搜档网
当前位置:搜档网 › 高中物理解题技巧及例题讲解(经典)

高中物理解题技巧及例题讲解(经典)

高中物理解题技巧及例题讲解(经典)
高中物理解题技巧及例题讲解(经典)

第一部分

高中物理活题巧解方法总论

高中阶段,最难学的课程是物理,既要求学生有过硬的数学功底,还要学生有较强的空

间立体感和抽象思维能力。本总论较详细地介绍了48种高中物理活题巧解的方法,加上磁

场部分“难点巧学”中介绍的“结论法”,共计有49种方法,这些方法中有大家很熟悉的、

用得很多的整体法、隔离法、临界条件法、矢量图解法等,也有用得很少的补偿法、微元法、

节点电流法等,更多的是用得较多,但方法名称还未统一的巧解方法,这些方法用起来很巧,

给人以耳目一新、豁然开朗的感觉,本总论给出了较科学合理的方法名称。古人云:授人以

鱼,只供一饭之需;授人以渔,则一生受用无穷,本书编者本着“一切为了学生,为了一切

学生,为了学生的一切”的宗旨,呕心沥血地编写了这本书,以精益求精的质量、独具匠心

的创意,教会学生在短时间内提高物理分析、解题技能,缩短解题时间,对减轻学习负担、

开发智力、提高学习成绩有极大地帮助。

一、整体法

研究对象有两个或两个以上的物体,可以把它们作为一下整体,整体质量等于它们的总

质量。整体电量等于它们电量代数和。

有的物理过程比较复杂,由几个分过程组成,我们可以把这几个分过程看成一个整体。

所谓整体法就是将两个或两个以上物体组成的整个系统,或由几个分过程组成的整个过

程作为研究对象进行分析研究的方法。

整体法适用于求系统所受的外力,计算整体合外力时,作为整体的几个对象之间的作用

力属于系统内力不需考虑,只需考虑系统外的物体对该系统的作用力,故可使问题化繁为简。

例1:在水平滑桌面上放置两个物体A 、B 如图1-1所示,m A =1kg ,m B =2kg ,它们之间

用不可伸长的细线相连,细线质量忽略不计,A 、B 分别受到水平间向左拉力F 1=10N 和水

平向右拉力F 2=40N 的作用,求A 、B 间细线的拉力。

【巧解】由于细线不可伸长,A 、B 有共同的加速度,则共同加速度

221401010/12

A B F F a m s m m --===++对于A 物体:受到细线向右拉力F 和F 1拉力作用,则1A F F m a -=,即11011020A F F m a N =+=+?=

∴F=20N

【答案】=20N

例2:如图1-2所示,上下两带电小球,a 、b 质量均为m ,所带电量分别为q 和-q

,两

球间用一绝缘细线连接,上球又用绝缘细线悬挂在开花板上,在两球所在空间有水平方向的

匀强电场,场强为E ,平衡细线都被拉紧,右边四图中,表示平衡状态的可能是:

【巧解】对于a 、b 构成的整体,总电量Q=q-q=0,总质量M=2m ,在电场中静止时,

ab 整体受到拉力和总重力作用,二力平衡,故拉力与重力在同一条竖直线上。

【答案】A

说明:此答案只局限于a 、b 带等量正负电荷,若a 、b 带不等量异种电荷,则a 与天花

板间细线将偏离竖直线。

例3:如图1-3所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为

m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的12

,即12a g =,则小球在下滑的过程中,木箱对地面的压力为多少? 【巧解】对于“一动一静”连接体,也可选取整体为研究对象,依牛顿第二定律列式:()N mg Mg F ma M +-=+?0故木箱所受支持力:22N M m F g +=

,由牛顿第三定律知:木箱对地面压力2'2N N M m F F g +==

。 【答案】木箱对地面的压力22

N M m F g += 例4:如图1-4,质量为m 的物体A 放置在质量为M 的物体B 上,B 与

弹簧相连,它们一起在光滑水平面上做简谐振动,振动过程中A 、B 之间无相

对运动,设弹簧的劲度系数为k ,当物体离开平衡位置的位移为x 时,A 、B

间摩擦力f 的大小等于( )

A 、0

B 、kx

C 、()m kx M

D 、()m kx M m

+ 【巧解】对于A 、B 构成的整体,当系统离开平衡位置的位移为x 时,系

统所受的合力为F=kx ,系统的加速度为kx a m M

=+,而对于A 物体有摩擦力f F ma ==合,故正确答案为D 。

【答案】D

例5:如图1-5所示,质量为m=2kg 的物体,在水平力F=8N 的作用下,

由静止开始沿水平方向右运动,已知物体与水平面间的动摩擦因数μ=0.2,

若F 作用t 1=6s 后撤去,撤去F 后又经t 2=2s 物体与竖直壁相碰,若物体与

墙壁作用时间t 3=0.1s ,碰后反向弹回的速度ν=6m/s ,求墙壁对物体的平均

作用力F N (g 取10m/s 2)。

【巧解】如果按时间段来分析,物理过程分为三个:撤去F 前的加速过程;撤去F 后

的减速过程;物体与墙壁碰撞过程。分段计算会较复杂。现把全过程作为一个整体(整体法),

应用动量定理,并取F 的方向为正方向,则有1123()0N F t mg t t F t mv μ?-+-?=--代入

数据化简可得F N =280N

【答案】F N =280N

巧练:如图1-6所示,位于水平地面上的斜面倾角为а,斜面体的质量为M ,当A 、B

两物体沿斜面下滑时,A 、B 间无相对滑动,斜面体静止,设A 、B 的质量均为m ,则地面

对斜面体的支持力F N 及摩擦力f 分别是多少?若斜面体不是光滑的,物体A 、B 一起沿斜

面匀速下滑时,地面对斜面体的支持力F N 及摩擦力f 又分别是多少?

巧练2:如图1-7所示,MN 为竖直墙壁,PQ 为无限长的水平地面,在PQ 的上方有水

平向左的匀强电场,场强为E ,地面上有一点A ,与竖直墙壁的距离为d ,质量为m ,带电

量为+q 的小滑块从A 点以初速v o 沿PQ 向Q 运动,滑块与地面间的动摩擦因数为μ,若μ

mg <Eq ,滑块与墙MN 碰撞时无能量损失,求滑块所经历的总路程s 。

二、隔离法

所谓隔离法就是将研究对象(物体)同周围物体隔离开来,单独对其进行受力分析的方

法。隔离法适用于求系统内各物体(部分)间相互作用。在实际应用中,通

常隔离法要与整体法结合起来应用,这样更有利于问题的求解。

例1:如图2-1所示,在两块相同的竖直木板之间,有质量均为m 的4

块相同的砖,用两个大小均为F 的水平力压木板,使砖静止不动,则第1

块对第2块砖摩擦力大小为( )

A 、0

B 、mg/2

C 、mg

D 、2mg

【巧解】本题所求解的是第1块对第2块砖摩擦力,属于求内力,最终必须要

用隔离法才能求解,研究对象可以选1,也可以选2,到底哪个更简单呢?若选2

为研究对象,则1对2的摩擦力及3对2的摩擦力均是未知的,无法求解;而选1

为研究对象,尽管2对1的摩擦力及左板对1的摩擦力均是未知的,但左板对1的摩擦力可以通过整体法求解,故选1为研究对象求内力较为简单。

先由整体法(4块砖作为一个整体)可得左、右两板对系统的摩擦力方向都竖直向上,大小均为4mg/2=2mg,再以1为研究对象分析,其受力图2-2所示(一定要把它从周围环境中隔离开来,单独画受力图),1受竖直向下的重力为mg,左板对1的摩擦力f左板竖直向上,大小为2mg,故由平衡条件可得:2对1的摩擦力f21竖直向下,大小为mg,答案应选C项。

【答案】C

例2:如图2-3所示,斜面体固定,斜面倾角为а,A、B两物体叠放在一起,A的上表面水平,不计一切摩擦,当把A、B无初速地从斜面顶端释放,若运动过程中B没有碰到斜面,则关于B的运动情况描述正确的是()

A、与A一起沿斜面加速下滑

B、与A一起沿斜面匀速下滑

C、沿竖直方向匀速下滑

D、沿竖直方向加速下滑

【巧解】本题所求解的是系统中的单个物体的运动情况,故可用隔离法进行分析,由于不计一切摩擦,而A的上表面水平,故水平方向上B不受力。由牛顿第一定律可知,B在水平方向上运动状态不变(静止),故其运动方向必在竖直方向上。因A加速下滑,运动过程中B没有碰到斜面(A、B仍是接触的),即A、B在竖直方向上的运动是一样的,故B 有竖直向下的加速度,答案D正确。

【答案】D

例3:如图2-4所示,固定的光滑斜面体上放有两个相同的钢球P、Q,

MN为竖直挡板,初状态系统静止,现将挡板MN由竖直方向缓慢转至与斜

面垂直的方向,则该过程中P、Q间的压力变化情况是()

A、一直增大

B、一直减小

C、先增大后减小

D、一直不

【巧解】本题所求解的是系统内力,可用隔离法来分析,研究对象可以

选P,也可以选Q,到底选哪个更简单呢?当然选P要简单些,因为P受力

个数少,P受到重力、斜面的支持力N斜(垂直斜面向上)和Q的支持力N Q(沿斜面斜向上)共三个力作用,由平衡条件可知,这三个力的合力为零,即重力沿N斜,N Q反方向的分力分别与N耕、N Q的大小相等,在转动挡板过程中,重力的大小及方向都不变,而N耕、N Q的方向也都不变,即分解重力的两个方向是不变的,故分力也不变,故D选项正确【答案】D

例4:如图2-5所示,人重G1=600N,木板重G2=400N,人与木板、木板与地面间滑动摩擦因数均为μ=0.2,现在人用水平力F拉绳,使他们木板一起向右匀

速动动,则()

A、人拉绳的力是200N

B、人的脚给木板的摩擦力向右

C、人拉绳的力是100N

D、人的脚给木板的摩擦力向左

【巧解】求解人与板间的摩擦力方向,属求内力,须用隔离法,研究对象可选人,也可以选板,到底选哪个更简单呢?当然选人要简单些,因为人受力个数少,以人为研究对象,人在水平方向上只受绳的拉力(水平向右)和板对人的摩擦力两个力作用,属二力平衡,故板对人的摩擦力向左,由牛顿第三定律可知,人的脚给木板的摩擦力向右,B、D两个选项中B选项正确。

绳的拉力属外力,可用整体法来求解,人与板相对地向右运动,滑动摩擦力水平向左,

而其大小为12()0.2f N G G μμ==+=?(600+400)=200N ;人与板系统水平向右受到

两个拉力,故由平衡条件可得:2T=f ,故T=100N ,答案C 选项正确。

【答案】B 、C

巧练1:如图2-6所示,半径为R 的光滑球,重为G ,光滑木块厚为h ,重为G 1,用至

少多大的水平F 推木块才能使球离开地面?

巧练2:如图2-7所示,A 、B 两物体叠放在转台上(A 在上,B 在下),

并随转台一起匀速运动,则关于A 对B 的摩擦力的判断正确的是( )

A 、A 对

B 没有摩擦力

B 、A 对B 有摩擦力,方向时刻与线速度方向相反

C 、A 对B 有摩擦力,方向时刻指向转轴

D 、A 对B 有摩擦力,方向时刻背离转轴

三、力的合成法

一个力如果产生的效果与几个力共同作用所产生的效果相同,这个力就叫做那几个的合

力,而那几个力就叫做这个力的分力,求几个力的合力叫力的合成。

力的合成遵循平行四边形法则,如求两个互成角度的共点力F 1、F 2的合力,可以把表

示F 1、F 2的有向线段作为邻边,作一平行四边形,它的对角线即表示合力大小和方向。

共点的两个力F 1、F 2的合力F 的大小,与两者的夹角有关,两个分力同向时合力最大,

反向时合力最小,即合力取值范围力│F 1-F 2│≤│F 1+F 2│

合力可以大于等于两力中的任一个力,也可以小于任一个力,当两力大小一定时,合力

随两力夹角的增大而减小,随两力夹角的减小而增大。

如果一个物体A 对另一个物体B 有两个力作用,当求解A 对B 的作用力时,通常用力

的合成法来求解。

例1:水平横梁的一端A 插在墙壁内,另一端装有一小滑轮B ,一轻绳的一端

C 固定于墙壁上,另一端跨过滑轮后悬挂一质量m=10kg 的重物,∠CBA=30°,如

图3-1所示,则滑轮受到绳子的作用力大小为(g 取10m/s 2)( )

A 、50N

B 、

C 、100N

D 、

【巧解】绳子对滑轮有两个力的作用,即绳子BC 有斜向上的拉力,绳子BD 有竖直向下的拉力,故本题所求的作用力应该为以上这两个力的合力,可用力的合

成法求解。

因同一根绳张力处处相等,都等于物体的重力,即T BC =T BD =mg=100N ,而这两个力的

夹角又是特殊角120°,用平行四边形定则作图,可知合力F 合=100N ,所以滑轮受绳的作

用力为100N ,方向与水平方向成30°角斜向下。

【答案】C

例2:如图3-2所示,一质量为m 的物块,沿固定斜面匀速下滑,斜面的倾角

为θ,物体与斜面间的动摩擦因数为μ,则斜面对物块的作用力大小及方向依次为

( )

A 、sin mg θ,沿斜面向下

B 、sin mg θ,沿斜面向上

C 、cos mg μθ,垂直斜面向下

D 、mg ,竖直向上 【巧解】斜面对物块有两个力的作用,一个是沿垂直斜面向上支持力N ,另一个是沿斜

面向上的摩擦力f ,故本题所求的作用力应该为以上这两个力的合力,可用力的合成法求解。

物块共受三个力作用:重力mg 、支持力N 、摩擦力f ;由平衡条件可知,这三个力的

合力为0,即支持力N 、摩擦力f 的合力重力mg 等大反向,故答案D 选项正确

【答案】D

例3:如图3-3所示,地面上放在一个质量为m 的物块,现有斜向上的

力F 拉物块,物块仍处于静止状态,则拉力F 与物体所受到摩擦力f 的合力

方向为( )

A 、斜向左上

B 、斜向右上

C 、竖直向上

D 、条件不足,无法判断

【巧解】物块共受四个力作用,重力G 、拉力F 、摩擦力f 以及支持力N ,

其受力图如图3-4所示,我们可以用力的合成法,把四力平衡转化成二力平衡:

即F 与f 合成,G 与N 合成,G 与N 的合力一定竖直向下,故F 与f 的合力一

定竖直向上,故答案C 正确。

【答案】C

巧练1:如图3-5所示,A 、B 两小球穿在水平放置的细杆上,相距为d ,

两小球各用一根长也是d 的细绳连接小球C ,三个小球的质量均为m ,整个系

统处于静止状态,而杆对小球A 的作用力大小是( )

A 、1.5mg

B 、mg

C 、6

D 、3

mg 巧练2:如图3-6所示,在倾角为θ=30°的粗糙斜面上放有一重为G 的物

体,现用与斜面底边平行的力F=G/2推物体,物体恰能沿斜面作匀速直线运动,

则物体与斜面间的动摩擦因数为( )

A 、0.5

B 、0.2

C

D 四、力的分解法

由一个已经力求解它的分力叫力的分解,力的分解是力的合成的逆过程,也同样遵循平

行四边形法则,由平行四边形则可知,力的合成是惟一的,而力的分解则可能多解,但在处

理实际问题时,力的分解必须依据力的作用效果来进行的,答案同样是惟一的。

利用力的分解法解题时,先找到要分解的力,再找这个力的作用效果,根据作用效果确

定两个分力的方向,然后用平行四边形定则求这两个部分。

例1:刀、斧、刨等切削工具都叫劈,劈的截面是一个三角形,如图4-1所示,设劈的

面是一个等腰三角形,劈背的宽度是d ,劈的侧面的长度是L 使用劈的时候,在劈背上加力

F ,则劈的两侧面对物体的压力F 1、F 2为( )

A 、F 1=F 2=F

B 、F 1=F 2=(L/d )F

C 、F 1=F 2=(d/L )F

D 、以上答案

都不对

【巧解】由于F 的作用,使得劈有沿垂直侧面向外挤压与之接触物体的效果,故所求

的F 1、F 2大小等于F 的两个分力,可用力的分解法求解。如图4-2所示,将F 分解为两个

垂直于侧面向下的力F 1′、F 2′,由对称性可知,F 1′=F 2′,根据力的矢量三角形△OFF 1

与几何三角形△CAB 相似,故可得:F 1′/L=F/d ,所以F 1′=F 2′=LF/d ,由于F 1= F 1′, F 2=

F 2′故F 1=F 2=(d/L )F 。

【答案】

例2:如图4-3所示,两完全相同的小球在挡板作用下静止在倾角为θ的光滑斜面上,

甲图中挡板为竖直方向,乙图中挡板与斜面垂直,则甲、乙两种情况下小球对斜面的压力之

比是( )

A 、1:1

B 、1:2cos θ

C 、1:2sin θ

D 、1:tan θ

【巧解】由于小球重力G 的作用,使得小球有沿垂直侧面向下挤压斜面及沿垂直挡板

方向挤压挡板的效果,故所求的小球对斜面压力大小等于重力G 沿垂直斜面方向的分力,

可用力的分解法求解,如图所求,甲情况下将G 分解G 2,乙情况下将G 分解G 2′,所求

压力之比即为G 1:G 1′,而G 1=G/cos θ,G 1′=G cos θ,故可得压力之比G 1:G 1′=1:

2cos θ。

【答案】B

例3:如图4-4所示,用两根轻绳将质量为m 的物块悬挂在空中,已知ac 和bc 与竖直

方向的夹角分别为30°和60°,则ac 绳和bc 绳中拉分别为( )

A

、1,22

mg B

、122mg C

、1,42mg D

124mg 【巧解】由于小球重力G 的作用,使得小球有沿两绳方向斜向下拉紧绳的效果,故两绳的

拉力大小等于重力的两个分力,力的分解图如上所示,由几何知识可得:

T ac =G 1=mgcos30°,T bc =G 2=mgcos60°。

【答案】A

例4:如图4-5所示,小车上固定着一根弯成θ角的曲杆,杆的另一端固定一

个质量为m 的球,小车以加速度a 水平向右运动,则杆对球的弹力大小及方向是

( )

A 、mg ,竖直向上

B

,沿杆向上 C 、ma ,水平向右 D

,与水平方向成arctan mg ma

角斜向上 【巧解】本题中,小球只受重力mg 和杆对球的弹力N 两个力作用,杆对球的弹力N

有两个作用效果;竖直向上拉小球及水平向右拉小球,因两个作用效果是明确的,故可用力

的分解法来求解。

杆竖直向上拉小球,使小球在竖直方向上保持平衡,故竖直向上的分

力N 1=mg ;杆水平向右拉小球,使小球获得向右的加速度,故水平向右的

分力N 2=ma ,由几何知识可知杆对球的弹力与水平方向的夹角为

arc tan 12

N N =arc tan mg ma ,故答案D 选项正确。 【答案】D

巧练1:如图4-6所示,用一根细绳把重为G 的小球,挂在竖直光滑的墙上,改

用较长的细绳,则小球对绳的拉力T 及对墙的压力N 将( )

A 、T 减小,N 增在

B 、T 增大,N 减小

C 、T 减小,N 减小

D 、T 增大,N 增大

巧练2:如图4-7所示,轻绳AC 与水平角夹角а=30°,BC 与水平面的夹角β

=60°,若AC 、BC 能承受的最大拉力不能超过100N ,设悬挂重物的绳不会拉断,那

么重物的重力G 不能超过( )

A 、100N

B 、200N C

、 D

、3

N 五、力的正交分解法

力的正交分解法:即是把力沿着两个经选定的互相垂直的方向作分解,其目的是便于运

用普通代数运算公式来解决矢量的运算,坐标轴的选取是以使问题的分析简化为原则,通常

选取坐标轴的方法是:选取一条坐标轴与物体运动的速度方向或加速度的方向相同(包括处

理物体在斜面上运动的问题),以求使物体沿另一条坐标轴的加速度为零,这样就可得到外

力在该坐标轴上的分量之和为零,从而给解题带来方便,物体受力个数较多时,常用正交分

解法来解。

例1:如图5-1所示,用与水平成θ=37°的拉力F=30N ,拉着一个重为G=50N 的物体

在水平地面上匀速前进,则物体与地面间的动摩擦因数μ为( )

A 、0.2

B 、0.3

C 、0.6

D 、0.75

【巧解】物体受四个力作用而匀速,这四个力分别为重力G 、拉力F 、地面的支持力N 、

地面的摩擦力f ,由于受多个力作用,用正交分解法来解题较为简单。

怎样选取坐标轴呢?选水平方向与竖直方向为坐标轴,只需分解F ,最简

单,如图5-2所示,将F 进行正交分解,由平衡条件可得:

cos 0

sin 0

cos 300.80.75sin 50300.6x y F F f F F N G F G F θθμθμθ=-==+-=?==--?合合而f=N

化简可得:=

【答案】D

例2:如图5-3所示,重为G=40N 的物体与竖直墙间的动摩擦因数μ=0.2,

若受到与水平线成45°角的斜向上的推力F 作用而沿竖直墙匀速上滑,则F 为多

大?

【巧解】物体受四个力作用而匀速上滑,这四个力分别为重为N 、推力F 、

墙的支持力N 、墙的摩擦力f ,由于受多个力作用,用正交分解法来解题较为简单。

怎样选取坐标轴呢?选水平方向与竖直方向为坐标轴,只需分解F ,最简单,

如图5-4所示,将F 进行正交分解,由平衡条件可得:

cos 450

sin 450

71(sin 45cos 45x y F N F F F G f G N μμ=-?==?--==?-?)合合而f=N

化简可得:F=

【答案】推力F 为71N

例3:如图5-5所示,物体Q 放在固定的斜面P 上,Q 受到一水平作用

力F ,Q 处于静止状态,这时Q 受到的静摩擦力为f ,现使F 变大,Q 仍静

止,则可能( )

A 、f 一直变大

B 、f 一直变小

C 、f 先变大,后变小

D 、f 先变小后变大

【巧解】隔离Q ,Q 物体受重力G 支持力N ,外力F 及摩擦力f 四个力

而平衡,但f 的方向未知(当F 较小时,f 沿斜面向上;当F 较大时f 沿斜面向下),其受力

图如图5-6所示。

怎样选取坐标轴呢?选水平方向与竖直方向为坐标轴,需分解N 与f ,而选沿斜面方向

与竖直斜面方向为坐标轴,需分解G 与F 都需要分解两个力,但N 、f 是未知力,G 、F 是

已知力,分解已知力更简单些,故应选沿斜面方向与坚直斜面方向为坐标轴。

如图5-6所示,将G 、F 进行正交分解,由平衡条件可得:当F 较小时有:

sin cos 0mg F f θθ--=即sin cos f mg F θθ=-随着F 的增大,f 将减小,当F 较大时

有: sin cos 0mg f F θθ+-=即cos sin f F mg θθ=-随着F 的增大,f 将增大,故当

F 的初始值较小时,f 先减小后增大;当F 的初始值较大时f 一直增大。

【答案】A 、D

巧练1:如图5-7所示,斜面体P 固定在水平面上,斜面体的倾角为θ=37°,斜面体

上有一重为G=60N 的木块Q ,用F=10N 的水平力推木块Q ,Q 恰能沿斜面匀速下滑,则木

块Q 与斜面体P 间的摩擦力大小及摩擦因数分别是多少?

巧练2:如图5-8所示,有一直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,

表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间

由一根质量可忽略,不何伸长的细绳相连,并在某一位置平衡,如图1-28所

示,现将P 环向左移一小段距离,两环再将达到平衡,那么将移动后的平衡

状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和摩擦力f 的变化情况

是:( )

A 、N 不变、f 变大

B 、N 不变、f 变小

C 、N 变大、f 变大

D 、N 变大、f 变小

共49种方法,其他略

第三章 牛顿运动定律

难点巧学

曲线运动是变速运动,从运动学的角度可以确定物体加速度与速度、轨迹之间的关系,

也可以从动力学的角度确定合外力F 与速度、轨迹之间的关系。

物体做曲线运动的轨迹不外乎以下三种情况:物体的加速度a 与其速度v 之间的夹角为

锐角、直角或钝角。所谓“两边夹”就是加速度(或合外力)与速度把轨迹夹在中间,即:

物体做曲线运动的轨迹总在............a .与.v .两方向的夹角中,且和..........v .的方向相切,向加速度一侧弯曲。...............

如下图4-1所示三种情况就是这样。

一质点在某恒力F 作用下做曲线运动,图4-2中的曲线AB 是该质点运动轨迹的

一段,质点经过A 、B 两点时的速率分别为v A 、v B .

(1) 用作图法找出该恒力方向的可能范围。

(2) 该恒力的方向能否在过A 点或B 点的 切线上? (3) 该质点从A 点到B 点的过程中其速度

大小如何变化?

(4) 若速率有变化,且v A =v B ,则速率最大

或最小时在什么位置?

解析 (1)过A 、B 两点分别作曲线的切线①和③、法线②和④,如图4-3所示,从A 点

看,恒力F 应在①线的右侧;从B 点看F 应在③线的左侧;因恒力的方向是不变的,故应同

时满足上述两条件。若平移③线过A 点,则①、③两线之间箭头所指的区域即为F 在A 点的

方向可能的范围。

(2)若F 在①线上,则它与v A 在同一直线上,由于F 为恒力,故质点不可能再做曲线

运动,这说明F 不可能在①线上。若F 在③线上,则在A 点时v A 在垂直于F 的方向上有分

量,而到B 点时垂直于③线的运动分量没有了,这与该方向上没有F 分量相矛盾,故F 不可

能在③线上。

(3)由于F 在A 点时与v A 夹角大于90o,而在 B 点时与v B 夹角小于90o,故质点的速率应该是先减 小后增大。 (4)由于已经判定速率为先减小后增大,且

v A =v B ,则运动过程中速率有最小值,且发生在F 与 v 垂直的位置。 力的分解如果不考虑该力产生的效果,对求解往往影响不大,但运动的分解如果不考虑

实际效果,就有可能得出错误的结论。反之,若根据运动效果进行分解,会有意想不到的收

获。下面以一个曲线运动中常见的题型――“绳连物”模型为例进行说明。

如图4-4所示,用绳牵引小船靠岸,收绳的速度为v 1

时刻,船的速度v 有多大?

解析 先用“微元法”解答。小船在极短时

间Δ

t 内从A

点移到C 位移为Δs ,如图4-5

所示,由于Δt 很小,因此绳子转过的角度Δθ

很小,由数学知识可认为Δ

s 2⊥OA, Δs 2⊥OC, 所以有12s s s ??? =+,Δs 2为物体垂直绳方向

的位移,Δs 1为沿绳方向的位移。再由速度的

定义,当Δt 很小时,v =12s///t s t s t ??=??+?? ,

所以v =v 1+v 2,即船的速度分解为沿绳方向的速

度v 1和垂直于绳方向的速度v 2。

用“效果法”解答。船的速度v 的方向就是合速度

的方向,这个速度产生了两个运动效果:(1)假如绳与

水平方向夹角α不变,只是在拉绳,小船将沿绳收缩方

向以v 1速度运动,(2)假如绳长AO 不变,只是α在变,

小船将以O 为圆心、OA 长为半径做圆周运动,速度v 2垂直

于OA 。而α、OA 均改变时,即小船向右运动时,v 1、v 2

就可以看成是它的两个分运动,矢量图如图4-6所示,从

图中易知v =v 1/cos α 比较两种方法可知,效果法简便易行,又可帮助同学

们理解圆周运动知识,同时也让学生懂得不能将绳的速度

进行正交分解。

解决平抛及类平抛运动问题,重在把握水平方向的匀速运动和竖直方向初速为零的匀加

速直线运动的独立性、等时性、等效性,充分利用矢量三角形、勾股定理、三角函数等知识

解答。特别提醒:①强调落点的问题必须抓住两个分位移之间的关系。②强调末速度的“大

小”或“方向”(特别是“方向”)的问题必须抓住两个分速度之间的关系。

另外,记住以下三个“二级结论”(也可称作定理)会让我们在今后解决平抛及类平抛

运动问题中收到意想不到的效果,结论如下。

结论一:做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其末速度方向与

水平方向的夹角为θ,位移与水平方向的夹角为β,则tan θ=2tan β

(其应用见“活题巧解”例7) 结论二:做平抛(或类平抛)运动的物体任意时刻

瞬时速度的反向延长线一定通过此时水平位移的中点。

如图4-7中A 点和B 点。

(其应用见“活题巧解”例6) 结论三:平抛运动的物体经过时间t 后,位移s 与

水平方向的夹角为β,则此时的动能与初动能的关系为 E kt =E ko (1+4tan 2β) (待高一下学期用)

在匀速圆周运动中合外力一定等于物体所需的向心力;在变速圆周运动中,合外力沿 半径方向的分力提供向心力。但有一个问题我们极易出错又始终感到不好理解,即:做曲线...

运动的物体实际受到的力沿半径方向的分力...................(F 供.)并不一定等于物体所需的...........向心力...

(F 需=m 2v R )。例如,当F 供﹥F 需时,物体做向心运动;当F 供=F 需时,物体就做圆周运动;当 F 供﹤F 需时,即物体所受的力不足于维持它做圆周运动,物体做离心运动。因此,我们在分

析物体是否能做圆周运动时,必须弄清F 供与

F 需的关系,活用临界条件法、等效法、类比

法等列方程求解。

设一运动员和自行车的总质量为m ,自行车与地面的动摩擦因素为μ,自行车做圆

周运动的轨道半径为R ,自行车平面偏离竖直方向的角度为θ,转弯速度为v ,地面支持力

为N 。问:自行车要顺利转弯,须满足什么条件?

解析 要使自行车顺利转弯,必须解决两个问题:一是不向外滑动,二是不发生翻倒。

(1) 转弯速度――不向外滑动的临界条件

自行车转弯所需向心力由地面的静摩擦力提供..,不向外滑动的条件是所需..向心力不超出最大静摩擦力,即F n ≤μmg ,根据牛顿第二定律有

μmg

=m 2max v R 所以,最大转弯速度为v max (2) 临界转弯倾角――不翻倒的临界条件 自行车不翻倒的条件,是质心受到的合力矩为零。 如图4-8所示,即向内倾斜而又不滑动、也不翻倒的 临界条件是支持力N 与最大静摩擦力f max 的合力通过

质心。根据三角函数关系,临界转弯倾角

tan θ=2max max v f g N μ==R ,

θ=tan

-1μ=tan -1

2

max v R 角等于tan -12

max v R 1. 圆周运动的运动学特征问题

此类问题,需同学们熟练掌握描述圆周运动的线速度、角速度、向心加速度、周期、频率、转速等物理量及其关系,同时,要抓住一些“过渡桥梁”。例如:凡是直接用皮带传动

(包括链条传动、摩擦传动)的两个轮子,在不考虑打滑的情况下,两轮边缘上各点的线速

度大小相等;凡是同一轮轴上(各个轮都绕同一根轴同步转动)的各点角速度相等(轴上的

点除外)

2.圆周运动的动力学特征及分析与求解

圆周运动的动力学特征为F 向=m 2

v R 。具体在解决问题时,要注意以下三点: ①确定研究对象的轨道平面和圆心的位置。例如火车转弯时,其轨道平面是在水平面内

而不是在斜面上。在水平放置的半球形碗内壁上做圆周运动的小球,其轨道平面为水平面,

圆心在轨道圆平面上,而不是在球心。

②向心力不是与重力、弹力、摩擦力等并列的“性质力”,而是据效果命名的“效果力”

故在分析做圆周运动的质点受力时,切不可在性质力上再添加一个向心力。

③坐标系的建立:应用牛顿第二定律解答圆周运动问题时,常用正交分解法,其坐标原

点是做圆周运动的物体(视为质点)所在的位置,相互垂直的两个坐标轴中,其中一个坐标

轴的方向一定沿半径指向圆心。

这类试题往往利用物理新模型将教材中难度不大、要求不高,但属重点内容的基础知识

及与其相关的例题、习题加以有效拼接,演变成各种立意新颖、设计科学的题目,从更高层

次上考查学生对所学基础知识的掌握程度和迁移能力、综合能力、创新能力。这类题具有“高

起点、低落点”的特点,起点高是指科技成果新,题型新颖、独特,为题海所无法包容;落

点低是指完成这些题目所需的基础知识不超纲。现举两例说明此类题目的巧解。

从空间同一点O ,同时向各个方向以相同的速率抛出许多小球,不计空气阻力,

试证明在这些球都未落地之前,它们在任一时刻的位置可构成一个球面。

解析 如果我们从“可构成一个球面”出发,以地面为参照物列方程求解会很复杂,并且不

易求解。其实,这道题比较好的解法是虚物假设法。

解析 假设在O 点另有一个小球A ,当所有小球被抛出的那一瞬间,让O 点处的这个

假设小球做自由落体运动(这是解答本题最关键的一步)。

因为做抛体运动的所有小球与假设做自由落体运动的小球A 的加速度都相等(都等于

重力加速度),所以,做抛体运动的各小球相对于A 球都做匀速直线运动,其位移(注意:

是相对于做自由落体运动的小球A 的位移)的大小都是s =v 0t (v 0为各小球抛出时的初速率,

t 为小球运动的时间),也就是说,在同一时刻,各小球与A 的距离都相等,因各小球在同

一时刻在空中的位置可构成一个球面,这个球面的半径为R =v 0t 。可见,不同时刻,这些小

球的位置构成不同球面,当然,这些球面的球心就是假设做自由落体运动的小球A 。

由以上解答也可解释节日的夜晚燃放的烟花在空中为什么是球形的。

(2005·武汉模拟)早在19世纪,匈牙利物理学家厄缶就明确指出:“沿水平地面向

东运动的物体,其重量,即:列车的视重或列车对水平轨道的压力一定要减轻。”后来,

人们常把这类物理现象称之为“厄缶效应”。

我们设想,在地球赤道附近的地平线上,有一列车质量是m ,正在以速度v 沿水平轨

道向东匀速行驶。已知地球的半径R 及地球自转周期T 。今天我们像厄缶一样,如果仅仅考

虑地球自转的影响,火车随地球做线速度为2R T

π的圆周运动时,火车对轨道的压力为F N ;在此基础上,又考虑到这列火车相对地面附加了一个线速度更快的匀速圆周运动,并设此时

火车对轨道的压力为F N ′,那么,单纯地由于该火车向东行驶而引起火车对轨道压力减轻的数量F N -F N ′为

A .2v m R

B .2v 2m[2()]R v T

π+

C .

2m v T π() D .2v 2m[()v]R T

π+ 解析 我们用构建物理模型法来解答此题。 把火车看作一个质点在向东绕地心做匀速圆周运动,向心力由地球对火车的引力F

和地面对火车支持力的合力提供,根据牛顿第二定律得

F引-F N=

2R2 m)/R

T

π

F引-F N′=

2R2

m+v/R

T

π

()

联立求解得:F N-F N′=

2v2

m[+2()v] R T

π

答案选B.

活题巧解

一质点在xoy平面内运动的轨迹如图4-9 所示,下面关于其分运动的判断正确的是

y

A.若在x方向始终匀速运动,则在y方向先加速后减速运动;

B.若在x方向始终匀速运动,则在y方向先减速后加速运动;

C.若在y方向始终匀速运动,则在x方向一直加速运动;

D.若在y方向始终匀速运动,则在x方向一直减速运动。X 巧解类比法

本题可从动力学的角度确定外力与速度方向改变的关系,即:物体做曲线运动的轨迹总在加速度与速度矢量的夹角中,且和速度的方向相切,向加速度一侧弯曲。再和平抛运动的动力学特点类比,可知B对

【答案】B

小河宽为d,河水中各点水流速度大小与各点到较近河岸边的距离成正比,v水=kx,k=4v0/d,x是各点到近岸的距离。小船船头垂直河岸渡河,小船划水速度为v0,则下列说法中正确的是

A.小船渡河的轨迹为曲线;

B.小船到达离河岸d/20;

C.小船渡河时的轨迹为直线;

D.小船到达离河岸3d/40。

巧解速度合成法

由于小船划水速度为v0不变,水流速度先变大再变小,河中间为其速度大小变化的转折点,故其合速度的大小及方向在不断的变化,可见其轨迹为曲线;在河中间时小船的

;到达离河岸3d/4处时,水流速度为v00,故正确选项为A、B。

【答案】AB

甲、乙两船从同一地点渡河,甲船以最短时间过河,乙船以最短航程过河,结果甲、乙到达对岸同一地点。设甲、乙两船在静水中的速度分别为v甲、v乙并保持不变,求它们到达对岸所用时间之比t甲∶t乙=?

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

高中物理解题技巧:图像法

高物理解题技巧:图像法1 物理规律可以用文字描述,也可以用数函数式表示,还可以用图象描述。图象作为表示物理规律的方法之一,可以直观地反映某一物理量随另一物理量变化的函数关系,形象地描述物理规律。在进行抽象思维的同时,利用图象视觉感知,有助于对物理知识的理解和记忆,准确把握物理量之间的定性和定量关系,深刻理解问题的物理意义。应用图象不仅可以直接求或读某些待求物理量,还可以用探究某些物理规律,测定某些物理量,分析或解决某些复杂的物理过程。 图象的物理意义主要通过“点”、“线”、“面”、“形”四个方面体现,应从这四方面入手,予以明确。 1、物理图象“点”的物理意义:“点”是认识图象的基础。物理图象上的“点”代表某一物理状态,它包含着该物理状态的特征和特性。从“点”着手分析时应注意从以下几个特殊“点”入手分析其物理意义。 (1)截距点。它反映了当一个物理量为零时,另一个物理的值是多少,也就是说明确表明了研究对象的一个状态。如图1,图象与纵轴的交点反映当I=0时,U=E即电的 电动势;而图象与横轴的交点反映电的短路电流。这可通过图象的数表达式 得。 (2)交点。即图线与图线相交的点,它反映了两个不同的研究对象此时有相同的物理量。如图2的P点表示电阻A接在电B两端时的A两端的电压和通过A的电流。

(3)极值点。它可表明该点附近物理量的变化趋势。如图3的D点表明当电流等于时,电有最大的输功率。 (4) 拐 点。通常反映物理过程在该点发生突变,物理量由量变到质变的转折点。拐点分明拐点和暗拐点,对明拐点,生能一眼看其物理量发生了突变。如图4的P点反映了加速度方向发生了变化而不是速度方向发生了变化。而暗拐点,生往往察觉不到物理量的突变。如图5P点看起是一条直线,实际上在该点速度方向发生了变化而加速度没有发生变化。 2、物理图象“线”的物理意义:“线”:主要指图象的直线或曲线的切线,其斜率通常 具有明确的物理意义。物理图象的斜率代表两个物理量增量之比值,其大小往往 代表另一物理量值。如-t图象的斜率为速度,v-t图象的斜率为加速度,Φ-t图象的斜率为感应电动势(n=1的情况下),电U-I图象(如图1)的斜率 为电的内阻(从图象的数表达式也一目了然)等。 3、物理图象“面”的物理意义:“面”:是指图线与坐标轴所围的面积。有些物理图象的图线与横轴所围的面积的值常代表另一个物理量的大小.习图象时,有意识地利用求面积的方法,计算有关问题,可使有些物理问题的解答变得简便,如v-t图象所围面积 代表位移,F-图象所围面积为力做的功,P-V图象所围面积为 气体压强做的功等。 4、物理图象“形”的物理意义:“形”:指图象的形状。由图线的形状结合其斜率找其隐含的物理意义。例如在v-t图象,如果是一条与时间轴平行的直线,说明物体做匀速直线运动;若是一条斜的直线,说明物体做匀变速直线运动;若是一条曲线,则可根据其斜率变化情况,判断加速度的变化情况。在波的图象,可通过微小的平移能够判断各质点在该时刻的振动方向;在研究小电珠两端的电压U与电流I关系时,通过实验测在

高中物理平抛运动的典型例题

平抛运动典型题目 1、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是() A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动 2、飞机距离地面高H=500m,水平飞行速度为v1=100m/s,追击一辆速度为v2=20m/s 同向行驶的汽车,欲使投弹击中汽车,则飞机应在距汽车水平距离x=m远处投弹.(g=10m/s2) 3、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒内() A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m 平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是(? ) A.同时抛出,且v1< v2? B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2? ? D.甲先抛出,且v1< v2

5、从高H 处以水平速度v 1平抛一个小球1,同时从地面以速度v 2竖直向上抛出一个小球2,两小球在空中相遇则:( ) A .从抛出到相遇所用时间为 H v 1 B .从抛出到相遇所用时间为H v 2 C .抛出时两球的水平距离是v H v 12 D .相遇时小球2上升高度是H gH v 1212 -?? ? ? ? 6.物体做平抛运动时,它的速度的方向和水平方向间的夹角α的正切tan α随时间t 变化的图像是下( ) 7、子弹从枪口射出,在子弹的飞行途中,有两块相互平行的竖直挡板A 、B (如图所示),A 板距枪口的水平距离为s 1,两板相距s 2,子弹穿过两板先后留下弹孔C 和D ,C 、D 两点之间的高度差为h ,不计挡板和空气阻力,求子弹的初速度v 0. () 2h S S 2S g 2 221+ 8、从高为h 的平台上,分两次沿同一方向水平抛出一个小球。如右图第一次小球落地在a 点。第二次小球落地在b 点,ab 相距为d 。已知第一次抛球的初速度为,求第二次抛 球的初速度是多少—————2h 2gh d V 1+

高中物理磁场专题讲解经典例题

磁场专题 7.【东北师大附中2011届高三第三次模底】如图所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光。MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里。P 为屏上的一小孔,PQ 与MN 垂直。一群质量为m 、带电荷量q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用。则以下说法正确的是( ) A .在荧光屏上将出现一个圆形亮斑,其半径为mv q B B .在荧光屏上将出现一个条形亮线,其长度为 ()21cos mv qB θ- C .在荧光屏上将出现一个半圆形亮斑,其半径为mv qB D .在荧光屏上将出现一个条形亮线,其长度为()21sin mv qB θ- 10.【东北师大附中2011届高三第三次模底】如图,电源电 动势为E ,内阻为r ,滑动变阻器电阻为R ,开关闭合。 两平行极板间有匀强磁场,一带电粒子正好以速度v 匀速 穿过两板。以下说法正确的是(忽略带电粒子的重力)( ) A .保持开关闭合,将滑片P 向上滑动一点,粒子将可能从下极板边缘射出 B .保持开关闭合,将滑片P 向下滑动一点,粒子将可能从下极板边缘射出 C .保持开关闭合,将a 极板向下移动一点,粒子将继续沿直线穿出 D .如果将开关断开,粒子将继续沿直线穿出 4.【辽宁省丹东市四校协作体2011届高三第二次联合考试】如图所示,一粒子源位于一边长为a 的正三角形ABC 的中点O 处,可以在三角形所在的平面内向各个方向发射出速度大小为v 、质量为m 、电荷量为q 的带电粒子,整个三角形位于垂直于△ABC 的匀强磁场中,若使任意方向射出的带电粒子均不能射出三角形区域,则磁感应强度的最小值为 ( ) A .mv qa B .2mv qa Q

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

高一物理必修1典型例题

高一物理必修1典型例题 例l. 在下图甲中时间轴上标出第2s末,第5s末和第2s,第4s,并说明它们表示的是时间还是时刻。 甲乙 例2. 关于位移和路程,下列说法中正确的是 A. 在某一段时间内质点运动的位移为零,该质点不一定是静止的 B. 在某一段时间内质点运动的路程为零,该质点一定是静止的 C. 在直线运动中,质点位移的大小一定等于其路程 D. 在曲线运动中,质点位移的大小一定小于其路程 例3. 从高为5m处以某一初速度竖直向下抛出一个小球,在与地面相碰后弹起,上升到高为2m处被接住,则在这段过程中 A. 小球的位移为3m,方向竖直向下,路程为7m B. 小球的位移为7m,方向竖直向上,路程为7m C. 小球的位移为3m,方向竖直向下,路程为3m D. 小球的位移为7m,方向竖直向上,路程为3m 例4. 判断下列关于速度的说法,正确的是 A. 速度是表示物体运动快慢的物理量,它既有大小,又有方向。 B. 平均速度就是速度的平均值,它只有大小没有方向。 C. 汽车以速度1v经过某一路标,子弹以速度2v从枪口射出,1v和2v均指平均速度。 D. 运动物体经过某一时刻(或某一位置)的速度,叫瞬时速度,它是矢量。 例5. 一个物体做直线运动,前一半时间的平均速度为1v,后一半时间的平均速度为2v,则全程的平均速度为多少?如果前一半位移的平均速度为1v,后一半位移的平均速度为2v,全程的平均速度又为多少? 例6. 打点计时器在纸带上的点迹,直接记录了 A. 物体运动的时间 B. 物体在不同时刻的位置 C. 物体在不同时间内的位移 D. 物体在不同时刻的速度 例7.如图所示,打点计时器所用电源的频率为50Hz,某次实验中得到的一条纸带,用毫米刻度尺测量的情况如图所示,纸带在A、C间的平均速度为m/s,在A、D间的平均速度为m/s,B点的瞬时速度更接近于m/s。 例8. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零

高中物理必修一经典例题附解析

华辉教育物理学科备课讲义 A.大小为2N,方向平行于斜面向上 B.大小为1N,方向平行于斜面向上 C.大小为2N,方向垂直于斜面向上 D.大小为2N,方向竖直向上 答案:D 解析:绳只能产生拉伸形变, 绳不同,它既可以产生拉伸形变,也可以产生压缩形变、弯曲形变和扭转形变,因此杆的弹力方向不一定沿杆. 2.某物体受到大小分别为 闭三角形.下列四个图中不能使该物体所受合力为零的是 ( 答案:ABD 解析:A图中F1、F3的合力为 为零;D图中合力为2F3. 3.列车长为L,铁路桥长也是 桥尾的速度是v2,则车尾通过桥尾时的速度为 A.v2

答案:A 解析:推而未动,故摩擦力f=F,所以A正确. .某人利用手表估测火车的加速度,先观测30s,发现火车前进540m;隔30s 现火车前进360m.若火车在这70s内做匀加速直线运动,则火车加速度为 ( A.0.3m/s2B.0.36m/s2 C.0.5m/s2D.0.56m/s2 答案:B 解析:前30s内火车的平均速度v=540 30 m/s=18m/s,它等于火车在这30s 10s内火车的平均速度v1=360 10 m/s=36m/s.它等于火车在这10s内的中间时刻的速度,此时刻Δv v1-v36-18

两根绳上的张力沿水平方向的分力大小相等. 与竖直方向夹角为α,BC与竖直方向夹角为 .利用打点计时器等仪器测定匀变速运动的加速度是打出的一条纸带如图所示.为我们在纸带上所选的计数点,相邻计数点间的时间间隔为0.1s. ,x AD=84.6mm,x AE=121.3mm __________m/s,v D=__________m/s 结果保留三位有效数字)

高考物理复习高中物理解题方法归类总结高中物理例题解析,原来还有这么巧妙的方法!

高考物理复习高中物理解题方法归类总结 (高中物理例题解析) 方法一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义

在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中,根据得出的一组数据作出U-I图像,如图所示,由图像得出电池的电动势E=______ V,内电阻r=_______ Ω. 【解析】电源的U-I图像是经常碰到的,由图线与纵轴的截距容易得出电动势E=1.5 V,图线与横轴的截距0.6 A是路端电压为0.80伏特时的电流,(学生在这里常犯的错误是把图线与横轴的截距0.6 A当作短路电流,而得出r=E/I 短=2.5Ω的错误结论.)故电源的内阻为:r=△U/△I=1.2Ω 3.挖掘交点的潜在含意

一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车? 【解析】依题意在同一坐标系中作出分别从A、B站由不同时刻开出的汽车做匀速运动的s一t图像,如图所示. 从图中可一目了然地看出:(1)当B站汽车与A站第一辆汽车同时相向开出时,B站汽车的s一t图线CD与A站汽车的s-t图线有6个交点(不包括在t轴上的交点),这表明B站汽车在途中(不包括在站上)能遇到6辆从A站开出的汽车.(2)要使B站汽车在途中遇到的车最多,它至少应在A站第一辆车开出50 min后出发,即应与A站第6辆车同时开出此时对应B站汽车的s—t图线MN与A 站汽车的s一t图线共有11个交点(不包括t轴上的交点),所以B站汽车在途中(不包括在站上)最多能遇到1l辆从A站开出的车.(3)如果B站汽车与A站汽

高中物理平抛运动经典例题

[例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。 [例2] 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为的斜面上。可知物体完成这段飞行的时间是() A. B. C. D. 图2 解析:先将物体的末速度分解为水平分速度和竖直分速度(如图2乙所示)。根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以;又因为与斜面垂直、与水平面垂直,所以与间的夹角等于斜面的倾角。再根据平抛运动的 分解可知物体在竖直方向做自由落体运动,那么我们根据就可以求出时间了。则 所以 根据平抛运动竖直方向是自由落体运动可以写出

所以 所以答案为C。 3. 从分解位移的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”) [例3] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。 解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。 又根据运动学的规律可得 竖直方向上, 水平方向上 则, 所以Q点的速度 [例4] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右 抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少? 图3 解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到 所以有

(完整word版)高中物理功和功率典型例题解析

功和功率典型例题精析 [例题1] 用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升,如果前后两过程的时间相同,不计空气阻力,则[ ] A.加速过程中拉力的功一定比匀速过程中拉力的功大 B.匀速过程中拉力的功比加速过程中拉力的功大 C.两过程中拉力的功一样大 D.上述三种情况都有可能 [思路点拨]因重物在竖直方向上仅受两个力作用:重力mg、拉力F.这两个力的相互关系决定了物体在竖直方向上的运动状态.设匀加速提升重物时拉力为F1,重物加速度为a,由牛顿第二定律F1-mg=ma, 匀速提升重物时,设拉力为F2,由平衡条件有F2=mg,匀速直线运动的位移S2=v·t=at2.拉力F2所做的功W2=F2·S2=mgat2. [解题过程] 比较上述两种情况下拉力F1、F2分别对物体做功的表达式,不难发现:一切取决于加速度a与重力加速度的关系. 因此选项A、B、C的结论均可能出现.故答案应选D. [小结]由恒力功的定义式W=F·S·cosα可知:恒力对物体做功的多少,只取决于力、位移、力和位移间夹角的大小,而跟物体的运动状态(加速、匀速、减速)无关.在一定的条件下,物体做匀加速运动时力对物体所做的功,可以大于、等于或小于物体做匀速直线运动时该力做的功. [例题2]质量为M、长为L的长木板,放置在光滑的水平面上,长木板最右端放置一质量为m 的小物块,如图8-1所示.现在长木板右端加一水平恒力F,使长木板从小物块底下抽出,小物块与长木板摩擦因数为μ,求把长木板抽出来所做的功.

[思路点拨] 此题为相关联的两物体存在相对运动,进而求功的问题.小物块与长木板是靠一对滑动摩擦力联系在一起的.分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移,再根据恒力功的定义式求恒力F的功. [解题过程] 由F=ma得m与M的各自对地的加速度分别为 设抽出木板所用的时间为t,则m与M在时间t内的位移分别为 所以把长木板从小物块底下抽出来所做的功为 [小结]解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图(如图8-2).在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f′为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移Sm与木板长度L之和,而它们各自的匀加速运动均在相同时间t内完成,再根据恒力功的定义式求出最后结果.

(完整版)高中物理解题技巧

物理快速解题技巧 技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所 示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木 块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块 有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解 木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2 所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置 用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻 绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的 θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

高中物理知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。 (3).平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。 ①平均速度是矢量,方向与位移方向相同。

高中物理牛顿第二定律经典例题

牛顿第二运动定律 【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速 率都是先增大,后减小 D、物体在B点时,所受合力为零 的对应关系,弹簧这种特 【解析】本题主要研究a与F 合 殊模型的变化特点,以及由物体的受力情况判断物体的 运动性质。对物体运动过程及状态分析清楚,同时对物 =0,体正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置mg=kx c,a=0,物体速度达最大。由C→B的过程中,由于mgf m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D 正确。 综合上述,正确答案应为A、B、D。 【例3】如图3-11所示,一细线的一端固定于倾角为45°度的光滑楔形滑块A 的顶端p处,细线的另一端栓一质量为m的小球,当滑块以2g的加速度向左运动时,线中拉力T等于多少? 【解析】当小球贴着滑块一起向左运动时,小球受到三个力作用:重力mg、线 中拉力T,滑块A的支持力N,如 图3-12所示,小球在这三个力作用 下产生向左的加速度,当滑块向左

高中物理解题方法整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P 环向左移一小段距离,两 环再次 A O B P Q

高一物理典型例题

高一物理必修1知识集锦及典型例题 一. 各部分知识网络 (一)运动的描述: 测匀变速直线运动的加速度:△x=aT 2 ,6543212 ()()(3) a a a a a a a T ++-++=

a与v同向,加速运动;a与v反向,减速运动。

(二)力: 实验:探究力的平行四边形定则。 研究弹簧弹力与形变量的关系:F=KX.

(三)牛顿运动定律: . 改变

(四)共点力作用下物体的平衡: 静止 平衡状态 匀速运动 F x 合=0 力的平衡条件:F 合=0 F y 合=0 合成法 正交分解法 常用方法 矢量三角形动态分析法 相似三角形法 正、余弦定理法 物 体 的平衡

二、典型例题 例题1..某同学利用打点计时器探究小车速度随时间变化的关系,所用交流电的频率为50 Hz,下图为某次实验中得到的一条纸带的一部分,0、1、2、3、4、5、6、7为计数点,相邻两计数点间还有3个打点未画出.从纸带上测出x1=3.20 cm,x2=4.74 cm,x3=6.40 cm,x4=8.02 cm,x5=9.64 cm,x6=11.28 cm,x7=12.84 cm. (1)请通过计算,在下表空格内填入合适的数据(计算结果保留三位有效数字); (2)根据表中数据,在所给的坐标系中作出v-t图 象(以0计数点作为计时起点);由图象可得,小车 运动的加速度大小为________m /s2 例2. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零 例3. 一滑块由静止开始,从斜面顶端匀加速下滑,第5s末的速度是6m/s。求:(1)第4s末的速度;(2)头7s内的位移;(3)第3s内的位移。 例4. 公共汽车由停车站从静止出发以0.5m/s2的加速度作匀加速直线运动,同时一辆汽车以36km/h的不变速度从后面越过公共汽车。求: (1)经过多长时间公共汽车能追上汽车? (2)后车追上前车之前,经多长时间两车相距最远,最远是多少? 例5.静止在光滑水平面上的物体,受到一个水平拉力,在力刚开始作用的瞬间,下列说法中正确的是 A. 物体立即获得加速度和速度

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

高中物理总复习 15种快速解题技巧

技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin θ (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的加速度(其它部分都无加速度),所以系统有竖直向上的加速度,系统处于超重状态,所以轻绳对系统的拉力F 与系统的重力(M+m )g 满足关系式:F >(M+m )g ,正确答案为D. 【方法链接】对于超、失重现象大致可分为以下几种情况: θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

相关主题