搜档网
当前位置:搜档网 › 高中一元二次不等式解法及其应用

高中一元二次不等式解法及其应用

高中一元二次不等式解法及其应用
高中一元二次不等式解法及其应用

一元二次不等式解法

【基础知识精讲】

1.一元二次不等式

(1)一元二次不等式经过变形,可以化成如下标准形式:

①ax2+bx+c>0(a>0);②ax2+bx+c<0(a>0).

2.一元二次函数的图像、一元二次方程的根、一元二次不等式的解集对比表

3.一元n次不等式

(x-a1)(x-a2)…(x-a n)>0,

(x-a1)(x-a2)…(x-a n)<0,

其中a1<a2<…<a n.

把a1,a2,…a n按大小顺序标在数轴上,则不等式的解的区间如图所示:

4.分式不等式

(,b j互不相等)

把a1,a2,…a n和b1,b2,…,b m按照从小到大的顺序标在数轴上,该分式不等式的解的区间的情况与(3)中所述类似,分n+m为奇数或偶数在数轴上表示.

综合可知,一元二次不等式的解法充分运用了“函数与方程”,“数形结合”及“化归”的数学思想,一元二次方程ax2+bx+c=0的根就是使二次函数y=ax2+bx+c的函数值为零时对应的x值,一元二次不等式ax2+bx+c>0,ax2+bx+c<0的解就是使二次函数y=ax2+bx+c的函数值大于零或小于零时x的取值范围,因此解一元二次方程ax2+bx+c>0,ax2+bx+c<0一般要画与之对应的二次函数y=ax2+bx+c的图像.

【重点难点解析】

本小节重点是一元二次不等式的解法,难点是一元二次方程、一元二次不等式与二次函数的关系及运用一元二次不等式解决某些应用问题。

例1解下列关于x的不等式:

(1)2x+3-x2>0;

(2)x(x+2)-1≥x(3-x);

(3)x2-2x+3>0;

(4)x2+6(x+3)>3;

分析解一元二次不等式一般步骤是:①化为标准形式;②确定判别式△=b2-4ac的符号;③若△≥0,则求出该不等式对应的二次方程的根;若△<0,则对应二次方程无根;④联系二次函数的图像得出不等式的解集.

特别地,若一元二次不等式的左边的二次三项式能分解因式,则可立即写出不等式的解集(在两根之内或两根之外).

解:(1)原不等式可化为

x2-2x-3<0,

(x-3)(x+1)<0.

∴不等式的解集为{x|-1<x<3}.

(2)原不等式可化为

2x2-x-2≥0,

(2x+1)(x-1)≥0.

∴不等式的解集为{x|x≤-,或x≥1}.

(3)原不等式可化为

(x-)2>0.

∴不等式的解集为{x|x∈R且x≠}.

(4)原不等式可化为

x2+6x+15>0.

∵△<0,方程x2+6x+15=0无实根,

∴不等式的解集为R.

评析熟练掌握一元二次方程、二次函数、一元二次不等式三者之间的关系,再加上熟练地分解因式、配方技能,解一元二次不等式就能得心应手.

例2解不等式≥2.

解:原不等式可化为-2≥0,

即为≥0,分子、分母必须同号,即可化为由

于-2x2-x-1恒为负值,不等式除以(-2x2-x-1)得即x2+2x-3<0,即(x+3)(x-1)<0.

解之得-3<x<1.

原不等式的解集为{x|-3<x<1}.

遇到分式不等式,一般应化为右边为零的形式,即化为≥0,然后转化为

(当分式不等式的分母恒为正(或为负)时,可以去分母,如>

0x-1>0且)

例3若函数f(x)=ax2+bx+c(a>0)对任意的实数t,都有f(2+t)=f(2-t),下列不等式成立的是( )

A.f(1)<f(2)<f(4)

B.f(2)<f(1)<f(4)

C.f(2)<f(4)<f(1)

D.f(4)<f(2)<f(1)

分析由条件知x=2为对称轴,f(2)最小,f(1)=f(3),函数在(2,+∞)上为增函数,故选B. 评析熟记结论:对f(x)若恒有f(a+x)=f(a-x)成立,则函数的图像关于直线x=a对称.

例4已知不等式ax2+bx+2>0的解为-<x<,求a,b值.

解:方法一:显然a<0,由(x+)(x-)<0,

得6x2+x-1<0,变形得-12x2-2x+2>0,

故a=-12,b=-2.

方法二:x=-与x=是ax2+bx+2=0的两根,故有解得

评析这里应注意韦达定理的应用.

【难解巧解点拨】

例1若x2+qx+q>0的解集是{x|2<x<4},求实数p、q的值.

分析在本题中,已知不等式的解集,要求确定其系数,这和解不等式的问题(已知系数求其解集)正好是互为逆向的两类问题.

这类问题可以用下面的方法来解.

①先作出一个解集符合要求的不等式;

②根据不等式同解的要求,确定其系数的数值.

解:不等式(x-2)(x-4)<0 ①的解集为{x|2<x<4}.

①即为x2-6x+8<0. 即-x2+6x-8>0.

这与题中要求的不等式x2+qx+p>0是同解且同向的二次不等式.

∴其对应的系数成比例,且比值为正数(即二次项系数之值同号).

∴==>0 解得p=-2,q=.

说明利用上法确定不等式系数时,必须注意:①将两不等式化为同向不等式②同向二次不等式的二次项系数同号,否则就会产生错误.

例2设A={x|-2<x<-1,或x>1},B={x|x2+ax+b≤0},已知A∪B={x|x>-2},A∩B={x|1<x≤3},试求a,b的值.

分析在本题求解时要正确利用图形进行分析.

解:如图所示,设B={x|α≤x≤β}

设想集合B所表示的范围在数轴上移动,显然当且仅当B“覆盖”住集合{x|-1≤x≤3},才能使A∩B={x|1<x≤3}

∴“α≤-1且β≥1”,

并且α≥-1及β=3.∴α=-1,β=3.

因此B={x|-1≤x≤3},根据二次不等式与二次方程的关系,可知-1与3是方程x2+ax+b=0的两根.

∴a=-(-1+3)=-2,b=(-1)×3=-3.

说明类似问题一定要借助数轴上的区间来考虑.同时要认真考查端点情况.

例3已知f(x)=x2+2(a-2)x+4.

(1)如果对一切x∈R,f(x)>0恒成立,求实数a的取值范围.

(2)如果对x∈〔-3,1〕,f(x)>0成立,求实数a的取值范围.

解:f(x)的图像开口向上.

(1)对一切实数x,f(x)>0,则△<0,即(a-2)2-4<0,

∴0<a<4;

(2)当x∈〔-3,1〕时,f(x)>0,对称轴2-a可在区间内,也可在区间外,

∴或

解得-<a<4

评析函数f(x)在给定区间上f(x)>0(或f(x)<0)f(x)在该区间上的最小(或最大)值大于(或小于)零.只有深刻理解了二次函数在给定区间上的最值意义,才能正确处理函数的局部性质与整体性质的关系.

【课本难题解答】

课本第22页习题1.5第8题

①解:原不等式可化为(3x-4)(2x+5)>0 ∴x<-或x>

所以解集为{x|x<-或x>

②解:原不等式可化为(2x-15)(5x+2)<0或x=

∴ - <x < 或x= 即- <x≤

所以解集为{x |- <x≤

【命题趋势分析】

一元一次不等式,一元二次不等式是最简单的不等式.历年高考中,都涉及到解不等式的题目,对解有理不等式、无理不等式,解指数和对数不等式,解绝对值不等式都进行了考查,而解这些类型的不等式最终都要转化成一元一次不等式(组)或一元二次不等式(组)来解. 平时要求学生熟练掌握一元二次不等式(组)的解,并能灵活应用.

【典型热点考题】

例1 不等式 >1解集是 .

分析 解不等式一般将一边变为零再处理

解:将 >1变形为 -1>0,

通分得 >0 即解:(x-4)(x+3)>0

解得x <-3或x >4 ∴应填:x <-3或x >4

注意 本题属 >0型不等式,解此类问题一般是运用等价转化的思想将其转化为一元

二次不等式来解或一元一次不等式组来解.

例2 设全集为R ,A={x |x 2

-5x-6>0},B={x ||x-5|<a }(a 是常数),且11∈B,则( )

A.C R A∪B=R

B.A∪C R B=R

C.C R A∪C R B=R

D.A∪B=R

分析本题考查二次不等式和绝对值不等式的解法,集合间的关系,先需分别解出集合A、B,再根据11∈B这一条件确定a值范围,最后在数轴上判断集合间并集结果。

解:A={x|x2-5x-6>0}={x|(x-6)(x+1)>0}={x|x<-1或x>6}

B={x|x-5|<a}={x|-a<x-5<a}={x|5-a<x<5+a}.

∵11∈B∴5+a>11 ∴a>6 从而5-a<-1.

由数轴图可看出,A∪B=R.∴应选D.

注意 (1)本题主要考查一元二次不等式,含绝对值不等式的解法,以及集合关系(并集、补集).

(2)作出数轴图,将抽象的字母和数字在数轴上表示出来,进行比较,由此判定出结果,是我们解此类问题常采用的方法.

例3不等式|x2-3x|>4的解集是 .

解:∵|x2-3x|>4

∴x2-3x<-4或x2-3x>4

即x2-3x+4<0或①

x2-3x-4>0②

由①可化为(x-)2+<0,显然解为.

由②可化为(x+1)(x-4)>0,得解为x<-1或x>4.

∴应填:{x|x<-1或x>4}.

注意 (1)本题主要考查含有绝对值不等式和一元二次不等式的解法.(2)将含有绝对值不等

式转化为一元二次不等式来解,是解好本题的关键.

例4公园要建造一个圆形喷水池.在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,OA=1.25米,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上抛物线路径如下左图所示.为使水流形状较为漂亮,设计成水流在到OA距离为1米处达到距水平最大高度为2.25米,如果不计其他因素,那么水池半径至少要多少米,才能使喷出的水流不致落到池外?

分析由题意可知,本题可借助抛物线这一数学模型求解.关键是要根据题设条件求出所需的具体抛物线方程.为此,以O为原点,以OA所在直线为y轴,水面中垂直OA的直线为x轴建立直角坐标系,如上右图所示,则水流所呈现的抛物线方程为

y=a(x-1)2+2.25.

由题意,点A的坐标为(0,1.25),把x=0,y=1.25代入方程解得a=-1,于是抛物线方程为

y=-(x-1)2+2.25.

令y=0,得-(x-1)2+2.25=0,解得x1=2.5,x2=-0.5(不合题意,舍去).

所以水池半径至少要2.5米,才能使水流不落到池外.

说明本例在已知解题数学模型(抛物线)的前提下,分析题设的一些数量关系,然后确定解题所需的具体的数学模型(即抛物线方程).

【同步达纲练习】

一、选择题

1.已知集合A={x|x2-2x-3<0,B={x||x|<a,若B A,则实数a的取值范围是( )

A.0<a≤1;

B.a≤1;

C.-1<a≤3;

D.a<1.

2.集合A={x|x2-3x-10≤0,x∈Z},B={x|2x2-x-6>0,x∈Z},则A∩B的子集的个数为( )

A.16;

B.8;

C.15;

D.7.

3.不等式≥0的解集是( )

A.{x|-1≤x≤3}

B.{x|x≤-1,或x>3}

C.{x|x≤-1,或x≥3}

D.{x|-1≤x<3}

4.若对于任何实数,二次函数y=ax2-x+c的值恒为负,那么a、c应满足( )

A.a>0且ac≤

B.a<0且ac<

C.a<0且ac>

D.a<0且ac<0

5.考察下列集合:(1){x||x-1|<1;(2){x|x2-3x+2≤0};(3){x|≤0};

(4){x|≥0},其中是集合A={x|1<x≤2的子集的有( )

A.1个

B.2个

C.3个

D.4个

6.在下列各不等式(组)中,解集为空集的是( )

A.x2+x+1≤;

B.|x-1|+|x-2|≤1;

C.(其中0<a<1;

D.x2-(a+)x+1≤0(其中a>0).

二、填空题

1.使函数y=+有意义的x的取值范围是 .

2.不等式ax2+bx+2>0的解集是{x|-<x<,则a+b= .

3.不等式≤1的解集是 .

4.不等式-4≤x2-3x<18的整数解为 .

5.已知关于x的方程ax2+bx+c<0的解集为{x|x<-1或x>2}.则不等式ax2-bx+c>0的解集为 .

三、解答题

1.求不等式x2-2x+2m-m2>0的解集.

2.求m,使不等式||<3恒成立.

3.关于x的不等式

它的解集为{x|x1≤x≤x2},且1≤|x1-x2|≤3,(m-2)x2-mx-1≥0,求实数m的取值范围.

4.已知a>1解关于x的不等式组

5.解不等式

【素质优化训练】

1.解关于x的不等式x2-x-a2+a>0

2.已知函数y=(k2+4k-5)x2+4(1-k)x+3的图像都在x轴上方,求实数k的取值范围.

3.已知A={x|x2-3x+2≤0},B={x|x2-(a+1)x+a≤0}.

(1)若A B,求a的取值范围;

(2)若B A,求a的取值范围;

(3)若A∩B为仅含有一个元素的集合,求a的值.

【生活实际运用】

1.如下图,铁路线上AB段长100千米,工厂C到铁路的距离CA为20千

米.现要在AB上某一点D处向C修一条公路,已知铁路每吨千米的运费与

公路每吨千米的运费之比为3∶5.为了使原料从供应站B运到工厂C的运

费最少,D点应选在何处?

2.要在墙上开一个上半部为半圆形,下部为矩形的窗户(如下图所示),在

窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样

的尺寸?

参考答案:

【同步达纲练习】

一、1.B 2.A 3.D 4.C 5.A 6.C

二、1.{x|-3<x≤-1} 2.a+b=-14 3.{x|x≤-1或x>0} 4.{-2,-1,0,1,2,3,4,5} 5.{x|-2<x<1}

三、1.当m>1时,解集为{x|x<2-m,或x>m};当m=1时,解集为{x R|x≠1};当m

<1时,解集为{x|x<m,或x>2-m. 2.m{m|-5<m<1. 3.m{m|≤m

≤}. 4.{x|x>a}. 5.{x|x<-4或-1<x<1或x>4}.

【素质优化训练】

1.解:∵方程x2-x-a2+a=0的两个根为a和1-a,

∴当a≥1-a,即a≥时,不等式的解集为{x|x<1-a,或x>a;

当a<1-a,即a<时,不等式的解集为{x|x<a或x>1-a}

2.解:(1)当k2+4k-5=0时,k=-5或k=1.

若k=-5,则y=24x+3的图像不可能都在x轴上方,故k≠-5.

若k=1,则y=3的图像都在x轴上方.

(2)若k2+4k-5≠0,则所给函数为二次函数,应有{k2+4k-5>0 △<0,即{(k+5)(k-1)>

0 (k-1)(k-19)<0 解得 1<k<19 由(1)、(2)得1≤k<19.

3.解:A={x|1≤x≤2},B={x|(x-1)(x-a)≤0}

(1)若A B(图甲),应有a>2. (2)若B A(图乙),必有1≤a≤2.

(3)若A∩B为仅含一个元素的集合(图丙),必有a≤1.

【生活实际运用】

1.讲解据题设知,单位距离的公路运费大于铁路运费,又知|BD|+|DC|≤|BA|+|AC|,因此只有点D选在线段BA上某一适当位置,才能使总运费最省.若设D点距A点x千米,从B到C的总动费为y,建立y与x的函数,则通过函数y=f(x)的最小值,可确定点D的位置.

设|DA|=x(千米),铁路吨千米运费3a,公路吨千米运费5a,从B到C的总费用为y,则依题意,得

y=3a(100-x)+5a,x(0,100),

即=5-3x.

令t=,则有t+3x=5.

平方、整理,得16x2-6tx+10000-t2=0.①

由①36t2-4×16(10000-t2)≥0,得|t|≥80.

∵t>0,∴t≥80.

将t=80代入方程①,得x=15,这时t最小,y也最小.

即当D点选在距A点15千米处时,总运费最省.

2.当窗户中的半圆的直径为,矩形的高为,窗户透过的光最多.

二元二次方程组-解法-例题

二元二次方程的解法 二次方程组的基本思想和方法 方程组的基本思想是“转化”,这种转化包含“消元”和“降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方法。因法和技巧是解二元二次方程组的关键。 型是由一个二元二次方程和一个二元一次方程组成的方程组;“二·二”型是由两个二元二次方程组成的方程组。 程组的解法 元法(即代入法) 二·一”型方程组的一般方法,具体步骤是: 次方程中的一个未知数用另一个未知数的代数式表示; 数式代入二元二次方程,得到一个一元二次方程; 元二次方程,求得一个未知数的值; 的这个未知数的值代入二元一次方程,求得另一个未知数的值;如果代入二元二次方程求另一个未知数,就会出现“增解”的问题; 个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解。 与系数的关系 二元二次方程组中形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看做一根,解这个方程,求得的z1和z2的值,就是x、y的值。当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”。注意 二·一”型方程组的一种特殊方法,它适用于解“和积形式”的方程组。 比较常用的解法。除此之外,还有加减消元法、分解降次法、换元法等,解题时要注意分析方程的结构特征,灵活选用恰当的方法。 解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组。(2)要防止漏解和增解的错误。

程组的解法 中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二型方程组,所得的解都是原方程组的解。 中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程的解。 方程组最多有两个解,“二·二”型方程组最多有四个解,解方程组时,即不要漏解,也不要增解。 析:例1.解方程组 观察这个方程组,不难发现,此方程组除可用代入法解外,还可用根与系数的关系,通过构造一个以x, y为根的一元二次方程来求解。 1)得y=8-x..............(3) 把(3)代入(2),整理得x2-8x+12=0. 解得x1=2, x2=6. (3),得y1=6. 把x2=6代入(3),得y2=2. 所以原方程组的解是。

(完整版)一元二次不等式的经典例题及详解

一元二次不等式专题练习 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 例2 解下列分式不等式: (1) 2 2 123+-≤-x x (2) 1 2 731 422<+-+-x x x x 例3 解不等式242+<-x x 例4 解不等式 04125 622<-++-x x x x . 例5 解不等式x x x x x <-+-+2 2232 2. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m . 例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x . 例9 解关于x 的不等式0)(322>++-a x a a x . 例10 已知不等式02 >++c bx ax 的解集是 {})0(><<αβαx x .求不等式 02>++a bx cx 的解集. 例11 若不等式 1 12 2+--<++-x x b x x x a x 的解为)1()31 (∞+-∞,,Y ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.

例1解:(1)原不等式可化为 0)3)(52(>-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 ,0321 =-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

一元二次不等式及其解法教学设计

一元二次不等式及其解法 【设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 【教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5第三章《不等式》第二节一元二次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 【学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 【教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 【教学重点】一元二次不等式的解法。 【教学难点】一元二次方程、一元二次不等式和二次函数的关系。 【教学策略】 探究式教学方法 (创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价) 【课前准备】 教具:“几何画板”及PPT课件. 粉笔:用于板书示范.

如何解一元二次不等式

如何解一元二次不等式,例如:x?2+2x+3≥0. 请大家写出解题过程和思路 解:对于高中“解一元二次不等式”这一块, 通常有以下两种解决办法: ①运用“分类讨论”解题思想; ②运用“数形结合”解题思想。 以下分别详细探讨。 例1、解不等式x2 -- 2x -- 8 ≥ 0。 解法①:原不等式可化为: (x -- 4) (x + 2) ≥ 0。 两部分的乘积大于等于零, 等价于以下两个不等式组: (1)x -- 4 ≥ 0 或(2)x -- 4 ≤ 0 x + 2 ≥ 0 x + 2 ≤ 0 解不等式组(1)得:x ≥ 4(因为x ≥ 4 一定满足x ≥ -- 2,此为“同大取大”) 解不等式组(2)得:x ≤ -- 2(因为x ≤ --2 一定满足x ≤ 4,此为“同小取小”) ∴不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 其解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法②:原不等式可化为: [ (x2 -- 2x + 1) -- 1 ] -- 8 ≥ 0。 ∴(x -- 1)2 ≥ 9 ∴x -- 1 ≥ 3 或x -- 1 ≤ -- 3 ∴x ≥ 4 或x ≤ -- 2。 ∴原不等式的解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法③:如果不等式的左边不便于因式分解、不便于配方,

那就用一元二次方程的求根公式进行左边因式分解, 如本题,用求根公式求得方程x2 -- 2x -- 8 = 0 的两根为x1 = 4,x2 = -- 2,则原不等式可化为:(x -- 4) (x + 2) ≥ 0。下同解法①。 体会:以上三种解法,都是死板板地去解; 至于“分类讨论”法,有时虽麻烦,但清晰明了。 下面看“数形结合”法。 解法④:在平面直角坐标系内,函数f(x) = x2 -- 2x -- 8 的图像 开口向上、与x 轴的两交点分别为(-- 2,0) 和(4,0), 显然,当自变量的取值范围为x ≥ 4 或x ≤ -- 2 时, 图像在x 轴的上方; 当自变量的取值范围为-- 2 ≤ x ≤ 4 时,图像在x 轴的下方。 ∴当x ≥ 4 或x ≤ -- 2 时,x2 -- 2x -- 8 ≥ 0, 即:不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 顺便说一下,当-- 2 ≤ x ≤ 4 时,图像在x 轴的下方,即:x2 -- 2x -- 8 ≤ 0,∴不等式x2 -- 2x -- 8 ≤ 0 的解为:-- 2 ≤ x ≤ 4 。其解集为:[ -- 2,4 ]。 领悟:对于ax2 + bx + c >0 型的二次不等式,其解为“大于大根或小于小根”; 对于ax2 + bx + c <0 型的二次不等式,其解为“大于小根且小于大根”。例2、解不等式x2 + 2x + 3 >0。 在实数范围内左边无法进行因式分解。 配方得:(x + 1)2 + 2 >0。 无论x 取任何实数,(x + 1)2 + 2 均大于零。 ∴该不等式的解集为x ∈R。 用“数形结合”考虑, ∵方程x2 + 2x + 3 = 0的根的判别式△<0, ∴函数f(x) = x2 + 2x + 3 的图像与x 轴无交点且开口向上。 即:无论自变量x取任意实数时,图像恒位于x 轴的上方。 ∴不等式x2 + 2x + 3 >0的解集为x ∈R。

2015高考数学一轮题组训练:7-2一元二次不等式及其解法

第2讲 一元二次不等式及其解法 基础巩固题组 (建议用时:40分钟) 一、填空题 1.(2014·长春调研)已知集合P ={x |x 2-x -2≤0},Q ={x |log 2(x -1)≤1},则(?R P )∩Q =________. 解析 依题意,得P ={x |-1≤x ≤2},Q ={x |1<x ≤3},则(?R P )∩Q =(2,3]. 答案 (2,3] 2.(2014·沈阳质检)不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________. 解析 不等式x 2+ax +4<0的解集不是空集,只需Δ=a 2-16>0,∴a <-4或a >4. 答案 (-∞,-4)∪(4,+∞) 3.(2013·南通二模)已知f (x )=????? x 2 ,x ≥0,-x 2+3x ,x <0, 则不等式f (x )2,因此x <0. 综上,f (x )

3.3一元二次不等式(组)与简单线性规划问题

3. 3.1二元一次不等式(组)与平面区域. 【教学目标】 1. 了解二元一次不等式(组)这一数学模型产生的实际背景。 2. 理解二元一次不等式的几何意义 3. 会判定或正确画出给定的二元不一次等式(组)所表示的点集合 【教学重难点】 教学重点:1. 理解二元一次不等式(组)的几何意义; 2. 掌握不等式(组)确定平面区域的 一般方法 教学难点:1 把实际问题抽象化,用二元一次不等式(组)表示平面区域。 2 掌握不等式(组)确定平面区域的一般方法 【教学过程】 一、 设置情境,引入新课 一家银行信贷部计划年初投入25000000元用于企业和个人贷款,希望这笔资金至少可以带来30000元的收益,其中从企业贷款中获益12%,从个人贷款中获益10%,那么信贷部如何分配资金呢? 问题1.那么信贷部如何分配资金呢? 问题2.用什么不等式模型来刻画它们呢? 二、合作探究,得出概念 (1)设用于企业资金贷款的资金为x 元,用于个人贷款的资金y 元,由于资金总数为25000000元,得到 25000000≤+y x ① 由于预计企业贷款创收12%,个人贷款创收10%,共创收30000元以上,所以 ()()30000%10%12≥+y x 即30000001012≥+y x 。 ② 最后考虑到用于企业贷款和个人贷款的资金数额都不能是负值,于是0,0≥≥y x ③ 将①②③合在一起,得到分配资金应该满足的条件:???? ???≥≥≥+≤+0 0300000101225000000y x y x y x 二元一次不等式组: 二元一次不等式(组)的解集的意义: (2)二元一次不等式(组)的几何意义 研究:二元一次不等式6<-y x 表示的图形 ①边界的概念 ②二元一次不等式(组)的几何意义,画法要求 ③判定方法(1)特殊点法(2)公式法 三、 典型例题 例题1画出不等式2x +y -6<0表示的平面区域。 解:先画直线2x +y -6=0(画成虚线)。 取原点(0,0),代入2x +y -6,∵2×0+0-6=-6<0,

2019-2020年高中数学 一元二次不等式组解法教案 新人教A版必修1

2019-2020年高中数学一元二次不等式组解法教案新人教A版必修1 一、学习目标 1.掌握一元二次不等式的解法步骤,能熟练地求出一元二次不等式的解集。 2.掌握一元二次不等式、一元二次方程和二次函数的联系。 二、例题 第一阶梯 例1什么是一元二次不等式的一般式? 【解】一元二次不等式的一般式是: ax2+bx+c(a>0)或ax2+bx+c<0(a>0) 【评注】 1.一元二次不等式的一般式中,严格要求a>0,这与一元二次方程、二次函数只要求a≠0不同。 2.任何一元二次不等式经过变形都可以化成两种“一般式”之一,当a1<0时,将不等式乘-1就化成了“a>0”。 例2、一元二次不等式、一元二次方程和二次函数的联系是什么? 【点拨】用函数的观点来回答。 【解】 二次不等式、二次方程和二次函数的联系是:设二次函数y=ax2+bx+c (a≠0)的图象是抛物线L,则不等式ax2+bx+c>0,ax2+bx+c<0的解集分别是抛物线L在x轴上方,在x轴下方的点的横坐标x的集合;二次方程ax2+bx+c=0的根就是抛物线L与x轴的公共点的

横坐标。 【评注】 二次不等式、二次方程和二次函数的联系,通常称为“三个二次问题”,我们要深刻理解、牢牢掌握,并灵活地应用它。它是函数与方程思想的应用范例。应用这“三个二次”的关系,不但能直接得到“二次不等式的解集表”,而且还能解决“二次问题”的难题。 例3请你自己设计一张好用的“一元二次不等式的解集表”。 【解】一元二次不等式的解集表: 【评注】 1.不要死记书上的解集表,要抓住对应的二次方程的“根”来活记活用。 2.二次方程的解集求法属于“根序法”(数轴标根)。 例4、写出一元二次不等式的解法步骤。 【解】一元二次不等式的解法步骤是: 1.化为一般式ax2+bx+c>0 (a>0)或ax2+bx+c<0 (a>0)。这步可简记为“使a>0”。 2.计算△=b2-4ac,判别与求根:解对应的二次方程ax2+bx+c=0,判别根的三种情况,△≥0时求出根。

《一元二次不等式及其解法》典型例题透析

《一元二次不等式及其解法》典型例题透析 类型一:解一元二次不等式 例1. 解下列一元二次不等式 (1)2 50x x -<; (2)2 440x x -+>; (3)2 450x x -+-> 思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答. 解析: (1)方法一: 因为2(5)410250?=--??=> 所以方程2 50x x -=的两个实数根为:10x =,25x = 函数25y x x =-的简图为: 因而不等式2 50x x -<的解集是{|05}x x <<. 方法二:2 50(5)0x x x x -???-? 解得05x x >?? ?,即05x <<或x ∈?. 因而不等式2 50x x -<的解集是{|05}x x <<. (2)方法一: 因为0?=, 方程2440x x -+=的解为122x x ==. 函数2 44y x x =-+的简图为: 所以,原不等式的解集是{|2}x x ≠ 方法二:2244(2)0x x x -+=-≥(当2x =时,2 (2)0x -=) 所以原不等式的解集是{|2}x x ≠ (3)方法一: 原不等式整理得2 450x x -+<.

因为0?<,方程2 450x x -+=无实数解, 函数245y x x =-+的简图为: 所以不等式2 450x x -+<的解集是?. 所以原不等式的解集是?. 方法二:∵2245(2)110x x x -+-=---≤-< ∴原不等式的解集是?. 总结升华: 1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力; 2. 当0?≤时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当0?>且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题). 3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三: 【变式1】解下列不等式 (1) 2 2320x x -->;(2) 2 3620x x -+-> (3) 2 4410x x -+≤; (4) 2 230x x -+->. 【答案】 (1)方法一: 因为2(3)42(2)250?=--??-=> 方程2 2320x x --=的两个实数根为:11 2 x =-,22x = 函数2 232y x x =--的简图为: 因而不等式2 2320x x -->的解集是:1 {|2}2 x x x <- >或. 方法二:∵原不等式等价于 21)(2)0x x +->(, ∴ 原不等式的解集是:1 {|2}2 x x x <->或. (2)整理,原式可化为2 3620x x -+<, 因为0?>, 方程2 3620x x -+=的解131x =231x =,

方程与不等式之二元二次方程组知识点总复习附答案

方程与不等式之二元二次方程组知识点总复习附答案 一、选择题 1.解方程组: 222(1)20(2)x y x xy y -=??--=? 【答案】1212 14,12x x y y ==????=-=?? 【解析】 【分析】 先由②得x +y =0或x?2y =0,再把原方程组可变形为:20x y x y -=?? +=?或220 x y x y -=??-=?,然后解这两个方程组即可. 【详解】 222(1)20 (2)x y x xy y -=??--=?, 由②得:(x +y )(x?2y )=0, x +y =0或x?2y =0, 原方程组可变形为:20x y x y -=??+=?或220x y x y -=??-=? , 解得:1212 1412x x y y ==????=-=??,. 【点睛】 此题考查了高次方程,关键是通过把原方程分解,由高次方程转化成两个二元一次方程,用到的知识点是消元法解方程组. 2.解方程组: ⑴3{351x y x y -=+= ⑵3+10{2612 x y z x y z x y z -=+-=++= 【答案】(1)2 {1x y ==-;(2)3{45 x y z === 【解析】(1)先用代入消元法求出x 的值,再用代入消元法求出y 的值即可. (2)先利用加减消元法去z 得到关于x 、y 的两个方程,解这两个方程组成的方程组求出x 、y ,然后利用代入法求z ,从而得到原方程组的解.

(1)2 {1x y ==- ; (2) 3{45 x y z === “点睛”本题考查了解二元一次方程组、三元一次方程组:利用加减消元法或代入消元法把解三元一次方程组的问题转化为二元一次方程组的问题. 3.解方程组:2322441x y x xy y +=?-+=?? 【答案】2112115,175x x y y ?=?=????=??=?? 【解析】 分析:把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方程组,求解即可. 详解:2322441x y x xy y +=?-+=?? ①② 由②得2 (2)1x y -=, 所以21x y -=③,21x y -=-④ 由①③、①④联立,得方程组: 2321x y x y +=?-=?? ,23 21x y x y +=?-=-?? 解方程组23 21x y x y +=?-=??得,{ 11x y == 解方程组2321x y x y +=?-=-??得,1575x y ?=????=?? . 所以原方程组的解为:11 11x y =?=??,221575x y ?=????=?? 点睛:本题考查了二元二次方程组的解法,解决本题亦可变形方程组中的①式,代入②式得一元二次方程求解. 4.解方程组

一元二次不等式的解法

一元二次不等式的解法(一) 学习目标: 1.会从实际情境中抽象出一元二次不等式模型; 2.掌握求解一元二次不等式的基本方法,并能解决一些实际问题。 3.培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力 知识点一:一元二次不等式的定义 只含有一个未知数,并且未知数的最高次数是2 的不等式,称为一元二次不等式。比如: . 任意的一元二次不等式,总可以化为一般形式:)0(02>>++a c bx ax 或 )0(02><++a c bx ax . 知识点二:一般的一元二次不等式的解法 ( (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程)0(02 >=++a c bx ax ,计算判别式?; ①0>?时,求出两根21x x 、,且21x x <(注意灵活运用因式分解和配方法); ②0=?时,求根a b x x 221-==; ③0--x x ; (3)0652 >--x x (4)0442 >+-x x ; (5)0542 >-+-x x ; (6)23262x x x -++<- 举一反三: 【变式1】解下列不等式 (1)02322 >--x x ; (2)02232 >+--x x (3)01442 ≤+-x x ; (4)0322 >-+-x x . (5)()()() 221332x x x +->+ 【变式2】解不等式:(1)6662<--≤-x x (2)18342 <-≤x x 类型二:已知一元二次不等式的解集求待定系数 例2 不等式02 <-+n mx x 的解集为)5,4(∈x ,求关于x 的不等式012 >-+mx nx 的解集 举一反三: 【变式1】不等式0122 >++bx ax 的解集为{} 23<<-x x ,则a =_______, b =________ 【变式2】已知关于x 的不等式02<++b ax x 的解集为)2,1(,求关于x 的不等式0 12 >++ax bx 的解集. 类型三:二次项系数含有字母的不等式恒成立恒不成立问题 例3 已知关于x 的不等式03)1(4)54(2 2 >+---+x m x m m 对一切实数x 恒成立,求实数m 的取值范围。 举一反三: 【变式1】 若关于x 的不等式01)12(2≥-++-m x m mx 的解集为空集,求m 的取值范围. 【变式2】若关于x 的不等式01)12(2≥-++-m x m mx 的解为一切实数,求m 的取值范围. 【变式3】若关于x 的不等式01)12(2≥-++-m x m mx 的解集为非空集,求m 的取值范围.

一元二次方程组教案

5.1.认识二元一次方程组 教学目标: 1.知识与技能:通过实例了解一元二次方程,一元二次方程组及其解的概念,会判断一组数是不是一个二元一次方程组的解。 2教学思考:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型。. 3解决问题:培养学生能够使用数学知识解决生活实际问题的能力,同时发展学生的观察、归纳、概括的能力。 4.情感态度与价值观:激发学生的求知欲,培养他们勇于探索的精神。 教学重难点: 重点:对二元一次方程,二元一次方程组及其解的理解。 难点:二元一次方程,二元一次方程组及其解的个数。 课时安排: 一课时 教学设计 教学准备 幻灯片 教学流程 (一)复习: 1.一元一次方程的定义. 例:下例哪些方程式一元一次方程? 2(1)35(2)16(3) 32(4)6(5) 3x x y x x xy x π=+==+==+ 注 : 一元:一个未知数 一次:含有未知数的项的次数都是1次 整式:分母中不含字母 2.方程的解:使方程两边相等的未知数的值叫做方程的解 例:x=5是方程3x+5=20的解吗?为什么? 3.方程2x+y=8是一元一次方程吗?若不是,那又什么呢? (二)新课讲授 1、老牛与小马 分析:审题 A :数量问题 B : 2= -小马老牛 C :设老牛驮了x 个包裹, 小马驮了 y 个包裹。 )(小马 老牛121-=+

想一想 2x y -= 12(1)x y +=- 上面所列方程各含有几个未知数? 2个未知数 含有未知数的项的次数是多少? 次数是1 二元一次方程定义:含有两个未知数,并且所含未知数的项的次数都是 1 的整式方程叫做二元一次方程. 判断点:1、未知数几个? 2个 判断点:2、含未知数项的次数是几次? 1次 判断点:3、整式 分母中不含未知数 练一练: 1.请判断下列各方程中,哪些是二元一次 方程,哪些不是?并说明理由. ()()()()21390; 232120; (3)20 1(4)315347; 62100. x y x y xy y x y a b x +-=-+=+=-=-=+= 2.如果方程12231m m n x y -+-=是二元一次方程,那么m =___________,n =______________ . 做一做 6,2x y ==适合方程 8x y +=吗?5,3x y ==呢? 4,4x y ==呢?你还能找到其他 x,y 的值适合方程8x y += 吗? 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解 例如: 6,2x y ==是方程8x y +=的一个解,记作6,2.x y =??=? 练一练: 1.在下列四组数值中,哪些是二元一次方程 31x y -=的解? (A ) 2,3.x y =??=? (B ) 4,1.x y =??=? (C )10,3.x y =??=? (D )5,2.x y =-??=-?

一元二次不等式及其解法例题分类

一对一个性化辅导教案

一元二次不等式及其解法 【要点梳理】 要点一、一元二次不等式及一元二次不等式的解集 只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.比如: 250x x -<.一元二次不等式的一般形式:20ax bx c ++>(0)a ≠或20ax bx c ++<(0)a ≠. 设一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x <,则不等式20ax bx c ++>的解集为 {}2 1 x x x x x ><或,不等式2 0ax bx c ++<的解集为{}21x x x x << 要点诠释:讨论一元二次不等式或其解法时要保证(0)a ≠成立. 要点二、一元二次不等式与相应函数、方程之间的联系 对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=?,它的解按照 0>?,0=?,0的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或 20ax bx c ++<(0)a >的解集.

二次函数 c bx ax y ++=2(0>a )的图象 20(0)ax bx c a ++=>的根 有两相异实 根 )(,2121x x x x < 有两相等实根 a b x x 221- == 无实根 的解集 )0(02>>++a c bx ax {} 2 1 x x x x x ><或???? ??-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21 x x x x << ? ? 要点诠释: (1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线=y c bx ax ++2与x 轴的交点的横坐标; (2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决; (3)解集分0,0,0?>?=?<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集. 要点三、解一元二次不等式的步骤 (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20ax bx c ++=(0)a >,计算判别式?: ①0?>时,求出两根12x x 、,且12x x <②0?=时,求根a b x x 221- ==;

高一数学二元二次方程组解法

方程 22260x xy y x y +++++= 是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程.其中2x ,2xy ,2y 叫做这个方程的二次项,x ,y 叫做一次项,6叫做常数项. 我们看下面的两个方程组: 224310,210; x y x y x y ?-++-=?--=? 222220,560. x y x xy y ?+=??-+=?? 第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组. 下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法. 一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解. 例1 解方程组 22440,220.x y x y ?+-=?--=? 分析:二元二次方程组对我们来说较为生疏,在解此方程组时,可以将其转化为我们熟悉的形式.注意到方程②是一个一元一次方程,于是,可以利用该方程消去一个元,再代入到方程①,得到一个一元二次方程,从而将所求的较为生疏的问题转化为我们所熟悉的问题. 解:由②,得 x =2y +2, ③ 把③代入①,整理,得 8y 2+8y =0, 即 y (y +1)=0. ①

解得 y 1=0,y 2=-1. 把y 1=0代入③, 得 x 1=2; 把y 2=-1代入③, 得x 2=0. 所以原方程组的解是 112,0x y =??=?, 22 0,1.x y =??=-? 说明:在解类似于本例的二元二次方程组时,通常采用本例所介绍的代入消元法来求解. 例2 解方程组 7,12.x y xy +=??=? 解法一:由①,得 7.x y =- ③ 把③代入②,整理,得 27120y y -+= 解这个方程,得 123,4y y ==. 把13y =代入③,得14x =; 把24y =代入③,得23x =. 所以原方程的解是 114,3x y =??=?, 223,4. x y =??=? 解法二:对这个方程组,也可以根据一元二次方程的根与系数的关系,把,x y 看作一个一元二次方程的两个根,通过解这个一元二次方程来求,x y . 这个方程组的,x y 是一元二次方程 27120z z --= 的两个根,解这个方程,得 3z =,或4z =. 所以原方程组的解是 114,3;x y =?? =? 223,4. x y =??=? 练 习: ①

一元二次不等式解法

一元二次不等式解法一、知识梳理 1.“三个二次”的关系 2.常用结论 (x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解法

口诀:大于取两边,小于取中间. 二、例题讲解 题型一 一元二次不等式的求解 命题点1 不含参的不等式 例1 求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0得x 1=-1,x 2=3 2 , ∴不等式2x 2-x -3>0的解集为(-∞,-1)∪(3 2,+∞), 即原不等式的解集为(-∞,-1)∪(3 2,+∞). 命题点2 含参不等式 例2 解关于x 的不等式:x 2-(a +1)x +a <0. 解 由x 2-(a +1)x +a =0得(x -a )(x -1)=0, ∴x 1=a ,x 2=1, ①当a >1时,x 2-(a +1)x +a <0的解集为{x |11. 若a <0,原不等式等价于(x -1 a )(x -1)>0,

解得x <1 a 或x >1. 若a >0,原不等式等价于(x -1 a )(x -1)<0. ①当a =1时,1a =1,(x -1 a )(x -1)<0无解; ②当a >1时,1a <1,解(x -1a )(x -1)<0得1 a 1,解(x -1a )(x -1)<0得11}; 当a =0时,解集为{x |x >1};当01 时,解集为{x |1 a

一元二次不等式的应用题(附答案)

一分配问题 1.把若干颗花生分给若干只猴子。如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。问猴子有多少只,花生有多少颗? 2.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。问这些书有多少本?学生有多少人? 3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。 4.一群女生住若干家间宿舍,每间住4人,剩下19人无房住; 每间住6人,有一间宿舍住不满。 ⑴如果有x间宿舍,那么可以列出关于x的不等式组: ⑵可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗? 二速度、时间问题 1 爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长? 2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。已知王凯步行速度为 90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟? 3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到? 三工程问题 1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土? 2.用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。B型抽水机比A型抽水机每分钟约多抽多少吨水? 3.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务? 四价格问题 1.商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。 (1)试求该商品的进价和第一次的售价; (2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元? 2.水果店进了某中水果1t,进价是7元/kg。售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售。如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售? 3. 某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少? 4.学校图书馆准备购买定价分别为8元和14元的杂志和小说共80本,计划用钱在750元到850元之间(包括750元和850元),那么14元一本的小说最少可以买多少本? 五其他问题 1.有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于20且小于40, 求这个两位数

一元二次不等式的解法

- 2 - 一元二次不等式的解法 一、选择题 1.不等式x 2<3x 的解集是 ( ). A .{x |x >3} B .{x |x <0或x >3} C .R D .{x |0<x <3} 2.不等式-x 2-x +2≥0的解集是 ( ). A .{x |x ≤-2或x ≥1} B .{x |-2<x <1} C .{x |-2≤x ≤1} D .? 3.不等式x (x -a +1)>a 的解集是{x |x <-1或x >a },则 ( ). A .a ≥1 B .a <-1 C .a >-1 D .a ∈R 4.已知全集U =R 集合A ={x |x 2-2x >0},则?U A 等于 ( ). A .{x |0≤x ≤2} B .{x |0<x <2} C .{x |x <0或x >2} D .{x |x ≤0或x ≤2} 5.不等式ax 2+5x +c >0的解集为? ??? ?? x ?? 13 <x <12,则a ,c 的值为 ( ). A .a =6,c =1 B .a =-6,c =-1 C .a =1,c =1 D .a =-1,c =-6 6.已知集合M =? ????? ??? ?x ??? x +3 x -1<0,N ={} x | x ≤-3,则集合{x |x ≥1}等于 ( ). A .M ∩N B .M ∪N C .?R (M ∩N ) D .?R (M ∪N ) 7.若产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若 每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是 ( ). A .100台 B .120台 C .150台 D .180台 8.若集合A ={x |ax 2-ax +1<0}=?,则实数a 的值的集合是 ( ). A .{a |0<a <4} B .{a |0≤a <4} C .{a |0<a ≤4} D .{a |0≤a ≤4} 9.关于x 的不等式a -x x +b <0, a +b >0的解集是 ( ). A .{x |x >a } B .{x |x <-b ,或x >a } C .{x |x <a ,或x >-b } D .{x |-b <x <a } 10.在R 上定义运算?:x ?y =x (1-y ).若不等式(x -a )?(x +a )<1对任意实数x 恒成立,则( ). A .-1<a <1 B .0<a <2 C .-12<a <32 D .-32<a <1 2 11、函数y =log 3(9-x 2)的定义域为A ,值域为B ,则A ∩B =________. 12、二次函数y =ax 2+bx +c (a ≠0,x ∈R )的部分对应值如下表: 13、设f (x )=x 2+bx +1且f (-1)=f (3),则f (x )>0的解集为________. 14、关于x 的不等式ax 2-2ax +2a +3>0的解集为R ,则实数a 的取值范围为________. 15、不等式(3x -4)(2x +1) (x -1)2 <0的解集为________. 三、解答题 16、解不等式1)-2x 2+103x -1 3>0; 2)x -1x -2≥0; 3)2x -13-4x >1.

一元二次不等式的解法

知识点一:一元二次不等式的定义 只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式。比如:. 任意的一元二次不等式,总可以化为一般形式:或 . 知识点二:一般的一元二次不等式的解法 设一元二次方程的两根为且,,则相应的不等式的解集的各种情况如下表: 注意: (1)一元二次方程的两根是相应的不等式的解集的端点的取值,是抛物线与轴的交点的横坐标; (2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决; (3)解集分三种情况,得到一元二次不等式 与的解集。 知识点三:解一元二次不等式的步骤 (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程,计算判别式: ①时,求出两根,且(注意灵活运用因式分解和配方法); ②时,求根; ③时,方程无解 (3)根据不等式,写出解集. 知识点四:用程序框图表示求解一元二次不等式ax2+bx+c>0(a>0)的过程规律方法指导 1.解一元二次不等式首先要看二次项系数a是否为正;若为负,则将其变为正数;2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法; 3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论;4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系; 5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数 二次函数()的图象

经典例题透析 类型一:解一元二次不等式 1.解下列一元二次不等式 (1);(2);(3) 思路点拨:转化为相应的函数,数形结合解决,或利用符号法则解答. 总结升华: 1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力; 2. 当时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当 且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题). 3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三: 【变式1】解下列不等式 (1) ;(2) (3) ;(4) . 【变式2】解不等式: 类型二:已知一元二次不等式的解集求待定系数 2.不等式的解集为,求关于的不等式的解集。

相关主题