搜档网
当前位置:搜档网 › 中国正研制真空磁悬浮列车+理论时速2万公里

中国正研制真空磁悬浮列车+理论时速2万公里

中国正研制真空磁悬浮列车+理论时速2万公里
中国正研制真空磁悬浮列车+理论时速2万公里

技术揭秘

大气环境下列车时速不宜超过400公里

西南交大牵引动力国家重点实验室成员、两院院士沈志云接受法晚记者采访时说,目前任何一种地面交通工具,商业运营速度都不宜超过每小时400公里,否则能耗大、噪音超标,难以被市场接受。

沈志云介绍,真空管道高速交通,就是建造一条与外部空气隔绝的管道,将管内抽为真空后,在其中运行磁悬浮列车,由于没有空气摩擦的阻碍,列车将运行至令人瞠目结舌的高速。而且管道是密封的,可以在海底及气候恶劣地区运行而不受任何影响。

该课题组成员张耀平做了一个比喻:“管道就像排污管道一样,连接紧密,是一个完全密闭的空间。”

真空磁悬浮造价比普通铁路更便宜

张耀平介绍,真空磁悬浮列车只是列车在真空环境下运行,而车厢内并非真空的,乘客乘坐这种高速的列车也不会有眩晕等异样的感觉。

从造价上来看,目前普通铁路造价每公里1.5亿,其隧道断面大概在6米到8米之间,而真空磁悬浮管道断面只有4米到5米之间,可省去很多钢材费用,所以费用比普通铁路更便宜。

对于票价,张耀平猜测,如果该技术刚刚投入运行时,其票价应该要比高铁的价格高,但是随着技术不断地成熟更新,其价格也会逐渐降低。

实验故事

网上找材料引进真空管道交通概念

张耀平在接受法晚记者采访时说,美国佛罗里达州机械工程师戴睿·奥斯特于1999 年将真空管道磁悬浮运输概念落实到图纸并在美申请发明专利。

2001年,与戴睿相识并成为密友的张耀平将这项技术首次引进中国。

张耀平说:“当时我在中外运工作,感到我国物流运输能力赶不上经济的快速发展,要解决的运输物流最关键问题是交通要快捷安全,我就在网上找快速交通类的资料,于是就发现了戴睿的资料,这样我们通过网络认识了。”

2002年初,张耀平联系到轨道交通领域两位权威专家——西南交大机车车辆动力学专家沈志云和磁悬浮专家王家素,他们均对此表现出极大的兴趣,觉得能够进行试验研究。

当年11月,张耀平放弃了在国企每月拿5000多元工资的工作,毅然到西南交大和这些专家一起进行真空管道交通研究,当了一名拿着1 500元薪水的博士后。

2002年下半年,戴睿和妻子来到中国,帮助张耀平和同事在西南交通大学组建了“真空管道运输研究所”。

张耀平介绍,当时申请国家自然科学基金时,共申请了3次,2006年终于申请下26万元的项目基金。

2006年底,带着项目资金,包括研究生、教授在内的共有10多位人员开始了研究。

真空磁悬浮列车优点

1.无需车载电源

2.安全性高

3.能静止悬浮,启动耗能很少

4.运行噪声小

5.车体轻,适合高频率发车,大大降低路基和轨道成本

●各国对比

中美瑞比较我国技术占优

沈志云介绍,美国和瑞士也在研究真空管道技术。美国搞的是高真空管道交通,大气压甚至只有外界的百万分之一,但成本很高,难度很大,所以很难投入实际营运。

瑞士则把真空管放在地下隧道中,这同样增加了很大的成本,最终也难以进入实际应用。

“而我们的方案相对于他们更优,管道内只要降到0.5个大气压,就可以大大减少空气对于机车的阻力,这样,就大大降低了成本。”沈志云介绍。

沈志云估算,在现有的高速铁路上,每公里只需要增加一两千万就可以建造成这个管道了,而增加的成本将在后来的运行成本中节约出来。这种方案,机车运行速度可以超过600公里/小时。

张耀平介绍,目前世界上共有美国、瑞士、中国3个国家正在研究真空管道磁悬浮技术,我国已经开始着手试验了,美国和瑞士还在理论阶段。

本版专家支持西南交通大学牵引动力国家重点实验室两院院士沈志云课题组成员张耀平

磁悬浮列车的工作原理

超导磁悬浮列车的工作原理 超导磁悬浮列车工作时主要利用了磁性物质同性排斥异性吸引的基本原理,从而最终达到了列车悬浮在车轨上方,列车在磁力的牵引下高速前行,列 车在高速前行过程中自动调整姿势以避免倾斜的目的. 首先,对于列车之所以能够悬浮在轨道上方做简单说明:磁铁有同性相斥 和异性相吸两种形式,故磁悬浮列车也有两种相应的形式:一种是利用磁铁 同性相斥原理而设计的电磁运行系统的磁悬浮列车,它利用车上超导电磁铁 形成的磁场与轨道上线圈形成的磁场之间所产生的相斥力,使车体悬浮运行 的铁路;另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁悬 浮列车,它是在车体底部及两侧倒转向上的顶部安装磁铁,在T形导轨的上 方和伸臂部分下方分别设反作用板和感应钢板,控制电磁铁的电流,使电磁 铁和导轨间保持10—15毫米的间隙,并使导轨钢板的排斥力与车辆的重力 平衡,从而使车体悬浮于车道的导轨面上运行。 那么,磁体间为什么能产生如此强大的磁场而最终让沉重的车厢悬浮起 来呢?在演示实验中我们用的是极冷的液氮冷却那种放在车厢底部的超导元 件办到的。超导元件在相当低的温度下具有的完全导电性和完全抗磁性。而 实际运用的超导磁体是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制 成体积小功率强大的电磁铁。。超导磁悬浮列车的工作原理是利用超导材料 的抗磁性,将超导材料置于永久磁体(或磁场)的上方,由于超导的抗磁性,磁体的磁力线不能穿过超导体,磁体(或磁场)和超导体之间会产生排斥力,使超导体悬浮在上方。 其次,磁悬浮列车的高速前进也是利用电磁体间的磁力完成的。 简单的讲就是,在位于轨道两侧的线圈里流动的交流电,能将线圈变为 电磁铁。由于它与列车上的超导电磁体的相互作用,就使列车开动起来。列 车前进是因为列车头部的电磁体(N极)被安装在靠前一点的轨道上的电磁 体(S极)所吸引,并且同时又被安装在轨道上稍后一点的电磁体(N极) 所排斥。当列车前进时,在线圈里流动的电流流向就反转过来了。其结果就 是原来那个S极线圈,现在变为N极线圈了,反之亦然。这样,列车由于电 磁极性的转换而得以持续向前奔驰。根据车速,通过电能转换器调整在线圈 里流动的交流电的频率和电压。 具体地讲超导磁悬浮列车的车辆上装有车载超导磁体并构成感应动力集 成设备,而列车的驱动绕组和悬浮导向绕组均安装在地面导轨两侧,车辆上 的感应动力集成设备由动力集成绕组、感应动力集成超导磁铁和悬浮导向超 导磁铁三部分组成。当向轨道两侧的驱动绕组提供与车辆速度频率相一致的 三相交流电时,就会产生一个移动的电磁场,因而在列车导轨上产生磁波, 这时列车上的车载超导磁体就会受到一个与移动磁场相同步的推力,正是这

中国磁悬浮列车原理

磁悬浮列车 1.磁悬浮技术的原理 磁悬浮技术的系统,是由转子、传感器、控制器和执行器4部分组成,其中执行器包括电磁铁和功率放大器两部分。假设在参考位置上,转子受到一个向下的扰动,就会偏离其参考位置,这时传感器检测出转子偏离参考点的位移,作为控制器的微处理器将检测的位移变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力,从而驱动转子返回到原来平衡位置。因此,不论转子受到向下或向上的扰动,转子始终能处于稳定的平衡状态。 2.磁悬浮技术的应用 国际上对磁悬浮轴承的研究工作也非常活跃。1988年召开了第一届国际磁悬浮轴承会议,此后每两年召开一次。1991年,美国航空航天管理局还召开了第一次磁悬浮技术在航天中应用的讨论会。现在,美国、法国、瑞士、日本和中国都在大力支持开展磁悬浮轴承的研究工作。国际上的这些努力,推动了磁悬浮轴承在工业上的广泛应用。 国内对磁悬浮轴承的研究工作起步较晚,尚处于实验室阶段,落后外国约20年。1986年,广州机床研究所与哈尔滨工业大学首先对“磁力轴承的开发及其在FMS中的应用”这一课题进行了研究。此后,清华大学、西安交通大学、天津大学、山东科技大学、南京航空航天大学等都在进行这方面的研究工作。 目前在工业上得到广泛应用的基本上都是传统的磁悬浮轴承(需要位置传感器的磁悬浮轴承),这种轴承需要5个或10个非接触式位置传感器来检测转子的位移。由于传感器的存在,使磁悬浮轴承系统的轴向尺寸变大、系统的动态性能降低,而且成本高、可靠性低。此外,由于传感器的价格较高,从而导致磁悬浮轴承的售价很高,大大限制了它在工业上的推广应用。 2009年8月,参观者在北京看磁悬浮列车轨道,北京城建设计研究总院的总工杨秀仁透露,北京正在做一条磁悬浮线的长期规划———通往门头沟的S1轨道线路正在筹划,计划采用中国自主研发的磁悬浮技术。而由北京控股磁悬浮技术发展有限公司和国防科技大学合作的中低速磁浮列车,是中国唯一具有完全自主知识产权的磁悬浮列车。 3.磁悬浮技术的前景 随着电子元件的集成化以及控制理论和转子动力学的发展,经过多年的研究工作,国内外对该项技术的研究都取得了很大的进展。但是不论是在理论还是在产品化的过程中,该项技术都存在很多的难题,其中磁悬浮列车的技术难题是悬浮与推进以及一套复杂的控制系统,它的实现需要运用电子技术、电磁器件、直线电机、机械结构、计算机、材料以及系统分析等方面的高技术成果。需要攻关的是组成系统的技术和实现工程化。 磁悬浮轴承面向电力工程的应用也具有广阔的前景,根据磁悬浮轴承的原理,研制大功率的磁悬浮轴承和飞轮储能系统以减少调峰时机组启停次数;进行以磁悬浮轴

上海磁悬浮列车

来,认识磁悬浮列车 认识磁悬浮列车 我国人口众多,资源的人均占有量远远低于世界平均水平。所以在考虑发展我国交通运输系统时,应结合我国国情。发展高速、节能、少污染、占地少的公共交通系统,而磁悬浮列车正是能满足这样要求的较为现实的新型交通工具。它的发展将会大大促进我国高新技术的发展,也可带动一批新兴企业的成长。 磁悬浮列车是一种利用电磁磁极间产生吸引力、排斥 力的作用原理,以直线电机作为推动力前进的新型交通工具。简单地说,排斥力使列车悬起来,吸引力让列车开动起来。 尽管我们还将磁悬浮列车的轨道称为“铁路”,但这两个字已经不够贴切了。就拿铁轨来说,实际上它已不复存在——轨道只剩下一条,而且也不能称其为“轨道”了,因为轮子并没有从上面滚过——事实上连轮子也没有了。它运行时并不接触轨道,只是在离轨道上10厘米的高度“飞行”。 上海磁悬浮列车 世界上第一条以商业运营为目的的磁悬浮列车试验线,将于两年后在上海浦东建成通车。这一消息一经公布,“磁悬浮列车”立刻成了上海最引人注目,同时又是最令上海人骄傲的一个新名词。因为两年后,从浦东龙阳路起始站乘上磁 悬浮列车,只需6分钟就能到达浦东国际机场。而同样的路程,如果乘出租车,在道路通畅的情况下,至少需要30分钟。 磁悬浮列车是一种利用电磁磁极间产生吸引力、排斥力的作用原理,以直线电机作为推动力前进的新型交通工具。简单地说,排斥力使列车悬起来,吸引力让列车开动起来。 尽管我们还将磁悬浮列车的轨道称为“铁路”,但这两个字已经不够贴切了。就拿铁轨来说,实际上它已不复存在——轨道只剩下一条,而且也不能称其为“轨道”了,因为轮子并没有从上面滚过——事实上连轮子也没有了。它运行时并不接触轨道,只是在离轨道上10厘米的高度“飞行”。

磁悬浮列车原理

第九篇磁悬浮列车原理 §9.1磁悬浮列车综述 你一定听说过磁悬浮列车吧,最近它的上镜率可是居高不下,大家都在密切地关注着它的发展态势。我们一直都在盼望着火车的提速,可经过几轮的努力,却总是达不到心中理想的标准,如果你家住在西安,距北京1000多公里,原先回家要17个小时,现在要14个小时,唉,只减少了区区3个小时,还要有难熬的一宿呀!可是你知道吗?普通磁悬浮列车的时速就可以达到500公里/小时,那么,回家就只需要不到3个小时,跟飞机差不多了! 其实,在本世纪五、六十年代,铁路曾经被认为是一个夕阳运输产业。因为面对航空、高速公路等运输对手的强劲挑战,它蜗牛般的爬行速度,已越来越不适应现代工业社会物流和人流的快速流动需要了。但七十年代以来,特别是近几年,随着铁路高速化成为世界的热点和重点,铁路重新赢回了它在各国交通运输格局中举足轻重的地位。法国、日本、俄国、美国等国家列车时速由200公里向300公里飞速发展。据1995年举行的国际铁路会议预测,到本世纪末,德国、日本、法国等国家的高速铁路运营时速将达到360公里。 但要使列车在如此高的速度下持续行驶,传统的车轮加钢轨组成的系统,已经无能为力了。这是因为传统的轮轨粘着式铁路,是利用车轮与钢轨之间的粘着力使列车前进的。它的粘着系数随列车速度的增加而减小,走行阻力却随列车速度的增加而增加,当车速增至粘着系数曲线和走行阻力曲线的交点时,就达到了极限。据科研人员推算,普通轮轨列车最大时速为350-400公里左右。如果考虑到噪音、震动、车轮和钢轨磨损等因素,实际速度不可能达到最大时速。所以,欧洲、日本现在正运行的高速列车,在速度上已没有多大潜力。要进一步提高速度,必须转向新的技术,这就是超常规的列车--磁悬浮列车。 尽管我们还将磁悬浮列车的轨道称为"铁路",但这两个字已经不够贴切了。

说明文阅读《高速磁悬浮列车》

说明文阅读《高速磁悬浮列车》 (1)近日,随着国家重点研发计划“先进轨道交通”重点专项“磁浮交通系统关键技术”项目启动,我国时速600公里高速磁浮研发正式拉开序幕。 (2)2016年10月21号,我国轨道交通设备制造商中国中车股份有限公司宣布,将启动时速600公里高速磁浮项目的研发。近日,科技部认证微博再次发文称,该项目由中车青岛四方机车车辆股份有限公司牵头组织实施,将建成一条长度不少于5公里高速磁浮的试验线,研制一列设计时速600公里高速磁浮试验列车。与国外同类高速磁浮相比,悬浮能耗降低35%、电磁铁温升降低40℃、单位有效载荷车辆减重6%以上,最终建成具有影响力的高速磁浮运输系统协同创新与集成化试验平台。形成国际领先的标准规范体系和综合评估及评价方法。 (3)据了解,目前世界上在磁浮方面领先的是日本和德国。日本采用超导磁浮,最高试验时速603公里;德国采用常导磁浮,最高试验时速505公里。上海的磁浮线路采用德国技术,运营时速430公里。据中国之声《央广新闻》报道,科技部表示,这个项目的实施,将使磁浮交通运营的速度达到一个新高度,更进一步提升磁浮交通的舒适度,降低运行能耗,为后高铁时代做好前沿技术的储备。 (4)尽管中国铁路网尤其是高铁网的运营和再建规模、系统很大,但地域广、人口多、中东部地区城市密集的特点,使得中国的点对点大容量高速旅客的运输需求很大,比如上海到北京,成都和重庆之间。北京交通大学教授贾利民认为,磁悬浮技术是一种点对点大容量的运输技术,可以作为现在高速和城际铁路路网系统的有益补充。 1、(2分)与外国同类高速磁浮相比,我国研发的高速磁浮项目的优点是什么? 2、(4分)高速磁浮项目的实施有哪些益处? 3、(2分)指出下列句子所使用的说明方法。(一个括号内只能填写一种说明方法) 与国外同类高速磁浮相比,悬浮能耗降低35%、电磁铁温升降低40℃、单位有效载荷车辆减重6%以上。()() 4、(3分)是什么“使得中国的点对点大容量高速旅客的运输需求很大”?

磁悬浮原理

[转载]磁悬浮原理

磁悬浮转子真空计工作原理图 时间:2008-09-16 来源:真空技术网整理编辑:真空技术网 根据磁悬浮转子转速的衰减与其周围气体分子的外摩擦有关的原理制成的真空测量仪表称为磁悬浮转子真空计。 图22:磁悬浮转子真空计结构图 由图22可见,除了用于磁悬浮转子的螺旋线圈2外,在真空室下边还设置一敏感线圈5,通过伺服电路控制螺旋线圈2的电流,使转子悬浮在预定高度。在真空室两侧的一对驱动线圈3产生旋转磁场,驱动转子以每秒200~400转的速度自转。虽然转子在给定的垂直位置会自动地趋向磁场最强处(一般在垂直对称轴上),但若受外界扰动,转子将围绕轴作水平振动。图中紧临真空室下方的阻尼钢针6可使这种振动衰减。 这种真空计是基于气体分子对自由旋转钢球的减速作用而工作的。当钢球被驱动线圈的磁场

从静止加速到每秒400转速之后,停止驱动场,由于气体分子摩擦的积分作用引起钢球自转速度衰减,其转速衰减与气体压力p有着严格的对应关系。 磁悬浮转子真空计是标准真空计,量程宽(10-1~10-5Pa),用它作互校传递标准时,累积误差小,可靠性重复性好。 SKF公司最新推出磁浮轴承(图文) SKF(斯凯孚)公司最新推出磁浮轴承。半导体工业需要极纯净的环境 来制造日益复杂的电路晶片,其中,TMP(Turbo Molecular Pumps)涡轮子真 空泵主要是利用高速旋转的涡轮叶片转子,撞击气体分子后,把气体分子带出 制程腔体。由于需要高速旋转,传统陶珠轴承系统存在油气污染问题,目前业界已大量使用无接触的磁浮轴承。 SKF磁浮轴承还可应用于三轴加工中心机床,主轴转速10万转/分钟。 此主轴目前是展示阶段的原型,唯有依赖磁浮轴承才能达到如此高的转速,而如此高的表面加工精度及轴承寿命,是传统滚动轴承所无法达到的。 磁浮轴承的性能由于软件算法的改进而大大加强,坚固性,稳定性,经济性的提高使磁浮轴承从试验

磁悬浮列车主要由悬浮系统

磁悬浮列车主要由悬浮系统、推进系统和导向系统三大部分组成,见图3。尽管可以使用与磁力无关的推进系统,但在目前的绝大部分设计中,这三部分的功能均由磁力来完成。下面分别对这三部分所采用的技术进行介绍。 悬浮系统:目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。图4给出了两种系统的结构差别。 电磁悬浮系统(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互吸引产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。 电力悬浮系统(EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。 超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。

磁悬浮原理

磁悬浮原理 磁悬浮列车是一种采用无接触的电磁悬浮、导向和驱动系统的磁悬浮高速列车系统。它的时速可达到500公里以上,是当今世界最快的地面客运交通工具,有速度快、爬坡能力强、能耗低运行时噪音小、安全舒适、不燃油,污染少等优点。并且它采用采用高架方式,占用的耕地很少。磁悬浮列车意味着这些火车利用磁的基本原理悬浮在导轨上来代替旧的钢轮和轨道列车。磁悬浮技术利用电磁力将整个列车车厢托起,摆脱了讨厌的摩擦力和令人不快的锵锵声,实现与地面无接触、无燃料的快速“飞行”。 稍有物理知识的人都知道:把两块磁铁相同的一极靠近,它们就相互排斥,反之,把相反的一极靠近,它们就互相吸引。托起磁悬浮列车的,那似乎神秘的悬浮之力,其实就是这两种吸引力与排斥力。 应用准确的定义来说,磁悬浮列车实际上是依靠电磁吸力或电动斥力将列车悬浮于空中并进行导向,实现列车与地面轨道间的无机械接触,再利用线性电机驱动列车运行。虽然磁悬浮列车仍然属于陆上有轨交通运输系统,并保留了轨道、道岔和车辆转向架及悬挂系统等许多传统机车车辆的特点,但由于列车在牵引运行时与轨道之间无机械接触,因此从根本上克服了传统列车轮轨粘着限制、机械噪声和磨损等问题,所以它也许会成为人们梦寐以求的理想陆上交通工具。

根据吸引力和排斥力的基本原理,国际上磁悬浮列车有两个发展方向。一个是以德国为代表的常规磁铁吸引式悬浮系统--EMS系统,利用常规的电磁铁与一般铁性物质相吸引的基本原理,把列车吸引上来,悬空运行,悬浮的气隙较小,一般为10毫米左右。常导型高速磁悬浮列车的速度可达每小时400-500公里,适合于城市间的长距离快速运输;另一个是以日本的为代表的排斥式悬浮系统--EDS系统,它使用超导的磁悬浮原理,使车轮和钢轨之间产生排斥力,使列车悬空运行,这种磁悬浮列车的悬浮气隙较大,一般为100毫米左右,速度可达每小时500公里以上。这两个国家都坚定地认为自己国家的系统是最好的,都在把各自的技术推向实用化阶段。估计到下一个? 磁悬浮的构想是由德国工程师赫尔曼?肯佩尔于1922年首先提出的。磁悬浮列车包含有两项基本技术,一项是使列车悬浮起来的电磁系统,另一项是用于牵引的直线电动机。 直线电动机的原理早在18世纪末就已经出现,形象地说,是把圆形旋转电机剖开并展成直线型的电机结构。它依靠铺在线路上的长定子线圈极性交错变化的电磁场,根据同极相斥异极相吸的原理进行牵引。 在肯佩尔的主持下,经过漫长的研究,德国于1971年造出了世界上第一台功能较强的磁悬浮列车。 磁悬浮列车按悬浮方式又分为常导型及超导型两种。常导磁悬浮列车由车上常导电流产生电磁吸引力,吸引轨道下方的导磁体,使列车浮起。常导型技术比较简单,由于产生的电磁吸引力相对较小,列车悬

磁悬浮列车工作原理

磁悬浮列车工作原理 磁悬浮列车的原理是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”。这种原理运用在铁路运输系统上,使列车完全脱离轨道而悬浮行驶,成为“无轮”列车,时速可达几百公里以上。这就是所谓的“磁悬浮列车”。 列车上装有超导磁体,由于悬浮而在线圈上高速前进。这些线圈固定在铁路的底部,由于电磁感应,在线圈里产生电流,地面上线圈产生的磁场极性与列车上的电磁体极性总是保持相同,这样在线圈和电磁体之间就会一直存在排斥力,从而使列车悬浮起来。 前进的原理:在位于轨道两侧的线圈里流动的交流电,能将线圈变为电磁体。由于它与列车上的超导电磁体的相互作用,就使列车开动起来。列车前进是因为列车头部的电磁体(N极)被安装在靠前一点的轨道上的电磁体(S极)所吸引,并且同时又被安装在轨道上稍后一点的电磁体(N极)所排斥。在线圈里流动的电流流向会不断反转过来。其结果就是原来那个S极线圈,现在变为N极线圈了,反之亦然。这样,列车由于电磁极性的转换而得以持续向前奔驰。 当今,世界上的磁悬浮列车主要有两种"悬浮"形式,一种是推斥式;另一种为吸力式。推斥式是利用两个磁铁同极性相对而产生的排斥力,使列车悬浮起来。这种磁悬浮列车车厢的两侧,安装有磁场强大的超导电磁铁。车辆运行时,这种电磁铁的磁场切割轨道两侧安装的铝环,致使其中产生感应电流,同时产生一个同极性反磁场,并使车辆推离轨面在空中悬浮起来。但是,静止时,由于没有切割电势与

电流,车辆不能产生悬浮,只能像飞机一样用轮子支撑车体。当车辆在直线电机的驱动下前进,速度达到80公里/小时以上时,车辆就悬浮起来了。吸力式是利用两个磁铁异性相吸的原理,将电磁铁置于轨道下方并固定在车体转向架上,两者之间产生一个强大的磁场,并相互吸引时,列车就能悬浮起来。这种吸力式磁悬浮列车无论是静止还是运动状态,都能保持稳定悬浮状态。这次,我国自行开发的中低速磁悬浮列车就属于这个类型。 "若即若离",是磁悬浮列车的基本工作状态。磁悬浮列车利用电磁力抵消地球引力,从而使列车悬浮在轨道上。在运行过程中,车体与轨道处于一种"若即若离"的状态,磁悬浮间隙约1厘米,因而有"零高度飞行器"的美誉。它与普通轮轨列车相比,具有低噪音、低能耗、无污染、安全舒适和高速高效的特点,被认为是一种具有广阔前景的新型交通工具。特别是这种中低速磁悬浮列车,由于具有转弯半径小、爬坡能力强等优点,特别适合365JT城市轨道交通。

高速磁悬浮列车动力学研究

高速磁悬浮列车动力学研究 摘要:随着物流行业的崛起,同时面临交通发展的瓶颈。经济发展离不开交通基建与交通工具的进步,目前高铁建设的竞赛已经趋于稳定阶段,我国的高铁总里程数超过2.5万公里,现在世界各国竞相开展对磁悬浮列车的研究,准备下一场交通技术的迭代更新,因此对于磁悬浮列车的进行研究很有必要,其中磁悬列车动力学研究尤为关键,它对施工、运行的平稳性有密切关系,本文以我国某市磁悬浮列车为研究对象,通过建立列车动力学模型来研究磁悬浮列车运行稳定性的关键因素。 1.1磁悬浮列车技术发展现状 交通史的发展就是人类历史文明交流的急先锋,从丝绸之路兴起和大航海时代,从工业革命的蒸汽火车到飞机的发展,目前形成飞机、火车、轮船和汽车运输的三位一体的陆海空的运输行业,尤其是近些年高铁的发展,中国的高铁总里程数达到2.5万公里,居世界之首。但是轨道交通未来的发展趋势更趋向于超高速发展模式,即磁悬浮列车。从1970年起外国已经开始了对磁悬浮列车的研发试运行,并取得较好的成果。两千年后我国也开始研制自己的磁悬浮列车,并成功的投入实际运营中。目前世界上最快的磁悬浮列车是日本研制的它的时速超过580Km/h。 1.1.1国外现状 磁悬浮列车是在普通高速列车的基础上提出的新型轨道交通,对于磁悬浮列车最早提出是德国人赫尔曼肯佩尔,他认为磁悬浮的技术主要是两个动力系统,首先是让磁悬浮列车飘起来电磁力,另一个动力是牵引列车运行系统。 1.1.2国内现状 我国是从上世纪八十年代开始进行对磁悬浮列车进行研究的,九十年代初我国的一些科研单位和高校进行合作研究。之后磁悬浮列车技术被列入国家重要科研项目。到九五年是我国正真的突破磁悬浮列车的关键技术,掌握制造中低速列车的能力。 2.1磁悬浮列车的介绍 我国某市的高度磁悬浮列车全称三十公里,车辆的构成见下图2-1,本磁悬浮列车一部分技术是从德国引进,一部分是我国自行研发的。 2.1.1基本运行原理 列车的上浮系统是利用电励磁产生电磁场,电磁场利用和磁悬浮列车的轨道的磁铁之间的引力使得磁悬浮列车上浮一定的高度,这样一来列车就没有了与常规列车与轨道间的摩擦力,这是实现超高度的前提,另一方面是利用电磁场产生牵引力牵引磁悬浮列车前进,这是磁悬浮另一个重要动力系统,是实现磁悬浮列车高速行驶的主要动力。 2.1.2车辆系统 磁悬浮列车中最重要的组成部分就是车辆,是否能实现磁悬浮列车悬浮和高速行驶车辆是重中之重。本文研究的示范磁悬浮列车是参考德国的技术。磁悬浮列车的车厢是三段式组成,主要是由铝构成的,外形进行了风动实验后得到的最佳的空气动力学的外形,磁悬浮列车在行驶中最主要的阻力就是空气阻力,因此减小空气阻力是提升磁悬浮列车高速运行和保证列车安全运行的重要因素。 2.1.3路线系统 本文研究的研究的磁悬浮列车的轨道的曲线主要有六段,占总长的百分之六

磁悬浮列车运行原理

磁悬浮列车运行原理 磁悬浮列车是现代高科技发展的产物。其原理是利用电磁力抵消地球引力,通过直线电机进行牵引,使列车悬浮在轨道上运行(悬浮间隙约1厘米)。其研究和制造涉及自动控制、电力电子技术、直线推进技术、机械设计制造、故障监测与诊断等众多学科,技术十分复杂,是一个国家科技实力和工业水平的重要标志。它与普通轮轨列车相比,具有低噪音、无污染、安全舒适和高速高效的特点,有着“零高度飞行器”的美誉,是一种具有广阔前景的新型交通工具,特别适合城市轨道交通。磁悬浮列车按悬浮方式不同一般分为推斥型和吸力型两种,按运行速度又有高速和中低速之分,这次国防科大研制开发的磁悬浮列车属于中低速常导吸力型磁悬浮列车。 磁悬浮列车的种类 磁悬浮列车分为常导型和超导型两大类。常导型也称常导磁吸型,以德国高速常导磁浮列车transrapid为代表,它是利用普通直流电磁铁电磁吸力的原理将列车悬起,悬浮的气隙较小,一般为10毫米左右。常导型高速磁悬浮列车的速度可达每小时400~500公里,适合于城市间的长距离快速运输。而超导型磁悬浮列车也称超导磁斥型,以日本MAGLEV为代表。它是利用超导磁体产生的强磁场,列车运行时与布置在地面上的线圈相互作用,产生电动斥力将列车悬起,悬浮气隙较大,一般为100毫米左右,速度可达每小时500公里以上。这两种磁悬浮列车各有优缺点和不同的经济技术指标,德国青睐前者,集中精力研制常导高速磁悬浮技术;而日本则看好后者,全力投入高速超导磁悬浮技术之中。 德国和日本是世界上最早开展磁悬浮列车研究的国家,德国开发的磁悬浮列车Transrapid于1989年在埃姆斯兰试验线上达到每小时436公里的速度。日本开发的磁悬浮列车MAGLEV (Magnetically Levitated Trains)于1997年12月在山梨县的试验线上创造出每小时550公里的世界最高纪录。德国和日本两国在经过长期反复的论证之后,均认为有可能于下个世纪中叶以前使磁悬浮列车在本国投入运营。

高速磁浮列车的诱惑

专业知识分享版 使命:加速中国职业化进程 在1500公里旅行距离内,磁浮磁悬浮火车好还是乘飞机好? --中国将建造全长8000公里的高速客运专用网磁浮磁悬浮火车技术能入选吗? --磁浮磁悬浮火车技术已近成熟,中国如何发挥後发优势,实现技术跨越? 整个人类客运交通发展的历史是一个速度不断提高的历史。每一种新型交通工具的出现和重大技术的突破都伴随 速度的显著提高。二十世纪在这方面尤为突出,飞机、汽车与火车均在不断刷新 其速度的纪录磁浮磁悬浮火车发展尤为令人瞩目。 传统轮轨铁路的运营速度经过100多年的发展,达到了300-350公里/小时,其进一步提高受到了用轮轨支承和受电弓供电的限制磁浮磁悬浮火车用电磁力将火车浮起而取消轮轨,采用长定子同步直流电机将电供至地面线圈,驱动火车高速行驶,从而取消了受电弓,实现了与地面没有接触、不带燃料的地面飞行,克服了传统轮轨铁路的主要困难。从六十年代起,日本、德国作为强大的国家研究发展计划,投入了数十亿美元的资金,经过持续努力,使整个技术已经成熟到可以建造实用运营 ,最高试验运营速度已达550公里/小时。从而,人类地面客运的速度可望在21世纪前、中期达到500公里/小时的新水平,使高速地面交通的发展继续长足前进。 作为目前最快速的地面交通磁浮磁悬浮火车技术的确有 其他地面交通技术无法比拟的优势。 首先,它克服了传统轮轨铁路提高速度的主要障碍,发展前景广阔。 第一条轮轨铁路出现在1825年,经过140年努力,其运营速度才突破200公里/小时,由200公里/小时到300公里/小时又花了近30年,虽然技术还在完善与发展,继续提高速度的余地已不大,而困难很大。还应注意到,轮轨铁路提高速度的代价是很高的,300公里/小时高速铁路的造价比200公里/小时的准高速铁路高近两倍,比120公里/小时的普通铁路高三至八倍,继续提高速度,其造价还将急剧上升。世界磁浮磁悬浮火车小型模型是1969年在德国出现的,日本是1972年造出的。可仅仅十年後的19磁浮磁悬浮火车技术就创造了517公里/小时的速度纪录。目前技术已经成熟,可进入500公里/小时实用运营 的建造阶段。 磁浮磁悬浮火车是当今唯一能达到运营速度500公里/小时的地面客运交通工具,具有不可取代的优越性,火车时刻表将因此改写。

上海磁悬浮列车

原理上海磁悬浮列车是“常导磁吸型”(简称“常导型”)磁悬浮列车。是利用“异性相吸”原理设计,是一种吸力悬浮系统,利用安装在列车两侧转向架上的悬浮电磁铁,和铺设在轨道上的磁铁,在磁场作用下产生的吸力是车辆浮起来。 世界第一条磁悬浮列车示范运营线——上海磁悬浮列车,建成后试运行了一段时间。 磁悬浮有哪些优缺点?为什么引起如此大的争议? 磁悬浮列车有许多优点:列车在铁轨上方悬浮运行,铁轨与车辆不接触,不但运行速度快,能超过500 千米/小时,而且运行平稳、舒适,易于实现自动控制;不排出有害的废气,有利于环境保护;可节省建设经费;运营、维护和耗能费用低。 磁悬浮列车的缺点:磁悬浮列车突然情况下的制动能力不可靠,不如轮轨列车。在陆地上的交通工具没有轮子是很危险的。因为列车要从动量很大降到静止,要克服很大的惯性,只有通过轮子与轨道的制动力来克服。 磁悬浮列车需要高架,高架梁的绕度必须小于1毫米,因此,高架桥跨一般要小于25米,桥墩基础要深30米以上。比如在上海到杭州的地面上要形成一道200多公里的挡墙。此外,由于运行动力学的影响,轨道两侧各100米内是不允许有其他建筑物的。修建沪杭磁悬浮,占地多,对环境影响比较大。 北京有关磁悬浮的《公示》说明电磁环境影响:主要发生在地面高架桥段,高架线磁悬浮列车运行时可能会对开放式电视接收用户产生电磁干扰以及对人体健康的影响。 磁悬浮列车是连接上海机场和经济新区浦东以及老市中心的主要交通工具。然而这条线路,并没有把机场和浦东中心、老市中心以及上海火车站直接连接起来,只把机场和浦东龙阳 路2号地铁站连接起来,旅客们必须在此中转。这样,上海市的一般旅客,要先乘坐公共 汽车或地铁,再换乘2号地铁,最后再换乘世界上最先进的磁悬浮列车到机场。根据德国 公共交通的经验,一次换乘,旅客尚能接受;二次换乘,部分旅客将不优先选用公共交通 工具;三次换乘,只剩下不得不采用公共交通的顾客。从公共交通运输网的组成来看,选 用最高时速450公里的磁悬浮列车来连接相距33公里的两地,并非合理的选择,因为 磁悬浮列车的速度快、时间短的优点并显示不出来,而换车等车的时间和麻烦,超过选用磁悬浮列车所能节约的时间和舒适 有人算了一笔账,按照目前的设计水平,磁悬浮列车9节车箱可坐959人,每小时 可发车12列,双向运量可达2, 3万人,按每天运行18小时计算,最大年运量可达

高速磁悬浮列车电磁场的模拟计算.

高速磁悬浮列车电磁场的模拟计算 陈棣湘潘孟春罗飞路田武刚胡媛媛摘要:采用有限元法研究了 高速磁悬浮列车的悬浮和推进电磁场,重点研究了车辆在不同运行条件下悬浮力和推力的变化规律,并得出了经验公式。分析和计算结果表明,悬浮力和推力的 大小与功角有关,并且由于定子齿槽和材料不连续的影响,悬浮力和推力都存在 六倍频的波动。关键词:磁悬浮列车;直线同步电机;电磁场分析;有限元法;模拟计算常导高速吸浮型磁悬浮列车是一个典型的直线同步电机对象, 而且又有别于一般的直线同步电机。其长定子轨道上的初级线圈采用三相交流 激磁, 悬浮电磁铁上的次级线圈采用直流激磁, 而且次级磁极上也有齿槽,用于设置发电绕组,因此其磁场分布极为复杂。其悬浮力和推力不仅受到转子电流、定子电流和气隙宽度的影响,而且受到定子齿槽、发电齿槽、功角等因素的影响, 因此深入分析悬浮力和推力与这些因素的关系对于保证悬浮和推进的可靠性有 着十分重要的意义。尽管国内外学者图1 常导高速磁悬浮列车中直线同步电 机的结构示意图对于直线同步电机的磁场分布已作了许多Fig. 1 The structure diagram of linear synchronous motor in 研究[ 5 ] ,但是对于 高速磁悬浮列车电磁场normal conducted high speed magnetic levitation vehicle 分布的系统研究尚未见到详细的报道。为此我们应用大型有限元分析 软件ANSYS , 从分析气隙磁场的分布入手,采用空间离散手段,对常导高速磁悬 浮列车的电磁场进行了比较全面的分析和计算,获得了一些与文献报道和以往试验数据相符的结果[1 ] 。1 常导吸浮型高速磁悬浮列车中直线同步电机的结构常导磁悬浮列车所用的直线同步电机的结构如图1 , 它属于单 边长定子直线同步凸极电动机。长定子由地面上的轨道构成,转子由车载电磁铁构成。转子绕组中加有直流电流,形成悬浮磁场,与定子作用产生悬浮力。而长 定子绕组中通有三相交流电,形成行波磁场与车载电磁铁的磁极相互作用,从而 产生推力[1 ] 。2 有限元模型的建立所研究磁悬浮列车的每节 车厢上有7 个悬浮电磁铁组合,分布在车厢的两侧。每个悬浮电磁铁组合由6 对悬浮电磁铁构成。定子(轨道) 的厚度为90mm , 极距τ = 258mm 。定子轨 道上的线圈匝数为1 , 通三相交流电;悬浮电磁铁上的线圈匝数为270 , 通直 流电。由于在实际情况中,定子(轨道) 的长度远大于转子(悬浮电磁铁) 的长度,并且定子(轨道) 和转子(悬浮电磁铁) 沿垂直于车辆运动方向( z 方向) 的每 一横截面的形状均相同,因此我们采用2-D 长定子模型进行分 析。分析常导高速磁悬浮列车电磁场时,既要模拟恒定磁场,又要模拟时变磁场,这是特别困难的。而且由于定子和转子上均有齿槽,材料不具有连 续性,定子和转子运转到不同位置时磁路结构不同,磁场分布也不相同。为了在 有限元分析中体现出这种不同,我们采用了空间离散的方法,即通过离散电机转 子的位置,建立若干个不同位置的模型进行分析。只要相邻模型之间位置的差距足够小,这种方法的精度就足够高。此时每个模型内的磁场都可以看成是恒定磁场。在分析过程中,通过设定周期性边界条件克服了直线电机的纵向边端效应的影响,并且对于每极槽数为整数的直线同步电动机来说,由于其结构具有对称性,转子模拟一对磁极就可以了。3 结论3. 1 磁感应强度的分布情 况如图2 、图3 中,图中幅值大者为垂直分量B Y , 幅值小者为 水平分量B X 。从图中可以看出,齿槽的存在对磁感应强度的分布影响很大。 该结论已得到实验验证,详细情况将在后续文章中介绍。图2 没有齿槽时

磁悬浮列车的工作原理及技术经济特性

磁悬浮机车及技术经济特性 魏庆朝,冯雅薇(北京交通大学土木建筑工程 学院翃北京 100044) 施翃翃(北京城建设计研究总院 北京 100037) 摘要:直线电机已开始在磁悬浮铁路、城市轨道交通中应用。介绍了直线电机的分类、3种典型的磁悬浮铁路和直线电机驱动的轮轨交通,对上述交通方式的技术经济特征进行了对比,总结了上述交通方式的适用范围。 关键词:直线电机;磁悬浮;城市轨道交通;适用范围 The Modes and features of the Transit Systems Driven by Linear Motor WEI Qingchao1, FENG Yawei1, SHI Hong1,2 (1. School of Civil Engineering and Architecture, Beijing Jiaotong University 2. Beijing Urban Engineering Design & Research Institute.) Abstract: Linear motor has been successfully used in Meglev transit system and rapid rail transit system for years. The transit systems driven by linear motor are classified as Maglev system and wheel-rail system. The typical Maglev system includes Japanese MLX system, German TransRapid system and Japanese HSST system. The technical and economic features of these systems are compared and the suitable application fields of these systems are summarized in the paper. Keywords: linear motor; Maglev; urban rapid rail transit; suitable application fields 1、引言 从1825年世界第一条铁路出现算起,轨道交通已有近180年的历史。特别是上个世纪中叶以来,随着科技的进步,轨道交通运输方式不仅在诸如速度、密度、重量等性能方面有了很大提高,而且轨道交通方式本身也发生了巨大的变革。快速轨道交通有地铁、轻轨、单轨等多种方式。牵引方式历经蒸汽牵引、内燃牵引、电力牵引等阶段,目前在世界范围内又发展出直线电机牵引的交通方式,包括磁悬浮铁路、直线电机轮轨交通、磁悬浮飞机等。该交通方式目前正在迅速发展,将来会成

浙江大学高速磁悬浮列车思考题

0.磁悬浮技术与高速轮轨技术相比优势何在? 速度高 常导磁悬浮可达400—500公里/小时,超导磁悬浮可达500—600公里/小时。轮轨高速的最高运营速度一般认为不宜超过400公里/小时。磁悬浮的高速度使其在1000至1500公里的距离范围可与航空竞争。 能耗低 据德国资料,在300公里/小时的速度下,磁悬浮比ICE3高速轮轨能耗少28%。 维修少 磁悬浮列车属于无磨损运行,要维修的主要是电气设备。随着电子工业的发展,器件可靠性将不断提高。 无污染 采用电力驱动,无需燃油,无有害气体排放。此外还有噪音小(在速度较低时极明显)、乘坐舒适、爬坡能力强、通过的曲线半径小、加速减速快等优点。 1.TR05、06、07、08有什么不同,各有什么进步?解决了什么问题? 1979年, 世界第一列准许载客的长定子动力装置磁悬浮列车TR05在汉堡国际运输展览会运行。在为期三周的展览会中,TR05客超过50000人。 1980年, 在Emsland的Transrapid测试中心开始建筑导轨和TR06试验车。该车有2节, 长54m, 重102t , 有192个座位, 利用电磁悬浮和制导系统,动力装置使用同步长定子线性感应电机, 设计速度为400km/h。1988年1月, TR06创下载人时速为412.6km/h的记录。 1987年,TVE建成了耗资7.8亿马克,可以在与实际应用相似的条件下, 用于长期运行的有两个环、总长31.5km 的闭合轨道;并开始研究设计目标最高速度为500km/h的应用车TR07 。TR07由两节构成,总长51m ; , 车重92t, 利用电磁悬浮和导向系统, 使用同步长定子线性感应电动机作动力装置, 额定气隙10mm;, 运行速度在300-500km/h。1993年6月10日, 在普通的运行条件下,TR07在TVE创下了速度达450km/h的新世界记录。 1997年4 月, 在汉诺威博览会上展出了transrapid的最新产品—设计速度为550km/h、有6节客车的.TR08, 它就是将在柏林一汉堡的路线上运行的磁悬浮列车原型。它比.TR07更轻, 更符合空气动力学, 噪声更小, 更经济。 2。在气温不同的长大干线上,如果车辆过长会遇到什么问题?如何解决?利用电机学中学过的方法加以分析

磁悬浮列车完整版

一、前言 衣食住行,人之必需。自古以来人类最大苦恼之一是人与货物的运输:横渡河流、穿越高山、遥远距离的行程等,想尽办法以节省时间和气力,让旅程更舒服。从步行手提、肩挑到用力拖拉,直至现代复杂的交通系统。 牛顿发现万有引力定律之前,人类就感知到地球引力的存在,人们发现,拖着重物比肩扛着省力。6千多年前人类建造了第一组轮子:木质实心的两个轮子、一根固定的穿过轮子中心的轴及架在其上的平台,车造出来,更省力了。繁体汉字“車”形象地表征了车的架构。车的出现极大地方便了人类的出行。 1825年世界上第一条铁路诞生,20世纪初飞机出现,人类可以陆海空立体交通出行。随着科技的进步,各种交通工具的速度、便捷、舒适度都大为提高。 1. 总旅行时间 人们出行总希望用最短的时间到达目的地,即旅行时间最短。所谓旅行时间等于主旅行时间与附加时间之和,通俗讲就是从(家)门到(目的地住处)门的时间。其中主旅行时间是旅客在旅途中所乘座的主要交通工具花费的时间,附加时间为旅途中花费在其他辅助交通工具上的时间,粗略统计结果附加时间:小汽车为零,高速铁路为1小时,飞机为2.5小时。图1给出不同速度下,旅行时间与旅行距离的关系。 从图旅行距离中可见,在2600 km 距离内乘坐时速500 km 的列车的旅行时间和乘时速700 km 民航飞机(国内民用飞机常规速度)相当。如果再考虑到方便性、安全性、舒适性及节能、环保性,列车被选择的可能性会更高。 迄今轮轨列车最高运营速度为350 km/h ,这样从 磁悬浮列车 金能强 速度连贯性考虑350 km/h 和500 km/h 间有个断档,用什么交通工具填充? 2. 轮轨列车的局限 轮轨列车是一种靠黏着力牵引的车辆,在速度上有局限性。首先,轮轨之间的黏着力制约了列车的高速运行,图2表示轮轨列车基本运行原理。钢轮架在铁轨上,支撑着车辆,凸起轮沿卡在铁轨间起导向作用,原动机(电动机、内燃机、蒸汽机)驱动轮轴转动、与其一体的轮子随之转动,列车依轮子在轨道上滚动而前行,靠的是轮子表面与铁轨表面的黏着力。黏着力不但随轮轨表面状况(如材料、表面光滑度、附着的雨、雪等)而变化,而且如图3所示,会随着速度增加而减小,与此同时列车的空气阻力却随着速度显著增加,当列车速度达到一定值时,牵引力与阻力相等,列车不可能再加速了。如冬天汽车在冰面上难以高速行驶一样,无论你如何加大油门,车轮老是打滑,车速快不起来。这一速度就是列车的最高运行速度,轮轨高速列车难以突破400 km/h 的运营速度。 其次,当今高速轮轨列车几乎全靠电力牵引,以 图1 不同速度下旅行时间与旅行距离的关系 Edited by Foxit Reader Copyright(C) by Foxit Software Company,2005-2008For Evaluation Only.

磁悬浮列车的原理

磁悬浮列车的原理及应用 传统的铁路列车都是依靠诸如蒸汽、燃油、电力等各种类型机车作为牵引动力,车轮和钢轨之间的相互作用作为运动导向,由车轮沿着钢轨滚动而前进的。而磁悬浮列车则是一种依靠电磁场特有的“同性相斥、异性相吸”的特性将车辆托起,使整个列车悬浮在线路上,利用电磁力进行导向,并利用直线电机将电能直接转换成推进力,来推动列车前进的交通工具。 磁悬浮列车的分类 (1)按电磁铁种类磁悬浮列车根据所采用的电磁铁种类可以分为常导和超导两大类 (2)按悬浮方式磁悬浮列车分为电磁吸引式悬浮(EMS)和永磁力悬浮(PRS)及感应斥力悬浮(EDS)。 EMS 该方式利用导磁材料与电磁铁之间的吸引力,绝大部分悬浮采用此方式。 PRS 这是一种最简单的方案,利用永久磁铁同极间的斥力,其缺点是横向位移的不稳定因素。 EDS 依靠励磁线圈和短路线圈的相对运动得到斥力,所以列车要有足够的速度才能悬浮起来,大约为100km/h,它不适用于低速。 磁悬浮列车的原理 常导磁吸式(EMS) 利用装在车辆两侧转向架上的常导电磁铁(悬浮电磁铁)和铺设在线路导轨上的磁铁,在磁场作用下产生的吸引力使车辆浮起。车辆和轨面之间的间隙与吸引力的大小成反比。为了保证这种悬浮的可靠性和列车运行的平稳,使直线电机有较高的功率,必须精确地控制电磁铁中的电流,使磁场保持稳定的强度和悬浮力,使车体与导轨之间保持大约10mm的间隙。通常采用测量间隙用的气隙传感器来进行系统的反馈控制。这种悬浮方式不需要设置专用的着地支撑装置和辅助的着地车轮,对控制系统的要求也可以稍低一些。 常导式磁悬浮列车示意图 超导磁斥式 日本磁悬浮铁路ML系统使用低温超导技术。它用液氮作为冷冻液,当线圈绕组达到-269摄氏度的温度时车载线圈绕组即进入超导状态。为了提高磁悬浮车辆上超导材料的稳定性,日本使用铌钛合金作为线圈绕组材料。低温超导原理如图

相关主题