搜档网
当前位置:搜档网 › 实验一 图像的傅立叶变换

实验一 图像的傅立叶变换

实验一 图像的傅立叶变换
实验一 图像的傅立叶变换

实验一图像的傅立叶变换

一、实验目的

1了解图像变换的意义和手段;

2熟悉傅里叶变换的孩本性质;

3热练掌握FFT酌方法反应用;

4通过实验了解二维频谱的分布特点;

5通过本实验掌握利用MATLAB编程实现数字图像的傅立叶变换。

二、实验仪器

1计算机;

2 MATLAB程序;

3移动式存储器(软盘、U盘等)。

4记录用的笔、纸。

三、实验原理

1应用傅立叶变换进行图像处理

傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。通过实验培养这项技能,将有助于解决大多数图像处理问题。对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。

2傅立叶(Fourier)变换的定义

对于二维信号,二维Fourier变换定义为:

二维离散傅立叶变换为:

图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。

3利用MATLAB软件实现数字图像傅立叶变换、DCT变换的程序:

四、实验步骤

1、打开计算机,安装和启动MATLAB程序;程序组中“work”文件夹中应有待处理的图

像文件;

2、利用MatLab工具箱中的函数编制FFT频谱显示的函数;

3、a).调入、显示图像

b)对这图像做FFT、DCT并利用自编的函数显示其频谱;

c)讨论不同的图像内容与FFT、DCT频谱之间的对应关系。

4、记录和整理实验报告。

五、实验内容

Matlab源程序如下:

clc

clear all

img=imread('Dolphin.jpg');

subplot(2,2,1),imshow(img);

title('原图');

f=rgb2gray(img);

F=fft2(f);

subplot(2,2,2),imshow(F);title('傅里叶变换');

%二维傅里叶变换

FS=fftshift(F);%频率图

%频谱

S=log(1+abs(FS));

subplot(2,2,3);imshow(S,[])

title('直接变换频谱图');

%二维傅里叶逆变换

fr=real(ifft2(ifftshift(FS)));%频域的图反变

ret=im2uint8(mat2gray(fr));%取其灰度图

subplot(2,2,4),imshow(ret);

title('逆傅里叶变换');

I=imread('logo.tif');

figure(2);

imshow(I);

DCT=dct2(I);

figure(3);

imshow(log(abs(DCT)),[ ]);

六、实验结果

在matlab中运行后,实验结果如图:

原图傅里叶变换

直接变换频谱图逆傅里叶变换

七、思考题

1.傅里叶变换有哪些重要的性质?

答:线性性质、奇偶虚实性、对称性质、尺度变换性质、时移性质、频移特性。2.图像的二维频谱在显示和处理时应注意什么?

答:1.进行傅里叶变换的图像应该是灰度图形,原rgb彩色图像无法进行相应变换;

2.注意使用fftshift函数将频谱的零频分量移至频谱的中心。

图像的二维傅里叶变换

图像傅立叶变换(二维傅立叶变换fourier, 二维DFT, 2d-fft)的原理和物理意义 图像傅立叶变换 图像的傅立叶变换,原始图像由N行N列构成,N必须是基2的,把这个N*N个包含图像的点称为实部,另外还需要N*N个点称为虚部,因为FFT是基于复数的,如下图所示: 计算图像傅立叶变换的过程很简单:首先对每一行做一维FFT,然后对每一列做一维FFT。具体来说,先对第0行的N个点做FFT(实部有值,虚部为0),将FFT输出的实部放回原来第0行的实部,FFT输出的虚部放回第0行的虚部,这样计算完全部行之后,图像的实部和虚部包含的是中间数据,然后用相同的办法进行列方向上的FFT变换,这样N*N的图像经过FFT得到一个N*N的频谱。 下面展示了一副图像的二维FFT变换:

频域中可以包含负值,图像中灰色表示0,黑色表示负值,白色表示正值。可以看到4个角上的黑色更黑,白色更白,表示其幅度更大,其实4个角上的系数表示的是图像的低频组成部分,而中心则是图像的高频组成部分。除此以外,FFT的系数显得杂乱无章,基本看不出什么。 将上述直角坐标转换为极坐标的形式,稍微比较容易理解一点,幅度中4个角上白色的区域表示幅度较大,而相位中高频和低频基本看不出什么区别来。

上述以一种不同的方法展示了图像频谱,它将低频部分平移到了频谱的中心。这个其实很好理解,因为经2D-FFT的信号是离散图像,其2D-FFT的输出就是周期信号,也就是将前面一张图周期性平铺,取了一张以低频为中心的图。将原点放在中心有很多好处,比如更加直观更符合周期性的原理,但在这节中还是以未平移之前的图来解释。 行N/2和列N/2将频域分成四块。对实部和幅度来说,右上角和左下角成镜像关系,左上角和右下角也是镜像关系;对虚部和相位来说,也是类似的,只是符号要取反,这种对称性和1维傅立叶变换是类似的,你可以往前看看。 为简单起见,先考虑4*4的像素,右边是其灰度值,对这些灰度值进行2维fft变换。 h和k的范围在-N/2到N/2-1之间。 通常I(n,m)是实数,F(0,0)总是实数,并且F(h,k)具有对偶性。 如果写成指数形式,即: -------------------------------- 图像傅立叶变换的物理意义

图像灰度变换实验报告

图像灰度变换报告 一.实验目的 1.学会使用Matlab ; 2.学会用Matlab 软件对图像进行灰度变换,观察采用各种不同灰度变换发法对最终图像效果的影响; 二.实验内容 1.熟悉Matlab 中的一些常用处理函数 读取图像:img=imread('filename'); //支持TIF,JPEG,GIF,BMP,PNG 等文件格式。 显示图像:imshow(img,G); //G 表示显示该图像的灰度级数,如省略则默认为256。 保存图片:imwrite(img,'filename'); //不支持GIF 格式,其他与imread 相同。 亮度变换:imadjust(img,[low_in,high_in],[low_out,high_out]); //将low_in 至high_in 之间的值映射到low_out 至high_out 之 间,low_in 以下及high_in 以上归零。 绘制直方图:imhist(img); 直方图均衡化:histeq(img,newlevel); //newlevel 表示输出图像指定的灰度级数。 2.获取实验用图像:rice.jpg. 使用imread 函数将图像读入Matlab 。 3 .产生灰度变换函数T1,使得: 0.3r r < 0.35 s = 0.105 + 2.6333(r – 0.35) 0.35 ≤ r ≤ 0.65 1 + 0.3(r – 1) r > 0.65 用T1对原图像rice.jpg 进行处理,使用imwrite 函数保存处理后的新图像。 4.产生灰度变换函数T2,使得: s = 5.用T2imwrite 保存处理后的新图像。 6.分别用 s = r 0.6; s = r 0.4; s = r 0.3 对kids.tiff 图像进行处理。为简便起见,使用Matlab 中的imadjust 函数,最后用imwrite 保存处理后的新图像。 7.对circuit.jpg 图像实施反变换(Negative Transformation )。s =1-r; 使

实验八 利用快速傅里叶变换(FFT)实现快速卷积(精选、)

实验八 利用FFT 实现快速卷积 一、 实验目的 (1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。 (2) 进一步掌握循环卷积和线性卷积两者之间的关系。 二、 实验原理与方法 数字滤波器根据系统的单位脉冲响应h(n)是有限长还是无限长可分为有限长单位脉冲响应(Finite Impulse Response )系统(简记为FIR 系统)和无限长单位脉冲响应(Infinite Impulse Response )系统(简记为IIR 系统)。 对于FIR 滤波器来说,除了可以通过数字网络来实现外,也可以通过FFT 的变换来实现。 一个信号序列x(n)通过FIR 滤波器时,其输出应该是x(n)与h(n)的卷积: ∑+∞ -∞ =-= =m m n h m x n h n x n y )()()(*)()( 或 ∑+∞ -∞ =-= =m m n x m h n x n h n y ) ()()(*)()( 当h(n)是一个有限长序列,即h(n)是FIR 滤波器,且10-≤≤N n 时 ∑-=-=1 0) ()()(N m m n x m h n y 在数字网络(见图6.1)类的FIR 滤波器中,普遍使用的横截型结构(见下图6.2 图6.1 滤波器的数字网络实现方法 图6.2 FIR 滤波器横截型结构 y(n) y(n) -1-1-1-1

应用FFT 实现数字滤波器实际上就是用FFT 来快速计算有限长度列间的线性卷积。 粗略地说,这种方法就是先将输入信号x(n)通过FFT 变换为它的频谱采样 值X(k),然后再和FIR 滤波器的频响采样值H(k)相乘,H(k)可事先存放在存储器中,最后再将乘积H(k)X(k)通过快速傅里叶变换(简称IFFT )还原为时域序列,即得到输出y(n)如图6.3所示。 图6.3 数字滤波器的快速傅里叶变换实现方法 现以FFT 求有限长序列间的卷积及求有限长度列与较长序列间的卷积为例来讨论FFT 的快速卷积方法。 (1) 序列)(n x 和)(n h 的列长差不多。设)(n x 的列长为1N ,)(n h 的列长为2N ,要求 )()(n x n y =N ∑-=-==1 ) ()()(*)()(N r r n h r x n h n x n h 用FFT 完成这一卷积的具体步骤如下: i. 为使两有限长序列的线性卷积可用其循环卷积代替而不发生混叠,必须选择循环卷积长度121-+≥N N N ,若采用基2-FFT 完成卷积运 算,要求m N 2=(m 为整数)。 ii. 用补零方法使)(n x ,)(n h 变成列长为N 的序列。 ?? ?-≤≤-≤≤=10 10)()(11N n N N n n x n x ?? ?-≤≤-≤≤=10 1 0)()(22N n N N n n h n h iii. 用FFT 计算)(),(n h n x 的N 点离散傅里叶变换 )()(k X n x FFT ??→? )()(k H n h FFT ??→? iv. 做)(k X 和)(k H 乘积,)()()(k H k X k Y ?= v. 用FFT 计算)(k Y 的离散傅里叶反变换得 y(n)

图形学实验报告

计 算 机 图 形 学 实验指导书 学号:1441901105 姓名:谢卉

实验一:图形的几何变换 实验学时:4学时 实验类型:验证 实验要求:必修 一、实验目的 二维图形的平移、缩放、旋转和投影变换(投影变换可在实验三中实现)等是最基本的图形变换,被广泛用于计算机图形学的各种应用程序中,本实验通过算法分析以及程序设计实验二维的图形变换,以了解变换实现的方法。如可能也可进行裁剪设计。 二、实验内容 掌握平移、缩放、旋转变换的基本原理,理解线段裁剪的算法原理,并通过程序设计实现上述变换。建议采用VC++实现OpenGL程序设计。 三、实验原理、方法和手段 1.图形的平移 在屏幕上显示一个人或其它物体(如图1所示),用交互操作方式使其在屏幕上沿水平和垂直方向移动Tx和Ty,则有 x’=x+Tx y’=y+Ty 其中:x与y为变换前图形中某一点的坐标,x’和y’为变换后图形中该点的坐标。其交互方式可先定义键值,然后操作功能键使其移动。 2.图形的缩放 在屏幕上显示一个帆船(使它生成在右下方),使其相对于屏幕坐标原点缩小s倍(即x方向和y方向均缩小s倍)。则有: x’=x*s y’=y*s 注意:有时图形缩放并不一定相对于原点,而是事先确定一个参考位置。一般情况下,参考点在图形的左下角或中心。设参考点坐标为xf、yf则有变换公式x’=x*Sx+xf*(1-Sx)=xf+(x-xf)*Sx y’=y*Sy+yf*(1-Sy)=yf+(y-yf)*Sy 式中的x与y为变换前图形中某一点的坐标,x’和y’为变换后图形中该点的坐标。当Sx>1和Sy>1时为放大倍数,Sx<1和Sy<1时为缩小倍数(但Sx和Sy

傅立叶变换的原理、意义和应用

傅立叶变换的原理、意义和应用 1概念:编辑 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。 参考《数字信号处理》杨毅明著p.89,机械工业出版社2012年发行。定义 f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个周期内具有有限个间断点,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅里叶变换, ②式的积分运算叫做F(ω)的傅里叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ①傅里叶变换 ②傅里叶逆变换 中文译名 Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏

变换”、等等。为方便起见,本文统一写作“傅里叶变换”。 应用 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值谱——显示与频率对应的幅值大小)。 相关 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; *卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; * 离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(FFT)).[1] 2性质编辑 线性性质 傅里叶变换的线性,是指两函数的线性组合的傅里叶变换,等于这两个函数分别做傅里叶变换后再进行线性组合的结果。具体而言,假设函数

实验二 参考 快速傅立叶变换(FFT)及其应用

实验二快速傅立叶变换(FFT )及其应用 一、实验目的 1.在理论学习的基础上,通过本实验,加深对FFT 的理解,熟悉FFT 子程序。 2.熟悉应用FFT 对典型信号进行频谱分析的方法 3.了解应用FFT 进行信号频谱分析过程中可能出现的问题以便在实际中正确应用FFT 。 二、实验原理 在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier 变换(DFT)。这一变换不但可以很好的反映序列的频谱特性,而且易于用快速 算法在计算机上实现,当序列x(n)的长度为N 时,它的DFT 定义为: 1 0()()N kn N n X k x n W -==∑, 2n j N N W e -=反换为:10 1()()N kn N k x n X k W N --==∑有限长序列的DFT 是其Z 变换在单位圆上的 等距采样,或者是序列Fourier 变换的等距采样,因此可以用于序列的谱分析。 FFT 并不是与DFT 不同的另一种变换,而是为了减少DFT 运算次数的一种快速算法。它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。常用的FFT 是以2为基数的,其长度 N=2L ,它的效率高,程序简单使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT ,可以用末位补零的方法,使其长度延长至2的整数次方。 在运用DFT 进行频谱分析的过程中可能产生几种问题: (1) 混叠 序列的频谱时被采样信号的周期延拓,当采样速率不满足Nyquist 定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。 避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。 (2) 泄漏 实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT 来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。 泄漏不能与混叠完全分开,因为泄漏导致频谱的扩展,从而造成混叠。为了减少泄漏的影响,可以选择适当的窗函数使频谱的扩散减至最小。 DFT 是对单位圆上Z 变换的均匀采样,所以它不可能将频谱视为一个连续函数,就一定意义上看,用DFT 来观察频谱就好像通过一个栅栏来观看一个图景一样,只能在离散点上看到真实的频谱,这样就有可能发生一些频谱的峰点或谷点被“尖桩的栅栏”所拦住,不能别我们观察到。 减小栅栏效应的一个方法就是借助于在原序列的末端填补一些零值,从而变动DFT 的点数,这一方法实际上是人为地改变了对真实频谱采样的点数和位置,相当于搬动了每一根“尖桩栅栏”的位置,从而使得频谱的峰点或谷点暴露出来。 用FFT 可以实现两个序列的圆周卷积。在一定的条件下,可以使圆周卷积等于线性卷积。一般情况,设两个序列的长度分别为N1和N2,要使圆周卷积等于线性卷积的充要条件是

图像的傅里叶变换实验报告

图像的傅里叶变换实验 报告 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

计算机科学与技术系 实验报告 专业名称计算机科学与技术 课程名称数字图像处理 项目名称 Matlab语言、图像的傅里叶变换 班级 14计科2班 学号 姓名卢爱胜 同组人员张佳佳、王世兜、张跃文 实验日期 一、实验目的与要求: (简述本次实验要求达到的目的,涉及到的相关知识点,实验的具体要求。) 实验目的: 1了解图像变换的意义和手段; 2熟悉傅立叶变换的基本性质; 3熟练掌握FFT变换方法及应用; 4通过实验了解二维频谱的分布特点; 5通过本实验掌握利用MATLAB编程实现数字图像的傅立叶变换。 6评价人眼对图像幅频特性和相频特性的敏感度。 实验要求:

应用傅立叶变换进行图像处理 傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。通过实验培养这项技能,将有助于解决大多数图像处理问题。对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。 二、实验内容 (根据本次实验项目的具体任务和要求,完成相关内容,可包括:实验目的、算法原理、实验仪器、设备选型及连线图、算法描述或流程图、源代码、实验运行步骤、关键技术分析、测试数据与实验结果、其他) 1.傅立叶(Fourier)变换的定义 对于二维信号,二维Fourier变换定义为: 逆变换: 二维离散傅立叶变换为: 逆变换: 图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。 2.利用MATLAB软件实现数字图像傅立叶变换的程序: I=imread(‘原图像名.gif’);%读入原图像文件 imshow(I); %显示原图像 fftI=fft2(I); %二维离散傅立叶变换 sfftI=fftshift(fftI); %直流分量移到频谱中心

实验一Matlab图像处理基础及图像灰度变换

实验一Matlab图像处理基础及图像灰度变换 一、实验目的 了解Matlab平台下的图像编程环境,熟悉Matlab中的DIP (Digital Image Processing)工具箱;掌握Matlab中图像的表示方法,图像类型、数据类型的种类及各自的特点,并知道怎样在它们之间进行转换。掌握Matlab环境下的一些最基本的图像处理操作,如读图像、写图像、查看图像信息和格式、尺寸和灰度的伸缩等等;通过实验掌握图像直方图的描绘方法,加深直方图形状与图像特征间关系间的理解;加深对直方图均衡算法的理解。 二、实验内容 1.从硬盘中读取一幅灰度图像; 2.显示图像信息,查看图像格式、大小、位深等内容; 3.用灰度面积法编写求图像方图的Matlab程序,并画图; 4.把第3步的结果与直接用Matlab工具箱中函数histogram的结果进行比较,以衡量第3步中程序的正确性。 5.对读入的图像进行直方图均衡化,画出处理后的直方图,并比较处理前后图像效果的变化。 三、知识要点 1.Matlab6.5支持的图像图形格式 TIFF, JEPG, GIF, BMP, PNG, XWD (X Window Dump),其中GIF不支持写。 2.与图像处理相关的最基本函数 读:imread; 写:imwrite; 显示:imshow; 信息查看:imfinfo; 3.Matlab6.5支持的数据类 double, unit8, int8, uint16, int16, uint32, int32, single, char (2 bytes per element), logical. 4.Matlab6.5支持的图像类型 Intensity images, binary images, indexed images, RGB image 5.数据类及图像类型间的基本转换函数 数据类转换:B = data_class_name(A);

实验一快速傅里叶变换

实验一 快速傅里叶变换之报告 一 、实验目的 1、在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解; 2、熟悉并掌握按时间抽取FFT 算法的程序; 3、了解应用FFT 进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、 栅栏效应等,以便在实际中正确应用FFT 。 二 实验内容 a ) 信号频率F =50Hz ,采样点数N=32,采样间隔T= matlab 程序代码为: F=50; T=; N=32; n=0:N-1; t=n*T; A=sin(2*pi*F*t); figure; Y = fft(A,N); h = (abs(Y)); h=h/max(h(1:N)); for n=1:N; string1=strcat('X(',num2str(n-1), ')=',num2str(h(n))); disp(string1); f=(n/T)/N; end stem([0:N-1]/N/T,h); xlabel('?μ?ê/HZ'); ylabel('??·ùX£¨ejw£?'); title('·ù?μì?D?'); 上述代码命令中,将FFT 变换后的数字变量K ,在画图时转换成频域中的频率f 。这主 要是根据数字频率与模拟域频率之间的关系: T Ω=ω 其中ω、Ω分别为数字和模拟域中的频率,且N k πω2= f π2=Ω 于是有: NT k f = 运算结果: X(1)=1 X(2)= X(3)= X(4)=

X(5)= X(6)= X(7)= X(8)= X(9)= X(10)= X(11)= X(12)= X(13)= X(14)= X(15)= X(16)= X(17)= X(18)= X(19)= X(20)= X(21)= X(22)= X(23)= X(24)= X(25)= X(26)= X(27)= X(28)= X(29)= X(30)= X(31)=1 b)信号频率F=50Hz,采样点数N=32,采样间隔T= 同理可将a)中F、N、T,参数改成要求值(以下均是如此),即可得,X(0)= X(1)= X(2)= X(3)= X(4)= X(5)= X(6)= X(7)= X(8)=1 X(9)= X(10)= X(11)= X(12)= X(13)= X(14)= X(15)= X(16)= X(17)= X(18)= X(19)= X(20)= X(21)= X(22)= X(23)= X(24)=1 X(25)= X(26)= X(27)= X(28)= X(29)= X(30)= X(31)=

图像的傅立叶变换与频域滤波

实验四 图像的傅立叶变换与频域滤波 一、 实验目的 1了解图像变换的意义和手段; 2熟悉傅里叶变换的基本性质; 3熟练掌握FFT 方法的应用; 4通过实验了解二维频谱的分布特点; 5通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换。 6、掌握怎样利用傅立叶变换进行频域滤波 7、掌握频域滤波的概念及方法 8、熟练掌握频域空间的各类滤波器 9、利用MATLAB 程序进行频域滤波 二、 实验原理 1应用傅立叶变换进行图像处理 傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。通过实验培养这项技能,将有助于解决大多数图像处理问题。对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。 2傅立叶(Fourier )变换的定义 对于二维信号,二维Fourier 变换定义为 : ??∞ ∞ -+-==dxdy e y x f v u F y x f F vy ux j )(2),(),()},({π

二维离散傅立叶变换为: ∑ ∑-=+--== 1 ) (21 1),(),(N y N y u M x u j M x MN e y x f v u F π 图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。 3利用MATLAB 软件实现数字图像傅立叶变换的程序: I=imread(‘原图像名.gif’); %读入原图像文件 imshow(I); %显示原图像 fftI=fft2(I); %二维离散傅立叶变换 sfftI=fftshift(fftI); %直流分量移到频谱中心 RR=real(sfftI); %取傅立叶变换的实部 II=imag(sfftI); %取傅立叶变换的虚部 A=sqrt(RR.^2+II.^2);%计算频谱幅值 A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225; %归一化 figure; %设定窗口 imshow(A); %显示原图像的频谱 域滤波分为低通滤波和高通滤波两类,对应的滤波器分别为低通滤波器和高通滤波器。频域低通过滤的基本思想: G(u,v)=F(u,v)H(u,v) F(u,v)是需要钝化图像的傅立叶变换形式,H(u,v)是选取的一个低通过滤器

快速傅立叶变换(FFT)算法_DSP实验

快速傅立叶变换(FFT)算法实验 摘要:FFT(Fast Fourier Transformation),即为快速傅里叶变换,是离散傅里叶变换的快速算法,它是根据离散傅里叶变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。这种算法大大减少了变换中的运算量,使得其在数字信号处理中有了广泛的运用。本实验主要要求掌握在CCS环境下用窗函数法设计FFT快速傅里叶的原理和方法;并且熟悉FFT快速傅里叶特性;以及通过本次试验了解各种窗函数对快速傅里叶特性的影响等。 引言: 快速傅里叶变换FFT是离散傅里叶变换DFT的一种快速算法。起初DFT的计算在数字信号处理中就非常有用,但由于计算量太大,即使采用计算机也很难对问题进行实时处理,所以并没有得到真正的运用。1965年J.W.库利和T.W.图基提出快速傅里叶变换,采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著。从此,对快速傅里叶变换(FFT)算法的研究便不断深入,数字信号处理这门新兴学科也随FFT的出现和发展而迅速发展。根据对序列分解与选取方法的不同而产生了FFT的多种算法,基本算法是基2DIT和基2DIF。FFT 的出现,使信号分析从时域分析向频域分析成为可能,极大地推动了信号分析在各领域的实际应用。FFT在离散傅里叶反变换、线性卷积和线性相关等方面也有重要应用。

一、 实验原理: FFT 并不是一种新的变换,它是离散傅立叶变换(DFT )的一种快速算法。由于我们在计算DFT 时一次复数乘法需用四次实数乘法和二次实数加法;一次复数加法则需二次实数加法。每运算一个X (k )需要4N 次复数乘法及2N+2(N-1)=2(2N-1)次实数加法。所以整个DFT 运算总共需要4N^2次实数乘法和N*2(2N-1)=2N(2N-1)次实数加法。如此一来,计算时乘法次数和加法次数都是和N^2成正比的,当N 很大时,运算量是可观的,因而需要改进对DFT 的算法减少运算速度。 根据傅立叶变换的对称性和周期性,我们可以将DFT 运算中有些项合并。我们先设序列长度为N=2^L ,L 为整数。将N=2^L 的序列x(n)(n=0,1,……,N-1),按N 的奇偶分成两组,也就是说我们将一个N 点的DFT 分解成两个N/2点的DFT ,他们又从新组合成一个如下式所表达的N 点DFT : ∑∑∑∑∑-=+-=-=++ = + =-≤≤= =1 )12(1 20 2为奇 为偶 10 )12()2()()(10, )()]([)(N r k r N N r rk N n nk N n nk N N n nk N W r x W r x W n x W n x N k W n x n x DFT k X

计算机图形学实验报告 (2)

中南大学信息科学与工程学院 实验报告实验名称 实验地点科技楼四楼 实验日期2014年6月 指导教师 学生班级 学生姓名 学生学号 提交日期2014年6月

实验一Window图形编程基础 一、实验类型:验证型实验 二、实验目的 1、熟练使用实验主要开发平台VC6.0; 2、掌握如何在编译平台下编辑、编译、连接和运行一个简单的Windows图形应用程序; 3、掌握Window图形编程的基本方法; 4、学会使用基本绘图函数和Window GDI对象; 三、实验内容 创建基于MFC的Single Document应用程序(Win32应用程序也可,同学们可根据自己的喜好决定),程序可以实现以下要求: 1、用户可以通过菜单选择绘图颜色; 2、用户点击菜单选择绘图形状时,能在视图中绘制指定形状的图形; 四、实验要求与指导 1、建立名为“颜色”的菜单,该菜单下有四个菜单项:红、绿、蓝、黄。用户通过点击不同的菜单项,可以选择不同的颜色进行绘图。 2、建立名为“绘图”的菜单,该菜单下有三个菜单项:直线、曲线、矩形 其中“曲线”项有级联菜单,包括:圆、椭圆。 3、用户通过点击“绘图”中不同的菜单项,弹出对话框,让用户输入绘图位置,在指定位置进行绘图。

五、实验结果: 六、实验主要代码 1、画直线:CClientDC *m_pDC;再在OnDraw函数里给变量初始化m_pDC=new CClientDC(this); 在OnDraw函数中添加: m_pDC=new CClientDC(this); m_pDC->MoveTo(10,10); m_pDC->LineTo(100,100); m_pDC->SetPixel(100,200,RGB(0,0,0)); m_pDC->TextOut(100,100); 2、画圆: void CMyCG::LineDDA2(int xa, int ya, int xb, int yb, CDC *pDC) { int dx = xb - xa; int dy = yb - ya; int Steps, k; float xIncrement,yIncrement; float x = xa,y= ya; if(abs(dx)>abs(dy))

数字图像的傅里叶变换

数字图像的傅里叶变换 一. 课程设计目的 (1)了解图像变换的意义和手段 (2)熟悉傅里叶变换的基本性质 (3)热练掌握FFT的方法反应用 (4)通过本实验掌握利用MATLAB编程实现数字图像的傅里叶变换 二.课程设计要求 (1)熟悉并掌握傅立叶变换 (2)了解傅立叶变换在图像处理中的应用 (3)通过实验了解二维频谱的分布特点 (4)用MATLAB实现傅立叶变换仿真 三.设计思路 1.相关知识原理 (1)应用傅里叶变换进行数字图像处理 数字图像处理(digital image processing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。 20世纪20年代,图像处理首次得到应用。20世纪60年代中期,随电子计算机的发展得到普遍应用。60年代末,图像处理技术不断完善,逐渐成为一个新兴的学科。利用数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。数字图像处理主要研究以下内容:傅立叶变换、小波变换等各种图像变换;对图像进行编码和压缩;采用各种方法对图像进行复原和增强;对图像进行分割、描述和识别等。随着技术的发展,数字图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等领域。 傅里叶变换在数字图像处理中广泛用于频谱分析,傅里叶变换是线性系统分析的一个有力工具,它使我们能够定量地分析诸如数字化系统,采样点,电子放大器,卷积滤波器,噪声,显示点等地作用(效应)。傅里叶变换(FT)是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特

图像几何变换

图像几何变换 一、实验目的 (1)学习几种常见的图像几何变换,并通过实验体会几何变换的效果; (2)掌握图像平移、剪切、缩放、旋转、镜像、错切等几何变换的算法原理及编 程实现 (3)掌握matlab编程环境中基本的图像处理函数 (4)掌握图像的复合变换 二、涉及知识点 (1)图像几何变换不改变图像像素的值,只改变像素所在的几何位置 (2)图像裁剪imcrop函数,语法格式为: B=imcrop(A);交互式用鼠标选取区域进行剪切 B=imcrop(A,[left top right bottom]);针对指定的区域[left top right bottom]进行剪切 (3)图像缩放imresize函数,语法格式为: B = imresize(A,m,method) 这里参数method用于指定插值的方法,可选用的值为'nearest'(最邻近法),'bilinear'(双线性插值),'bicubic'(双三次插值),默认为'nearest'。 B = imresize(A,m,method)返回原图A的m倍放大的图像(m小于1时效果是 缩小)。 (4)图像旋转imrotate函数,语法格式为: B = imrot ate(A,angle,’crop’),参数crop用于指定裁剪旋转后超出图像的部分。

三、实验内容 (1)将图像hehua.bmp裁剪成200X200大小,并保存 (2)制作动画,将一幅图像逐渐向左上角平移移出图像区域,空白的地方用白色 填充 (3)利用剪切图像函数制作动画 (4)将图像分别放大1.5倍和缩小0.8倍,插值方法使用最近邻域法和双线性插值 法,对比显示图像。 (5)将图像水平镜像,再顺时针旋转45度,显示旋转后的图像。 (6)将图像分别进行水平方向30度错切,垂直方向45度错切,分别显示结果具体实现: 1.将图像hehua.bmp裁剪成200X200大小,并保存 I=imread('hehua.bmp'); n=size(I); figure; subplot(1,2,1); imshow(I); title('原图'); I=double(I); I1=zeros(200,200,n(3)); I1=I(1:200,1:200,1:n(3)); subplot(1,2,2);

DSP-快速傅立叶变换(FFT)算法实验

中南大学 DSP技术实验报告 实验名称:快速傅立叶变换(FFT)算法实验专业班级:信息0602 学生姓名:张倩曦(学号:24) 指导老师:陈宁 完成日期: 2009年12月2日 中南大学·信息科学与工程学院

快速傅立叶变换(FFT)算法实验一.实验目的 1.掌握用窗函数法设计FFT 快速傅里叶的原理和方法; 2.熟悉FFT 快速傅里叶特性; 3.了解各种窗函数对快速傅里叶特性的影响。 二.实验设备 PC 兼容机一台,操作系统为Windows2000(或Windows98,WindowsXP,以下默认为Windows2000),安装Code Composer Studio 软件。 三.实验原理 1.FFT 的原理和参数生成公式: 公式(1)FFT 运算公式 FFT 并不是一种新的变换,它是离散傅立叶变换(DFT)的一种快速算法。由于我们在计算DFT 时一次复数乘法需用四次实数乘法和二次实数加法;一次复数加法则需二次实数加法。 每运算一个X(k)需要4N 次复数乘法及2N+2(N-1)=2(2N-1)次实数加法。所以整个DFT运算总共需要4N^2 次实数乘法和N*2(2N-1)=2N(2N-1)次实数加法。如此一来,计算时乘法次数和加法次数都是和N^2 成正比的,当N 很大时,运算量是可观的,因而需要改进对DFT 的算法减少运算速度。 根据傅立叶变换的对称性和周期性,我们可以将DFT 运算中有些项合并。我们先设序列长度为N=2^L,L 为整数。将N=2^L 的序列x(n)(n=0,1,……,N-1),

按N的奇偶分成两组,也就是说我们将一个N 点的DFT 分解成两个N/2 点的DFT,他们又重新组合成一个如下式所表达的N 点DFT: 一般来说,输入被假定为连续的。当输入为纯粹的实数的时候,我们就可以利用左右对称的特性更好的计算DFT。 我们称这样的RFFT 优化算法是包装算法:首先2N 点实数的连续输入称为“进包”。其次N 点的FFT 被连续运行。最后作为结果产生的N 点的合成输出是“打开”成为最初的与DFT 相符合的2N 点输入。使用这一思想,我们可以划分FFT 的大小,它有一半花费在包装输入O(N)的操作和打开输出上。这样的RFFT 算法和一般的FFT 算法同样迅速,计算速度几乎都达到了两次DFT的连续输入。下列一部分将描述更多的在TMS320C55x 上算法和运行的细节。 5.程序流程图:

图像格式转换实验报告

实验1 图像格式转换实验报告 学 号:12224506 姓 名:陈振辉 班 级:5班 一、实验目的 掌握两种以上图像的格式,重点掌握BMP 图像格式。 二、实验原理: 1、JPEG 文件的解码过程。 敷设技于管路护层防含线槽试以正常杂设方案以卷技术地缩小进行自动作,

①.读入文件的相关信息 按照上述的JPEG 文件数据存储方式,把要解码的文件的相关信息一一读出,为接下来的解码工作做好准备。参考方法是,设计一系列的结构体对应各个标记,并存储标记内表示的信息。其中图像长宽、多个量化表和哈夫曼表、水平/垂直采样因子等多项信息比较重 要。以下给出读取过程中的两个问题。 1)整个文件的大体结构 JFIF 格式的JPEG 文件(*.jpg)的一般顺序为: SOI(0xFFD8)APP0(0xFFE0)[APPn(0xFFEn)]可选 DQT(0xFFDB)SOF0(0xFFC0)DHT(0xFFC4)SOS(0xFFDA)压缩数据EOI(0xFFD9)2)字的高低位问题 JPEG 文件格式中,一个字(16位)的存储使用的是 Motorola 格式, 而不是 Intel 格式。 也就是说, 一个字的高字节(高8位)在数据流的前面, 低字节(低8位)在数据流的后面,与平时习惯的Intel 格式不一样。. 3)读出哈夫曼表数据 在标记段DHT 内,包含了一个或者多个的哈夫曼表。 不同位数的码字数量JPEG 文件的哈夫曼编码只能是1~16位。这个字段的16个字节分别表示1~16位的编码码字在哈 夫曼树中的个数。编码内容这个字段记录了哈夫曼树中各个叶子结点的权。所以,上一字段(不同位数的码字数量)的16个数值之和就应该是本字段的长度,也就是哈夫曼树中叶 子结点个数。 4)建立哈夫曼树 读出哈夫曼表的数据后,就要建立哈夫曼树。 ②.初步了解图像数据流的结构 a) 在图片像素数据流中,信息可以被分为一段接一段的最小编码单元(Minimum CodedUnit ,MCU )数据流。所谓MCU ,是图像中一个正方矩阵像素的数据。矩阵的大小 是这样确定的:查阅标记SOF0,可以得到图像不同颜色分量的采样因子,即Y 、Cr 、Cb 三个分量各自的水平采样因子和垂直采样因子。大多图片的采样因子为4:1:1或 1:1:1。其中,4:1:1即(2*2):(1*1):(1*1));1:1:1即(1*1):(1*1): (1*1)。记三个分量中水平采样因子最大值为Hmax ,垂直采样因子最大值为Vmax ,那么 单个MCU 矩阵的宽就是Hmax*8像素,高就是Vmax*8像素。 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

快速傅里叶变换实验报告..

快速傅里叶变换实验报告 班级: 姓名: 学号:

快速傅里叶变换 一.实验目的 1.在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解; 2.熟悉并掌握按时间抽取FFT 算法的程序; 3.了解应用FFT 进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT 。 二.实验内容 1.仔细分析教材第六章‘时间抽取法FFT ’的算法结构,编制出相应的用FFT 进行信号分析的C 语言(或MATLAB 语言)程序; 2.用FFT 程序分析正弦信号 ()sin(2)[()(*)],(0)1y t f t u t u t N T t u π=---∞<<+∞=设 分别在以下情况进行分析并讨论所得的结果: a ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.000625s b ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.005s c ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.0046875s d ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.004s e ) 信号频率 f =50Hz ,采样点数N=64,采样间隔T=0.000625s f ) 信号频率f =250Hz ,采样点数N=32,采样间隔T=0.005s g ) 将c ) 信号后补32个0,做64点FFT 三.实验要求 1.记录下实验内容中各种情况下的X (k)值,做出频谱图并深入讨论结果,说明参数的变化对信号频谱产生哪些影响。频谱只做模特性,模的最大值=1,全部归一化;

2.打印出用C 语言(或MATLAB 语言)编写的FFT 源程序,并且在每一小段处加上详细的注释说明; 3.用C 语言(或MATLAB 语言)编写FFT 程序时,要求采用人机界面形式: N , T , f 变量均由键盘输入,补零或不补零要求设置一开关来选择。 四.实验分析 对于本实验进行快速傅里叶变换,依次需要对信号进行采样,补零(要求补零时),码位倒置,蝶形运算,归一化处理并作图。 此外,本实验要求采用人机界面形式,N,T,F 变量由键盘输入,补零或不补零设置一开关来选择。 1.采样 本实验进行FFT 运算,给出的是正弦信号,需要先对信号进行采样,得到有限 长序列()n x , N n ...... 2,1,0= Matlab 实现: t=0:T:T*(N-1); x=sin(2*pi*f*t); 2.补零 根据实验要求确定补零与否,可以用if 语句做判断,若为1,再输入补零个数, 并将补的零放到采样得到的序列的后面组成新的序列,此时新的序列的元素个数等于原采样点个数加上补零个数,并将新的序列个数赋值给N 。 Matlab 实现: a=input('是否增加零点? 是请输入1 否请输入0\n'); if (a) ZeroNum=input('请输入增加零点的个数:\n'); else ZeroNum=0; end if (a) x=[x zeros(1, ZeroNum)];%%指令zeros(a,b)生成a 行b 列全0矩阵,在单行矩阵x 后补充0 end N=N+ZeroNum; 3.码位倒置 本实验做FFT 变换的级数为M ,N M 2log =

相关主题