搜档网
当前位置:搜档网 › 桩基抗拔计算书

桩基抗拔计算书

桩基抗拔计算书
桩基抗拔计算书

发电项目

桩基础抗拔分析

取一跨对支架系统受力分析,根据已确定的各项参数,验算抗拔承载力是否足够。

/2k uk p N T G <+

式中k N ——按荷载效应标准组合计算的基桩拔力;

uk T ——群桩呈非整体破坏时基桩的抗拔极限承载力标准值,可按桩基规范

5.4.6确定;

p G ——基桩自重,地下水位以下取浮重度,对于扩底桩应按桩基规范表

5.4.6-1确定桩、土柱体周长,计算桩、土自重。

(1) 群桩呈非整体破坏时, 基桩的抗拔极限承载力标准值按以下式计算:

q sik uk i i T u l =

式中: T uk --基桩抗拔极限承载里标准值

u i -- 破坏表面周长, 取u = πd ;

q sik -- 桩侧表面第i 层土的抗压极限侧阻力标准值; λi -- 抗拔系数;

风压标准值

Pa W W z s z k 19018500.14.10.10=???=???=μμβ

风力对组件的作用力

()N 93.739cos 6.23.319.1K N K =??=

桩身受力面积

2m 02.13.125.014.3πdh =??==S

单根桩需提供的抗拔力(卵石抗拔系数λ= 0.6 )

KN T 44.736.002.1120uk =??=

G p = 0.05 × 25 × 1.6 = 2.0 kN

KN N KN G T P 93.7>72.380.272.362/k uk ==+=+

桩基满足抗拔要求

四桩基础计算书1

四桩基础计算书 华清家园工程;工程建设地点:武清区新城翠通路西侧;属于结构;地上33层;地下1层;建筑高度:100m;标准层层高:3m ;总建筑面积:11500平方米;总工期:0天。 本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人。 本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2002)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《混凝土结构设计规范》(GB50010-2002)、《建筑桩基技术规范》(JGJ94-2008)等编制。 一、塔吊的基本参数信息 塔吊型号:TQ60/80,塔吊起升高度H:65.000m, 塔身宽度B:2.5m,基础埋深D:1.500m, 自重F1:852.6kN,基础承台厚度Hc:1.000m, 最大起重荷载F2:80kN,基础承台宽度Bc:6.000m, 桩钢筋级别:HPB235,桩直径或者方桩边长:0.700m, 桩间距a:5m,承台箍筋间距S:200.000mm, 承台混凝土的保护层厚度:50mm,承台混凝土强度等级:C35; 二、塔吊基础承台顶面的竖向力和弯矩计算 塔吊自重(包括压重)F1=852.60kN; 塔吊最大起重荷载F2=80.00kN; 作用于桩基承台顶面的竖向力F k=F1+F2=932.60kN; 风荷载对塔吊基础产生的弯矩计算: M kmax=2188.71kN·m; 三、承台弯矩及单桩桩顶竖向力的计算

1. 桩顶竖向力的计算 依据《建筑桩技术规范》(JGJ94-2008)的第5.1.1条,在实际情况中x、y轴是随机变化的,所以取最不利情况计算。 N ik=(F k+G k)/n±M yk x i/∑x j2±M xk y i/∑y j2; 其中 n──单桩个数,n=4; F k──作用于桩基承台顶面的竖向力标准值,F k=932.60kN; G k──桩基承台的自重标准值:G k=25×Bc×Bc×Hc=25×6.00×6.00× 1.00=900.00kN; M xk,M yk──承台底面的弯矩标准值,取2188.71kN·m; x i,y i──单桩相对承台中心轴的XY方向距离a/20.5=3.54m; N ik──单桩桩顶竖向力标准值; 经计算得到单桩桩顶竖向力标准值 最大压力:N kmax=(932.60+900.00)/4+2188.71×3.54/(2×3.542)=767.68kN。 最小压力:N kmin=(932.60+900.00)/4-2188.71×3.54/(2×3.542)=148.62kN。 不需要验算桩的抗拔! 2. 承台弯矩的计算 依据《建筑桩技术规范》(JGJ94-2008)的第5.9.2条。 M x = ∑N i y i M y = ∑N i x i 其中 M x,M y──计算截面处XY方向的弯矩设计值; x i,y i──单桩相对承台中心轴的XY方向距离取a/2-B/2=1.25m; N i1──扣除承台自重的单桩桩顶竖向力设计值,N i1=1.2×

桩基础课程设计计算书范本

桩基础课程设计计 算书

土 力 学 课 程 设 计 姓名: 学号: 班级: 二级学院: 指导老师:

地基基础课程设计任务书 [工程概况] 某城市新区拟建一栋10层钢筋混凝土框架结构的办公楼,长24.0m ,宽9.6m ,其1-5轴的柱底荷载效应标准组合值如下所示。建筑场地位于临街地块部·位,地势平坦,室外地坪标高同自然地面,室内外高差450mm 。柱截面尺寸均为500mm ×500mm ,横向承重,柱网布置图如图1所示。场地内地层层位稳定,场地地质剖面及桩基计算指标详见工程地质资料,如表1所示。勘察期间测得地下水水位埋深为 2.5m 。地下水水质分析结果表明,本场地地下水无腐蚀性。试按乙级条件设计柱下独立承台桩基础。 柱底荷载效应标准组合值 1轴荷载:5417;85.m;60k k k F kN M kN V kN ===。 2轴荷载:5411;160.m;53k k k F kN M kN V kN ===。 3轴荷载:5120;88.m;63k k k F kN M kN V kN ===。 4轴荷载:5300;198.m;82k k k F kN M KN V kN ===。 5轴荷载:5268;140.m;60k k k F kN M kN V kN ===。

图1 框架结构柱网布置图 (预制桩基础)--12土木1班 工程概况 某市新区钢筋混凝土框架结构的办公楼,长24.0米,柱距6米,宽9.6米,室内外地面高差0.45米。柱截面500×500mm 。建筑场地地质条件见表1。 表1 建筑场地地质条件

注:地下水位在天然地面下2.5米处 目录 地基基础课程设计任务书............................................................................ - 0 -工程概况....................................................................................................... - 1 - 1.设计资料.................................................................................................... - 4 - 2.选择桩型与桩端持力层、确定桩长和承台埋深...................................... - 4 - 3.确定单桩极限承载力标准值..................................................................... - 5 - 4.确定桩数和承台尺寸 ................................................................................ - 6 - 5.桩顶作用效应验算 .................................................................................... - 7 - 6.桩基础沉降验算 ........................................................................................ - 8 - 6.1 求基底压力和基底附加压力 ........................................................... - 8 - 6.2 确定沉降计算深度 ........................................................................... - 8 - 6.3 沉降计算........................................................................................... - 8 -

抗拔桩抗浮计算

抗拔桩抗浮计算书 一、工程概况: 本工程±0.00相对标高为100.55m,依据地质勘查报告,抗浮设计水位为98.00m,即±0.00以下2.55m。 本工程主楼为地上16层,地下两层,抗浮满足要求,不需要进行抗浮计算; 本工程副楼为地上三层,地下两层,对于纯地下两层地下室,由于上部无建筑物,无覆土,现进行抗浮计算如下: 二、浮力计算 基础底板顶标高为:-(4.5+5.4+0.4)=-10.30m 基础底板垫层底标高为:-(4.5+5.4+0.4+0.6+0.15)=-11.05m 浮力为F浮=rh=10x(11.05-2.55)=85KN/m2 1.主楼地上16层,能满足抗浮要求,不做计算; 2.副楼抗浮计算:(副楼立面示意如下图) 副楼地上3层部分,面积为401m2 故上部三层q 1 =(486+550+550)x9.8/401=38.76KN/ m2 地下一层面荷载为:q 2 =16 KN/ m2 地下二层面荷载为:q 3 =14 KN/ m2 基础回填土垫层:q 4 =15x0.4=6 KN/ m2 基础底板:q 5 =25x0.6=15 KN/ m2 则F抗= q=38.76+16+14+6+15=89.76KN/ m2 F抗/F浮=89.76/85=1.056>1.05 故副楼有地上3层部分不需要设置抗拔桩 副楼立面示意 3.对地上无上部结构的纯地下车库(下图阴影所示): F抗=16+14+6+15=51 KN/ m2 F1=F浮-F抗=85-51=34 KN/ m2 既不满足抗浮要求,需要设计抗拔桩进行抗浮 三、抗拔桩计算 依据《建筑桩基技术规范》第5.4.5条 N k≤2 T uk+G p 抗拔桩桩型采用钻孔灌注桩,桩经采用d=600mm 桩顶标高为筏板底标高:89.50m,桩长L=15m。 依据《建筑桩基技术规范》,地质报告,抗拔系数λ=0.5 1)群桩呈非整体破坏时,基桩的抗拔极限承载力标准值 - 1 -

扩底抗拔桩承载力计算

扩底抗拔桩抗拔承载力计算 丁浩珉 摘要:随着我国城市化进程的迅速发展,地下结构的建设呈现迅猛发展的势头。地下结构的抗浮问题日益受到国内外学者的重视。抗拔桩是当前应用的最为广泛的抗浮基础类型。然而抗拔桩的理论研究远远落后于工程实践。本文对扩底抗拔桩进行概述,并分析其破坏形态及作用机理。最后总结一些扩底抗拔桩承载力计算方法。 关键词:扩底抗拔桩承载力计算破坏机理 Calculation of the Up-lift Resistance Bearing Capacity of Bored Cast-in-place Pile with Enlarged Bottom Abstract :With the development of municipal engineering,lots of underground structures are built.More and more researchers are aware of the importance of resisting the uplift load.Tension piles are widely used to resist the uplift load,but theories about tension piles are far behind of engineering practice. This paper give an overview of tension piles with enlarge bottom,and analyze the failure modes and resisting mechanism.Finally,the paper will summarize some of the calculation of the up-lift resistance bearing capacity of bored cast-in-place pile with enlarged bottom. Keywords: tension piles with enlarge bottom calculation of bearing capacity failture mode 1 引言 近年来,随着城市建设的高速发展,城市建设用地越来越少,地下空间的开发和利用成为发展的必然趋势。大量带有地下车库的高程建筑,以及地下管廊,下沉式广场的兴建,使地下结构抗浮问题变得非常突出。目前,扩底抗拔桩因其单桩抗拔承载力大,质量易于保证,施工速度快,无噪音,无振动,在保证一定抗拔力的情况下,可缩短桩长,减少桩数,避免穿过某些复杂的地层,改善施工条件,省工省料省时,节约投资等特点,在工程中经常用来解决抗浮问题。但扩底桩的设计,试验资料甚少,扩底抗拔桩的理论尚未完善。一般在设计抗拔桩时,通常是参照规范规定的抗压桩的侧摩阻力,再乘以单一的经验折减系数,以此作为抗拔桩的侧摩阻力,再乘以单一的经验折减系数,以此作为抗拔桩的侧摩阻力来计算其抗拔力。扩底抗拔桩由于在桩底形成扩大头,增大桩端承载面积,从而提高单桩抗拔承载力,如何合理考虑桩底抗拔力成为设计计算的难点。本文对于各种扩底抗拔桩承载力计算方法进行总结,同同时对比等截面抗拔桩分析扩底抗拔桩的受力特点和扩底抗拔桩的受力机理,从而对扩底抗拔桩有个深入的认识。 2 扩底桩概述 扩底桩作为抗拔桩,其最大的优点是:可以用增加不多的材料来获取增加桩基抗拔承载力的效果。随着扩孔技术的不断发展,扩底桩的应用越来越广泛,设计理论也随之发展。 通常,桩基承载力中的桩侧摩阻力部分随着上拔荷载的增加开始也逐渐增大,但是一般在桩—土界面上相对位移达到4—10mm时,相应的侧壁摩阻力就会达到其峰值,其后将逐渐下降。但扩底桩与等截面桩不同。在基础上拔的过程中,扩大头上移挤压土体,土对它的反作用力(即上拔阻力)一般也是随着上拔位移的增加而增大的。并且,即使当桩侧摩阻

桩基础设计计算书

基础工程桩基础设计资料 ⑴上部结构资料某教学实验楼,上部结构为十层框架,其框架主梁、次梁、楼板均为现浇整体式,混凝土强度等级为C30,上部结构传至柱底的相应于荷载效应标准组合的荷载如下︰ 竖向力:4800 kN , 弯距:70 kN·m, 水平力:40 kN 拟采用预制桩基础,预制桩截面尺寸为 350mm * 350mm。 ⑵建筑物场地资料拟建建筑物场地位于市区内,地势平坦,建筑物场地位于非地震地区,不考虑地震影响.场地地下水类型为潜水,地下水位离地表 2.1 米,根据已有资料,该场地地下水对混凝土没有腐蚀性。建筑地基的土层分布情况及各土层物理,力学指标见下表: 表1 地基各土层物理、力学指标

基础工程桩基础设计计算 1. 选择桩端持力层 、承台埋深 ⑴.选择桩型 由资料给出,拟采用预制桩基础。 还根据资料知,建筑物拟建场地位于市区内,为避免对周围产生噪声污染和扰动地层,宜采用静压法沉桩,这样不仅可以不影响周围环境,还能较好地保证桩身质量和沉桩精度。 ⑵.确定桩的长度、埋深以及承台埋深 依据地基土的分布,第3层是粘土,压缩性较高,承载力中等,且比较厚,而第4层是粉土夹粉质粘土,不仅压缩性低,承载力也高,所以第4层是比较适合的桩端持力层。桩端全断面进入持力层1.0m (>2d ),工程桩入土深度为h ,h=1.5+8.3+12+1=22.8m 。 由于第1层厚1.5m ,地下水位离地表2.1m ,为使地下水对承台没有影响,所以选择承台底进入第2层土0.3m ,即承台埋深为1.8m 。 桩基的有效桩长即为22.8-1.8=21m 。 桩截面尺寸由资料已给出,取350mm ×350mm ,预制桩在工厂制作,桩分两节,每节长11m ,(不包括桩尖长度在内),实际桩长比有效桩长长1m ,是考虑持力层可能有一定起伏及桩需要嵌入承台一定长度而留有的余地。 桩基以及土层分布示意图如图1。 2.确定单桩竖向承载力标准值 按经验参数法确定单桩竖向极限承载力特征值公式为: uk sk pk sik i pk p Q Q Q u q l q A =+=+∑ 按照土层物理指标,查桩基规范JGJ94-2008表5.3.5-1和表5.3.5-2估算的极限桩侧,桩端阻力特征值列于下表:

桩基础实例设计计算书

桩基础设计计算书 一:建筑设计资料 1、建筑场地土层按其成因土的特征与力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为 2、0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V = 3200kN, M=400kN m g,H = 50kN; 柱的截面尺寸为:400×400mm; 承台底面埋深:D =2、0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10、0m 3、桩身资料: 混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16、5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设计值 为f m =1、5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。

桩静载荷试验曲线 二:设计要求: 1、单桩竖向承载力标准值与设计值的计算; 2、确定桩数与桩的平面布置图; 3、群桩中基桩的受力验算 4、承台结构设计及验算; 5、桩及承台的施工图设计:包括桩的平面布置图,桩身配筋图, 承台配筋与必要的施工说明; 6、需要提交的报告:计算说明书与桩基础施工图。 三:桩基础设计 (一):必要资料准备 1、建筑物的类型机规模:住宅楼 2、岩土工程勘察报告:见上页附表 3、环境及检测条件:地下水无腐蚀性,Q —S 曲线见附表 (二):外部荷载及桩型确定 1、柱传来荷载:V = 3200kN 、M = 400kN ?m 、H = 50kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10、0m,截面尺寸:300×300mm 3)、桩身:混凝土强度 C30、 c f =15MPa 、 m f =16、5MPa 4φ16 y f =310MPa

抗拔桩设计原理及运用

抗拔桩设计原理及运用 摘要:桩已广泛地用于各类工业与民用建筑物、构筑物的基础工程中,对于地下建筑物、自重比较轻而水平荷载又比较大的高耸构筑物、高宽比较大的高层建筑地下室承受巨大的水浮力作用而自重或压重不够时,桩就需要承受一个上拔荷载作用,桩的设计就涉及到一个“抗拔”问题。 关键词:桩;设计;承载力 Abstract: the pile is widely used in all kinds of industrial and civil buildings, structures foundation engineering, for the underground building, dead weight is light and horizontal load of the big and tall buildings, high wide of the big high-rise building basement bear huge water buoyancy effect and self-respect or pressure heavy enough, the pile would need to bear a pull on the load, the design of pile is involved a “resistance to pull out” problem. Keywords: pile; Design; Bearing capacity 与普通抗压桩相比,抗拔桩在设计要求(满足承载能力极限状态要求和正常使用极限状态要求)、设计方法(用分项系数表达的以概率理论为基础的极限状态设计方法、施工工艺(静压、振动、锤击、钻孔、人工挖孔、夯扩)等方面基本相同,但在受力特点、破坏机理、桩体设计和构造、单桩承载力的确定和测试、基础承台的设计和构造等方面却存在着较大的差异。本文主要从设计的角度出发,结合工程实践,对采用钢筋混凝土抗拔桩的基础设计需要考虑的一些问题进行综述,以供同行参考。 1 受力特点和破坏机理 对于一般工程桩来说抗拔力主要由桩侧摩阻力提供。当竖向拉力施加于桩顶时,上部桩身首先受到拉伸产生相对于土体的向上位移趋势,于是桩周土在桩侧界面上产生一个向下的摩阻力;荷载沿桩身向下传递过程就是不断克服这种摩阻力并通过它向土中扩散的过程,上部的位移总是大于下部,因此上部的摩阻总是先于下部发挥出来。当桩侧总摩阻力达到极限时,桩便发生急剧的、不停滞的上拔而破坏。当承台下桩数较少、桩距较大时,抗拔桩的破坏形式常呈现非整体性-单桩拔出破坏;但当承台下桩数较多桩距较小时,桩和土常作为一个整体上拔而破坏-群桩整体破坏。 2 选型与设计 桩型选择:原则上讲能够承受轴向拉力的桩,都可以作为抗拔桩。但预制桩尤其是预应力混凝土管桩由于桩顶与承台之间连接、桩段之间连接的抗拉力得不到有效保证,致使不少工程事故发生,因此工程中抗拔桩多选用灌注桩,同时只要条件允许,桩端一般嵌入坚硬而埋深较浅的基岩中,如果基岩上覆土较厚,常在桩端设置扩大头或采用挤扩支盘桩等形式以提高抗拔力。

桩基计算书汇总

独立桩承台设计(J2a-5) 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《建筑桩基技术规范》(JGJ 94-2008), 本文简称《桩基规范》 ----------------------------------------------------------------------- 1 设计资料 1.1 已知条件 承台参数(2 桩承台第 1 种) 承台底标高: -1.200(m) 承台的混凝土强度等级: C30 承台钢筋级别: HRB400 配筋计算a s: 150(mm) 承台尺寸参数 e11(mm)875e12(mm)875 A'(mm)500H(mm)1200 桩参数 桩基重要性系数: 1.0 桩类型: 混凝土预制桩 承载力性状: 端承摩擦桩 桩长: 10.000(m) 是否方桩: 否 桩直径: 500(mm) 桩的混凝土强度等级: C80 单桩极限承载力标准值: 3500.000(kN) 桩端阻力比: 0.400 均匀分布侧阻力比: 0.400 是否按复合桩基计算: 否 桩基沉降计算经验系数: 1.000 压缩层深度应力比: 20.00% 柱参数 柱宽: 500(mm) 柱高: 500(mm) 柱子转角: 0.000(度) 柱的混凝土强度等级: C30 柱上荷载设计值 弯矩M x: 50.000(kN.m) 弯矩M y: 50.000(kN.m) 轴力N : 3500.000(kN) 剪力V x: 15.000(kN) 剪力V y: 15.000(kN) 是否为地震荷载组合: 否 基础与覆土的平均容重: 0.000(kN/m3) 荷载综合分项系数: 1.20 1.2 计算内容 (1) 桩基竖向承载力计算 (2) 承台计算(受弯、冲切、剪计算及局部受压计算) 2. 计算过程及计算结果 2.1 桩基竖向承载力验算 (1) 桩基竖向承载力特征值R计算 根据《桩基规范》5.2.2及5.2.3 = R a Q uk K 式中: R a——单桩竖向承载力特征值; Q uk——单桩竖向极限承载力标准值; K ——安全系数,取K=2。 单桩竖向极限承载力标准值 Q uk = 3500.000(kN) 单桩竖向承载力特征值 R a = 1750.000(kN) (2) 桩基竖向承载力验算 根据《桩基规范》5.1.1 式5.1.1-1计算轴心荷载作用下桩顶全反力,式5.1.1-2计算偏心荷载作用下桩顶全反力在轴心荷载作用下,桩顶全反力 N k = 1458.333(kN) 按《桩基规范》5.2.1(不考虑地震作用) 式5.2.1-1 (γ0N k≤1.00R) 验算 (γ0N k=1458.333kN) ≤ (1.00R=1750.000kN) 满足. 在偏心荷载作用下,按《桩基规范》5.2.1(不考虑地震作用) 式5.2.1-2 (γ0N kmax≤1.20R) 计算桩号 1 : (γ0N1k=1425.952kN) ≤ (1.20R=2100.000kN) 满足。 桩号 2 : (γ0N2k=1490.714kN) ≤ (1.20R=2100.000kN) 满足。 (γ0N kmax=1490.714kN) ≤ (1.20R=2100.000kN) 满足. 2.2 承台受力计算 (1) 各桩净反力(kN) 根据《桩基规范》5.1.1 式5.1.1-2计算桩顶净反力(G=0.0kN) 桩号01 净反力: 1711.143(kN) 桩号02 净反力: 1788.857(kN) 最大桩净反力 : 1788.857(kN) (2) 受弯计算 根据《桩基规范》5.9.2第1款,计算承台柱边截面弯矩 柱边左侧承台弯矩 : 1069.464(kN.m) 柱边右侧承台弯矩 : 1118.036(kN.m) 柱边上侧承台弯矩 : 0.000(kN.m) 柱边下侧承台弯矩 : 0.000(kN.m) 承台控制弯矩 M x : 0.000(kN.m) M y : 1118.036(kN.m) 根据《混凝土规范》附录G G.0.2,按深受弯构件计算承台计算配筋 ≤ M f y A s z 取按板单筋和深受弯计算配筋的最大值 承台X方向计算配筋A sx : 3768(mm2) 承台Y方向计算配筋A sy : 按构造筋 (3) 柱对承台的冲切 不需要验算 (4) 桩对承台的冲切 桩号 1 不需要验算 桩号 2 不需要验算

设备基础计算书

设备基础计算书 1.计算依据 《动力机器基础设计规范》 (GB50040-96) 《建筑地基基础设计规范》 (GB50007-2002) 《混凝土结构设计规范》 (GB50010-2010) 《重载地面、轨道及特殊楼地面》(06J305) 《动力机器基础设计手册》 (中国建筑工业出版社) 2.工程概况 设备静载按G1=10t/m2=100KN/m2; 地基承载力特征值fa=180kPa; 采用C30混凝土,设备基础高度250mm,钢筋采用I级钢(HPB300) 根据所提资料计算160T冲床设备基础的承载力计算,设备基础根据设备脚架尺寸每边向外扩300mm进行计算。160T冲床设备基础示意图如下图所示 设备基础示意图 3.计算过程 设备基础正截面受压承载力计算() *fc*A=**1000000*A=*106A N=*G1*A =*105*A<*fcA 即设备基础正截面受压满足要求 3.2设备基础正截面受弯承载力计算 (仅计算长度方向,取土重度gma=20kN/m3,混凝土保护层厚度取30mm) pk=G1+G2=*105 +25*1000*= 单位宽度基地净反力 p=*( G1+G2-gma*h)=**103-20*103*=m 计算可得最大正弯矩为M=,支座最大负弯矩为M=根据()计算可得 基础底面计算配筋面积As1=565mm2 基础顶面计算配筋面积As2=258mm2 根据(GB50010-2010)取最小配筋率ρmin= 0. 2% 最小配筋面积为Asmin=%*1000*250=500 mm2 基础顶部和底部可配12200(As=565mm2) 3.3地脚螺栓抗倾覆验算(每个设备基础共四个地脚螺栓孔) 取每个地脚的上拔力设计值 q1=* *(G1+G2)* A=****= 倾覆力矩MS=q1*=有设备基础的大小可知抗倾覆力矩

桩基础设计计算书样本

桩基础设计计算书

桩基础设计计算书 1、研究地质勘察报告 1.1地形 拟建建筑场地地势平坦,局部堆有建筑垃圾。 1.2、工程地质条件 自上而下土层一次如下: ① 号土层:素填土,层厚约为 1.5m ,稍湿,松散,承载力特征值 a ak KP f 95= ② 号土层:淤泥质土,层厚 5.5m ,流塑,承载力特征值 a ak KP f 65= ③ 号土层:粉砂,层厚 3.2m ,稍密,承载力特征值a ak KP f 110= ④ 号土层:粉质粘土,层厚 5.8m ,湿,可塑,承载力特征值 a ak KP f 165= ⑤ 号土层:粉砂层,钻孔未穿透,中密-密实,承载力特征值 a ak KP f 280= 1.3、 岩土设计参数 岩土设计参数如表1和表2所示。 表1地基承载力岩土物理力学参数

表2桩的极限侧阻力标准值 q和极限端阻力标准值pk q单位KPa sk 1.4水文地质条件 ⑴拟建场区地下水对混凝土结构无腐蚀性。 ⑵地下水位深度:位于地表下4.5m。 1.5 场地条件 建筑物所处场地抗震设防烈度为7度,场地内无可液化沙土、粉土。 1.6 上部结构资料 拟建建筑物为六层钢筋混凝土结构,长30m,宽9.6m。室外地坪标高同自然地面,室内外高差450mm。柱截面尺寸均为 400mm 400mm,横向承重,柱网布置如图所示。

2.选择桩型、桩端持力层、承台埋深 根据地质勘查资料,确定第⑤层粉砂层为桩端持力层。采用钢筋混凝土预制桩,桩截面为方桩,400mm×400mm桩长为15.7m。桩顶嵌入承台70mm,桩端进持力层1.2m承台埋深

抗浮桩计算

抗浮桩计算 +有实列----难得啊! 一般抗浮计算: (局部抗浮) 1."05F浮力- 0."9G自重<0即可 (整体抗浮) 1."2F浮力- 0."9G自重<0即可 如果抗浮计算不满足的话,地下室底板外挑比较经济 同意以上朋友的观点,一般增大底版自重及底板外挑比抗拔桩要经济很多 【】抗浮锚杆设计总结 抗浮锚杆设计总结 1适用的规范 抗浮锚杆的设计并无相应的规范条文,《建筑地基基础设计规范GB50007---2002》中“岩石锚杆基础”部分以及《建筑边坡工程技术规范GB50330-2002》有关锚杆的部分可以参考使用,不过最好只用于估算,锚杆抗拔承载力特征值应通过现场试验确定,有一些锚杆构造做法可以参考。对于锚杆估算,推荐使用《建筑边坡工程技术规范GB50330-2002》,对于岩土的分类较细,能查到一些必要的参数。 2锚杆需要验算的内容 1)锚杆钢筋截面面积;

2)锚杆锚固体与土层的锚固长度; 3)锚杆钢筋与锚固砂浆间的锚固长度; 4)土体或者岩体的强度验算; 3锚杆的布置方式与优缺点 1)集中点状布置,一般布置在柱下;优点: 可以充分利用上部结构传来的竖向力来平衡掉一部分水浮力;由于锚杆布置集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有很强的抵抗力。缺点: 要求锚固于坚硬岩体中,不适用于软岩与土体,破坏往往是锚固岩体的破坏;由于局部锚杆较密,锚杆施工不方便;地下室底板梁板配筋较大。 2)集中线状布置,一般布置于地下室底板梁下;优点: 由于锚杆布置相对集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有较强的抵抗力。缺点: 不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全,对于跨高比小于6的底板梁,可以适当考虑上部结构传来的竖向力来平衡掉一部分水浮力),要求锚固于较硬岩体中,不适用于软岩与土体;地下室底板板配筋较大。 3)面状均匀布置,在地下室底板下均匀布置;优点: 适用于所有土体和岩体;地下室底板梁板配筋较小。缺点: 不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全);对于个别锚杆承载力不足的情况,由于能分担的锚杆较少,此情况抵抗力差;由于锚杆布置相对分散,对于地下室底板下的外防水施工比较麻烦。

抗拔桩设计

抗拔桩设计

水池抗浮设计方案的分析与比较 毕雅明 (同济大学建筑设计研究院环境工程设计分院,上海200092) 提要对目前在水池抗浮设计中常用的各种方案进行了较为深入的分析,并针对各种抗浮措施在其适用条件及经济性、可行性上进行比较。有利于在工程设计中采用更为经济、合理的抗浮方案。 关键词水池抗浮,抗浮设计,抗浮措施 Analysis and comparison about Anti-floating on concrete water pool design Abstract In-depth analysis about various anti-floating design projects of commonly used on concrete water pool design, and measures against various anti-floating in its application conditions and the economy, feasibility. Be benefit to chose a more economical and reasonable anti-floating program in design works. Keywords anti-floating of water pool, anti-floating design, Anti-floating measures 1 概述 在市政、环境、水利和工业项目建设中,有大量的埋地式水池构筑物。对于建设在地下水位较高地区的埋地式水池,其抗浮措施是设计中必需解决的重要问题之一。 目前在抗浮设计中常用的方

桩基础的设计计算 m值法

桩基础的设计计算 1.本章的核心及分析方法 本节将介绍考虑桩与桩侧土共同抵抗外荷载作用时桩身的内力计算,从而解决桩的强度问题。重点是桩受横轴向力时的内力计算问题。 桩在横轴向荷载作用下桩身的内力和位移计算,国内外学者提出了许多方法。目前较为普遍的是桩侧土采用文克尔假定,通过求解挠曲微分方程,再结合力的平衡条件,求出桩各部位的内力和位移,该方法称为弹性地基梁法。 以文克尔假定为基础的弹性地基梁法从土力学观点看是不够严密的,但其基本概念明确,方法简单,所得结果一般较安全,在国内外工程界得到广泛应用。我国公路、铁路在桩基础的设计中常用的"m"法、就属此种方法,本节将主要介绍"m"法。 2.学习要求 本章应掌握桩单桩按桩身材料强度确定桩的承载力的方法," "法计算单桩内力的各种计算参数的使用方法,多排桩的主要计算参数及其各自的含义。掌握承台计算方法,群桩设计的要点及注意事项,了解桩基设计的一般程序及步骤。本专科生均应能独立完成单排桩和多排桩的课程设计。 第一节单排桩基桩内力和位移计算 一、基本概念 (一)土的弹性抗力及其分布规律

1.土抗力的概念及定义式 (1)概念 桩基础在荷载(包括轴向荷载、横轴向荷载和力矩)作用下产生位移及转角,使桩挤压桩侧土体,桩侧土必然对桩产生一横向土抗力,它起抵抗外力和稳定桩基础的作用。土的这种作用力称为土的弹性抗力。 (2)定义式 (4-1) 式中:--横向土抗力,kN/m2; --地基系数,kN/m3; --深度Z处桩的横向位移,m。 2.影响土抗力的因素 (1)土体性质 (2)桩身刚度 (3)桩的入土深度 (4)桩的截面形状 (5)桩距及荷载等因素 3.地基系数的概念及确定方法 (1)概念

抗拔桩设计计算

抗拔桩设计计算 1、设计依据 中华人名共与国行业标准:《建筑桩基技术规范》JGJ 94-94 2、计算条件 图纸给出筏板面积:2180、86m2,每平米浮力:10t/m2。 则筏板所受总浮力为:21808、6t。 2、计算给定地层单桩抗拔极限承载力标准值 (5、2、18-1) Uk――基桩抗拔极限承载力标准值; ui――破坏表面周长,对于等直径桩取u=πd; q sik――桩侧表面第i层土得抗压极限侧阻力标准值,本次计算根据勘察报告取值为45KPa; λi――抗拔系数,按照表5、2、18-2取值。本次计算λi=0、75。 l i――第i土层厚度,本次计算仅涉及粘质粉土⑥层,厚度10m。 2、1 桩径d=0、6m情况得单桩抗拔极限承载力标准值 U k=0、75×45×0、6π×10 = 636、17(KN)=63、6t 2、2桩径d=0、4m情况得单桩抗拔极限承载力标准值 Uk=0、75×45×0、4π×10 = 424、12(KN)=42、4t 3、根据群桩基础抗拔承载力计算所需要抗拔桩总数 (5、2、17-2) 其中: γ0――建筑桩基重要性系数,按照表3、3、3确定安全等级,本次计算按照一级(重要得工业与民用建筑物)取值为1、1; N――基桩上拔力设计值21808、6t; Gp――基桩自重设计值. γs――桩侧阻抗力分项系数,按照表5、2、2取值1、67。

3、1 对d=0、6m桩总桩数 1、1×21808、6≦63、6/1、67×n+ 0、25×π×0、62×10 (根) 计算置换率为 桩间距(m) 3、2 对d=0、4m桩总桩数 1、1×21808、6≦42、4/1、67× n + 0、25×π×0、42×10(根) 计算置换率为 桩间距(m) 4、对上述抗拔设计进行抗压验算 4、1 单桩竖向承载力设计值 (5、2、2—3) 其中: Q sk、Q pk――分别为单桩总极限侧阻力与总极限端阻力标准值; Q ck――相应于任一复合基桩得承台底地基土总极限阻力标准值,可表示为 qck――承台底1/2承台宽度深度范围内(≦5m)内地基土极限阻力标准值; Ac――承台底地基土净面积; ηs、ηp、ηc――分别为桩侧阻群桩效应系数、桩端阻群桩效应系数、承台底土阻力群桩效应系数,按表5、2、3—1取用; (5、2、3) A ic、A e c――承台内区(外围桩边包络区)、外区得净面积,A c= A i c+Ae c ηi c、ηe c――承台内、外区土阻力群桩效应系数,按表5、2、3取用;

(完整版)桩基础设计计算书

目录 1设计任务 (2) 1.1设计资料 (2) 1.2设计要求 (3) 2 桩基持力层,桩型,桩长的确定 (3) 3 单桩承载力确定 (3) 3.1单桩竖向承载力的确定 (3) 4 桩数布置及承台设计 (4) 5 复合桩基荷载验算 (6) 6 桩身和承台设计 (9) 7 沉降计算 (14) 8 构造要求及施工要求 (20) 8.1预制桩的施工 (20) 8.2混凝土预制桩的接桩 (21) 8.3凝土预制桩的沉桩 (22) 8.4预制桩沉桩对环境的影响分析及防治措施 (23) 8.5结论与建议 (25) 9 参考文献 (25)

一、设计任务书 (一)、设计资料 1、某地方建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为5层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.1m,本场地下水无腐蚀性。建筑安全等级为2级,已知上部框架结构由柱子传来的荷载。承台底面埋深:D =2.1m。

(二)、设计要求: 1、桩基持力层、桩型、承台埋深选择 2、确定单桩承载力 3、桩数布置及承台设计 4、群桩承载力验算 5、桩身结构设计和计算 6、承台设计计算 7、群桩沉降计算 8、绘制桩承台施工图 二、桩基持力层,桩型,桩长的确定 根据设计任务书所提供的资料,分析表明,在柱下荷载作用下,天然地基基础难以满足设计要求,故考虑选用桩基础。由地基勘查资料,确定选用第四土层黄褐色粉质粘土为桩端持力层。 根据工程请况承台埋深 2.1m,预选钢筋混凝土预制桩断面尺寸为450㎜×450㎜。桩长21.1m。 三、单桩承载力确定 (一)、单桩竖向承载力的确定: 1、根据地质条件选择持力层,确定桩的断面尺寸和长度。 根据地质条件以第四层黄褐色粉土夹粉质粘土为持力层, 采用截面为450×450mm的预置钢筋混凝土方桩,桩尖进入持力层 1.0m;镶入承台0.1m,桩长21.1 m。承台底部埋深 2.1 m。 2、确定单桩竖向承载力标准值Quk可根据经验公式估算: Quk= Qsk+ Qpk=μ∑qsikli+qpkAp Q——单桩极限摩阻力标准值(kN) sk Q——单桩极限端阻力标准值(kN) pk u——桩的横断面周长(m) A——桩的横断面底面积(2m) p L——桩周各层土的厚度(m) i q——桩周第i层土的单位极限摩阻力标准值(a kP)sik q——桩底土的单位极限端阻力标准值(a kP) pk 桩周长:μ=450×4=1800mm=1.8m

抗拔桩承载力计算书

单桩承载力计算书 、设计资料 1. 单桩设计参数 桩类型编号1 桩型及成桩工艺:泥浆护壁灌注桩 桩身直径d = 0.500m 桩身长度I = 13.00m 桩顶标高81.00m 2?土层性能 3.勘探孔 天然地面标高96.00m 地下水位标高92.00m 注:标高均指绝对标高。 4.设计依据 《建筑桩基技术规范》JGJ 94-2008 二、竖向抗压承载力 单桩极限承载力标准值: Q uk = u」q sik|i + q pk A p =1.57 x(60 X2.50 + 38 X4.00 + 65 X6.50) + 0 X0.20

=1138kN 三、竖向抗拔承载力 基桩抗拔极限承载力标准值: T uk = :Fq sik U i l i =0.75 X60 X1.57 X2.50 + 0.72 X38 X1.57 X4.00 + 0.55 X65 X1.57 X6.50 =714kN 四、基桩抗拔力特征值 R tu=T uk/2+G p=714/2+0.5x0.5x3.14x13x25x1.35=612Kn

桩身强度计算书 、设计资料 1. 基本设计参数 桩身受力形式:轴心抗拔桩 轴向拉力设计值:N' = 750.00 KN 轴向力准永久值:N q = 560.00 KN 不考虑地震作用效应 主筋:HRB400 f y = 360 N/mm 2E s = 2.0 X105 N/mm 2 箍筋:HRB400 钢筋类别:带肋钢筋 桩身截面直径:D = 500.00 mm 纵筋合力点至近边距离:a s = 35.00 mm 混凝土: C30 f tk = 2.01 N/mm 2 最大裂缝宽度限值:-iim = 0.3000 mm 2. 设计依据 《建筑桩基技术规范》JGJ 94-2008 《混凝土结构设计规范》GB 50010--2010 、计算结果 1. 计算主筋截面面积 根据《混凝土结构设计规范》式( 6.2.22 ) N' W f y A s + f py A py 因为不考虑预应力,所以式中f py及A py均为0 N' 750.000 X103 A s = ' = = 2083.33 mm 2 f y 360 2. 主筋配置 根据《建筑桩基技术规范》第 4.1.1条第1款 取最小配筋率-min = 0.597%

桩基础课程设计计算书

土 力 学 课 程 设 计 姓名: 学号: 班级: 二级学院: 指导老师:

地基基础课程设计任务书 [工程概况] 某城市新区拟建一栋10层钢筋混凝土框架结构的办公楼,长24.0m ,宽9.6m ,其1-5轴的柱底荷载效应标准组合值如下所示。建筑场地位于临街地块部·位,地势平坦,室外地坪标高同自然地面,室内外高差450mm 。柱截面尺寸均为500mm ×500mm ,横向承重,柱网布置图如图1所示。场地内地层层位稳定,场地地质剖面及桩基计算指标详见工程地质资料,如表1所示。勘察期间测得地下水水位埋深为2.5m 。地下水水质分析结果表明,本场地地下水无腐蚀性。试按乙级条件设计柱下独立承台桩基础。 柱底荷载效应标准组合值 1轴荷载:5417;85.m;60k k k F kN M kN V kN ===。 2轴荷载:5411;160.m;53k k k F kN M kN V kN ===。 3轴荷载:5120;88.m;63k k k F kN M kN V kN ===。 4轴荷载:5300;198.m;82k k k F kN M KN V kN ===。 5轴荷载:5268;140.m;60k k k F kN M kN V kN ===。 图1 框架结构柱网布置图

(预制桩基础)--12土木1班 工程概况 某市新区钢筋混凝土框架结构的办公楼,长24.0米,柱距6米,宽9.6米,室内外地面高差0.45米。柱截面500×500mm。建筑场地地质条件见表1。 表1 建筑场地地质条件 注:地下水位在天然地面下2.5米处

目录 地基基础课程设计任务书........................................................................................................ - 0 - 工程概况.................................................................................................................................... - 1 - 1.设计资料................................................................................................................................. - 3 - 2.选择桩型与桩端持力层、确定桩长和承台埋深................................................................. - 3 - 3.确定单桩极限承载力标准值................................................................................................. - 4 - 4.确定桩数和承台尺寸............................................................................................................. - 5 - 5.桩顶作用效应验算................................................................................................................. - 5 - 6.桩基础沉降验算..................................................................................................................... - 6 - 6.1 求基底压力和基底附加压力...................................................................................... - 6 - 6.2 确定沉降计算深度...................................................................................................... - 6 - 6.3 沉降计算...................................................................................................................... - 6 - 6.4 确定沉降经验系数...................................................................................................... - 7 - 8 承台设计计算........................................................................................................................ - 9 - 8.1承台受冲切承载力验算............................................................................................... - 9 - 8.1.1.柱边冲切............................................................................................................. - 9 - 8.1.2角桩向上冲切................................................................................................... - 10 - 8.2承台受剪承载力计算................................................................................................. - 10 - 8.3承台受弯承载力计算..................................................................................................- 11 - 参考文献...................................................................................................................................- 11 -

相关主题