搜档网
当前位置:搜档网 › 基于hyperworks的结构静力学分析实例教程

基于hyperworks的结构静力学分析实例教程

基于hyperworks的结构静力学分析实例教程
基于hyperworks的结构静力学分析实例教程

Linear Static Analysis of a Plate with a Hole - RD-1000

This tutorial demonstrates how to create finite elements on a given CAD geometry of a plate with a hole, apply boundary conditions, and perform a finite element analysis of the problem. Post-processing tools will be used in HyperView to determine deformation and stress characteristics of the loaded plate.

The following exercises are included:

?Setting up the problem in HyperMesh

?Applying Loads and Boundary Conditions

?Submitting the job

?Viewing the results

Exercise

Step 1: Launch HyperMesh and set the RADIOSS (Bulk Data) User Profile

https://www.sodocs.net/doc/a59962095.html,unch HyperMesh.

A User Profiles… Graphic User Interface (GUI) will appear. If it does not appear, go to Preferences>

User Profiles … from the menu on the top.

2.Select RADIOSS in the User Profile dialog.

3.From the extended list, select Bulk Data.

4.Click OK.

This loads the User Profile. It includes the appropriate template, macro menu, and import reader, paring down the functionality of HyperMesh to what is relevant for generating models in Bulk Data Format for RADIOSS and OptiStruct.

Step 2: Open the File plate_hole.hm

1.Click the Open .hm file icon .

An Open file… browser window pops up.

2.Select the plate_hole.hm file, located in the HyperWorks installation directory under

/tutorials/hwsolvers/radioss/.

3.Click Open.

The plate_hole.hm database is loaded into the current HyperMesh session, replacing any existing data. The database only contains geometric data.

Setting Up the Problem in HyperMesh

When building models, we encourage you to create the material and property collectors before creating the component collectors. This is the most efficient way of setting up the file since components need to reference materials and properties.

Step 3: Create the material

1.Click the Material Collector Panel toolbar button .

2.Make sure the create subpanel is selected using the radio buttons on the left-hand side of the panel.

3.Click mat name = and enter steel.

4.Select the desired color for the material steel by clicking on .

5.Click type = and select ISOTROPIC.

6.Click card image = and select MAT1.

7.Click create/edit.

The MAT1 card image pops up.

If a material property in brackets does not have a value below it, it is off. To edit these material

properties, click the property in brackets you wish to edit and an entry field will appear below it. Click the entry field and enter a value.

8.Enter the following values for E, NU and RHO; E as 2e5; NU as 0.3 and RHO as 7.9e-09.

9.Click return twice.

A new material, steel, has been created. The material uses RADIOSS's linear isotropic material model,

MAT1. This material has a Young's Modulus of 2E+05 and a Poisson's Ratio of 0.3. It is not necessary to define a density value since only a static analysis will be performed. Density values are required,

however, for other solution sequences.

At any time, the card image for this collector can be modified using the Card Editor .

Step 4: Create the properties and update the Component Collector

1.Click Properties toolbar icon .

2.Make sure the create subpanel is selected using the radio buttons on the left-hand side of the panel.

3.Click prop name = and enter plate_hole.

4.Select the desired color for the property plate_hole by clicking on .

5.Click type = and select 2D.

6.Click card image = and select PSHELL.

7.Click material = and select steel.

8.Click create/edit.

The PSHELL card image pops up.

9.Click [T] and enter 10.0 as the thickness of the plate.

10.Click return twice and go back to the main menu.

The property of the shell structure has been created as 2D PSHELL. Material information is also linked to this property.

11.Click the Component Collector Panel toolbar button .

12.Make sure the update subpanel is selected using the radio buttons on the left-hand side of the panel.

13.Click comps >> and select plate_hole from the list.

14.Toggle to property =.

15.Click property = twice and select the plate_hole property from the list.

Property card image and material information are listed below the property entry field.

16.Click update.

17.Click return to go to the main menu.

The component plate_hole has been updated with a property of the same name and is currently the

“Current Component” (see the box in the lower right for plate_hole ). This component uses the

plate_hole property definition with a thickness value of 10.0. The material steel is referenced by this component.

At any time, the card image for this collector can be modified using the Card Editor and the material referenced by this component collector can be changed using the update option in the Collectors panel.

Apply loads and boundary conditions to the model

In the following steps, the model is constrained so that two opposing edges of the four external edges cannot move. The other two edges remain unconstrained. A total load of 1000N is applied at the edge of the hole in the positive z-direction.

Step 5: Create load collectors (spcs and forces )

A new load collector, spcs is created.

A new load collector, forces is created.

Step 6: Create constraints

1.Click the Load Collectors toolbar icon .

2.Make sure the create subpanel is selected using the radio buttons on the left-hand side of the panel.

3.Click loadcol name = and enter spcs .

4.Click color and select a color from the color palette.

5.Click the creation method switch and select no card image from the pop-up menu.

6.Click create .

7.Click loadcol name = and enter forces .

8.Click color and select a different color from the color palette.

9.Click create .

10.Click return to go to the main menu.1.From Model Browser expand LoadCollectors , right-click on spcs and click Make current to set spcs

as the current load collector.

The window is polygonal, and every mouse click creates a window vertex.

Illustration of which nodes to select for applying single point constraints. Dofs with a check will be constrained while dofs without a check will be free.

Dofs 1, 2, and 3 are x, y, and z translation degrees of freedom.

Dofs 4, 5, and 6 are x, y, and z rotational degrees of freedom.

This applies these constraints to the selected nodes.

Step 7: Create forces on the nodes around the hole

The window is polygonal, and every mouse click creates a window vertex.

2.From the Analysis page,enter the constraints panel.

3.Make sure the create subpanel is selected using the radio buttons on the left-hand side of the panel.

4.Make sure nodes are selected from the entity selection switch.

5.Click nodes and select by window from the pop-up extended entity selection menu.

6.

Draw a window in the graphics area encompassing the nodes to be selected (shown in the figure).7.Check the box beside interior and click on select entities .

8.Constrain dof1, dof2, dof3, dof4, dof5, and dof6 and set all of them to a value of 0.0.

9.Ensure the load types is set to SPC .

10.Click create .

11.Click return to go to the main menu.

1.Set your current load collector to forces in Model Browser as shown before in point 1 under Step 6.

2.From the Analysis page, enter the forces panel.

3.Make sure the create subpanel is selected using the radio buttons on the left-hand side of the panel.

4.Make sure nodes are selected from the entity selection switch.

5.Click nodes and select by window from the pop-up extended entity selection menu.

6.Draw a window in the graphics window encompassing the nodes shown in the figure below.

Nodes selected for creating loading around hole.

7.Check the box beside interior and click on select entities.

8.Set the coordinate system toggle to global system.

9.Click the vector definition switch and select constant vector.

10.Click magnitude = and enter 21.277 (i.e. 1000 divided by the number of nodes 47).

11.Click the direction definition switch below magnitude=, and select z-axis from the pop-up menu.

12.Ensure the load types is set to FORCE.

13.Click create.

This creates a number of point forces, with the given magnitude in the z-direction, to be applied to the nodes about the hole.

14.Click return to go to the main menu.

Step 8: Create a RADIOSS subcase (also referred to as a loadstep)

1.From the Analysis page, enter the loadsteps panel.

2.Click name = and enter lateral force.

3.Click the type: switch and select linear static, if it is not already selected by default.

4.Check the box preceding SPC.

An entry field appears to the right of SPC.

5.Click on the entry field and select spcs from the list of load collectors.

6.Check the box preceding LOAD.

An entry field appears to the right of LOAD.

7.Click on the entry field and select forces from the list of load collectors.

8.Click create.

A RADIOSS subcase has been created which references the constraints in the load collector spcs and

the forces in the load collector forces.

9.Click return to go to the main menu.

Step 9: Submitting the job

1.From the Analysis page, enter the RADIOSS panel.

2.Click save as… following the input file: field.

A Save file… browser window pops up.

3.Select the directory where you would like to write the RADIOSS model file and enter the name for the

model, plate_hole.fem, in the File name: field.

The .fem filename extension is the recommended extension for RADIOSS Bulk Data Format input decks.

4.Click Save.

Note the name and location of the plate_hole.fem file displays in the input file: field.

5.Set the export options:toggle to all.

6.Click the run options: switch and select analysis.

7.Set the memory options: toggle to memory default.

8.Click Radioss.

This launches the RADIOSS job. If the job is successful, you should see new results files in the directory from which plate_hole.fem was selected. The plate_hole.out file is a good place to look for error messages that could help debug the input deck if any errors are present.

The default files written to the directory are:

plate_hole.html HTML report of the analysis, giving a summary of the problem

formulation and the analysis results.

plate_hole.out RADIOSS output file containing specific information on the file setup,

the setup of your optimization problem, estimates for the amount of

RAM and disk space required for the run, information for each

optimization iteration, and compute time information. Review this file

for warnings and errors.

plate_hole.h3d HyperView binary results file.

plate_hole.res HyperMesh binary results file.

plate_hole.stat Summary of analysis process, providing CPU information for each

step during analysis process.

Viewing the Results

Displacement and Stress results for linear static analyses are output from RADIOSS by default. The following steps describe how to view those results in HyperView.

HyperView is a complete post-processing and visualization environment for finite element analysis (FEA), multi-body system simulation, video and engineering data.

Step 10: View a contour plot of stresses

1.Once you receive the message 'Process Completed Successfully' in the command window, click

HyperView.

HyperView is launched and the results are loaded. A message window appears to inform of the

successful model and result files loading into HyperView.

2.Click Close to close the message window.

3.Click the Contour toolbar button .

4.Select the first pull-down menu below Result type:and select Element Stresses [2D & 3D] (t).

5.Select the second pull-down menu below Result type:and select vonMises.

6.Select None in the field below Averaging method:.

7.Click Apply.

A contoured image representing von Mises stresses should be visible. Each element in the model is

assigned a legend color, indicating the von Mises stress value for that element, resulting from the applied loads and boundary conditions.

8.Click Top in the view controls from the bottom right corner to view the model, as shown in the following

figure.

von Mises stress assigned plot

What is the maximum von Mises stress value?

At what location does the model have its maximum stress?

Does this make sense based on the boundary conditions applied to the model?

Step 11: View a contour plot of displacements

1.Select the first pull-down menu below Result type:and select Displacement (v).

2.Select the second pull-down menu below Result type:and select Mag.

3.Click Apply.

The resulting contours represent the displacement field resulting from the applied loads and boundary conditions.

What is the maximum Displacement value?

At what location does the model have its maximum displacement?

Does this make sense based on the boundary conditions applied to the model?

Step 12: View the deformed shape

1.Click Iso in the view controls (bottom right corner) to display the isometric view of the model.

2.Click the Deformed toolbar button .

3.Set Result type: to Displacement(v), Scale:to Scale factor; and Type:to Uniform.

4.In the field next to value, enter 500.

This means that the displacement results of the analysis will be multiplied by 500.

5.For Show:, select Wireframe.

6.Click Apply.

A deformed plot of your model with displacement contour should be visible, overlaid on the original

undeformed mesh. Refer to the following figure to see what the plot should look like in isometric view.

Isometric view of deformed plot overlaid on the original undeformed mesh with model units set to 500.

Go To

RADIOSS, MotionSolve, and OptiStruct Tutorials

hyperworks接触分析1

在很多场合,要将若干个零件组装起来进行有限元分析,如将连杆与连杆盖用连杆螺栓连接起来,机体与气缸盖用螺栓连接起来,机体与主轴承盖连接起来。如何模拟螺栓预紧结构更符合实际情况,是提高有限元计算精度的关键。 螺栓+螺母的连接与螺钉的连接有所不同,螺栓+螺母的连接方式比较简单,可以假设螺母与螺栓刚性连接,由作用在螺母上的拧紧力矩折算出作用在螺栓上的拉伸力F,将螺杆中间截断,在断面各单元的节点上施加预紧单元PRETS179,模拟螺栓的连接情况。 对于螺钉(双头螺栓)连接有些不一样,螺钉头部对连接件1施加压应力,接触面是一个圆环面,但栽丝的一端,连接件2受拉应力。一种方法是在螺纹圆周上施加拉力,相当于螺纹牙齿接触部分,而且主要在前几牙上存在拉力,如第一牙承担60~65%的载荷,第二牙承担20~25%的载荷,其余作用在后几牙,但因螺纹的螺距较小,一般为1.5~2mm,而单元的尺寸为3~4mm,因此可以假定在连接件2的表面的螺纹圆周节点上施加拉力。另一种方法是在连接件2的表面的整个螺纹截面的所有节点上施加拉力,这样可能防止圆周上各节点上应力过大,与实际情况差别较大,应为实际表面圆周各节点只承受60~65%的载荷。比较好的处理办法是在连接件的表面单元的圆周节点上施加70%的载荷,在第二层单元的圆周节点上施加30%的载荷,但操作比较麻烦。 随着连接件1、2的内部结构和刚度不同,以及连接螺钉的个数和分布的不均匀性,连接件1、2表面的变形不一致,产生翘曲,使表面的节点有的接触,有的分离,而导致接触面的应力分布和应变分布不均匀,因此需用非线性的接触理论来讨论合件的应力问题。 若不考察螺栓头部与连接件1表面的变形,可用将螺栓与连接件1用一个公共面连接,作为由两种不同材料的构件组成一个整体。螺钉(双头螺栓)与连接件2也用这种方法处理。 图1是一个简单的螺钉连接实体模型。图2是用hypermesh划分网格后的模型。 图1 实体模型图2 网格模型 该模型由三个零件组成,连接件1(蓝色)、连接件2(橙色),螺钉(紫红)。 1. 建立实体模型 在PRO/E 中建立三个零件模型,见图3、4、5,并组合成合件(见图1)。

基于HyperWorks的汽车车架频率响应分析

基于HyperWorks的汽车车架频率响应分析 汽车车架是汽车各大总成的载体,是重要的受力部件。车架在工作时除了要满足强度和刚度的要求外,合理的振动特性也是十分重要的。 本文应用HyperWotks软件分析了某型汽车车架的前6阶固有频率及振型,完成了车架模型的频率响应分析。结合分析结果,改进了其车架结构,降低了汽车的低频振动。 1 HyperWorks分析流程 HyperWorks有限元分析流程参见图1。 图1 HyperWorks分析流程 在建立某车架有限元模型时需注意以下几个问题: 1)在导入CAD几何模型时.要对几何模型进行必要的几何清理(如去除倒角、工艺孔等)。这样可减小数据转换时的数据丢失; 2)如果导人的是规模较大的实体薄壁类零件模型,可对模型使用中面抽取功能。 2 车架结构模态分析 车架结构模态分析,尤其是车架结构的低阶弹性模态,它不仅是控制汽车常规振动的关键指标,而且反映了汽车车身的整体剐度性能。 对某车架计算采用自由模态分析方案,将HyperMesh中建立的有限元模型导人OptiStruct进行计算,对比分析了车架结构前6阶自由模态(固有频率值和振型),并在Hypermesh后处理器中查看结果(表1)。

表1 前6阶固有频率及振型 3 车架频率响应分析与改进 复杂系统受多种振动噪声源的激励,每种激励都可以通过不同的路径,经过衰减,传递到多个响应点。 本文采用HyperWorks软件,对该车架自由边界条件下的模态频率响应进行了分析。通过对该车架施加频率可变的单位载荷,运用OptiStmct软件在自由边界条件下进行模态频率响应分析。得出的变形、模态形状和频率相位输出特性如图2-图4所示。 图2 车架频响模型

有限元ansys静力分析的一个小例子

有限元 学院:机电学院 专业: 姓名: 学号:

一、问题描述 如图所示的平面,板厚为0.01m,左端固定,右端作用50kg的均布载荷,对其进行静力分析。弹性模量为210GPa,泊松比为0.25. 二、分析步骤 1.启动ansys,进入ansys界面。 2.定义工作文件名 进入ANSYS/Multiphsics的的程序界面后,单击Utility Menu菜单下File中Change Jobname的按钮,会弹出Change Jobname对话框,输入gangban为工作文件名,点击ok。 3.定义分析标题 选择菜单File-Change Title在弹出的对话框中,输入Plane Model作为分析标题,单击ok。 4.重新显示 选择菜单Plot-Replot单击该按钮后,所命令的分析标题工作文件名出现在ANSYS 中。 5.选择分析类型 在弹出的对话框中,选择分析类型,由于此例属于结构分析,选择菜单Main Menu:Preferences,故选择Structural这一项,单击ok。 6.定义单元类型 选择菜单Main Menu-Preprocessor-Element Type-Add/Edit/Delete单击弹出对话框中的Add按钮,弹出单元库对话框,在材料的单元库中选Plane82单元。即在左侧的窗口中选取Solid单元,在右侧选择8节点的82单元。然后单击ok。 7.选择分析类型 定义完单元类型后,Element Type对话框中的Option按钮被激活,单击后弹出一个对话框,在Elenment behavior中选择Plane strs w/ thk,在Extra Element output 中,选择Nodal stress,单击close,关闭单元类型对话框。 8.定义实常数 选择菜单Main Menu-Preprocessor-Real Constants Add/Edit/Delete执行该命令后,在弹出Real Constants对话框中单击Add按钮,确认单元无误后,单击ok,弹出Real Constants Set Number 1,for Plane 82对话框,在thickness后面输入板的厚度0.01单击ok,单击close。 9.定义力学参数 选择菜单Main Menu-Preprocessor-Material Props-Material Model 在弹出的对

静力学分析报告

静力学分析报告 一、制作人员: 二、模型名称:桁架 三、创意来源: 四、模型视图: 五、模型简化

因为桁架本身由硬杆组成,所以简化结构 如下图所示,并求各点的受力情况。 假设桁架受到集中力G的影响 1以节点A为探究对象 m A F=0 F B Y?4?F?3=0 F B Y=0.75F F Y=0 F A Y+F B Y=0 F A Y=0.25F 2以节点B为探究对象 F12F13 B F B Y F Y=0 F13cos45°+F B Y=0 F13=?32 4 F F X=0 ?F13cos45°?F12=0 F12=?3 4 F

3以节点G为探究对象 F F10 G F11F13′ F Y=0 ?F13′cos45°?F?F11=0 F11=?0.25F F X=0 F13′cos45°?F10=0 F8=?0.75F 4以节点H为探究对象 F9F11′ F8 H F12′ F Y=0 F9cos45°+F11′=0 F9= 2 4 F F X=0 ?F9cos45°?F8+F12′=0 F8=0.5F 5以节点I为探究对象 F7 F6I F8′ F Y=0 F7=0

F X=0 ?F6+F8′=0 F6=0.5F 6以节点E为探究对象 F4E F10′ F5F7′F9′ F Y=0 F9′cos45°?F5cos45°=0 F5=2 F F X=0 ?F5cos45°+F9′cos45°?F4+F10′=0 F4=?0.25F 7以节点D为探究对象 F3F5′ F2 D F6′ F Y=0 F3+F5′cos45°=0 F3=1 4 F F X=0 F5′cos45°?F2+F6′=0 F4=0.25F 8以节点C为探究对象 C F4′

螺栓预紧结构用Hypermesh做接触实例

螺栓预紧结构用Hypermesh 做接触实例 在很多场合,要将若干个零件组装起来进行有限元分析,如将连杆与连杆盖用连杆螺栓连接起来,机体与气缸盖用螺栓连接起来,机体与主轴承盖连接起来。如何模拟螺栓预紧结构更符合实际情况,是提高有限元计算精度的关键。 螺栓+螺母的连接与螺钉的连接有所不同,螺栓+螺母的连接方式比较简单,可以假设螺母与螺栓刚性连接,由作用在螺母上的拧紧力矩折算出作用在螺栓上的拉伸力F ,将螺杆中间截断,在断面各单元的节点上施加预紧单元PRETS179,模拟螺栓的连接情况。 对于螺钉(双头螺栓)连接有些不一样,螺钉头部对连接件1施加压应力,接触面是一个圆环面,但栽丝的一端,连接件2受拉应力。一种方法是在螺纹圆周上施加拉力,相当于螺纹牙齿接触部分,而且主要在前几牙上存在拉力,如第一牙承担60~65%的载荷,第二牙承担20~25%的载荷,其余作用在后几牙,但因螺纹的螺距较小,一般为1.5~2mm ,而单元的尺寸为3~4mm ,因此可以假定在连接件2的表面的螺纹圆周节点上施加拉力。另一种方法是在连接件2的表面的整个螺纹截面的所有节点上施加拉力,这样可能防止圆周上各节点上应力过大,与实际情况差别较大,应为实际表面圆周各节点只承受60~65%的载荷。比较好的处理办法是在连接件的表面单元的圆周节点上施加70%的载荷,在第二层单元的圆周节点上施加30%的载荷,但操作比较麻烦。 随着连接件1、2的内部结构和刚度不同,以及连接螺钉的个数和分布的不均匀性,连接件1、2表面的变形不一致,产生翘曲,使表面的节点有的接触,有的分离,而导致接触面的应力分布和应变分布不均匀,因此需用非线性的接触理论来讨论合件的应力问题。 若不考察螺栓头部与连接件1表面的变形,可用将螺栓与连接件1用一个公共面连接,作为由两种不同材料的构件组成一个整体。螺钉(双头螺栓)与连接件2也用这种方法处理。 图1是一个简单的螺钉连接实体模型。图2是用hypermesh 划分网格后的模型。 图1 实体模型 图2 网格模型 该模型由三个零件组成,连接件1(蓝色)、连接件2(橙色),螺钉(紫红)。 1. 建立实体模型 在PRO/E 中建立三个零件模型,见图3、4、5,并组合成合件(见图1)。

基于HyperWorks的对接结构设计及优化分析_张讯

基于HyperWorks的对接结构设计及优化分析 张讯 方芳 上海飞机设计研究院结构设计研究部 上海 200232 摘要:外翼、中央翼的壁板对接结构设计是飞机设计的重要环节之一,不同的对接方式其传力方式不同,对飞机的使用寿命、装配工艺都会产生重大影响。本文通过认真分析飞机外翼、中央翼的对接结构的传力特点,设计了两种不同的上下壁板对接方案,然后运用Altair HyperWorks软件对对接结构进行了有限元分析,得出了较好的对接结构并进行了材料选择,最后运用OptiStruct软件进行了结构尺寸优化和减重分析。其设计思路和方法对飞机对接结构设计具有重要的价值。 关键词:对接结构,有限元,HyperWorks,优化 0 引言 为了满足机翼的外形设计和飞机制造装配要求,大部分飞机需要在外翼根部与中央翼连接处设置为分离面。外翼、中央翼的连接结构设计是飞机设计的重要环节之一,不同的连接方式其传力方式不同,对飞机的使用寿命、装配工艺都会产生重大影响。对接结构将外翼受力所形成的集中载荷传递到机身,起到传递载荷的作用,同时它也是连接飞机外翼和中央翼的重要连接结构,本文针对两种不同的上下壁板对接结构进行了选型分析和有限元计算,通过有限元计算找出较为适合的中央翼、外翼对接结构,并对壁板对接结构在输入载荷下进行了全面详细的优化分析,减轻了结构重量、提高了结构效率,对对接结构的设计和应用起到了关键性的作用。 1 对接结构设计 大部分民用客机在外翼根部与中央翼连接处需要设置为分离面。在分离面处一般设置有一个关键肋即民用飞机的对接肋,对接肋需要传递外翼的弯矩和扭矩,其中弯矩转化为外翼上下壁板的轴力后通过对接肋缘条传到中央翼的上下壁板,扭矩形成剪流后通过对接肋腹板传递到机身上。因此对接肋成为了机身与机翼连接的枢纽,同时该区域受力复杂,载荷大,

111ANSYS进行有限元静力学分析

经典理论 一、设计大纲概述 1、设计目的 (1)熟悉有限元分析的基本原理和基本方法; (2)掌握有限元软件ANSYS的基本操作; (3)对有限元分析结果进行正确评价。 2、设计原理 利用ANSYS进行有限元静力学分析。 3、设计仪器设备 1)安装windows 2000以上版本的微机; 2)ANSYS 8.0以上版本软件。 4、实验内容与步骤 1)熟悉ANSYS的界面和分析步骤; 2)掌握ANSYS前处理方法,包括平面建模、单元设置、网格划分和约束设置; 3)掌握ANSYS求解和后处理的一般方法; 4)实际应用ANSYS软件对平板结构进行有限元分析。 二、题目: 如图试样期尺寸为100mm*5mm*5mm,下端固定,上端受拉 力10000N作用。已知该试样材料的应力-应变曲线如图 所示。计算试样的位移分布。

三、分析步骤: 分析:从应力-应变关系可以看出该材料的屈服极限是225MPa 左右,弹性部分曲线的斜率为常数75GPa。之后材料进入塑性变形阶段,应力-应变关系为非线性的。估计本题应力10000/(0.05*.005)=400MPa,因此材料屈服进入塑性,必须考虑材料非线性影响。 (1)建立关键点。单击菜单Main Menu>Preprocessor>Modeling>Create>Keypoints>In ActiveCS,建立两个关键点(0,0,0)和(0,100, 0)。 (2)建立直线。单击菜单Main Menu>Preprocessor>Modeling>Create>Lines>Staight Line,在关键点1、2之间建立直线。 (3)定义单元类型。单击菜单Main Menu>Preprocessor>ElementType>Add/Edit/Delete, 定义单元Structural>Link>2D spar1(LINK1) (4)定义单元常数。单击菜单Main Menu>Preprocessor>RealConstants>Add/Edit/Delete,

悬臂梁—有限元ABAQUS线性静力学分析实例-精选.pdf

线性静力学分析实例——以悬臂梁为例 线性静力学问题是简单且常见的有限元分析类型, 不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。在 ABAQUS 中,该类问题通常采用静态通用( Static ,General )分析步或静态线性摄动(Static ,Linear perturbation )分析步进行分析。 线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I 、C3D8I )的性价比很高。对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。 悬臂梁的线性静力学分析 1.1 问题的描述 一悬臂梁左端受固定约束,右端自由,结构尺寸如图 1-1所示,求梁受载后 的Mises 应力、位移分布。 材料性质:弹性模量32e E ,泊松比3.0均布载荷:F=103N 图1-1 悬臂梁受均布载荷图 1.2 启动ABAQUS 启动ABAQUS 有两种方法,用户可以任选一种。 (1)在Windows 操作系统中单击“开始” --“程序”--ABAQUS 6.10 --

ABAQUS/CAE。 (2)在操作系统的DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。 1.3 创建部件 在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建悬臂梁的几何模型。 (1)创建部件。对于如图1-1所示的悬臂梁模型,可以先画出梁结构的二维截面(矩形),再通过拉伸得到。 单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。 图1-2 Create Part对话框 在Name(部件名称)后面输入Beam,Modeling Space(模型所在空间)设

12.HyperWorks 在白车身刚度建模对标分析中的应用

HyperWorks在白车身刚度建模对标分析中的应用 瞿晓彬戴轶 上海汽车集团股份有限公司技术中心

HyperWorks在白车身刚度建模对标分析中的应用HyperWorks Application in BIW Stiffness Modelling and Correlation Analysis 瞿晓彬戴轶 (上海汽车集团股份有限公司技术中心,上海,201804) 摘要:本文建立了某车型白车身结构的有限元模型,通过和刚度试验方案相对比,确定有限元模型的边界条件及分析载荷,并介绍了用于刚度计算的输出点的处理方法。利用OptiStruct计算了该白车身结构的扭转刚度和弯曲刚度,并将计算结果与试验结果进行了对比,结果表明计算结果和试验结果有较好的吻合,证明了白车身刚度建模和输出点处理方法的合理性。 关键词:有限元,白车身,刚度,试验 Abstract: In this paper, a FE model of BIW is established. The FE model’s boundary conditions and analysis loads are applied, by comparing the FE method with testing. The bending and torsion stiffness analysis of the BIW is carried out using OptiStruct. The related analysis results are compared with the test results. The results show that the outcomes match well, which means the FEM modelling is reasonable. Key words: FEM, BIW, stiffness 1 引言 现代轿车车身大多数采用全承载式结构,承载式车身几乎承载了轿车使用过程中的所有载荷,主要包括扭转、弯曲等载荷,在这些载荷的作用下,轿车车身的刚度特性则尤显重要。车身刚度不合理,将直接影响轿车的可靠性、安全性、NVH性能等关键性指标,白车身的弯曲刚度和扭转刚度分析是整车开发设计过程中必不可少的环节。 本文通过和试验方案对比,提出了用于刚度分析的有限元模型前处理方法,通过将计算结果和试验结果对比,证明了前处理方法的合理性。 2 白车身结构刚度分析的前处理 2.1 白车身结构的有限元建模

AnsysWorkbench静力学分析详细实例

Ansys静力分析实例:  1 问题描述:  如图所示支架简图,支架材料为结构钢,厚度10mm,支架左侧的两 个通孔为固定孔,顶面的开槽处受均布载荷,载荷大小为500N/mm。  2 启动Ansys Workbench,在界面中选择Simulation启动DS模块。

3 导入三维模型,操作步骤按下图进行,单击“Geometry”,选择“From File”。  从弹出窗口中选择三维模型文件,如果文件格式不符,可以把三维图转换为“.stp”格式文件,即可导入,如下图所示。  4 选择零件材料:文件导入后界面如下图所示,这时,选择“Geometry”下的“Part”,在左下角的“Details of ‘Part’”中可以调整零件材料属性。

5 划分网格:如下图,选择“Project”树中的“Mesh”,右键选择“Generate Mesh”即可。【此时也可以在左下角的“Details of ‘Mesh’”对话框中调整划分网格的大小(“Element size”项)】。

生成网格后的图形如下图所示:

6 添加分析类型:选择上方工具条中的“New Analysis”,添加所需做的分析类型,此例中要做的是静力分析,因此选择“Static Structural”,如下图所示。  7 添加固定约束:如下图所示,选择“Project”树中的“Static Structural”,右键选择“Insert”中的“Fixed Support”。

这时左下角的“Details of ‘Fixed Support’”对话框中“Geometry”被选中,提示输入固定支撑面。本例中固定支撑类型是面支撑,因此 要确定图示6位置为“Face”,【此处也可选择“Edge”来选择“边”】 然后按住“CTRL”键,连续选择两个孔面为支撑面,按“Apply”确 认,如下图所示。

HyperWorks 在汽车零部件有限元分析中的应用

HyperWorks 在汽车零部件有限元分析中的应用 1 概述 随着计算机辅助设计和制造技术的日趋成熟,设计人员迫切需要一种能对所做的设计进行快速、精确评价分析的工具,而不再仅仅依靠以往积累的经验和知识去估计。Altair 公司HyperWorks 软件正是这样一个有效的工具。他能与常用的CAD 软件相集成,实现"设计-校核-再设计"的功能,可以轻松的直接从CAD 软件中读取几何文件,并将最终的仿真计算结果反馈到CAD 几何模型的设计中。同时由于有限元计算的高精度,可以减少试验次数,大大降低产品开发成本,缩短产品开发周期,提高产品设计质量。 本文通过两个案例,阐述了如何利用HyperWorks 软件简化边界条件及计算复杂结构的强度,并通过与理论解的对比,验证HyperWorks 软件在有限元计算方面的准确性。 2 案例一:摩擦片从动盘的强度计算 由于摩擦片的形状比较特殊,九个叶片和内部八根加强筋呈同心圆分布,本案例介绍了如何灵活使用简化方法划分有限元网格及简化加载。摩擦片从动盘的几何模型如图 1 所示。 2.1 摩擦片从动盘有限元模型的建立 由上述图1 可见,摩擦片从动盘的九个叶片和八根加强筋呈同心圆分布,因此在划分此摩擦片从动盘有限元模型时可以将划分过程分成两部分:内圈加强筋部分和叶片部分,在接合部分进行局部修改缝合。首先可以将内圈几何模型分成八部分,叶片分成九部分,分别选取其中的一片进行网格划分,如图2 所示。再使用HyperMesh 的旋转功能Rotate 划分出整个网格,最后进行局部缝合,这样,整个摩擦片从动盘的2D 网格就完成了,继续使用3D 中的拉伸功能,完整的三维网格就建立成功了,如图 3 所示。

ANSYS进行有限元静力学分析

一、设计大纲概述 1、设计目的 (1)熟悉有限元分析的基本原理和基本方法; (2)掌握有限元软件ANSYS的基本操作; (3)对有限元分析结果进行正确评价。 2、设计原理 利用ANSYS进行有限元静力学分析。 3、设计仪器设备 1)安装windows 2000以上版本的微机; 2)ANSYS 8.0以上版本软件。 4、实验内容与步骤 1)熟悉ANSYS的界面和分析步骤; 2)掌握ANSYS前处理方法,包括平面建模、单元设置、网格划分和约束设置; 3)掌握ANSYS求解和后处理的一般方法; 4)实际应用ANSYS软件对平板结构进行有限元分析。 二、题目: 如图试样期尺寸为100mm*5mm*5mm,下端固定,上端受拉 力10000N作用。已知该试样材料的应力-应变曲线如图 所示。计算试样的位移分布。

三、分析步骤: 分析:从应力-应变关系可以看出该材料的屈服极限是225MPa 左右,弹性部分曲线的斜率为常数75GPa。之后材料进入塑性变形阶段,应力-应变关系为非线性的。估计本题应力10000/(0.05*.005)=400MPa,因此材料屈服进入塑性,必须考虑材料非线性影响。 (1)建立关键点。单击菜单Main Menu>Preprocessor>Modeling>Create>Keypoints>In ActiveCS,建立两个关键点(0,0,0)和(0,100, 0)。 (2)建立直线。单击菜单Main Menu>Preprocessor>Modeling>Create>Lines>Staight Line,在关键点1、2之间建立直线。 (3)定义单元类型。单击菜单Main Menu>Preprocessor>ElementType>Add/Edit/Delete, 定义单元Structural>Link>2D spar1(LINK1) (4)定义单元常数。单击菜单Main Menu>Preprocessor>RealConstants>Add/Edit/Delete, 在弹出的Real Constants for LINK1对话框中,输入 如下的单元几何参数:截面面积AREA=25 出始应 变=0

结构静力分析

第一章结构静力分析 1.1 结构分析概述 结构分析的定义:结构分析是有限元分析方法最常用的一个应用领域。结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身骨架;海洋结构,如船舶结构;航空结构,如飞机机身等;同时还包括机械零部件,如活塞,传动轴等等。 在ANSYS产品家族中有七种结构分析的类型。结构分析中计算得出的基本未知量(节点自由度)是位移,其他的一些未知量,如应变,应力,和反力可通过节点位移导出。 静力分析---用于求解静力载荷作用下结构的位移和应力等。静力分析包括线性和非线性分析。而非线性分析涉及塑性,应力刚化,大变形,大应变,超弹性,接触面和蠕变。 模态分析---用于计算结构的固有频率和模态。 谐波分析---用于确定结构在随时间正弦变化的载荷作用下的响应。 瞬态动力分析---用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。 谱分析---是模态分析的应用拓广,用于计算由于响应谱或PSD输入(随机振动)引起的应力和应变。 曲屈分析---用于计算曲屈载荷和确定曲屈模态。ANSYS可进行线性(特征值)和非线性曲屈分析。 显式动力分析---ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。 此外,前面提到的七种分析类型还有如下特殊的分析应用: ●断裂力学 ●复合材料 ●疲劳分析 ●p-Method 结构分析所用的单元:绝大多数的ANSYS单元类型可用于结构分析,单元型 从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元。 1.2 结构线性静力分析 静力分析的定义 静力分析计算在固定不变的载荷作用下结构的效应,它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。可是,静力分析可以计算那些固定不变的惯性载荷对结构的影响(如重力和离心力),以及那些可以近似为等价静力作用的随时间变化载荷(如通常在许多建筑规范中所定义的等价静力风载和地震载荷)。 静力分析中的载荷 静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移,应力,应变和力。固定不变的载荷和响应是一种假定;即假定载荷和结构的响应随时间的变化非常缓慢。静力分析所施加的载荷包括: ●外部施加的作用力和压力 ●稳态的惯性力(如中力和离心力) ●位移载荷 ●温度载荷 线性静力分析和非线性静力分析 静力分析既可以是线性的也可以是非线性的。非线性静力分析包括所有的非线性类型:大变形,塑性,蠕变,应力刚化,接触(间隙)单元,超弹性单元等。本节主要讨论线性静力分析,非线性静力分析在下一节中介绍。

基于Hyperworks前处理轴承速度及应力分析

基于Hyperworks 前处理Ansysls-dyna 分析轴承速度及应力分析 1.轴承3D 模型的建立 轴承组成:外圈,保持架,滚动体,内圈 2.为了方便画网格用CATIA 把轴承切成小块得到下图结果 3.把文件保存为STP 格式,导入Hyperworks 中进行网格处理,得到如下图结果: 外圈(绿色) 保持架(蓝色) 滚动体(黄色) 内圈(浅蓝色)

3.1本例中网格要求为8节点六面体,所以为了方便画网格,先用3维软件对模型进行简单的处理,处理结果如下图所示: 3.1.1对滚动体网格的画分: 1).1/8滚动体模型如下图所示:

2).对粉红色部分画网格: 切换到one volume模块,选中粉红色实体,density设置为3,点mesh. 3).对绿色部分进行网格划分: 切换到one volume模块,选中绿色实体,elem size设置为0.2,点mesh

操作步骤: 1,TOOL------orgnize---我们要把body11和333合成一体,element选中body11(点击by collector-选中body11),dest component选中333,点击MOVE即可。 4).将绿色网格移到粉色网格部件里,合并网格,如下图: 5).对1/8网格镜像:

Based 点击duplicate---current comp---reflect,完成镜像,如下图:

按上述方法重复操作可得到整个滚动体的网格模型,如下图所示: 在tool---edges面板检查间隙,合并节点。 选择ELEMEN,先选绿色任务栏中第三个后选倒数第二个。消除缝隙

初学hyperworks的注意事项和应用技巧

入门篇 其实各种CAE前处理的一个共同之处就是通过拆分把一个复杂体拆成简单体。这个思路一定要记住,不要上来就想在原结构上分网,初学者往往是这个问题。刚开始学,day1,day2,advanced training 和HELP先做一遍吧。另外用熟24 个快捷键。(快捷键用法见tutuma 版主的精华贴《Hyperworks FAQ》) 做一下HELP里面的教程,多了解一些基本的概念和操作。这样会快点入门。论坛更多的是方法。 划分的方法要灵活使用,再有就是耐心。 1、如何将.igs文件或.stl文件导入hypermesh进行分网? files\import\切换选项至iges格式,然后点击import...按钮去寻找你的iges 文件吧。划分网格前别忘了清理几何 2、导入的为一整体,如何分成不同的comps?两物体相交,交线如何做?怎样从面的轮廓产生线(line)? 都用surface edit Surface edit的详细用法见HELP,点索引,输入surface edit 3、老大,有没有划分3D实体的详细例子? 打开hm,屏幕右下角help,帮助目录下hyperworks/tutorials/hyermesh tutorials/3D element,有4个例子。 4、如何在hypermesh里建实体? hm的几何建模能力不太强,而且其中没有体的概念,但它的曲面功能很强的.在2d面板中可以通过许多方式构建面或者曲面,在3D面板中也可以建造标准的3D曲面,但是对于曲面间的操作,由于没有"体"的概念,布尔运算就少了,分割面作就可以了 5、请问怎么在hypermesh中将两个相交平面到圆角啊? defeature/surf fillets 6、使用reflect命令的话,得到了映射的另一半,原先的却不见了,怎么办呢?法1、在选择reflect后选择duplicate复制一个就可以 法2、先把已建单元organize〉copy到一个辅助collector中, 再对它进行reflect, 将得到的新单元organize〉move到原collector中, 最后将两部分equivalence, 就ok拉。 7、请问在hypermesh中如何划分装配体?比如铸造中的沙型和铸件以及冷铁,他们为不同材质,要求界面单元共用,但必须能分别开? 你可以先划分其中一个部件,在装配面上的单元进行投影拷贝到被装配面上 8、我现在有这样一个问题,曲线是一条线,我想把它分成四段,这样可以对每一段指定density,网格质量会比直接用一条封闭的线好。 可用F12里的cleanup_add point,那里面还有很多内容,能解决很多问题9、我在一个hm文件中创建了一组组装件的有限元模型,建模过程很麻烦,由于失误我把一个很重要的部件建在了另一个hm文件中,请问有没有什么方法把这个部件的有限单元信息转移到组装件的hm文件中呢? 如果可以,装配关系可以满足吗?

HyperWorks介绍

软件简介—SoftWare Description ALTAIR HyperWorks 7.0 SP1 HyperWorks 企业级的CAE软件,几乎所有财富500强制造企业都应用.为工程师量身定做的软件.强力推荐. 系列产品集成了开放性体系和可编程工作平台,可提供顶尖的CAE建模、可视化分析、优化分析、以及健壮性分析、多体仿真、制造仿真、以及过程自动化。HyperWorks的开放式平台可以直接运用顶尖的CAD、CAE求解技术,并内嵌与产品数据管理以及客户端软件包交互的界面。Altair HyperWorks是一个创新、开放的企业级CAE平台,它集成设计与分析所需各种工具,具有无比的性能以及高度的开放性、灵活性和友好的用户界面。HyperWorks包括以下模块:Altair HyperMesh 高性能、开放式有限单元前后处理器,让您在一个高度交互和可视化的环境下验证及分析多种设计情况。Altair MotionView 通用多体系统动力学仿真及工程数据前后处理器,它在一个直观的用户界面中结合了交互式三维动画和强大无比的曲线图绘制功能。Altair HyperGraph 强大的数据分析和图表绘制工具,具有多种流行的工程文件格式接口、强大的数据分析和图表绘制功能、以及先进的定制能力和高质量的报告生成器。Altair HyperForm 集成HyperMesh强大的功能和金属成型单步求解器,是一个使用逆向逼近方法的金属板材成型仿真有限元软 件。Altair HyperOpt 使用各种分析软件进行参数研究和模型调整的非线性优化工具。Altair OptiStruct 世界领先的基于有限元的优化工具,使用拓扑优化方法进行概念设计。Altair OptiStruct/FEA 基本线性静态、特征值分析模块。创新、灵活、合理的许可证无论是单机版还是网络版,HyperWorks 许可单位(HWUs)都是平行的,所以不管你运行多少个HyperWorks 模块,只有需要HWUs最多的模块才占用HWUs数。集成的CAD图形标 准ACIS CATIA(HP,IBM,WIN,SUN, SGI)DESDXF UG I-DEAS IGES INCA PATRAN PDGS VDAFS 等支持的有限元分析软 件ABAQUS ANSYS AutoDV C-MOLD DYTRAN LS-DYNA3D LS-NIKE3D MADY MO MARC MOLDFLOW MSC/NASTRAN Nsoft CSA/NASTRAN OPTISTRUCT PAM-CRASH PATRAN RADIOSS Spotweld VPG等主要几大模 块: Altair HyperMesh是一个针对有限元主流求解器的高性能有限元前后处理软件,工程设计人员可以在一个极佳的交互式可视环境下对多种设计条件进行分析。HyperMesh 的图形用户界面易于学习,可以直接使用CAD几何数据和现

ABAQUS线性静力学分析实例

线性静力学分析实例 线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。在ABAQUS 中,该类问题通常采用静态通用(Static ,General )分析步或静态线性摄动(Static ,Linear perturbation )分析步进行分析。 线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I 、C3D8I )的性价比很高。对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。 一 悬臂梁的线性静力学分析 问题的描述 一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises 应力、位移分布。 材料性质:弹性模量32e E =,泊松比3.0=ν 均布载荷:Mpa p 6.0= 图1-1 悬臂梁受均布载荷图

启动ABAQUS 启动ABAQUS有两种方法,用户可以任选一种。 (1)在Windows操作系统中单击“开始”--“程序”--ABAQUS -- ABAQUS/CAE。 (2)在操作系统的DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。 创建部件 在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建悬臂梁的几何模型。 (1)创建部件。对于如图1-1所示的悬臂梁模型,可以先画出梁结构的二维截面(矩形),再通过拉伸得到。 单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。

结构静力分析边界条件施加方法与技巧—约束条件

在结构的静力分析中载荷与约束的施加方案对计算结果有较大的影响,甚至导致计算结果不可信,笔者在《结构设计CAE主业务流程》的博文中也提到这一点。那么到底如何施加载荷与约束呢?归根到底要遵循一个原则——尽量还原结构在实际中的真实约束和受力情况。本文着重介绍几种约束的施加方法与技巧,并通过具体例子来进一步说明。 1 销轴约束 销轴连接在结构中是很常见的一种形式,其约束根据具体的结构形式有所不同,下面以一个走行装置为例具体介绍一下。 走行装置是连接平动轨道与上部结构的,其约束应是轨道通过车轮对走行装置的约束,但是通常对于车轮只要验证其轮压满足要求即可,因此在模型中往往将车轮简化掉,因此对于走行装置的约束就变为销轴约束。 图1 某走行装置 图1 中1-10是与车轮相连接的轴孔,车轮行驶于轨道上,约束位置在10对轴孔处,如果把整个轴孔都约束则约束刚度太大,结果会导致圆孔周围应力过大,因此应简化为约束轴孔中心点,将中心点与轴孔边缘通过刚性单元连接,简化为点约束。首先y方向(竖直向上)是应该约束的(此处假设车轮及轴为刚体),其次由于轨道与轮缘的相互作用,z方向(侧向)也应该是约束的,然后由于走行装置在向下的压力下会产生沿x方向(运行方向)的位移,因此x方向约束应放开,但是如果10对轴孔中心x方向的约束全放开则会导致约束不全无法计算,因此应在1轴孔或10轴孔中心处施加x方向的约束,这样实现全自由度约束。 2 转动轨道约束 图2是一个翻车机模型,该结构通过电机驱动,托辊支撑,2个端环在轨道上转动来实现翻卸功能。

图2 翻车机 由于翻车机托辊支撑端环,由电机驱动不断地翻转卸车,造成其约束位置方向不断变化,针对一个具体翻转角度,翻车机端环在与托辊接触处(线接触)应约束沿翻车机端环径向,另外,由于翻车机在荷载作用下会产生沿翻车机轴向的位移,所以两端环中要约束一个端环的轴向自由度。 3 对称面约束 图3是某钢水罐模型,该模型关于y-z面对称,下面介绍一下该结构的约束处理。 图3 钢水罐 首先在1处由于受到钢水罐起吊装置的限制,其竖直方向y及水方向z无法变形,应施加z 方向及y方向的约束,而x方向是没有约束的,此时因缺少约束无法计算,应注意到该结构(包

hyperworks弹簧受力分析

弹簧受力分析 摘要:新一代飞机的设计对性能有更高的要求,需要有新的性能设计平台来应对这些挑战。Altair公司的HyperWorks在飞机结构有限元建模,结构优化及减重,碰撞安全性分析,复合材料零部件设计和运动机构仿真及优化等领域的技术已经被世界各大飞机制造商广泛采用,成为事实上的现代飞机性能设计新平台。 关键字:HyperWorks HyperMesh OptiStruct Radioss MotionView HyperStudy 飞机性能设计 近年来,以A380,A350,A400M,B787,F35为代表的新一代飞机,外形更大,重量更轻,飞得更远,载重量更大,机动性更好,突发情况下更安全,燃油经济性更好,确立了飞机性能设计的新标准,对现代飞机设计技术提出了一系列新的要求和挑战,需要有新的技术来应对。 λ结构减重技术:能够清楚给出在给定设计空间内的最佳材料分布和确定零部件尺寸、外形和位置,从而工程师有足够的设计提示信息和依据,而不仅仅依靠经验来进行结构的轻量化设计。 λ复合材料设计技术:能够对复合材料零部件进行建模、仿真和优化,预估复合材料零部件的强度、刚度、破坏和疲惫特性,优化复合材料的展层角度、展层外形、展层数目和展层叠加次序。 λ系统优化技术:能够在概念设计阶段优化结构传力路径和布局,减少设计后期风险;能够对飞机的性能参数进行优化,满足各种设计指标;能够进行多学科考虑,做到各子系统最优,总体系统也最优。 λ碰撞安全性分析技术:能够对鸟撞、坠撞、水上迫降等工况进行仿真,评估并改进突发危险情况下的飞机安全性。 λ缩短设计周期:能够快速进行CAE建模、求解和结果评估,特别是把CAE前后处理的时间降下来,并且通过优化技术和流程减少人工的反复设计迭代。 Altair公司是世界领先的工程设计技术开发者,旗舰产品HyperWorks软件包含了HyperMesh,OptiStruct,Radioss,MotionView,HyperStudy等著名模块,是全球领先的企业级产品创新解决方案,目前全球客户超过4000家,分布于汽车、航空航天、机械、电子、船舶、国防等各个行业。近十年来,HyperWorks 专注于应对航空产业的最新发展趋势和挑战,以其创新平台设计技术帮助波音、空客、欧洲宇航防务、洛克西德马丁、欧洲直升机等公司设计新一代的飞机,取得了大量前所未有的工程成果,成为现代飞机性能设计的新平台,提供了一系列高效、优化、创新的新技术。 一.有限元建模技术 随着计算机硬件技术的发展,现代飞机的有限元模型规模越来越大,网格越来越精细,模型治理越来越复杂,特别是复合材料在飞机上的大规模应用使得单元属

相关主题