过k天)抵达城市n,则输出这k个航班价格之和的最小值.如果不可能存在这样的巡回演出路线,输出0.

样例输入: 样例输出:

3 6 460

2 130 150 0

3 75 0 80

7 120 110 0 100 110 120 0

4 60 70 60 50

3 0 135 140

2 70 80

2 3

2 0 70

1 80

0 0

[题3] 复制书稿(BOOKS)

问题描述:假设有M本书(编号为1,2,…M),想将每本复制一份,M本书的页数可能不同(分别是P1,P2,…PM)。任务时将这M本书分给K个抄写员(K 〈=M〉,每本书只能分配给一个抄写员进行复制,而每个抄写员所分配到的书必须是连续顺序的。

意思是说,存在一个连续升序数列0=bo〈b1〈b2〈…

输入格式:

文件的第一行是两个整数m和k (1〈=k〈=m〈=500)。

第二行有m个整数P1,P2,…,Pm,这m个整数均为正整数且都不超过1000000。每两个整数之间用空格分开。

输出格式:

文件有k行,每行有两个正整数。整数之间用空格分开。

第I行的两个整数ai和bi,表示第I号抄写员所分配得到的书稿的起始编号与终止编号。

动态规划题参考程序:

题1:

解决问题:例子的上下部分之差是6+1+1+1-(1+5+3+2)=(6-1)+(1-5)+(1-3)+(1-2)=-2,而翻转最后一个骨牌后,上下之差变为(6-1)+(1-5)+(1-3)+(2-1)=0。由此看出,一个骨牌对翻转策略造成影响的是上下两数之差,骨牌上的数则是次要的了。这么一来,便把骨牌的放置状态由8个数字变为4个: 5 -4 -2 -1,翻转时只需取该位数字的相反数就行了。

在本题中,因为各骨牌的翻转顺序没有限定,所以不能按骨牌编号作为阶段来划分。怎么办呢?考虑到隐含阶段类型的问题可以按状态最优值的大小来划分阶段。于是,我们以骨牌序列上下两部分的差值I作为状态,把达到这一状态的翻转步数作为状态值,记为f(I)。便有f(I)=min{f(I+j)+1} (-12〈=j<=12,j 为偶数,且要求当前状态有差值为j/2的骨牌)。这里,I不是无限增大或减小,其范围取决于初始骨牌序列的数字差的和的大小。

具体动态规划时,如例题,我们以f(-2)=0起步,根据骨牌状态,进行一次翻转,可得到f(-12)=1,f(6)=1,f(2)=1,f(0)=1,由于出现了f (0),因此程序便可以结束,否则将根据四个新状态继续扩展,直至出现f(0)或者无法生成新状态为止。

注意:在各状态,除记录最少步数外,还需记录到达这一状态时各骨牌的放置情况;而当到达某一状态发现已记录有一种翻转策略时,则取步数较小的一种。程序如下:

program domino;

type tp=array[1..6] of integer;

var t:array[1..6000] of ^tp;

{记录骨牌摆放状态}

f:array[-6000..6000] of integer;

{记录达到某个差值的最少步数}

l:array[1..6000] of integer;

{扩展队列}

tt:tp;

i,j,n,m,x,y,ft,re:integer;

f1,f2:text;

procedure init;

{程序初始化}

begin

assign(f1,'domino.dat');

reset(f1);

assign(f2,'domino.out');

rewrite(f2);

m:=0;

ft:=0;re:=1;new(t[1]);

fillchar(t[1]^,sizeof(t[1]^),0);

fillchar(f,sizeof(f),0);

fillchar(tt,sizeof(tt),0);

readln(f1,n);

for i:=1 to n do

begin

readln(f1,x,y);

if x<>y then

begin

x:=x-y;

inc(m,x);

inc(tt[abs(x)]);

if x>0 then inc(t[1]^[x]);

end;

end;

if m=0 then

begin

writeln(f2,0);

close(f2);

halt;

end;

{处理步数为零的情况}

l[1]:=m;

f[m]:=1;

end;

procedure main;

{主过程}

begin

repeat

for ft:=ft+1 to re do

{以步数为阶段扩展状态}

begin

x:=l[ft];

for i:=1 to 6 do

{不同差值的六种情况}

begin

if x<6 then

if (t[ft]^[i]

inc(re);l[re]:=x+i*2;

f[l[re]]:=f[x]+1;

if l[re]=0 then

{找到解便打印}

begin

writeln(f2,f[l[re]]-1);

close(f2);

halt;

end;

new(t[re]);

t[re]^:=t[ft]^;

inc(t[re]^[i]);

end;

{差值增加}

if x>-6 then

if (t[ft]^[i]>0)and(f[x-i*2]=0) then

begin

inc(re);l[re]:=x-i*2;

f[l[re]]:=f[x]+1;

if l[re]=0 then

{找到解便打印}

begin

writeln(f2,f[l[re]]-1);

close(f2);

halt;

end;

new(t[re]);

t[re]^:=t[ft]^;

dec(t[re]^[i]);

end;

{差值减少}

end;

end;

until ft=re;

for i:=1 to 6 do

if (f[i]>0)or(f[-i]>0) then

begin

if (f[-i]>0)and((f[i]=0)or(f[-i]

else x:=f[i];

writeln(f2,x-1);

i:=6;

end;

close(f2);

{骨牌上下两行点数之和的绝对值不为零}

end;

begin

init;

main;

end.

题2:

初看这道题,很容易便可以想到动态规划,因为第x天在第y个地方的最优值只与第x-1天有关,符合动态规划的无后效性原则,即只与上一个状态相关联,而某一天x航班价格不难求出S=C[(x-1) mod m +1].我们用天数和地点来规划用一个数组A[1..1000,1..10]来存储,A[i,j]表示第i天到达第j个城市的最优值,C[i,j,l]表示i 城市与j城市间第l天航班价格,则A[i,j]=Min{A[i-1,l]+C[l,j,i] (l=1..n且C[l,j,i]<>0)},动态规划方程一出,尽可以放怀大笑了.

示范程序:

program perform_hh;

var

f,fout:text;

p,l,i,j,n,k:integer;

a:array [1..1000,1..10] of integer; {动态规划数组}

c:array [1..10,1..10] of record {航班价格数组}

num:integer;

t:array [1..30] of integer;

end;

e:array [1..1000] of integer;

procedure work;

begin

{人工赋第一天各城市最优值}

for i:=1 to n do

begin

if c[1,i].t[1]<>0

then a[1,i]:=c[1,i].t[1];

end;

for i:=2 to k do

begin

for j:=1 to n do

begin

for l:=1 to n do

begin

if (j<>l)

and (c[l,j].t[(i-1) mod c[l,j].num+1]<>0) {判断存在航班}

and ((a[i,j]=0) or (a[i-1,l]+c[l,j].t[(i-1) mod c[l,j].num+1]

then a[i,j]:=a[i-1,l]+c[l,j].t[(i-1) mod c[l,j].num+1]; {赋值}

end;

end;

end;

e[p]:=a[k,n]; {第p个场景的最优值}

end;

procedure readfile; {读文件}

begin

assign(f,'PERFORM.DAT'); reset(f);

assign(fout,'PERFORM.OUT'); rewrite(fout);

readln(f,n,k); p:=0;

while (n<>0) and (k<>0) do

begin

p:=p+1;

fillchar(c,sizeof(c),0);

fillchar(a,sizeof(a),0);

for i:=1 to n do

begin

for j:=1 to i-1 do

begin

read(f,c[i,j].num);

for l:=1 to c[i,j].num do

read(f,c[i,j].t[l]);

end;

for j:=i+1 to n do

begin

read(f,c[i,j].num);

for l:=1 to c[i,j].num do

read(f,c[i,j].t[l]);

end;

end;

work;

readln(f,n,k);

end;

{输出各个场景的解}

for i:=1 to p-1 do

writeln(fout,e[i]);

write(fout,e[p]);

close(f);

close(fout);

end;

begin

readfile;

end.

[题3:]

解决问题:该题中M本书是顺序排列的,K个抄写员选择数也是顺序且连续的。不管以书的编号,还是以抄写员标号作为参变量划分阶段,都符合策略的最优化原理和无后效性。考虑到K〈=M,以抄写员编号来划分会方便些。

设F(I,J)为前I个抄写员复制前J本书的最小“页数最大数”。于是便有F(I,J)=MIN{ F(I-1,V),T(V+1,J)} (1〈=I〈=K,I〈=J〈=M-K+I,I-1〈=V〈=J-1〉。其中T(V+1,J)表示从第V+1本书到第J本书的页数和。起步时F(1,1)=P1。

观察函数递推式,发现F(I)阶段只依赖于F(I-1)阶段的状态值,编程时可令数组F的范围为(0…1,1…M),便于缩小空间复杂度。

程序如下:

program books;

type tp=array[1..500] of integer;

tc=array[1..500] of longint;

var c:array[1..500] of ^tp;

{记录路径}

f:array[0..1] of tc;

{状态值}

t:tc;

{书本页数和}

cc:tp;

{链接路径}

i,j,v,k,m,x,y,min,p1,p2:longint;

f1,f2:text;

procedure init;

{输入部分}

begin

assign(f1,'books.dat');

reset(f1);

assign(f2,'books.out');

rewrite(f2);

readln(f1,m,k);

if k=1 then

begin

writeln(f2,1,' ',m);

close(f2);

halt;

end;

{当k=1时,作特殊处理}

for i:=1 to m do

begin

read(f1,j);

if i=1 then t[1]:=j else

t[i]:=t[i-1]+j;

{累加页数}

end;

for i:=1 to k do

new(c[i]);

end;

procedure main;

{主过程}

begin

p1:=1;f[1]:=t;

{起步状态}

for i:=2 to k-1 do

{利用函数递推式计算}

begin

p2:=p1;p1:=1-p2;

for j:=i to m-k+i do

begin

min:=maxlongint;y:=0;

for v:=i-1 to j-1 do

begin

if f[p2,v]>t[j]-t[v] then x:=f[p2,v] else x:=t[j]-t[v]; if x

end;

f[p1,j]:=min;

c[i]^[j]:=y;

end;

end;

p2:=p1;p1:=1-p2;

min:=maxlongint;y:=0;

for i:=k-1 to m-1 do

begin

if f[p2,i]>t[m]-t[i] then x:=f[p2,i] else x:=t[m]-t[i];

if x

end;

{最后找出最优分配方案}

for i:=k-1 downto 1 do

begin

cc[i]:=y;

y:=c[i]^[y];

end;

{链接路径}

writeln(f2,1,' ',cc[1]);

for j:=2 to k-1 do

writeln(f2,cc[j-1]+1,' ',cc[j]);

writeln(f2,cc[k-1]+1,' ',m); close(f2);

{打印}

end;

begin

init;

main;

end.

动态规划基本原理

动态规划基本原理 动态规划基本原理 近年来,涉及动态规划的各种竞赛题越来越多,每一年的NOI几乎都至少有一道题目 需要用动态规划的方法来解决;而竞赛对选手运用动态规划知识的要求也越来越高,已经 不再停留于简单的递推和建模上了。 要了解动态规划的概念,首先要知道什么是多阶段决策问题。 一、多阶段决策问题 如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采 取措施),一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了 一个过程的活动路线,则称它为多阶段决策问题。 各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供 选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可 以用数量来确定。策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策 略中间,选取一个最优策略,使在预定的标准下达到最好的效果. 让我们先来看下面的例子:如图所示的是一个带权有向的多段图,要求从A到D的最 短 图4-1 带权有向多段图 路径的长度(下面简称最短距离)。 我们可以搜索,枚举图中的每条路径,但当图的规模大起来时,搜索的效率显然不可 能尽人意。让我们来试用动态规划的思路分析这道题:从图中可以看到,A点要到达D点 必然要经过B1和B2中的一个,所以A到D的最短距离必然等于B1到D的最短距离加上5,或是B2到D的最短距离加上2。同样的,B1到D的最短距离必然等于C1到D的最短距离 加上3或是C2到D的最短距离加上2,……。 我们设G[i]为点i到点D的距离,显然G[C1]=4,G[C2]=3,G[C3]=5,根据上面的分析, 有: G[B1]=min{G[C1]+3,G[C2]+2}=5, G[B2]=min{G[C2]+7,G[C3]+4}=9, 再就有G[A]=min{G[B1]+5,G[B2]+2}=10,

经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。不存在一种万能的动态规划算法。但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。 多阶段决策过程最优化问题 ——动态规划的基本模型 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。 【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少? 【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下: S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3 S2: K=3,有: F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8 F3(C2)=d3(C2,D1)+f4(D1)=5+3=8 F3(C3)=d3(C3,D3)+f4(D3)=8+3=11 F3(C4)=d3(C4,D3)+f4(D3)=3+3=6

动态规划1

【例1】最短路径问题。下图给出了一个地图,地图中的每个顶点代表一个城市,两个城市间的一条连线代表道路,连线上的数值代表道路的长度。现在想从城市A到达城市E,怎样走路程最短?最短路程的长度是多少? 【例2】数塔问题(IOI94)有形如图所示的数塔,从顶部出发,在每一结点可以选择向左走或是向右走,一起走到底层,要求找出一条路径,使路径上的值最大。 13 11 8 12 7 26 6 14 15 8 12 7 13 24 11 【例3】求最长不下降序列 问题描述: 设有由n个不相同的整数组成的数列,记为:b(1)、b(2)、……、b(n)且b(i)<>b(j) (i<>j),若存在i1

样例输出: max=8 7 9 16 18 19 21 22 63 【例4】拦截导弹(Noip1999) 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。 输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数,导弹数不超过1000),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。 样例: INPUT OUTPUT 389 207 155 300 299 170 158 65 6(最多能拦截的导弹数) 2(要拦截所有导弹最少要配备的系统数) 【例5】下图表示城市之间的交通路网,线段上的数字表示费用,单向通行由A->E。试用动态规划的最优化原理求出A->E的最省费用。 如图:求v1到v10的最短路径长度及最短路径。 【样例输入】short.in 10 0 2 5 1 0 0 0 0 0 0 0 0 0 0 12 14 0 0 0 0 0 0 0 0 6 10 4 0 0 0 0 0 0 0 13 12 11 0 0 0 0 0 0 0 0 0 0 3 9 0 0 0 0 0 0 0 0 6 5 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 5

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

动态规划

4. 某工厂购进100 台机器,准备生产I 、II 两种产品,若生产产品I ,每台机器每年可收入45 万元,损坏率为65%;若生产产品II ,每台机器每年收入为35 万元,损坏率为35%,估计三年后将有新型机器出现,旧的机器将全部淘汰。试问每年应如何安排生产,使在三年内收入最多? 解 年度为阶段变量k = 1,2,3。 令k x 表示第k 年初完好机器数,k u 表示第k 年安排生产1种产品的机器数, 则k x -k u 为第k 年安排生产2种产品的机器数,且0 ≤k u ≤k x 。 则第k +1年初完好的机器数 1k x +=(1-0.65)k u +(1-0.35)(k x -k u )=0.65k x -0.3k u 令(,)k k k v x u 表示第k 年的纯收入,()k k f x 表示第k 年初往后各年的最大利润之和。 显然44,()f x =0; 则()k k f x =max 0u x ≤≤{ (,)k k k v x u +11()k k f x ++} =max 0u x ≤≤{45k u +35(k x -k u )+11()k k f x ++} =max 0u x ≤≤{35k x +10k u +11()k k f x ++} (1)33()f x = max 0u x ≤≤{353x +103u +44()f x } = max 0u x ≤≤{353x +103u } 353x +103u 关于3u 求导,知其导数大于零,所以353x +103u 在3u 等于3x 处取得最大值,即3x =3u 时,33()f x =453x (2)22()f x = max 0u x ≤≤{352x +102u +33()f x }

0-1背包问题动态规划详解及代码

0/1 背包问题动态规划详解及 C 代码动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01 背包问题。 /* 一个旅行者有一个最多能用M 公斤的背包,现在有N 件物品, 它们的重量分别是W1,W2,...,Wn, 它们的价值分别为P1,P2,...,Pn. 若每种物品只有一件求旅行者能获得最大总价值。 输入格式: M,N W1,P1 W2,P2 输出格式: X*/ 因为背包最大容量M未知。所以,我们的程序要从1到M —个的试。比如,开始任选N 件物品的一个。看对应M 的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1 物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4 4,5

5,6 c[i][j] 数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3 则里面放 4. ...................................................... "这样,这一排背包容量为4,5,6, 10 的时候,最佳方案都是放 4."假如1 号物品放入背包.则再看2 号物品.当背包容量为3 的时候,最佳方案还是上一排的最价方案c 为 4." 而背包容量为5 的时候,则最佳方案为自己的重量 5. "背包容量为7 的时候,很显然是5加上一个值了。加谁??很显然是7-4=3 的时候.上一排c3的最佳方案是 4."所以。总的最佳方案是5+4为 9."这样.一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7 的时候,最佳方案不是本身的 6. "而是上一排的 9."说明这时候3号物品没有被选.选的是1,2号物品.所以得 9.") 从以上最大价值的构造过程中可以看出。 f(n, m)二max{f( n-1,m), f(n-1,m-w[ n] )+P( n,m)}这就是书本上写的动态规划方程. 这回清楚了吗? 下面是实际程序(在VC 6."0环境下通过) : #include int c[10][100];/* 对应每种情况的最大价值*/

动态规划--运筹学课程设计

湖南农业大学 综合设计报告 综合设计五 动态规划算法 学生姓名:曾俊扬 学号:200840204219 年级专业:2008级信息与计算科学2班 指导老师:王明春老师 学院:理学院 评阅成绩: 评阅意见: 成绩评定教师签名:时间: 湖南·长沙 提交日期:2011年6月

动态规划之最短线路问题 1设计目的、要求 熟悉动态规划的相关概念,掌握使用动态规划的基本方法求解生活实际问题。本设计主要研究最短路问题,利用JAVA 实现最短路算法。 2设计原理 在求解的各个阶段,利用了k 阶段与k+1阶段之间的递推关系: {}11()55444()min (,())()4,3,2,1 ()0(()(,)) k k k k k k k k k k u D s f s d s u s f s k f s f s d s E ++∈?=+=??==??或 3采用软件、设备 微型电子计算机、MyEclipse 6.5 4设计内容 1.动态规划基本认识: 动态规划是运筹学的一个分支,它是解决多阶段决策过程最优化问题的一种方法。该方法是由美国数学家贝尔曼(R .Bellman)等人在本世纪50年代初提出的。他们针对多阶段决策问题的特点,提出了解决这类问题的“最优化原理”,并成功地解决了生产管理、工程技术等方面的许多实际问题,从而建立了运筹学的一个新分支——动态规划。他的名著《动态规划》于1957年出版,该书是动态规划的第一本著作。 动态规划是现代企业管理中的一种重要决策方法,在工程技术、经济管理、工农业生产及军事及其它部们都有广泛的应用,并且获得了显著的效果。动态规划可用于解决最优路径问题、资源分配问题、生产计划与库存问题、投资分配问题、装载问题、设备更新与维修问题、排序问题及生产过程的最优控制等。由于它所具有独特的解题思路,在处理某些优化问题时,常常比线性规划或非线性规划方法更有效。 本设计从实际问题展开对动态规划算法最短路问题的实现。 2.实际问题:某工厂需要把一批货物从城市A 运到城市E ,中间可经过B 1 、 B 2、B 3、 C 1、C 2、C 3、 D 1、D 2等城市,各城市之间的交通线和距离如下图所示,问应该选择一条什么路线,使得从A 到 E 的距离最短?

01背包问题动态规划详解及C++代码

0/1背包问题动态规划详解及C++代码 1. 问题描述 给定一个载重量为C的背包 有n个物品 其重量为wi 价值为vi 1<=i<=n 要求:把物品装入背包 并使包内物品价值最大2. 问题分析 在0/1背包问题中 物体或者被装入背包 或者不被装入背包 只有两种选择。循环变量i j意义 前i个物品能够装入载重量为j的背包中 数组c意义 c[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值 若w[i]>j 第i个物品不装入背包 否则 若w[i]<=j且第i个物品装入背包后的价值>c[i-1][j] 则记录当前最大价值 替换为第i个物品装入背包后的价值 其c++代码如下 #include using namespace std; void KANPSACK_DP(int c[50][50], int w[50], int v[50], int n, int C) { for(int i = 0; i <= C; i ++) { c[0][i] = 0; } for(int i = 1; i <= n; i ++) { c[i][0] = 0; for(int j = 1; j <= C; j ++) { if(w[i] <= j) { if(v[i] + c[i - 1][j - w[i]] > c[i - 1][j]) c[i][j] = v[i] + c[i - 1][j - w[i]]; else c[i][j] = c[i - 1][j]; } else c[i][j] = c[i - 1][j]; } } } void OUTPUT_SACK(int c[50][50], int x[50], int w[50], int n, int C) { for(int k = n; k >= 2; k --) { if(c[k][C] == c[k-1][C]) x[k] = 0; else { x[k] = 1; C = C - w[k];

动态规划-步骤

动态规划应用举例 动态规划模型建立所需注意的问题: (1) 正确划分阶段及选择阶段变量k (2) 正确选择状态变量x k ,状态变量要满足以下两个条件:一能正确描述受控过程的演变特性。二要具有无后效性。 (3) 正确选择决策变量u k 及确定各阶段允许决策集合U k (x k ) (4) 写出状态转移方程:???==++顺序逆序) ,('),(11k k k k k k k k u x T x u x T x (5) 确定阶段指标),(k k k u x v 及指标函数n k V ,的形式,而指标函数n k V ,要具有按阶段可分性,并满足递推关系。 ),,(),() ,;(,) ,,...,,,,(.,111111n k k k k k k n k k n k n n k k k k n k n k p x V u x v p x V x u u x u x V V +++++++=== (6) 写出基本方程即最优值函数满足的递推方程及端点条件(以逆序极小化为例) )()1,...,1,()](),([min )(1111)(=-=+=++++n n k k k k k xk Uk k k x f n n k x f u x v x f 例1 资源分配问题 某市邮局有四套通信设备,准备分给甲、乙、丙三个地区支局,事先调查了各地区支局的经营情况,并对各种分配方案做了经济效益的估计,如表所示。其中设备数为0时的收益,指已有的收益,问应如何分配这四套

解:列出静态规划模型 设分给甲、乙、丙的设备数为u1,u2,u3套,各自的盈利分别为)(11u g ,)(22u g ,)(33u g ,则有 ???≥=++++=-且为整数04) ()()(max 31321332211u u u u u g u g u g Z 1.构造动态规划模型 ① 引入阶段变量k 对于这种非时序的静态问题,如何划分阶段是区别于一般动态规划问题的要点所在。划分阶段的原则是:有N 个用户,就把问题分成N 个阶段。对于本例分为三个阶段,第k 阶段,就是把第k 阶段初分配者手中拥有的设备分给从用户k 到用户N 。 ② 设置状态变量xk 第k 阶段初分配者手中拥有的资源总数xk 。本题中:x1=4,x4=0 ③ 选择决策变量uk 第k 阶段分配给用户k 的设备数 ④ 状态转移方程 k k k u x x -=+1 ⑤ 阶段指标),(k k k u x v 用户k 利用所分配到的资源uk 产生的收益)(),(k k k k k u g u x v = 2.建立基本方程 )()1,...,1,()](),(min[)(1111=-=+=++++N N k k k k k k k x f N N k x f u x v x f 3.计算(逆序法) (1) k=3时, x3=0,1,2,3,4 ∵ x4=0 ∴u3=x3-x4=x3 ) (),()](),(max[)(333334433333u g u x v x f u x v x f ==+=

动态规划教案课程

吉林师范大学计算机学院案教 ) (算法部分称C 程序设计课程名 系级院级计算机学院计算机科学与技术09 5101 系、实验室() 计算机基础教研室教研室计算机科学与技术3班班级09 授课郑言生实习 滕国文导教师系指 吉林师范大学计算机学院 二○一二年四月二十五日(星期三5,6节) 课型章节: 动态规划基本思想 基要本参教考材资和料主: 算法设计与分析》 教学目的: 本课程以C语言为教授程序设计的描述语言,结合语言介绍程序设计的基本原理、技巧和方法。主要讲授内容包括程序设计动态规划基本概念,动态规划的基本步骤,动态规划问题的特。通过本课程的学习,为算法更好的学习,以及能用计算机解决一些实际问题打下坚实的征基础。

教学基本要求: 掌握C语言中动态规划的基本概念,。并能熟练使动态规划的基本步骤,动态规划问题的特征用C语言动态规划思想解决一些简单程序问题;掌握一些基本算法结构及相关方法;熟悉程序设计的思想和编程技巧。 重点: 动态规划基本概念,。动态规划的基本步骤,动态规划问题的特征难点: 动态规划的基本步骤课型: 理论课 教法: 1.多媒体讲解 2.举例讲解 教学内容及过程: 1.课前回顾: 枚举法: 在进行归纳推理时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么这结论是可靠的,这种归纳方法叫做枚举法.2. 数塔问题 有形如下图所示的数塔,从顶部出发,在每一结点可以选择向左走或是向右走,一直走到底层,要求找出一条路径,使路径上的值最大。 简单的进行选举方法的引导,让同学们主动思考到动态规划的思想上了。 考虑一下: 从顶点出发时到底向左走还是向右走应取决于是从左走能取到最大值还是从右走能取到最大值,只要左右两道路径上的最大值求出来了才能作出决策。 同样,下一层的走向又要取决于再下一层上的最大值是否已经求出才能决策。这

动态规划基本原理

动态规划基本原理 近年来,涉及动态规划的各种竞赛题越来越多,每一年的NOI几乎都至少有一道题目需要用动态规划的方法来解决;而竞赛对选手运用动态规划知识的要求也越来越高,已经不再停留于简单的递推和建模上了。 要了解动态规划的概念,首先要知道什么是多阶段决策问题。 一、多阶段决策问题 如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采取措施),一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则称它为多阶段决策问题。 各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在预定的标准下达到最好的效果. 让我们先来看下面的例子:如图所示的是一个带权有向的多段图,要求从A到D的最短 图4-1 带权有向多段图 路径的长度(下面简称最短距离)。 我们可以搜索,枚举图中的每条路径,但当图的规模大起来时,搜索的效率显然不可能尽人意。让我们来试用动态规划的思路分析这道题:从图中可以看到,A点要到达D点必然要经过B1和B2中的一个,所以A到D的最短距离必然等于B1到D的最短距离加上5,或是B2到D的最短距离加上2。同样的,B1到D的最短距离必然等于C1到D的最短距离加上3或是C2到D的最短距离加上2,……。 我们设G[i]为点i到点D的距离,显然G[C1]=4,G[C2]=3,G[C3]=5,根据上面的分析,

有: G[B1]=min{G[C1]+3,G[C2]+2}=5, G[B2]=min{G[C2]+7,G[C3]+4}=9, 再就有G[A]=min{G[B1]+5,G[B2]+2}=10, 所以A到D的最短距离是10,最短路径是A→B1→C2→D。 二、动态规划的术语 1.阶段 把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段数就可能不同.描述阶段的变量称为阶段变量。在多数情况下,阶段变量是离散的,用k 表示。此外,也有阶段变量是连续的情形。如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许有无穷多个决策时,阶段变量就是连续的。 在前面的例子中,第一个阶段就是点A,而第二个阶段就是点A到点B,第三个阶段是点B到点C,而第四个阶段是点C到点D。 2.状态 状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点。 在前面的例子中,第一个阶段有一个状态即A,而第二个阶段有两个状态B1和B2,第三个阶段是三个状态C1,C2和C3,而第四个阶段又是一个状态D。 过程的状态通常可以用一个或”一组数”来描述,称为状态变量。一般,状态是离散的,但有时为了方便也将状态取成连续的。当然,在现实生活中,由于变量形式的限制,所有的状态都是离散的,但从分析的观点,有时将状态作为连续的处理将会有很大的好处。此外,状态可以有多个分量(多维情形),因而用向量来代表;而且在每个阶段的状态维数可以不同。 当过程按所有可能不同的方式发展时,过程各段的状态变量将在某一确定的范围内取值。状态变量取值的集合称为状态集合。 3.无后效性 我们要求状态具有下面的性质:如果给定某一阶段的状态,则在这一阶段以后过程的发

动态规划经典教程

动态规划经典教程 引言:本人在做过一些题目后对DP有些感想,就写了这个总结: 第一节动态规划基本概念 一,动态规划三要素:阶段,状态,决策。 他们的概念到处都是,我就不多说了,我只说说我对他们的理解: 如果把动态规划的求解过程看成一个工厂的生产线,阶段就是生产某个商品的不同的环节,状态就是工件当前的形态,决策就是对工件的操作。显然不同阶段是对产品的一个前面各个状态的小结,有一个个的小结构成了最终的整个生产线。每个状态间又有关联(下一个状态是由上一个状态做了某个决策后产生的)。 下面举个例子: 要生产一批雪糕,在这个过程中要分好多环节:购买牛奶,对牛奶提纯处理,放入工厂加工,加工后的商品要包装,包装后就去销售……,这样没个环节就可以看做是一个阶段;产品在不同的时候有不同的状态,刚开始时只是白白的牛奶,进入生产后做成了各种造型,从冷冻库拿出来后就变成雪糕(由液态变成固态=_=||)。每个形态就是一个状态,那从液态变成固态经过了冰冻这一操作,这个操作就是一个决策。 一个状态经过一个决策变成了另外一个状态,这个过程就是状态转移,用来描述状态转移的方程就是状态转移方程。 经过这个例子相信大家对动态规划有所了解了吧。 下面在说说我对动态规划的另外一个理解: 用图论知识理解动态规划:把动态规划中的状态抽象成一个点,在有直接关联的状态间连一条有向边,状态转移的代价就是边上的权。这样就形成了一个有向无环图AOE网(为什么无环呢?往下看)。对这个图进行拓扑排序,删除一个边后同时出现入度为0的状态在同一阶段。这样对图求最优路径就是动态规划问题的求解。 二,动态规划的适用范围 动态规划用于解决多阶段决策最优化问题,但是不是所有的最优化问题都可以用动态规划解答呢? 一般在题目中出现求最优解的问题就要考虑动态规划了,但是否可以用还要满足两个条件: 最优子结构(最优化原理) 无后效性 最优化原理在下面的最短路径问题中有详细的解答; 什么是无后效性呢? 就是说在状态i求解时用到状态j而状态j就解有用到状态k…..状态N。 而求状态N时有用到了状态i这样求解状态的过程形成了环就没法用动态规划解答了,这也是上面用图论理解动态规划中形成的图无环的原因。 也就是说当前状态是前面状态的完美总结,现在与过去无关。。。 当然,有是换一个划分状态或阶段的方法就满足无后效性了,这样的问题仍然可以用动态规划解。 三,动态规划解决问题的一般思路。 拿到多阶段决策最优化问题后,第一步要判断这个问题是否可以用动态规划解决,如果不能就要考虑搜索或贪心了。当却定问题可以用动态规划后,就要用下面介绍的方法解决问题了:(1)模型匹配法: 最先考虑的就是这个方法了。挖掘问题的本质,如果发现问题是自己熟悉的某个基本的模型,就直接套用,但要小心其中的一些小的变动,现在考题办都是基本模型的变形套用时要小心条件,三思而后行。这些基本模型在先面的分类中将一一介绍。 (2)三要素法 仔细分析问题尝试着确定动态规划的三要素,不同问题的却定方向不同: 先确定阶段的问题:数塔问题,和走路问题(详见解题报告) 先确定状态的问题:大多数都是先确定状态的。 先确定决策的问题:背包问题。(详见解题报告) 一般都是先从比较明显的地方入手,至于怎么知道哪个明显就是经验问题了,多做题就会发现。 (3)寻找规律法: 这个方法很简单,耐心推几组数据后,看他们的规律,总结规律间的共性,有点贪心的意思。 (4)边界条件法 找到问题的边界条件,然后考虑边界条件与它的领接状态之间的关系。这个方法也很起效。 (5)放宽约束和增加约束 这个思想是在陈启锋的论文里看到的,具体内容就是给问题增加一些条件或删除一些条件使问题变的清晰。 第二节动态规划分类讨论

0-1背包问题动态规划详解及代码

0/1背包问题动态规划详解及C代码 动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 /*一个旅行者有一个最多能用M公斤的背包,现在有N件物品, 它们的重量分别是W1,W2,...,Wn, 它们的价值分别为P1,P2,...,Pn. 若每种物品只有一件求旅行者能获得最大总价值。 输入格式: M,N W1,P1 W2,P2 ...... 输出格式: X*/ 因为背包最大容量M未知。所以,我们的程序要从1到M一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4

4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放 4."这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放 4."假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为 4."而背包容量为5的时候,则最佳方案为自己的重量 5."背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是 4."所以。总的最佳方案是5+4为 9."这样.一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的 6."而是上一排的 9."说明这时候3号物品没有被选.选的是1,2号物品.所以得 9.") 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗? 下面是实际程序(在VC 6."0环境下通过): #include

动态规划算法举例分析

动态规划算法 1. 动态规划算法介绍 基本思想是将待求解问题分解成若干子问题,先求解子问题,最后用这些子问题带到原问题,与分治算法的不同是,经分解得到的子问题往往是不是相互独立,若用分治则子问题太多。 2. 适用动态规划算法问题的特征 (1)最优子结构 设计动态规划算法的第一步骤通常是要刻画最优解的结构。当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。问题的最优子结构性质提供了该问题可用动态规划算法求解的重要线索。 在动态规划算法中,问题的最优子结构性质使我们能够以自底向下的方式递归地从子问题的最优解逐步构造出整个问题的最优解。同时,它也使我们能在相对小的子问题空间中考虑问题。 (2)重叠子问题 可用动态规划算法求解的问题应具备的另一基本要素是子问题的重叠性质。在用递归算法自顶向下解此问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只有简单地用常数时间查看一下结果。通常,不同的子问题个数随输入问题的大小呈多项式增长。因此,用动态规划算法通常只需要多项式时间,从而获得较高的解题效率。 (3)备忘录方法

动态规划算法的一个变形是备忘录方法。备忘录方法也是一个表格来保存已解决的子问题的答案,在下次需要解此子问题时,只要简单地查看该子问题的解答,而不必重新计算。与动态规划算法不同的是,备忘录方法的递归方式是自顶向下的,而动态规划算法则是自底向上递归的。因此,备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同子问题的重复求解。 备忘录方法为每个子问题建立一个记录项,初始化时,该记录项存入一个特殊的值,表示该子问题尚未求解。在求解过程中,对每个待求的子问题,首先查看其相应的记录项。若记录项中存储的是初始化时存入的特殊值,则表示该子问题是第一次遇到,则此时计算出该子问题的解,并保存在其相应的记录项中。若记录项中存储的已不是初始化时存入的特殊值,则表示该子问题已被计算过,其相应的记录项中存储的是该子问题的解答。此时,只要从记录项中取出该子问题的解答即可。 3. 基本步骤 a 、找出最优解的性质,并刻画其结构特征。 b 、递归地定义最优值。 c 、以自底向上的方式计算出最优值。 d 、根据计算最优值时得到的信息构造一个最优解。(可省) 例1-1 [0/1背包问题] [问题描述] 用贪心算法不能保证求出最优解。在0/1背包问题中,需要对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为i w ,价 值为 i v 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳 装载是指所装入的物品价值最高,即∑=n i i i x v 1 取得最大值。约束条件为 c x w n i i i ≤∑=1 , {}() n i x i ≤≤∈11,0。

动态规划教案

吉林师范大学计算机学院 教案 课程名称C程序设计(算法部分) 院系级计算机学院计算机科学与技术09级教研室(系、实验室)计算机基础教研室5101 授课班级09计算机科学与技术3班 实习生郑言 系指导教师滕国文 吉林师范大学计算机学院二○一二年四月二十五日(星期三5,6节)

课型章节: 动态规划基本思想 基要本参教考材资和料主: 算法设计与分析》 教学目的: 本课程以C语言为教授程序设计的描述语言,结合语言介绍程序设计的基本原理、技巧和方法。主要讲授内容包括程序设计动态规划基本概念,动态规划的基本步骤,动态规划问题的特征。通过本课程的学习,为算法更好的学习,以及能用计算机解决一些实际问题打下坚实的基础。 教学基本要求: 掌握C语言中动态规划的基本概念,动态规划的基本步骤,动态规划问题的特征。并能熟练使用C语言动态规划思想解决一些简单程序问题;掌握一些基本算法结构及相关方法;熟悉程序设计的思想和编程技巧。 重点: 动态规划基本概念,动态规划的基本步骤,动态规划问题的特征。 难点: 动态规划的基本步骤 课型: 理论课 教法: 1.多媒体讲解 2.举例讲解 教学内容及过程: 1.课前回顾: 枚举法:在进行归纳推理时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么这结论是可靠的,这种归纳方法叫做枚举法. 2.数塔问题 有形如下图所示的数塔,从顶部出发,在每一结点可以选择向左走或是向右走,一直走到底层,要求找出一条路径,使路径上的值最大。

简单的进行选举方法的引导,让同学们主动思考到动态规划的思想上了。 考虑一下: 从顶点出发时到底向左走还是向右走应取决于是从左走能取到最大值还是从右走能取到最大值,只要左右两道路径上的最大值求出来了才能作出决策。 同样,下一层的走向又要取决于再下一层上的最大值是否已经求出才能决策。这样一层一层推下去,直到倒数第二层时就非常明了。 如数字2,只要选择它下面较大值的结点19前进就可以了。所以实际求解时,可从底层开始,层层递进,最后得到最大值。 结论:自顶向下的分析,自底向上的计算。 #include #include int max(int x,int y) { if(x>y) return x; else return y; } main() { int a[100][100]; int i,j,n; scanf("%d",&n); for(i=0;i=0;i--) for(j=0;j<=i;j++) { a[i][j]+=max(a[i+1][j],a[i+1][j+1]); } printf("%d\n",a[0][0]); } 3.总结“动态规划的基本思想” 如果各个子问题不是独立的,不同的子问题的个数只是多项式量级,如果我们能够保存已经解决的子问题的答案,而在需要的时候再找出已求得的答案,这样就可以避免大量的重复计算。由此而来的基本思路是,用一个表记录所有已解决的子问题的答案,不管该问题以后是否被用到,只要它被计算过,就将其结果填入表中。 4.总结“动态规划的基本步骤” 动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值(最大值或最小值)的那个解。设计一

动态规划

动态规划 首先,让我们来看这样的一个问题: 考虑显示在下面的数字金字塔。 如果我们要计算从最高点开始在底部任意处结束的路径经过数字的和的最 大值。 每一步可以走到左下方的点也可以到达右下方的点。 在上面的样例中,从7 到 3 到 8 到 7 到 5 的路径产生了最大和:30。 那么具体的,我们应该如何来求这样一个最大值呢? 最简单的,我们可以用枚举法,我们把所有的结果都算出来,然后找出其中最大的。这是一个实际的办法,但是如果数据增多,运算量也会急剧增加。到了一定程度后便会难以实现。 那么,接着我就想到可以用贪心法么? 如果用贪心法,在取完第一行的 7 后,应该取第二行的 8。 但是这样的话,没有总体的看问题,最后不一定能得到最优解。 如此,我们引进动态规划的思想。 什么是动态规划呢? 动态规划是一种在组合数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。比较著名的应用实例有:求解最短路径问题,背包问题,项目管理,网络流优化等。 动态规划在查找有很多重叠子问题的情况的最优解时有效。它将问题重新组合成子问题。为了避免多次解决这些子问题,它们的结果都逐渐被计算并被保存,从简单的问题直到整个问题都被解决。因此,动态规划保存递归时的结果,因而

不会在解决同样的问题时花费时间。 动态规划只能应用于有最优子结构的问题。最优子结构的意思是局部最优解能决定全局最优解(对有些问题这个要求并不能完全满足,故有时需要引入一定的近似)。简单地说,问题能够分解成子问题来解决。 而在我看来,有两点比较重要: 1、动态规划不是一种算法,而是一种思想。 2、动态规划问题没有定式。 引进了动态规划的概念后,让我们尝试解决一下上面的问题。 步骤: 最优子结构性质。如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。最优子结构性质为动态规划算法解决问题提供了重要线索。 子问题重叠性质。子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的效率。 我们可以看到,每个数左下角都有小数,有一个或者两个,这表示到此步骤为止,他们的和是多少。例如第三行的 1 下有连个小数,分别是通过两条路径所达到的。那么这时我们完全可以舍弃比较下的11,而直接用16代替其为止。即例如我们需要求五层数字金字塔,我们便从第二层开始算起,化成对其子结构的运算。与此同时,在对子结构求解的过程中,我们同时保留最优解,舍去其他

动态规划 算法

动态规划算法介绍——概念、意义及应用、例题(2012-05-14 21:54:37)转载▼标签:杂谈 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么简单了。

相关主题