搜档网
当前位置:搜档网 › NGS测序原理

NGS测序原理

几种常见的基因测序技术的优缺点及应用复习过程

几种常见的基因测序技术的优缺点及应用

随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以 Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到 2005 年,以 Illumina 公司的 Solexa技术和 ABI 公司的 SOLiD 技术为标志的新一代测序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过 NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着 NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用 NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过 NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。 近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。 本文介绍了几种 DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。 1、第一代测序 1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和 Walter Gibert 发明了 Sanger 测序法,并在此后的 10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3'-OH,因此每当 DNA 链加入分子 ddNTP,延伸便终止。每一次 DNA 测序是由 4个独立的反应组成,将模板、引物和 4 种含有不

DNA测序技术的发展和其最新进展

DNA测序技术的发展及其最新进展 摘要:自从诺贝尔奖得主桑格于1977年发明了第一代DN测序技术以来,DNA测序技术已经作为重要的实验技术广泛的应用于现代生物学研究当中。经过了几十年的发展,DNA测序技术日臻成熟,并且以单分子测序为特点的第三代测序技术也已经诞生。本文主要就每一代测序技术原理和特点及其最新进展做简要介绍。 关键词:DNA测序技术;第三代DNA测序技术;最新进展 The Development and New Progress of DNA Sequencing Technology Abstract: Since Nobel Prize Winner Sanger have founded the first generation of DNA Sequence technology in 1977, DNA sequencing technology has been widely used in modern biological researches as an important experimental. Over decades of year’s development, DNA sequence technology mature gradually and the third generation sequencing technologies characterized by single-molecule sequencing have also emerged. The mechanisms and features of each generation of sequencing technology and their latest progress will be discussed here. Key Words: DNA Sequence technology ; third generation DNA sequencing ;latest development 1.引言 DNA测序技术是分子生物学研究中最常用的技术,它的出现极大地推动了生物学的发展。自从1953年Watson和Crick发现DNA双螺旋结构后[1],人类就开始了对DNA序列的探索,在世界各地掀起了DNA测序技术的热潮。1977年Maxam和Gilbert报道了通过化学降解测定DNA序列的方法[2]。同一时期,Sanger发明了双脱氧链终止法[3]。20世纪90年代初出现的荧光自动测序技术将DNA测序带入自动化测序的时代。这些技术统称为第一代DNA测序技术。最近几年发展起来的第二代DNA测序技术则使得DNA测序进入了高通量、低成本的时代。目前,基于单分子读取技术的第三代测序技术已经出现,该技术测定DNA序列更快,并有望进一步降低测序成本,推进相关领域生物学研究。本文主要介绍DNA测序技术的发展历史及不同发展阶段各种主要测序技术的特点,并针对目前新一代DNA测序技术及目前国际DNA测序最新进展做简要综述。

新一代测序技术的发展及应用前景

2010年第10期杨晓玲等:新一代测序技术的发展及应用前景 等交叉学科的迅猛发展。 1.1第二代测序——高通量低成本齐头并进以高通量低成本为主要特征的第二代测序,不再需要大肠杆菌进行体内扩增,而是直接通过聚合酶或者连接酶进行体外合成测序¨】。根据其原理又可分为两类:聚合酶合成测序和连接酶合成测序。1.1.1聚合酶合成测序法Roche公司推出的454技术开辟了高通量测序的先河。该技术通量可达Sangcr测序的几百倍,而成本却只有几十分之一,因此一经推出,便受到了国际上基因组学专家的广泛关注。454采用焦磷酸合成测序法HJ,避免了传统测序进行荧光标记以及跑胶等繁琐步骤,同时利用乳胶系统对DNA分子进行扩增,实现了大规模并行测序。截止到2010年4月,已有700多篇文献是采用了454测序技术(http://454.com/publications.and—resources/publications.asp),对该技术是一个极大的肯定。 Illumina公司推出的Solexa遗传分析仪是合成技术的进一步发展与延伸。该技术借助高密度的DNA单分子阵列,使得测序成本和效率均有了较大改善。同时Solexa公司提出的可逆终止子”1也是该技术获得认可的原因之一。与454相比。Solexa拥有更高的通量,更低的成本。虽然片段长度较短仍是主要的技术瓶颈,但是对于已有基因组的物种来说,Solexa理所当然成为第二代测序技术的首选。2008年以来,利用该技术开展的研究大幅度上升,报道文献达400多篇(http://www.illumina.com/systems/genome—analyzer_iix.ilmn)o 1.1.2连接酶合成测序法2007年ABI公司在Church小组拍1研究成果的基础上推出了SOLID测序仪。该技术的创新之处在于双碱基编码…的应用,即每个碱基被阅读两次,因此大大减少了测序带来的错误率,同时可以方便的区分SNP和测序错误。在测序过程中,仪器自动加入4种荧光标记的寡核苷酸探针,探针与引物发生连接反应,通过激发末端的荧光标记识别结合上的碱基类型。目前SOLID3.0测序通量可达20G,而测序片段仅有35—50bp,这使得该技术与Solexa相比,应用范围还不够广泛。ABI公司正加快研发进度,争取在片段长度方面做出重大突破。 DanaherMotion公司推出Polonator¨1测序仪同样也是基于Church小组的研究成果,但是该设备的成本要低很多,同时用户在使用时可以根据自己的研究目的设置不同的测序条件。而CompleteGe—nomics公司推出的DNA纳米阵列与组合探针锚定连接测序法"1则具有更高的容错能力,试剂的消耗也进一步减少,目前已顺利完成3个个体基因组的测序工作。 1.2第三代测序——单分子长片段有望实现第二代测序技术虽然在各方面都有了较大的突破,但是仍然建立在PCR扩增的基础上。为了避免PCR扩增带来的偏差,科学家目前正在研制对DNA单个分子直接测序的第三代测序仪。最具代表性的包括Heliscope单分子测序仪,单分子实时合成测序法,纳米孔测序技术等。 Helicos技术仍然是基于合成测序原理¨…,它采用了一种新的荧光类似物和灵敏的监测系统,能够直接记录到单个碱基的荧光,从而克服了其他方法须同时测数千个相同基因片段以增加信号亮度的缺陷。PacificBioscienees公司研发的单分子实时合成测序法充分利用了DNA聚合酶的特性,可以形象的描述为通过显微镜实时观测DNA聚合酶,并记录DNA合成的整个过程。纳米孔测序技术[11’121则是利用不同碱基在通过纳米小孔时引起的静电感应稍有不同,或者不同碱基通过小孔的能力各有差异,来加以区分不同的碱基信号。 2应用与实践 Kahvejian在2008年的一篇综述中提到¨“:“如果你可以随心所欲地测序,你会开展哪些研究?”。人类基因组计划的完成和近年来高通量测序的兴起,使越来越多的科研工作者认识到,我们对于生物界的认识才刚刚起步。基因图谱的绘制并不意味着所有遗传密码的破解,癌症基因组的开展也没有解决所有的医学难题。DNA变异的模式和进化机制,基因调控网络的结构和相互作用方式,复杂性状及疾病的分子遗传基础等,仍是困扰生物学家和医学家的难题,而高通量测序的广泛应用,也许可以让我们知道的更多。 2.1DNA水平的应用 2.1.1全基因组测序新一代测序技术极大地推

DNA测序技术发展简史

DNA测序技术发展简史 摘要:本文回顾了1965年一来DNA测序技术的发展,重点介绍了双脱氧链终止测序法及Maxam-Gillbert DNA化学降解法的出现,以及其他的一些相关技术的发展,以简练清晰的脉络梳理了DNA测序技术的发展史。 关键词:DNA测序;双脱氧链终止测序法;Maxam-Gillbert DNA化学降解法 l953年,Watson和Crick提出DNA双螺旋结构模型以后,人们就开始探索研究DNA 一级结构的方法。1965年,美国Cornell大学以Rober Holley为首的科学家小组,第一次完成了长度为75个核苦酸的酵母丙氨酸tRNA的全序列测定并将结果发表在Science杂志上。其办法是利用各种RNA酶把tRNA降解成寡核苷酸,经分离纯化之后,再分别测定这些寡核苷酸短片段的核苷酸顺序掀开了DNA测序技术研究的序幕[1]。但那时由于没有找到分别降解四种脱氧核糖核酸的专一酶,只能通过测定RNA 的序列来推测DNA的序列,即先将RNA用酸水解或外切酶降解,再经双向电泳同系层析将其分开(小片段重叠法)。 1971年,华裔分子生物学家吴瑞博士(Dr.Ray Wu)在1968年独创性地设计了一种崭新的引物-延伸测序策略,发展出了测定DNA核苷酸序列的第一个方法,提高了DNA序列分析的速度,并于1971年首次成功地测定了λ噬菌体两个粘性末端的完整序列[2]。 l977年,英国剑桥大学分子生物学实验室的Fred Sanger领导的研究小组在吴瑞博士的基础上分别在Nature和PNAS发表文章,提出DNA聚合酶的双脱氧链终止原理测定核苷酸序列的方法,Sanger作为世界上第一个解决DNA测序的科学家,再一次荣获诺贝尔奖(1980年)[3]。DNA双脱氧链终止测序法,也称酶法或末端终止法,是利用2’,3’-双脱氧三磷酸核苷(2’,3’-ddNTP或简称ddNTP)来终止DNA的复制反应。ddNTP可以在DNA聚合酶作用下通过其5’-磷酸基团掺入到正在增长的DNA链中,但由于ddNTP在脱氧核糖的3’位置缺少一个羟基,它们不能同后续的dNTP形成磷酸二酯键(由M.R.Atkinson等人于1969年发现),从而中断延伸反应。该法将待测DNA样品分成四组,在每组DNA合成反应混合物的四种普通dNTP中加入少量的一种ddNTP,这样一来,链延伸将与偶然发生但却十分特异的链终止展开竞争,最终得到反应一系列的核苷酸链,其长度取决于从用以起始DNA合成的引物末端到出现过早链终止的位置之间的距离,由于这四组独立的酶反应中分别采用四种不同的ddNTP,将产生四组分别终止于模板链的每一个A、G、C或T的位置上的寡核苷酸,使用变性测序凝胶电泳分析这四组反应的产物,即可从放射自显影片上直接读出DNA的序列[4]。 而美国哈佛的Alan Maxam和Walter Gilbert领导的研究小组也几乎同时发明出DNA序列测定方法——Maxam-Gillbert DNA化学降解法测序,其基本原理是用特异的化学试剂修饰DNA分子中的不同碱基,然后用哌啶切断反应碱基的多核苷酸链。该法设计四组特异的反应:①G反应,用硫酸二甲酯使鸟嘌呤上的N7甲基化,加热引起甲基化鸟嘌呤脱落,导致多核苷酸链可在该处断裂;②G+A反应,用甲酸使A和G嘌呤环上的N原子质子化,从而使其糖苷键变得不稳定,再用哌啶使键断裂;③T+C反应,用肼使T和C的嘧啶环断裂,再用哌啶除去碱基;④C反应,在有盐存在时,只有C与肼反应,并被哌啶除去。这样一来,同一个末端标记的DNA片段在四组互相独立的化学反应中分别得到部分降解,每一组反应特异地针对某一种或某一类碱基,生成四组放射性标记的分子,从共同起点(放射性标记末端)延续到发生化学降解的位点,每组混合物中均含有长短不一的DNA分子,其长度取决于该组反应所针对的碱基在原DNA全片段上的位置。最后,通过聚丙烯酰胺凝胶电泳进行分离此后组产物,再从放射自显影片上即可读出序列[5]。

华大基因、达安基因、贝瑞和康三大无创DNA检测技术平台比较

华大基因、达安基因、贝瑞和康三大无创DNA检测技术平台比较点击数:7561录入时间:2014-6-6[打印此页][返回] 2014年2月,国家食药监总局和卫计委联合发布通知,暂停基因测序临床应用。而在临床医学上,基因测序应用最广泛、最成熟的是无创产前基因检测,尤其 是产前唐氏综合征筛查。 相比于传统技术,无创产前基因检测仅需抽取少量孕妇外周血,用高通量测序 技术即可准确分析胎儿是否患有染色体疾病,具有安全、快速、检测周期短等 优势,已逐渐被中国大众所接受。据统计,无创产前基因检测目前在中国已经 积累了超过40万例临床应用。 “叫停令”直接影响了国内多家实施基因检测的公司,但所幸的是,“叫停” 并不是完全停止,通知第二条规定:“基因测序诊断产品应按规定经食品药品 监管部门审批注册,并经卫生计生行政部门批准技术准入方可应用。” 中国当前市场使用的测序仪均不符合这一条件。为促进无创产前基因检测在中 国市场尽快获批,各大测序服务提供商开始通过高通量基因测序仪的“国产化”,来满足现有的监管法规要求。 贝瑞和康此次联合Illumina共同生产新型测序仪,并向食药总局申请注册,使得Illumina公司的测序平台进入了中国的注册审批程序。 据财新网消息,除贝瑞和康外,当前正在向食药总局申请注册的“国产”测序 仪包括:华大基因的BGISEQ1000(基于CG的测序平台)、中山大学达安基因 股份有限公司的DA8600(基于Life Technologies公司的Ion Proton测序 平台)。 这些公司都是国内无创产前检测的领头公司。现在,他们站在差不多同一条起 跑线上,将在中国市场上进行搏杀。他们之间的竞争,将会走向何方?我们可 以从各自使用的技术平台和申报国家医疗器械注册证情况探知一二。 竞争激烈“国产化”将走向何方? 当前,全球市场上测序仪最主要的提供商是美国的Illumina公司和 Life Technologies公司,我国市场上的基因测序仪也几乎被这两家公司垄断。达安基因、华大基因、贝瑞和康等国内公司在无创产前检测领域竞争的背后, 实际上是Life Tech与Illumina两大技术平台的PK。 一、Life Tech/Illumina两大技术平台PK

一代、二代、三代测序技术

一代、二代、三代测序技术 (2014-01-22 10:42:13) 转载 第一代测序技术-Sanger链终止法 一代测序技术是20世纪70年代中期由Fred Sanger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA模板分子结合后,DNA聚合酶用dNTP延伸引物。延伸反应分四组进行,每一组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAGE分析四组样品。从得到的PAGE胶上可以读出我们需要的序列。 第二代测序技术-大规模平行测序 大规模平行测序平台(massively parallel DNA sequencing platform)的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD测序仪。Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将Illumina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开

三代测序原理技术比较

导读从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序 技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1:测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为 sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

三代测序原理技术比较

三代测序原理技术比较

三代测序技术和原理介绍 导读从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。 摘要:从1977年第一代DNA测序技术 (Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。

第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中

分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

几种常见的基因测序技术的优缺点及应用

几种常见的基因测序技术的优缺点及应用 发布时间:2014-07-19 来源:毕业论文网 随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到2005 年,以Illumina 公司的Solexa技术和ABI 公司的SOLiD 技术为标志的新一代测序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。 近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。 本文介绍了几种DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。 1、第一代测序 1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和Walter Gibert 发明了Sanger 测序法,并在此后的10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3'-OH,因此每当DNA 链加入分子ddNTP,延伸便终止。每一次DNA 测序是由4个独立的反应组成,将模板、引物和 4 种含有不同的放射性同位素标记的核苷酸的ddNTP 分别与DNA 聚合酶混合形成长短不一的片段,大量起始点相同、终止点不同的DNA 片段存在于反应体系中,具有单个碱基差别的DNA 序列可以被聚丙烯酰胺变性凝胶电泳分离出来,得到放射性同位素自显影条带。依据电泳条带读取DNA 双链的碱基序列。 人类基因组的测序正是基于该技术完成的。Sanger 测序这种直接测序方法具有高度的准确性和简单、快捷等特点。目前,依然对于一些临床上小样本遗传疾病基因的鉴定具有很高的实用价值。例如,临床上采用Sanger 直接测序FGFR 2 基因证实单基因Apert 综合征和直接测序TCOF1 基因可以检出多达90% 的与Treacher Collins 综合征相关的突变。值得注意的是,Sanger 测序是针对已知致病基因的突变位点设计引物,进行PCR 直接扩增测序。

新一代高通量测序技术SOLiD简介

新一代高通量测序技术SOLiD简介 目前市场上有四种高通量测序仪,分别是Solexa,454 (GS-FLX),SOLiD和Polonator。根据测序原理,它们可以被分为两大类:使用合成法测序(Sequencing by Synthesis)的Solexa和454,及使用连接法测序(Sequencing by Ligation)的Polonator和SOLiD。这些高通量测序仪的共同点是不需要大肠杆菌系统进行DNA模板扩增,且测序所得序列较短:其中的454序列最长,为200~300个碱基,其余三种序列都只有几十个碱基。测序原理及序列长度的差异决定了各种高通量测序仪具有不同的应用领域。这就要求我们在熟悉各种高通量测序仪内在技术特点的基础上进行选择。 基因组所引进的SOLiD (Sequencing by Oligonucleotide Ligation and Detection)是ABI(Applied Biosystems)公司生产的高通量测序仪。目前这台SOLiD运行稳定,SOLiD实验及数据分析小组也可以为大家提供专业的技术服务。所以接下来的关键是如何把SOLiD测序仪应用到符合其技术特点的科研项目中。本短文将简单介绍SOLiD测序流程,双碱基编码原理及数据分析原理,以帮助大家了解SOLiD测序仪的技术特点和应用范围。 1.SOLiD关键技术及其原理 SOLiD使用连接法测序获得基于“双碱基编码原理”的SOLiD颜色编码序列,随后的数据分析比较原始颜色序列与转换成颜色编码的reference序列,把SOLiD颜色序列定位到reference上,同时校正测序错误,并可结合原始颜色序列的质量信息发现潜在SNP位点。 1.1. SOLiD文库构建 使用SOLiD测序时,可根据实际需要,制备片段文库(fragment library)或末端配对文库(mate-paired library)。简单地说,制备片段文库就是在短DNA片段(60~110 bp)两端加上SOLiD 接头(P1、P2 adapter)。而制备末端配对文库,先通过DNA环化、Ecop15I酶切等步骤截取长DNA片段(600bp到10kb)两末端各25 bp进行连接,然后在该连接产物两端加上SOLiD接头。两种文库的最终产物都是两端分别带有P1、P2 adapter的DNA双链,插入片段及测序接头总长为120~180 bp。 1.2:油包水PCR 我们知道,文库制备得到大量末端带P1、P2 adapter但内部插入序列不同的DNA双链模板。和普通PCR一样,油包水PCR也是在水溶液进行反应,该水相含PCR所需试剂,DNA模板及可分别与P1、P2 adapter结合的P1、P2 PCR引物。但与普通PCR不同的是,P1引物固定在P1磁珠球形表面(SOLiD将这种表面固定着大量P1引物的磁珠称为P1磁珠)。PCR反应过程中磁珠表面的P1引物可以和变性模板的P1 adapter负链结合,引导模板合成,这样一来,P1引物引导合成的DNA链也就被固定到P1磁珠表面了。 油包水PCR最大的特点是可以形成数目庞大的独立反应空间以进行DNA扩增。其关键技术是“注水到油”,基本过程是在PCR反应前,将包含PCR所有反应成分的水溶液注入到高速旋转的矿物油表面,水溶液瞬间形成无数个被矿物油包裹的小水滴。这些小水滴就构成了独立的PCR 反应空间。理想状态下,每个小水滴只含一个DNA模板和一个P1磁珠,由于水相中的P2引物和磁珠表面的P1引物所介导的PCR反应,这个DNA模板的拷贝数量呈指数级增加,PCR反应结束后,P1磁珠表面就固定有拷贝数目巨大的同来源DNA模板扩增产物。A BI公司提供的SOLiD 实验手册已经把小水滴体积及水相中DNA模板和磁珠的个数比等重要参数进行了技术优化和流程固定,尽可能提高“优质小水滴”(水滴中只含一个DNA模板一个P1磁珠)的数量,为后续SOLiD 测序提供只含有一种DNA模板扩增产物的高质量P1磁珠。

三代测序原理技术比较

导从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测导序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从读长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到 长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势 位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变 革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在 这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1 :测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson )开创的链终止法或者是1976-1977年由马克西姆(Maxam和吉尔伯特(Gilbert )发明的化学法(链降解)?并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱 基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。 研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基 因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2' 和3'都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为san ger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了San ger法之外还出现了一 些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2 - 4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方 法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP 图2: Sanger法测序原理

测序技术的发展历程

测序技术的发展历程 随着1953年沃森和克里克发现了DNA的双螺旋结构,到2001年,首个人类基因组图谱的绘制完成,人们越来越多的认识到测序在生物医学中的重要作用。 测序技术的发展历史 Sanger测序技术 1975年由桑格和考尔森开创的链终止法测序技术标志着人类第一代DNA测序技术的诞生。1977年,人类历史上第一个基因组序列噬菌体X174由桑格团队测序完成。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。 SangerJ.D. Waston、F.Crick

虽然第一代测序技术的测序读长可达1000bp,准确性高达99.999%,但其测序成本高,通量低等方面的缺点,严重影响了其真正大规模的应用。因而第一代测序技术并不是最理想的测序方法。从那时起人们开始了二代测序技术的探索。 第二代测序技术 第二代测序技术的核心思想是边合成边测序(Sequencing by Synthesis),在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。 现有的技术平台主要包括Roche/454 FLX(已宣布停产)、Illumina Hiseq Miseq等系列和Applied Biosystems SOLID system。 Roche/454 FLX Illumina Hiseq 2500 AB SOLID 第三代测序技术 第二代测序技术虽然较Sanger测序有了巨大的突破,但是其测序的理论基础仍然建立在PCR扩增的基础之上。为了有效的避免测序过程中由于PCR扩增带来的偏差,科学家们积极投身到第三代单分子测序仪研究当中。目前最具代表性的包括Heliscope单分子实时合成测序法,纳米孔测序技术等。

三代测序技术的比较

一代、二代、三代测序技术 张祥瑞 2013/04/22 11:43 第一代测序技术-Sanger链终止法 一代测序技术是20世纪70年代中期由Fred San ger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸 在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上 没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA莫板分子结合后,DNA R合酶用dNTP延伸引物。延伸反应分四组进行,每一 组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAG吩析四组样品。从得到的PAGE交上可以读出我们需要的序列。 第二代测序技术-大规模平行测序 大规模平行测序平台(massively parallel DNA sequencing platform )的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于 人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Scienee 公司的454基因组测序仪、美国Illumina 公司和英国Solexa techno logy 公司合作开发的Illumi na 测序仪、美国Applied Biosystems 公司的SOLiD测序仪。Illumina/Solexa Genome Analyzer 测序的基本原理是边合成边测序。在Sanger 等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待 测DNA勺序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将川umina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA片段变性成 单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通 过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA 聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开始前将结合的核苷酸剪切并分解。(4)数据分析 第三代测序技术-高通量、单分子测序

转录组测序技术的应用及发展综述

转录组测序技术的应用及发展综述 摘要:转录组测序(RNA-Seq)作为一种新的高效、快捷的转录组研究手段正在改变着人们对转录组的认识。RNA-Seq利用高通量测序技术对组织或细胞中所有RNA 反转录而成cDNA文库进行测序,通过统计相关读段(reads)数计算出不同RNA的表达量,发现新的转录本;如果有基因组参考序列,可以把转录本映射回基因组,确定转录本位置、剪切情况等更为全面的遗传信息,已广泛应用于生物学研究、医学研究、临床研究和药物研发等。文章主要比较近年来转录组研究的几种方法和几种RNA-Seq的研究平台,着重介绍RNA-Seq的原理、用途、步骤和生物信息学分析,并就RNA-Seq技术面临的挑战和未来发展前景进行了讨论及在相关领域的应用等内容,为今后该技术的研究与应用提供参考。 关键词: RNA-Seq;原理应用;方法;挑战;发展前景 Abstract:Transcriptome sequencing (RNA-Seq) is a kind of high efficiency, quick transcriptome research methods are changing our understanding of transcriptome. RNA-Seq to use high-throughput sequencing of tissues or cells of all RNA reverse transcription into cDNA library were sequenced, through statistical correlation read paragraph (reads) numbers were calculated from the expression of different RNA transcripts, find new; if the genome reference sequence, the transcripts mapped to genomic, determine the position of the transcription shear condition, more genetic information, has been widely used in biological research, medical research, clinical research and drug development. This paper compared several methods of platform transcriptome studies and several kinds of RNA-Seq in recent years, RNA-Seq focuses on the principle, purpose, steps and bioinformatics analysis, and discusses the RNA-Seq technology challenges and future development prospect and the application in related field and other content, provide the reference for the research and application of the technology future. Key word:RNA-Seq ;application; principle; method; challenge; development prospects 前言:转录组是特定组织或细胞在某一发育阶段或功能状态下转录出来的所有RNA的集合。转录组研究能够从整体水平研究基因功能以及基因结构,揭示特定生物学过程以及疾病发生过程中的分子机理。转录组测序(RNA-Seq)是指利用第二代高通量测序技术进行cDNA测序,全面快速地获取某一物种特定器官或组织在某一状态下的几乎所有转录本。随着后基因组时代的到来,转录组学、蛋白质组学、代谢组学等各种组学技术相继出现,其中转录组学是率先发展起来以

相关主题