搜档网
当前位置:搜档网 › 最新高考数学练习题目详解13函数的零点个数问题

最新高考数学练习题目详解13函数的零点个数问题

最新高考数学练习题目详解13函数的零点个数问题
最新高考数学练习题目详解13函数的零点个数问题

【知识要点】

一、方程的根与函数的零点

(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.

(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点.

(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(

函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(

零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法

(1)二分法及步骤

对于在区间[,]a b 上连续不断,且满足0)()(

第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)

第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步. 三、一元二次方程2

()0(0)f x ax bx c a =++=≠的根的分布

讨论一元二次方程2

()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2b

x a

=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.

四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结

函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】

【例1 】已知函数2()32(1)(2)f x x a x a a =+--+区间(1,1)-内有零点,求实数a 的取值范围.

【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.

【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7

【例2】(2017全国高考新课标I 理科数学)已知函数2()(2)x

x f x ae a e

x =+--.

(1)讨论()f x 的单调性;

(2)若()f x 有两个零点,求a 的取值范围.

(2) ①若0,a ≤由(1)知()f x 至多有一个零点.

②若0a >,由(1)知当ln x a =-时,()f x 取得最小值,1

(ln )1ln f a a a

-=-+. (i )当1a =时,(ln )f a -=0,故()f x 只有一个零点. (ii )当(1,)a ∈+∞时,由于1

1ln a a

-+>0,即(ln )0f a ->,故()f x 没有零点. (iii )当0,1a ∈()

时,1

1ln 0a a

-+<,即(ln )0f a -<. 422(2)(2)2220,f ae a e e ----=+-+>-+>故()f x 在(,ln )a -∞-只有一个零点.

00000000003

ln(1),()(2)20

3

ln(1)ln ,()n n n n n n f n e ae a n e n n a

a f x a

>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a 的取值范围为(0,1).

【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a ∈()时,要先判断(,ln )a -∞的零点的个数,此时考查了函数的零点定理,(ln )0f a -<,还必须在该区间找一个函数值为正的值,它就是4

22

(2)(2)2220,f a e

a e e

----=+-+>-+>要说明(2)0f ->,这里利用了放缩法,丢掉了

42ae ae --+.(3) 当0,1a ∈()

时,要判断(ln ,)a -+∞上的零点个数,也是在考查函数的零点定理,还要在该

区间找一个函数值为正的值,它就是03

ln(1)n a

>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.

【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;

(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.

(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =

所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-?>-=

()()213211213f e f --<-+=-<

所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--

【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.

【反馈检测2】已知函数2

()1x e f x ax =+,其中a 为实数,常数 2.718

e =.

(1) 若1

3

x =

是函数()f x 的一个极值点,求a 的值; (2) 当4a =-时,求函数()f x 的单调区间;

(3) 当a 取正实数时,若存在实数m ,使得关于x 的方程()f x m =有三个实数根,求a 的取值范围.

【例4】函数()lg cos f x x x =-的零点有 ( ) A .4 个 B .3 个 C .2个 D .1个

【点评】

调性不是很方便,所以先令()lg cos 0f x x x =-=,可化为lg cos x x =,再在同一直角坐标系下画出

lg y x =和cos y x =的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活

应用.

【反馈检测3】设函数()()()2

21ln ,1,02

f x x m x

g x x m x m =

-=-+>. (1)求函数()f x 的单调区间;

(2)当1m ≥时,讨论函数()f x 与()g x 图象的交点个数.

高中数学常见题型解法归纳及反馈检测第13讲:

函数零点个数问题的求解方法参考答案

【反馈检测1答案】C

【反馈检测2答案】(1)95a =

;(2)()f x 的单调增区间是1(1)2-,1(,12+;

()f x 的单调减区间是1(,)2-∞-,1(,12-,(1)++∞;

(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222

(21)()(1)x

ax ax e f x ax -+'=+ 因为1

3

x =

是函数()f x 的一个极值点,所以1()03f '=,

即12910,935

a a a -+==. 而当9

5a =时,229591521(2)()()59533

ax ax x x x x -+=-+=--,

可验证:13x =是函数()f x 的一个极值点.因此9

5

a =.

(2) 当4a =-时,222

(481)()(14)x

x x e f x x -++'=-

令()0f x '=得24810x x -++=,解得1x =,而12x ≠±.

所以当x 变化时,()f x '、()f x 的变化是

因此()f x 的单调增区间是1(1)2,1(,12+;()f x 的单调减区间是1(,)2-∞-,1(,12--

(1)+∞;

【反馈检测3答案】(1

)单调递增区间是

)

+∞,

单调递减区间是(;(2)1.学科@网

【反馈检测3详细解析】(1)函数()f x 的定义域为()(

)(

0,,'x x f x x

+∞=.

当0x <<()'0f x <,函数()f x 单调递减,

当x >

时,()'0f x >函数()f x 单调递增,

综上,函数()f x

的单调递增区间是)

+∞,

单调递减区间是(.

(2)令()()()()2

11ln ,02

F x f x g x x m x m x x =-=-

++->,问题等价于求函数()F x 的零点个数,()()()

1'x x m F x x

--=-

,当1m =时,()'0F x ≤,函数()F x 为减函数,

综上,函数()F x 有唯一零点,即两函数图象总有一个交点.

高中数学公式及常用结论大全

1. 元素与集合的关系

U x A x C A ∈??,U x C A x A ∈??.

2.德摩根公式

();()U U U U U U C A B C A C B C A B C A C B ==.

3.包含关系

A B A A B B =?=U U A B C B C A ????

U A C B ?=ΦU C A B R ?=

4.容斥原理

()()card A B cardA cardB card A B =+-

()()card A B C cardA cardB cardC card A B =++-

5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集

有2n –2个.

6.二次函数的解析式的三种形式 (1)一般式2

()(0)f x ax bx c a =++≠; (2)顶点式2

()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式

()N f x M <

?|()|22

M N M N

f x +--

()0()f x N M f x ->-?11()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21

≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价0)()(21

0)(1=k f 且22211k k a b k +<-

<,或0)(2=k f 且22122k a

b

k k <-<+.

9.闭区间上的二次函数的最值

二次函数)0()(2

≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在a

b

x 2-

=处及区间的两端点处取得,具体如下:

(1)当a>0时,若[]q p a b

x ,2∈-

=,则{}min max max ()(),()(),()2b f x f f x f p f q a

=-=; []q p a

b

x ,2?-

=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p a b

x ,2?-=,则()()()()

card A B card B C card C A card A B C ---+

{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.

10.一元二次方程的实根分布

依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则

(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402

p q p m ?-≥?

?->??;

(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402

f m f n p q p m n >??>??

?-≥?

?<-?或

()0

()0

f n af m =??

>?; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402

p q p m ?-≥?

?-

11.定区间上含参数的二次不等式恒成立的条件依据

(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式

(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥?.

(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是

(,)0()man f x t x L ≤?.

(3)0)(2

4>++=c bx ax x f 恒成立的充要条件是0

00a b c ≥??≥??>?

或2040a b ac

12.真值表

13.常见结论的否定形式

14.四种命题的相互关系

15.充要条件

(1)充分条件:若p q ?,则p 是q 充分条件. (2)必要条件:若q p ?,则p 是q 必要条件.

(3)充要条件:若p q ?,且q p ?,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性

(1)设[]2121,,x x b a x x ≠∈?那么

[]1212()()()0x x f x f x -->?[]b a x f x x x f x f ,)(0)

()(2121在?>--上是增函数;

[]1212()()()0x x f x f x --

[]b a x f x x x f x f ,)(0)

()(2

121在?<--上是减函数.

(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.

17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数

)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.

18.奇偶函数的图象特征

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则

)()(a x f a x f +-=+.

20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2

b

a x +=;两个函数)(a x f y +=与)(x

b f y -= 的图象关于直线2b

a x +=

对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a

对称; 若)()(a x f x f +-=,则函数

)(x f y =为周期为a 2的周期函数.

22.多项式函数1

10()n n n n P x a x a x a --=++

+的奇偶性

多项式函数()P x 是奇函数?()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数?()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性

(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=-(2)()f a x f x ?-=. (2)函数()y f x =图象关于直线2

a b

x +=对称()()f a mx f b mx ?+=-()()f a b mx f mx ?+-=. 24.两个函数图象的对称性

(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b

x m

+=对称. (3)函数)(x f y =和)(1

x f

y -=的图象关于直线y=x 对称.

25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线

0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.

26.互为反函数的两个函数的关系a b f

b a f =?=-)()(1

.

27.若函数)(b kx f y +=存在反函数,则其反函数为])([11

b x f k

y -=

-,并不是)([1

b kx f y +=-,而函数

)([1

b kx f

y +=-是])([1

b x f k

y -=

的反函数.

28.几个常见的函数方程

(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()x

f x a =,()()(),(1)0f x y f x f y f a +==≠.

(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α

=,'

()()(),(1)f xy f x f y f α==. (5)余弦函数()cos f x x =,正弦函数()sin g x x =,

()()()()()f x y f x f y g x g y -=+

()

(0)1,lim

1x g x f x

→==. 29.几个函数方程的周期(约定a>0)

(1))()(a x f x f +=,则)(x f 的周期T=a ;

(2)0)()(=+=a x f x f ,或)0)(()(1

)(≠=

+x f x f a x f ,或1()()

f x a f x +=-(()0)f x ≠,

[]1

(),(()0,1)2

f x a f x =+∈,则)(x f 的周期T=2a ;

(3))0)(()

(1

1)(≠+-

=x f a x f x f ,则)(x f 的周期T=3a ;

(4))

()(1)

()()(212121x f x f x f x f x x f -+=

+且1212()1(()()1,0||2)f a f x f x x x a =?≠<-<,则)(x f 的周期T=4a ;

(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++

()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;

(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂

(1)m n

a

=

(0,,a m n N *

>∈,且1n >).

(2)1

m n

m n

a

a

-

=(0,,a m n N *

>∈,且1n >).

31.根式的性质

(1

)n

a =.

(2)当n

a =;当n

,0

||,0

a a a a a ≥?==?-

32.有理指数幂的运算性质 (1) (0,,)r

s

r s

a a a

a r s Q +?=>∈.

(2) ()(0,,)r s

rs

a a a r s Q =>∈. (3)()(0,0,)r r r

ab a b a b r Q =>>∈.

注: 若a >0,p 是一个无理数,则a p

表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.

33.指数式与对数式的互化式

log b a N b a N =?=(0,1,0)a a N >≠>.

34.对数的换底公式

log log log m a m N

N a

=

(0a >,且1a ≠,0m >,且1m ≠, 0N >).

推论 log log m n

a a n

b b m

=

(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则

若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a

a a M

M N N

=-; (3)log log ()n

a a M n M n R =∈.

36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42

-=?.若)(x f 的定义域为R ,则0>a ,且0

若)(x f 的值域为R ,则0>a ,且0≥?.对于0=a 的情形,需要单独检验. 37. 对数换底不等式及其推广

若0a >,0b >,0x >,1

x a ≠

,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1

(,)a +∞上log ()ax y bx =为增函数.

(2)当a b <时,在1(0,)a 和1

(,)a

+∞上log ()ax y bx =为减函数.

推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.

(2)2

log log log 2

a a a m n

m n +<. 38. 平均增长率的问题

如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x

y N p =+. 39.数列的同项公式与前n 项的和的关系

11,

1,2

n n n s n a s s n -=?=?

-≥?( 数列{}n a 的前n 项的和为12n n s a a a =+++).

40.等差数列的通项公式

*11(1)()n a a n d dn a d n N =+-=+-∈;

其前n 项和公式为1()2n n n a a s +=

1(1)2n n na d -=+211

()22

d n a d n =+-. 41.等比数列的通项公式

1*11()n n

n a a a q q n N q

-==

?∈; 其前n 项的和公式为11

(1),11,1n n a q q s q na q ?-≠?=-??=?或11,11,1

n n a a q

q q s na q -?≠?

-=??=?.

42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1

(),11n n n b n d q a bq d b q d q q -+-=??

=+--?≠?-?;

其前n 项和公式为(1),(1)

1(),(1)111n n nb n n d q s d q d

b n q q q q +-=??

=-?-+≠?---?

. 43.分期付款(按揭贷款)

每次还款(1)(1)1

n

n

ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式 (1)若(0,

)2

x π

∈,则sin tan x x x <<. (2) 若(0,

)2

x π

,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥. 45.同角三角函数的基本关系式

22sin cos 1θθ+=,tan θ=

θ

θ

cos sin ,tan 1cot θθ?=. 46.正弦、余弦的诱导公式

21

2(1)sin ,sin()2(1)s ,

n

n n co απαα-?

-?+=??-?

47.和角与差角公式

sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβ

αβαβ

±±=

.

22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.

sin cos a b αα+

)α?+(辅助角?所在象限由点(,)a b 的象限决定,tan b

a

?=

). 48.二倍角公式

sin 2sin cos ααα=.

2222cos 2cos sin 2cos 112sin ααααα=-=-=-.

2

2tan tan 21tan α

αα

=

-. 49. 三倍角公式

3sin 33sin 4sin 4sin sin()sin()33ππ

θθθθθθ=-=-+.

3cos34cos 3cos 4cos cos()cos()33ππ

θθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33

θθππ

θθθθθ-==-+-.

50.三角函数的周期公式

函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0,ω>0)的周期2T π

ω

=;

函数tan()y x ω?=+,,2

x k k Z π

π≠+∈(A,ω,?为常数,且A ≠0,ω>0)的周期T π

ω

=

. 51.正弦定理

21

2(1)s ,s()2(1)sin ,

n

n co n co απαα+?

-?+=??-?

2sin sin sin a b c

R A B C

===. 52.余弦定理

2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.

53.面积定理

(1)111

222a b c S ah bh ch =

==(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111

sin sin sin 222

S ab C bc A ca B ===.

(3)OAB S ?=

54.三角形内角和定理

在△ABC 中,有()A B C C A B ππ++=?=-+

222

C A B π+?

=-222()C A B π?=-+. 55. 简单的三角方程的通解

sin (1)arcsin (,||1)k x a x k a k Z a π=?=+-∈≤.

s 2arccos (,||1)co x a x k a k Z a π=?=±∈≤. tan arctan (,)x a x k a k Z a R π=?=+∈∈.

特别地,有

sin sin (1)()k k k Z αβαπβ=?=+-∈.

s cos 2()co k k Z αβαπβ=?=±∈. tan tan ()k k Z αβαπβ=?=+∈.

56.最简单的三角不等式及其解集

sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤?∈++-∈. sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤?∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤?∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤?∈++-∈.

tan ()(arctan ,),2

x a a R x k a k k Z π

ππ>∈?∈++∈.

tan ()(,arctan ),2

x a a R x k k a k Z π

ππ<∈?∈-

+∈.

57.实数与向量的积的运算律 设λ、μ为实数,那么

(1) 结合律:λ(μa )=(λμ)a ; (2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理

如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.

不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示

设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ?-=.

61.a 与b 的数量积(或内积) a ·b =|a ||b |cos θ.

a ·

b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算

(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (4)设a =(,),x y R λ∈,则λa=(,)x y λλ.

(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式

cos θ=

(a =11(,)x y ,b =22(,)x y ).

64.平面两点间的距离公式

,A B d =||AB AB AB =

?=11(,)x y ,B 22(,)x y ).

65.向量的平行与垂直

设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ?b =λa 12210x y x y ?-=.

a ⊥b(a ≠0)?a ·b=012120x x y y ?+=. 66.线段的定比分公式

设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则

1212

11x x x y y y λλλλ+?=??+?+?=?+?

?12

1OP OP OP λλ+=+?12

(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式

△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是

123123

(

,)33

x x x y y y G ++++. 68.点的平移公式

''

''

x x h x x h y y k y y k

??=+=-?????=+=-????''

OP OP PP ?=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'

PP 的坐标为(,)h k .

69.“按向量平移”的几个结论

(1)点(,)P x y 按向量a =(,)h k 平移后得到点'

(,)P x h y k ++.

(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'

C ,则'

C 的函数解析式为()y f x h k =-+. (3) 图象'

C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'

C 的函数解析式为

()y f x h k =+-.

(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'

C 的方程为(,)0f x h y k --=. (5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y . 70. 三角形五“心”向量形式的充要条件

设O 为ABC ?所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ?的外心2

2

2

OA OB OC ?==. (2)O 为ABC ?的重心0OA OB OC ?++=.

(3)O 为ABC ?的垂心OA OB OB OC OC OA ??=?=?.

(4)O 为ABC ?的内心0aOA bOB cOC ?++=. (5)O 为ABC ?的A ∠的旁心aOA bOB cOC ?=+. 71.常用不等式:

(1),a b R ∈?22

2a b ab +≥(当且仅当a =b 时取“=”号).

(2),a b R +

∈?

2

a b

+≥当且仅当a =b 时取“=”号). (3)3

3

33(0,0,0).a b c abc a b c ++≥>>>

(4)柯西不等式 2

2

2

2

2

()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤-. 72.极值定理

已知y x ,都是正数,则有

(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值24

1s . 推广 已知R y x ∈,,则有xy y x y x 2)()(2

2+-=+

(1)若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小. (2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;当||y x -最小时, ||xy 最大.

73.一元二次不等式2

0(0)ax bx c ++><或2

(0,40)a b ac ≠?=->,如果a 与2

ax bx c ++同号,则其

解集在两根之外;如果a 与2

ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.

121212()()0()x x x x x x x x x <?--><或.

74.含有绝对值的不等式 当a> 0时,有

2

2x a x a a x a

22x a x a x a >?>?>或x a <-.

75.无理不等式

用好零点”,证明函数不等式 高考数学压轴题之函数零点问题

“用好零点”,证明函数不等式 类型一设而不求,应用函数零点存在定理 例1.【四川省泸州市2019届高三二诊】已知函数. (1)若曲线在点处的切线与轴正半轴有公共点,求的取值范围; (2)求证:时,. 类型二设而不求,应用不等式性质 例2.【广东省揭阳市2019届高三一模】已知函数(,e是自然对数的底,) (1)讨论的单调性; (2)若,是函数的零点,是的导函数,求证:. 类型三代入零点,利用方程思想转化证明零点之间的关系 例3.【湖南师大附中2019届高三月考试题(七)】已知函数,其中为常数. (1)讨论函数的单调性; (2)若有两个相异零点,求证:. 类型四利用零点性质,构造函数证明参数范围 例4.【山东省临沂市2019届高三2月检测】已知函数. (1)判断的单调性; (2)若在(1,+∞)上恒成立,且=0有唯一解,试证明a<1. 1.【广东省揭阳市2019届高三一模】设函数, (1)讨论的单调性; (2)若函数有两个零点、,求证:. 2.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】已知函数有两个零点. 求实数a的取值范围;

若函数的两个零点分别为,,求证:. 3.【宁夏银川市2019年高三下学期检测】已知函数. (1)当时,求函数的单调区间; (2)当 时,证明: (其中为自然对数的底数). 4.已知函数f (x )=lnx+a (x ﹣1)2 (a >0). (1)讨论f (x )的单调性; (2)若f (x )在区间(0,1)内有唯一的零点x 0,证明:. 5. 已知函数f (x )=3e x +x 2 ,g (x )=9x ﹣1. (1)求函数φ(x )=xe x +4x ﹣f (x )的单调区间; (2)比较f (x )与g (x )的大小,并加以证明. 6. 已知函数f (x )=lnx ﹣x+1,函数g (x )=ax?e x ﹣4x ,其中a 为大于零的常数. (Ⅰ)求函数f (x )的单调区间; (Ⅱ)求证:g (x )﹣2f (x )≥2(lna ﹣ln2). 7.【山东省济南市2019届高三3月模拟】已知函数,其导函数 的最大值 为. (1)求实数的值; (2)若 ,证明: . 8.【山东省日照市2017届高三下学期一模】设(e 为自然对数的底数), . (I)记,讨论函单调性; (II)令 ,若函数G(x )有两个零点. (i)求参数a 的取值范围; (ii)设 的两个零点,证明 . 9.已知函数()()()2 ln 10f x x a x a =+->. (1)讨论()f x 的单调性; (2)若()f x 在区间()0,1内有唯一的零点0x ,证明: 3 12 0e x e - -<<. 10.已知函数()1x f x e ax =--,其中e 为自然对数的底数, a R ∈

专题03 “用好零点”,证明函数不等式-2019年高考数学压轴题之函数零点问题(原卷版)

专题三“用好零点”,证明函数不等式 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕高考压轴题中已知零点(零点个数),证明函数不等式问题,例题说法,高效训练. 【典型例题】 类型一设而不求,应用函数零点存在定理 例1.【四川省泸州市2019届高三二诊】已知函数. (1)若曲线在点处的切线与轴正半轴有公共点,求的取值范围; (2)求证:时,. 类型二设而不求,应用不等式性质 例2.【广东省揭阳市2019届高三一模】已知函数(,e是自然对数的底,) (1)讨论的单调性; (2)若,是函数的零点,是的导函数,求证:. 类型三代入零点,利用方程思想转化证明零点之间的关系 例3.【湖南师大附中2019届高三月考试题(七)】已知函数,其中为常数. (1)讨论函数的单调性; (2)若有两个相异零点,求证:. 类型四利用零点性质,构造函数证明参数范围 例4.【山东省临沂市2019届高三2月检测】已知函数. (1)判断的单调性; (2)若在(1,+∞)上恒成立,且=0有唯一解,试证明a<1. 【规律与方法】 应用函数的零点证明不等式问题,从已知条件来看,有两类,一类是题目中并未提及函数零点,二一

类是题目中明确函数零点或零点个数;从要求证明的不等式看,也有两种类型,一类是求证不等式是函数值的范围或参数的范围,二一类是求证不等式是零点或零点的函数值满足的不等关系. 1.由于函数零点存在定理明确的是函数值满足的不等关系,所以,通过设出函数的零点,利用函数零点存在定理,可建立不等关系,向目标不等式靠近,如上述类型一;也可以利用不等式的性质,向目标不等式靠近,如上述类型二,这两类问题突出的一点是“设而不求”. 2. 当求证不等式是零点或零点的函数值满足的不等关系时,则注意将零点代入函数式,构建方程(组),进一步确定零点之间的关系,然后在通过求导、分离参数、构造函数等手段. 【提升训练】 1.【广东省揭阳市2019届高三一模】设函数, (1)讨论的单调性; (2)若函数有两个零点、,求证:. 2.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】已知函数有两个零点. 求实数a的取值范围; 若函数的两个零点分别为,,求证:. 3.【宁夏银川市2019年高三下学期检测】已知函数. (1)当时,求函数的单调区间; (2)当时,证明:(其中为自然对数的底数). 4.已知函数f(x)=lnx+a(x﹣1)2(a>0). (1)讨论f(x)的单调性; (2)若f(x)在区间(0,1)内有唯一的零点x0,证明:. 5. 已知函数f(x)=3e x+x2,g(x)=9x﹣1. (1)求函数φ(x)=xe x+4x﹣f(x)的单调区间; (2)比较f(x)与g(x)的大小,并加以证明. 6. 已知函数f(x)=lnx﹣x+1,函数g(x)=ax?e x﹣4x,其中a为大于零的常数. (Ⅰ)求函数f(x)的单调区间; (Ⅱ)求证:g(x)﹣2f(x)≥2(lna﹣ln2). 7.【山东省济南市2019届高三3月模拟】已知函数,其导函数的最大值

函数导数压轴题隐零点的处理技巧

函数导数压轴题隐零点的处理技巧 些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的,不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I卷)设函数f(x)=e x﹣ax﹣2. (1)求f(x)的单调区间; (2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值. 解析:(1)(略解)若a≤0,则f′(x)>0,f(x)在R上单调递增; 若a>0,则f(x)的单调减区间是(﹣∞,ln a),增区间是(ln a,+∞). (2)由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1. 故当x>0时,(x﹣k)f′(x)+x+1>0等价于k< 1 1 x x e + - +x(x>0)(*), 令g(x)= 1 1 x x e + - +x,则g′(x)= 2 (2) (1) x x x e e x e -- - , 而函数f(x)=e x﹣x﹣2在(0,+∞)上单调递增,①f(1)<0,f(2)>0, 所以f(x)在(0,+∞)存在唯一的零点.故g′(x)在(0,+∞)存在唯一的零点. 设此零点为a,则a∈(1,2).当x∈(0,a)时,g′(x)<0;当x∈(a,+∞)时,g′(x)>0.所以g(x)在(0,+∞)的最小值为g(a). ③所以g(a)=a+1∈(2,3).由于(*)式等价于k<g(a),故整数k的最大值为2. 点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。

复合函数零点个数问题

复合函数、分段函数零点个数问题 1.已知函数???<≥=) 0()-(log )0(3)(3x x x x f x ,函数)()()()(2R t t x f x f x g ∈++=.关于)(x g 的零点,下列判 断不正确... 的是【 】 A.若)(,41x g t =有一个零点 B.若)(,4 12-x g t <<有两个零点 C.若)(,2-x g t =有三个零点 D.若)(,2-x g t <有四个零点 2、已知函数(0)()lg()(0) x e x f x x x ?≥=?-0 B b>-2且c<0 C b<-2且c=0 D b 2c=0≥-且 5.已知f (x )=log 3x +2(x ∈[1,9]),则函数y =[f (x )]2+f (x 2)的最大值是【 】 A .13 B .16 C .18 D .22 6 已知函数31+,>0()3,0x x f x x x x ??=??+≤? , 则函数)2(-)2()(F 2>+=a a x x f x 的零点个数不可能...为【 】 A 3 B 4 C 5 D 6 7. 已知函数f(x)=????? ax +1,x ≤0,log 2x , x >0。则下列关于函数y =f(f(x))+1的零点个数的判断正确的是【 】 (A )当a >0时,有4个零点;当a <0时,有1个零点 (B )当a >0时,有3个零点;当a <0时,有2个零点

函数的零点及判断零点个数提高题

函数的零点及判断零点个数提高题 1.已知函数()22,52,x x a f x x x x a +>?=?++≤?,函数()()2g x f x x =-恰有三个不同的零点,则实数a 的取值范围是( ) A .[)1,1- B .[]0,2 C .[)2,2- D .[)1,2- 【答案】D . 【解析】 22()()232x x a g x f x x x x x a -+>?=-=?++≤?,而方程20x -+=的解为2,方程 2320x x ++=的解为1-或2-,所以?? ???≤-≤-->,当1x ≤-?1x -≥,又f (x )为奇函数, ∴0x <时, ()(] 12log (1),1,0()()13,,1x x f x f x x x ?--+∈-?=--=??-+--∈-∞-?,(也可以不求解析式,依 据奇函数的图象关于原点对称,画出y 轴左侧的图象),画出y =f (x ),y =a (01a <<)的图象,如图 共有5个交点,设其横坐标从左到右分别为x 1,x 2,x 3,x 4,x 5,则45123,322 x x x x ++=-=

专题03 直击函数压轴题中零点问题(解析版)

一、解答题 1.(2020·湖南省高三考试)设函数()()2 1f x x bx b R =-+∈,()()() ,0,0f x x F x f x x ?>? =? ->??. (1)如果()10f =,求()F x 的解析式; (2)若()f x 为偶函数,且()()g x f x kx =-有零点,求实数k 的取值范围. 【答案】(1)()2221,0 21,0 x x x F x x x x ?-+>=?-+-=?-+-

函数与导数压轴题中零点问题

导数压轴题零点问题练习题 一、解答题 1.(2020·省高三考试)设函数()()2 1f x x bx b R =-+∈,()()() ,0,0f x x F x f x x ?>? =? ->??. (1)如果()10f =,求()F x 的解析式; (2)若()f x 为偶函数,且()()g x f x kx =-有零点,数k 的取值围. 【答案】(1)()2221,0 21,0 x x x F x x x x ?-+>=?-+-=?-+-

第13讲 函数的零点个数问题的求解方法-高中数学常见题型解法归纳反馈训练及详细解析

【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(

(完整版)导数压轴题分类(6)---函数的隐零点问题(含答案)

导数压轴分类(6)---函数的隐零点问题 任务一、完成下面问题,总结隐零点问题的解题方法。 例1. [2013湖北理10] 已知a 为常数,函数)(ln )(ax x x x f -=有两个极值点21x x ,,且21x x <,则( ) A.)(1x f >0,)(2x f >21- B. )(1x f <0,)(2x f <2 1- C. )(1x f >0,)(2x f <21- D . )(1x f <0,)(2x f >21- 例2. [2012全国文21] 设函数2)(--=ax e x f x . (1)求函数)(x f 的单调区间; (2)若1=a ,k 为整数,且当x >0时,1)(')(++-x x f k x >0,求k 的最大值。 k 的最大值=2 任务二、完成下面问题,体验隐零点问题的解题方法的应用。 2.1 [2015北京海淀二模理18] 设函数2ln 1)(x x x f -=. (Ⅰ)求函数)(x f 的零点及单调区间; (Ⅱ)求证:曲线x x y ln = 存在斜率为6的切线,且切点的纵坐标0y <1- 提示解析:(Ⅰ)函数)(x f 的零点为x e =,单调减区间32(0,)e ;单调增区间32(,)e +∞; (Ⅱ)x x y ln =存在斜率为6的切线即存在点000ln (,)x x x 处导数为6,于是020 1ln 6x x -=,即2001ln 60x x --=,令2()1ln 6f x x x =--为增函数,易判断所以01(,1)2x ∈,所以20000000 ln 1616x x y x x x x -===-为减函数,所以0001 2|231x y y =<=-=-

专题06 重温高考压轴题----函数零点问题集锦-2020年高考数学压轴题之函数零点问题(原卷版)

专题六 重温高考压轴题----函数零点问题集锦 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题精选高考压轴题及最新高考模拟压轴题,形成函数零点问题集锦,例题说法,高效训练,进一步提高处理此类问题的综合能力. 【典型例题】 类型一 已知零点个数,求参数的值或取值范围 例1.【2018年理新课标I 卷】已知函数 .若g (x )存在2个零 点,则a 的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 例2.【2018年理数全国卷II 】已知函数. (1)若,证明:当时, ; (2)若 在 只有一个零点,求. 类型二 利用导数确定函数零点的个数 例3.【2018年全国卷II 文】已知函数. (1)若,求 的单调区间; (2)证明: 只有一个零点. 类型三 挖掘“隐零点”,证明不等式 例4.【2017课标II ,理】已知函数()2 ln f x ax ax x x =--,且()0f x ≥. (1)求a ; (2)证明:()f x 存在唯一的极大值点0x ,且()2 202e f x --<<. 类型四 利用函数单调性,确定函数零点关系 例5.【2016高考新课标1理】已知函数2 ()(2)e (1)x f x x a x =-+-有两个零点. (I )求a 的取值范围;

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法 【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有 0)()(

专题05 挖掘“隐零点”,破解导数压轴题-2019年高考数学压轴题之函数零点问题(解析版)

专题五挖掘“隐零点”,破解导数压轴题 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解导数压轴问题,例题说法,高效训练. 【典型例题】 类型一挖掘“隐零点”,求参数的最值或取值范围 例1.【浙江省杭州第十四中学2019届高三12月月考】设函数,曲线y=f(x)在x=1处的切线与直线y=3x平行. (1)判断函数f(x)在区间和上的单调性,并说明理由; (2)当时,恒成立,求的取值范围. 【答案】(1)区间单调递增;(2) 【解析】 (1).∵f'(1)=1+b=3,∴b=2,则f'(x)=ln x+4x-1. 因为在单调递增,所以当时 即函数f(x)在区间单调递减;当时 即函数f(x)在区间单调递增; (2)因为,而在(0,1)上递增 存在使得

,当 时单调递减; 当时 单调递增 所以 又因为时则 所以则 类型二 挖掘“隐零点”,证明不等式 例2. 设函数2()ln x f x e a x =-,设()2 0,2a e ∈求证:当(]0,1x ∈时,2()2ln f x a a a ≥+ 【答案】见解析 【解析】()f x 的定义域为(]0,1,222'()2x x a xe a f x e x x -=-= 设2()2x x xe a ?=-,()22()242x x x xe x e ?'==+, 当(]0,1x ∈,()0x ?'>,即()x ?在区间(]0,1为增函数, (2(),2x a e a ??∈--? 又因为( )2 0,2a e ∈,所以2 (0)0,(1)20a e a ??=-<=-> 由零点存在定理可知'()f x 在(]0,1的唯一零点为0x 当0(0,)x x ∈时,'()0f x <,当(]0,1x x ∈,'()0f x > 故()f x 在0(0,)x 单调递减,在(]0,1x 单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0200()ln x f x e a x =-, 由0 2020x x e a -=,即0 202x a e x = ,两边去对数得00ln ln 22 a x x =- 由于,所以00000222()2ln 22ln 2ln 22a a f x ax a ax a a a x a x a a = ++≥?=+

函数零点问题(讲解)

函数零点问题 【教学目标】 知识与技能: 1. 理解函数零点的定义以及函数的零点与方程的根之间的联系,掌 握用连续函数零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2. 结合几类基本初等函数的图象特征,掌握判断函数的零点个数和 所在区间法. 3.能根据函数零点的情况求参数的取值范围. 【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理 问题的意识. 【教学难点】 根据函数零点所在区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2

解法一:代数解法 解:(1).因为()00e 0210f =+-=-<,()1 1e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念 对函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2.零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b ?<,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根. 问题2:函数2 ()68f x x x =-+在区间[][][]1,3, 0,1, 1,5有零点吗 引例除了用零点基本定理,还有其他方法可以确定函数零点所在的区间吗 解法二:几何解法 (1). ()e 2 x f x x =+- 可化为2x e x =-+.

专题3 直击函数压轴题中零点问题

一、解答题1.已知函数()() ()2 ln 10f x x a x a =+->. (1)讨论()f x 的单调性;(2)若()f x 在区间()0,1内有唯一的零点0x ,证明:312 0e x e --<<. 2.设函数f (x )=x 2 +bx -1(b ∈R ). (1)当b =1时证明:函数f (x )在区间1,12?? ??? 内存在唯一零点;(2)若当x ∈[1,2],不等式f (x )<1有解.求实数b 的取值范围.3.已知函数()()2 10f x ax mx m a =++-≠. (1)若()10f -=,判断函数()f x 的零点个数; (2)若对任意实数m ,函数()f x 恒有两个相异的零点,求实数a 的取值范围;(3)已知12,x x R ∈R 且12x x <,()()12f x f x ≠,求证:方程()()()121 2f x f x f x ??=+? ?在区间()12,x x 上有实数根. 4.已知函数()2 ln f x a x bx =-图象上一点()() 2,2P f 处的切线方程为32ln22y x =-++. (1)求,a b 的值; (2)若方程()0f x m +=在1,e e ????? ? 内有两个不等实根,求m 的取值范围(其中e 2.71828= 为自然对数的底). 5.已知函数()1x f x e ax =--,其中e 为自然对数的底数,a R ∈(I )若a e =,函数()()2g x e x =-①求函数()()()h x f x g x =-的单调区间②若函数()()(),{ ,f x x m F x g x x m ≤=>的值域为R ,求实数m 的取值范围 (II )若存在实数[] 12,0,2x x ∈,使得()()12f x f x =,且121x x -≥,求证:2 1e a e e -≤≤-6.已知函数()1x x f x ax e = -+.(1)当1a =时,求()y f x =在[] 1,1x ∈-上的值域;(2)试求()f x 的零点个数,并证明你的结论.7.已知函数()1ln f x ax x =-+(1)若不等式()0f x ≤恒成立,则实数a 的取值范围; (2)在(1)中,a 取最小值时,设函数()()() ()122g x x f x k x =--++.若函数()g x 在区间182?? ???? ,上恰有

函数的零点问题

函数零点问题的求解 【教学目标】 知识与技能: 1.理解函数零点的定义以及函数的零点与方程的根之间的联系,掌握用连续函数 零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间法. 3.能根据函数零点的情况求参数的取值范围. 过程与方法: 1.函数零点反映了函数和方程的联系,函数零点与方程的根能相互转化,能把方程问题合理 转化为函数问题进行解决. 2.函数的零点问题的解决涉及到分类讨论,数形结合,化归转化等数学思想方法,有效提升了 学生的数学思想方法的应用. 情感、态度与价值观: 1.培养学生认真、耐心、严谨的数学品质; 2.让学生在自我解决问题的过程中,体验成功的喜悦. 【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理问题的意识. 【教学难点】 根据函数零点所在的区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 【教学过程】 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2 解法一:代数解法 解:(1).因为()0 0e 0210f =+-=-<,()1 1e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念 对于函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2. 零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有

2018版高考数学二轮复习特色专题训练专题03直击函数压轴题中零点问题理

专题03 直击函数压轴题中零点问题 一、解答题 1.已知函数()()()2 ln 10f x x a x a =+->. (1)讨论()f x 的单调性; (2)若()f x 在区间()0,1内有唯一的零点0x ,证明: 3 12 e x e --<<. 【答案】(1)答案见解析;(2)证明见解析. 【解析】试题分析:(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可; (2)依题可知()10f =,若()f x 在区间()0,1内有唯一的零点0x ,由(1)可知2a >, 且0110, 2x x ??=∈ ??? ,于是: ()2 0010lnx a x +-= ①,2002210ax ax -+= ② 由①②得0001ln 02x x x --=,设g (x )=lnx ?1 2x x -,(x ∈(0,1)),求出函数的导数,根据函数的单调性证明即可. (2)依题可知()10f =,若()f x 在区间()0,1内有唯一的零点0x ,由(1)可知2a >,

且0110, 2x x ?? =∈ ??? . 于是: ()2 0010lnx a x +-= ① 2002210ax ax -+= ② 由①②得0001ln 02x x x -- =,设()()()1 ln ,0,12x g x x x x -=-∈, 则()2212x g x x '-= ,因此()g x 在10,2?? ??? 上单调递减, 又3 32 2 402e g e -??-=> ??? , ()11 302e g e ---=< 根据零点存在定理,故3 12 0e x e --<<. 点睛:本题考查了函数的单调性,零点问题,考查导数的应用以及不等式的证明,零点存在性定理,考查分类讨论思想,转化思想,构造函数的解题方法. 2.设函数f (x )=x 2 +bx -1(b ∈R ). (1)当b =1时证明:函数f (x )在区间1,12?? ??? 内存在唯一零点; (2)若当x ∈[1,2],不等式f (x )<1有解.求实数b 的取值范围. 【答案】(1)见解析;(2)(),1-∞ 【解析】试题分析:(1)先根据对称轴与定义区间位置关系确定函数f (x )在区间1,12?? ??? 单调性,再根据区间端点函数值异号,结合零点存在定理确定零点个数(2)先分离变量化为对应函数最值问题: 2 b x x <- ,再根据函数单调性确定函数最小值,即得实数b 的取值范围.

函数零点个数问题赏析

函数零点个数问题赏析

————————————————————————————————作者:————————————————————————————————日期:

近年高考试卷中的N 型函数零点个数问题赏析 近些年来,有不少的N 型函数零点个数问题出现在不同年份、不同省区与全国的高考试卷中,这不能不成为高考的热门话题和需要我们研究并指导高三学生进行科学备考的一个重点内容。什么是N 型函数零点个数问题呢,就是含参函数()y f x =在其定义域内连续可导,有两个极值点1x 、2x 并将其定义域分成三个单调区间,通常是“增减增”或“减增减”,在此条件的基础上,方程()0f x =或()f x m =的根的个数与参数取值范围相关的问题。这里注意:函数()y f x =在其靠近定义域两端点时,函数值会很大或很小(即一端足够大,大于极大值;一端足够小,小于极小值)。 N 型函数有哪些呢?一可能是三次函数3 2 ()f x ax bx cx d =+++(0)a ≠,二可能是函数 2()ln()f x ax bx x t =+++(0)a ≠,它们在定义域内都必须有两个极值点。 例1、(2006年福建高考卷)已知函数2 ()8f x x x =-+,()6ln g x x m =+。 (Ⅰ)求f (x )在区间[,1]t t +上的最大值()h t ; (Ⅱ)是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由。 解析:(Ⅰ)略;(Ⅱ)构作函数2 ()()()86ln x f x g x x x x m ?=-=-++,0x >; 求导得:22862(1)(3) '()x x x x x x x ?-+--==,0x >,函数单调性与极值列表如下: x (0,1) 1 (1,3) 3 (3,)+∞ '()x ? + - + ()x ? 7m ?=- 极大 6ln 315m ?=+-极小 依题意,转化为函数()x ?图象与x 轴的交点为3时情形,当x 充分接近0时,()0x ?<,当x 充分大时,()0x ?>,为此有:707156ln 36ln 3150m m m ??=->? ?<<-? =+-

【通用版】2020高考数学突破专题《直击函数压轴题中零点问题》

2020【通编版】高考数学专题突破 《直击函数压轴题中零点问题》 一、解答题 1.已知函数()()()2 ln 10f x x a x a =+->. (1)讨论()f x 的单调性; (2)若()f x 在区间()0,1内有唯一的零点0x ,证明:3 12 0e x e --<<. 【答案】(1)答案见解析;(2)证明见解析. 【解析】试题分析:(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可; (2)依题可知 ()10 f =,若 () f x 在区间 ()0,1内有唯一的零点0x ,由(1)可知2a >, 且0110,2x x ?? =∈ ???,于是:()2 0010lnx a x +-=①,2002210ax ax -+=② 由①②得 000 1ln 0 2x x x -- =,设g(x)=lnx ?12x x -,(x∈(0,1)),求出函数的导数,根据函 数的单调性证明即可. (2)依题可知 ()10 f =,若 () f x 在区间 ()0,1内有唯一的零点0x ,由(1)可知2a >, 且 0110,2x x ?? =∈ ? ?? Z&X&X&K]

于是: ()2 0010 lnx a x +-=① 2002210 ax ax -+= ② 由①②得 0001ln 02x x x -- =,设()()()1ln ,0,12x g x x x x -=-∈, 则 ()221 2x g x x '-= ,因此()g x 在10,2?? ???上单调递减, 又3 3 2 2 402e g e -??-=> ???,()11302e g e ---=< 根据零点存在定理,故 31 2 0e x e - -<<. 点睛:本题考查了函数的单调性,零点问题,考查导数的应用以及不等式的证明,零点存在性定理,考查分类讨论思想,转化思想,构造函数的解题方法. 2.设函数f(x)=x2+bx -1(b ∈R). (1)当b =1时证明:函数f(x)在区间1,12?? ? ??内存在唯一零点; (2)若当x ∈[1,2],不等式f(x)<1有解.求实数b 的取值范围. 【答案】(1)见解析;(2) (),1-∞ 【解析】试题分析:(1)先根据对称轴与定义区间位置关系确定函数f(x)在区间1,12?? ? ??单 调性,再根据区间端点函数值异号,结合零点存在定理确定零点个数(2)先分离变量化为 对应函数最值问题:2 b x x < - ,再根据函数单调性确定函数最小值,即得实数b 的取值范 围.

专题04 “用好零点”,确定参数的最值或取值范围-2121年高考数学压轴题之函数零点问题(原卷版)

专题四“用好零点”,确定参数的最值或取值范围 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数零点,确定参数的最值或取值范围问题,例题说法,高效训练. 【典型例题】 例1.【山东省淄博市2019届高三3月模拟】已知函数. (1)若是的极大值点,求的值; (2)若 在 上只有一个零点,求的取值范围. 例2.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟】已知函数(为自然对数的底数),. (1)当时,求函数的极小值; (2)若当 时,关于的方程 有且只有一个实数解,求的取值范围. 例3.已知函数()()ln 1ax f x e x =+,其中a R ∈.(1)设()()ax F x e f x -=',讨论()F x 的单调性; (2)若函数()()g x f x x =-在()0,+∞内存在零点,求a 的范围.例4.【广东省广州市天河区2019届高三综合测试(一)】设函数. 若函数在 处的切线与直线 垂直,求实数a 的值; 讨论函数的单调区间与极值; 若函数 有两个零点,求满足条件的最小整数a 的值. 【规律与方法】 根据函数零点求参数取值,也是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解; (2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;

相关主题