搜档网
当前位置:搜档网 › 初中因式分解典型例题汇总 附答案

初中因式分解典型例题汇总 附答案

初中因式分解典型例题汇总 附答案
初中因式分解典型例题汇总 附答案

初中因式分解典型例题汇总 例 1 多项式x2+ax+b因式分解为(x+1)(x-2),求a+b的值. 分析 根据因式分解的概念可知因式分解是一种恒等变形,而恒等式 中的对应项系数是相等的,从而可以求出 a 和 b,于是问题便得到解 决. 解 由题意得:x2+ax+b=(x+1)(x-2),所以 x2+ax+b=x2-x-2, 从而得出 a=-1,b=-2, 所以 a+b=(-1)+(-2)=-3. 点评 “恒等式中的对应项系数相等”这一知识是求待定系数的一种 重要方法. 例 2 因式分解 6a2b+4ab2-2ab. 分析 此多项式的各项都有因式 2ab,提取 2ab 即可. 解 6a2b+4ab2-2ab=2ab(3a+2b-1). 点评 用“提公因式法”分解因式,操作时应注意这样几个问题:首 先,所提公因式应是各项系数的最大公约数与相同字母最低次幂的乘 积,即提取的公因式应是多项式各项的最高公因式,否则达不到因式 分解的要求;其次,用“提公因式法”分解因式,所得结果应是:最 高公因式与原多项式各项分别除以最高公因式所得商式的乘积.如果 原多项式中的某一项恰是最高公因式,则商式为 1,这个 1 千万不能

丢掉. 本例题中,各项的公因式有 2,a,b,2a,2b,ab,2ab等.其中 2ab 是它们的最高公因式,故提取 2ab.作为因式分解后的一个因式,另 一个因式则是分别用 6a2b,4ab2和-2ab除以 2ab所得的商式代数和, 其中-2ab÷2ab=-1,这个-1 不能丢. 例 3 因式分解 m(x+y)+n(x+y)-x-y. 分析 将-x-y 变形为-(x+y),于是多项式中各项都有公因式 x+y,提 取 x+y 即可. 解 m(x+y)+n(x+y)-x-y =m(x+y)+n(x+y)-(x+y) =(x+y)(m+n-1). 点评 注意添、去括号法则. 例 4 因式分解 64x6-1. 分析 64x6可变形为(8x3)2,或变形为(4x2)3,而 1 既可看作 12,也可 看作 13,这样,本题可先用平方差公式分解,也可先用立方差公式分 解. 解 方法一 64x6-1=(8x3)2-1 =(8x3+1)(8x3-1) =[(2x)3+1][(2x)3-1] =(2x+1)(4x2-2x+1)(2x-1)(4x2+2x+1) 方法二

64x6-1=(4x2)3-1 =(4x2-1)(16x4+4x2+1) =(2x+1)(2x-1)(16x4+8x2+1-4x2) =(2x+1)(2x-1)[(4x2+1)2-(2x)2] =(2x+1)(2x-1)(4x2+2x+1)(4x2-2x+1) 点评 在分解因式时,尽管采用的方法不同,但结果应是相同的.本 题的两种解法,显然第一种方法比较简单.
点评 分解因式时,应首先考虑各项有没有公因式,如果有公因式, 一定先提公因式,然后再考虑能否用其它方法继续分解.本题如果先 提 2,应如何分解? 例 6 因式分解(x+y)2-6(x+y)+9. 分析 可将 x+y 当作一个整体,此多项式便是关于这个整体的二次三 项式,显然它可用完全平方公式分解. 解 (x+y)2-6(x+y)+9 =(x+y)2-2×3×(x+y)+32 =(x+y-3)2. 点评 在运用公式分解因式时,一定要掌握公式的特点,尤其要注意

完全平方公式中一次项系数的特点. 例 7 因式分解x2+6x-7. 分析 这个二次三项不符合完全平方公式的特点,首先,二次项与常 数项不同号,其次,常数项的绝对值不是一次项系数一半的平方,所 以不能直接用公式分解,但经过适当的变形后,便可用公式分解.另 外,这样的二次三项式可用十字相乘法分解. 解 方法一 x2+6x-7=x2+6x+9-9-7=(x+3)2-16 =(x+3+4)(x+3-4)=(x+7)(x-1) 方法二 x2+6x-7=(x+7)(x-1)
点评 方法一叫配方法.用配方法分解二次三项式时,其前提是二次 项系数为 1(如果二次项系数不是 1,则提取这个系数,使二次项系 数转化为 1);其关键是,加上紧接着减去一次项系数绝对值一半的 平方,这样便达到配方的目的.在用十字相乘法分解二次三项式时, 主要考虑的是十字相乘后的代数和应是一次项. 例 8 因式分解 3x2-7x-6. 分析 本题二次项系数不是 1,如果用配方法分解,则应首先提取二 次项系数 3,然后再加、减一次项系数一半的平方;如果用十字相乘 法分解,既要考虑好首尾两项的分解,更要考虑到十字相乘后的代数 和应是中间项(即一次项). 解 方法一

方法二 3x2-7x-6=(3x+2)(x-3).
点评 用十字相乘法分解因式,在排列算式时,应想到同行不应有公 因式(如本题二次项所分出的 3x与常数项所分出的 3 不能放在同行, 只能与分解出的另一个因式 2 放在同行)这是因为,如果同行有公因 式,此公因式在开始分解时就应提出.掌握这一点会简化操作过程.从 上述两例可以明显看出,在有理数范围内分解二次三项式ax2+bx+c用 十字相乘法比较方便,但随着数的范围的扩大,就看出配方法的重要 了.于是便出现这样的问题:在分解二次三项式ax2+bx+c时,何时用 公式法?何时用十字相乘法?何时用配方法?我们可用b2-4ac的结 果来判别: b2-4ac=0 时,用完全平方公式分解; b2-4ac>0 且是一个完全平方数时,用十字相乘法分解; b2-4ac>0 但不是完全平方数时,用配方法分解; b2-4ac<0 时,在有理数范围内和将来学到的实数范围内都不能分解. 至于为什么可用b2-4ac的结果来作上述判断,这个问题在今后的学习 中会得到解决.

例 9 因式分解 2ax-10ay+5by-bx.
分析 用分组分解法.可将一、二两项和四、三两项分别作为一组,
这样不仅每组可分解,而且确保继续分解.
解 2ax-10ay+5by-bx
=2ax-10ay-bx+5by
=(2ax-10ay)-(bx-5by)
=2a(x-5y)-b(x-5y)
=(x-5y)(2a-b).
点评 本题还可以一、四两项一组,二、三两项一组,但不能一、三
项和二、四项分组,可见分组要恰当.分组是否恰当,以能否达到因
式分解的目的为标准.所以,分组后各组系数成比例则是恰当分组的
重要条件.
例 10 因式分解:
(1)x2-2xy+y2-1
(2)x2-2y-y2-1
分析 这两小题都不能平均分组,因为平均分组后,各组系数不可能
成比例,从而达不到因式分解的目的,但经过观察可知,如果将(1)
题前三项和第四项分组,将(2)题第一项和后三项分组,则可先用
完全平方公式继而用平方差公式将其分解.
解 (1)x2-2xy+y2-1
=(x2-2xy+y2)-1
=(x-y)2-1=(x-y+1)(x-y-1)
(2)x2-2y-y2-1=x2-y2-2y-1

=x2-(y2+2y+1) =x2-(y+1)2=(x+y+1)(x-y-1) 点评 在分解四项式时,也应首先考虑是否有公因式,如果有,要先 提公因式然后再考虑分组,在分组时,又有两两分组、一三分组和三 一分组三种不同分法,这就需要做到具体问题具体分析.对某些特殊 的四项式也可直接用完全立方公式分解,即a3±3a2b+3ab2±b3=(a± b)3.对五项式或五项以上的多项式也采用分组分解法. 例 11 因式分解x2+4xy+3y2+x+3y. 分析 本题的前三项可以分解为(x+y)(x+3y),其中(x+3y)正好与后 两项完全一样,所以本题作三二分组,问题便得到解决. 解 x2+4xy+3y2+x+3y =(x2+4xy+3y2)+(x+3y) =(x+y)(x+3y)+(x+3y) =(x+3y)(x+y+1). 例 12 因式分解: (1)a2+2ab+b2+2a+2b+1, (2)a2+2ab+b2+2a+2b-3, (3)a2+3ab+2b2+2a+b-3. 分析 这三道题都不能平均分组,经观察,它们都可以三二一分组, 分组后,(1)题可经过两次完全平方公式分解,(2)题可经过一次公 式和一次十字相乘分解,而(3)题则可经过两次十字相乘分解. 解 (1)a2+2ab+b2+2a+2b+1

=(a2+2ab+b2)+(2a+2b)+1 =(a+b)2+2(a+b)+1=(a+b+1)2. (2)a2+2ab+b2+2a+2b-3 =(a2+2ab+b2)+(2a+2b)-3 =(a+b)2+2(a+b)-3 =(a+b+3)(a+b-1).
(3)a2+3ab+2b2+2a+b-3 =(a2+3ab+2b2)+(2a+b)-3 =(a+b)(a+2b)+(2a+b)-3 =(a+b-1)(a+2b+3).
例 13 已知 4x2+4xy+y2-4x-2y+1=0,求证: 2x2+3xy+y2-x-y=0 分析 要证明一个多项式的值为零,通常是将此多项式分解因式.若 分解后的因式中有一个值为零,则原多项式的值为零.经过分组分解, 可知 2x2+3xy+y2-x-y=(x+y)(2x+y-1),若x+y或 2x+y-1 为零,则原多 项式的值为零.为达此目的,就要从条件入手. 证明 因为 4x2+4xy+y2-4x-2y+1=0,所以 (2x+y)2-2(2x+y)+1=0, (2x+y-1)2=0. 所以

2x+y-1=0. 又因为 2x2+3xy+y2-x-y=(x+y)(2x+y-1). 而 2x+y-1=0, 所以 2x2+3xy+y2-x-y=0. 例 14 已知 3x2-4xy-7y2+13x-37y+m能分解成两个一次因式的乘积, 求m的值.并将此多项式分解因式. 分析 根据因式分解的概念和乘法法则可知,原多项式所分解得的两 个因式必然都是三项式,而原多项式的前三项可分解为 (3x-7y)(x+y),于是可设原多项式分解为(3x-7y+a)(x+y+b),再根据 恒等式中的对应项系数相等,便能使问题得到解决. 解 设 3x2-4xy-7y2+13x-37y+m =[(3x-7y)+a][(x+y)+b] =3x2-4xy-7y2+(a+3b)x+(a-7b)y+ab. 对应项系数相等,所以
由(1)(2)解得 a=-2,b=5.将 a=-2,b=5 代入(3),得 m=-10, 所以 3x2-4xy-7y2+13x-37y+m

=3x2-4xy-7y2+13x-37y-10 =(3x-7y+a)(x+y+b) =(3x-7y-2)(x+y+5). 例 15 已知|x-3y-1|+x2+4y2=4xy,求x与y的值. 分析 在通常情况下,由一个方程求两个未知数的值,条件是不够的, 但在特殊条件下又是可行的,这“特殊条件”包括非负数的和等于零 的性质.本题已有一个明显的非负数,即|x-3y-1|,而另一个非负 数可由因式分解得到.于是问题能够解决. 解 因为|x-3y-1|+x2+4y2=4xy,所以 |x-3y-1|+x2-4xy+4y2=0 即 |x-3y-1|+(x-2y)2=0 所以
解这个方程组,得
x=-2,y=-1.
例 16 因式分解:
(1)x4+4y4;
(2)x3+5x-6.
分析 这两个多项式既无公因式可提,也不能直接用公式或直接分组
分解.经过观察:(1)题若加上 4x2y2,随之减去 4x2y2,这样既保证
多项式的值不变,又可先用完全平方公式继而用平方差公式分解.(2)
题如果将 5x拆成-x+6x便可分组分解.或者,将-6 拆成-1-5 也可分

组分解. 解 (1)x4+4y4=x4+4x2y2+4y4-4x2y2 =(x2+2y2)2-(2xy)2 =(x2+2xy+2y2)(x2-2xy+2y2). (2)x3+5x-6=x3-x+6x-6 =(x3-x)+(6x-6) =x(x+1)(x-1)+6(x-1) =(x-1)(x2+x+6) 点评 若将-6 拆成-1-5,应如何分解? 例 17 已知x2-2xy-3y2=5,求整数x和y的值. 分析 原式左端可分解为两个一次因式的乘积,由题意可知,这两个 因式都表示整数,这样只能是一个因式为 1(或-1),而另一个因式 为 5(或-5).于是便可列出方程组求出 x 和 y 的值. 解 因为x2-2xy-3y2=5,所以 (x-3y)(x+y)=5. 依题意 x,y 为整数,所以 x-3y 和 x+y 都是整数,于是有:
解上述方程组得:
例 18 已知 A=(x+2)(x-3)(x+4)(x-5)+49(x 为整数),求证:A 为一 个完全平方数.

证明 因为 A=(x+2)(x-3)(x+4)(x-5)+49 =(x2-x-6)(x2-x-20)+49 =(x2-x)2-26(x2-x)+169 =(x2-x-13)2 所以 A 是一个完全平方数.

因式分解-复习-专题-讲义-知识点-典型例题

因式分解复习 一、基础知识 1.因式分解概念: 把一个多项式化成几个整式的乘积的形式,这就叫做把这个多项式因式分解,也可称为 将这个多项式分解因式,它与整式乘法互为逆运算。 2.常用的因式分解方法: (1)提公因式法:把ma mb mc ++,分解成两个因式乘积的形式,其中一个因式是 各项的公因式m ,另一个因式()a b c ++是ma mb mc ++除以m 所得的商,像这种分解因 式的方法叫做提公因式法。 ①多项式各项都含有的相同因式,叫做这个多项式各项的公因式。 ②公因式的构成:系数:各项系数的最大公约数; 字母:各项都含有的相同字母; 指数:相同字母的最低次幂。 (2)公式法: ①常用公式 平方差:)b a )(b a (b a 22-+=- 完全平方:222)b a (b 2ab a ±=+± ②常见的两个二项式幂的变号规律: 22()()n n a b b a -=-;2121()()n n a b b a ---=--.(n 为正整数) (3)十字相乘法 ①二次项系数为1的二次三项式 q px x ++2中,如果能把常数项q 分解成两个因式b a ,的积,并且b a +等于一次项系数中p ,那么它就可以分解成 ()()()b x a x ab x b a x q px x ++=+++=++22 ②二次项系数不为1的二次三项式c bx ax ++2 中,如果能把二次项系数a 分解成两 个因数21,a a 的积,把常数项c 分解成两个因数21,c c 的积,并且1221c a c a +等于一次项系 数b ,那么它就可以分解成:()=+++=++2112212212c c x c a c a x a a c bx ax ()()221c x a a x a ++。 (4)分组分解法 ①定义:分组分解法,适用于四项以上的多项式,例如22 a b a b -+-没有公因式, 又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。再提公因式,即可达到分解因式的目的。 例如22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。 ②原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分 解。 ③有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多 项式正确分解即可。

人教版初中数学因式分解知识点训练及答案

人教版初中数学因式分解知识点训练及答案 一、选择题 1.下列各式从左到右的变形中,属于因式分解的是( ) A .m (a +b )=ma +mb B .a 2+4a ﹣21=a (a +4)﹣21 C .x 2﹣1=(x +1)(x ﹣1) D .x 2+16﹣y 2=(x +y )(x ﹣y )+16 【答案】C 【解析】 【分析】 根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】 A 、是整式的乘法,故A 不符合题意; B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意; C 、把一个多项式转化成几个整式积的形式,故C 符合题意; D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意; 故选C . 【点睛】 本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式. 2.已知实数a 、b 满足等式x=a 2+b 2+20,y =a(2b -a ),则x 、y 的大小关系是( ). A .x ≤ y B .x ≥ y C .x < y D .x > y 【答案】D 【解析】 【分析】 判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系. 【详解】 解:22222202()x y a b ab a a b a -=++-+=-++20, 2()0a b -≥Q ,20a ≥,200>, 0x y ∴->, x y ∴>, 故选:D . 【点睛】 本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大. 3.下列各式从左到右的变形中,是因式分解的为( ). A .()x a b ax bx -=- B .()()222 111x y x x y -+=-++

因式分解易错题和经典题型精选

因式分解易错题精选 班级 姓名 成绩 一、填空:(30分) 1、若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。 2、22)(n x m x x -=++则m =____n =____ 3、232y x 与y x 612的公因式是_ 4、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。 5、在多项式4224222294,4,,t s y x b a n m +-+--+中,可以用平方差公式分解因式的 有________________________ ,其结果是 _____________________。 6、若16)3(22+-+x m x 是完全平方式,则m=_______。 7、_____))(2(2(_____)2++=++x x x x 8、已知,01200520042=+++++x x x x 则.________2006=x 9、若25)(162++-M b a 是完全平方式M=________。 10、()22)3(__6+=++x x x , ()2 2)3(9___-=++x x 11、若229y k x ++是完全平方式,则k=_______。 12、若442-+x x 的值为0,则51232-+x x 的值是________。 13、若)15)(1(152-+=--x x ax x 则a =_____。 14、若6,422=+=+y x y x 则=xy ___。15、方程042 =+x x ,的解是________。

1、多项式))(())((x b x a ab b x x a a --+---的公因式是( ) A 、-a 、 B 、))((b x x a a --- C 、)(x a a - D 、)(a x a -- 2、若22)32(9-=++x kx mx ,则m ,k 的值分别是( ) A 、m=—2,k=6, B 、m=2,k=12, C 、m=—4,k=—12、 D m=4,k=12、 3、下列名式:4 422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公 式分解因式的有( )A 、1个,B 、2个,C 、3个,D 、4个 4、计算)10 11)(911()311)(211(2232---- 的值是( ) A 、21 B 、2011.,101.,201D C 5、1.下列等式从左到右的变形是因式分解的是………………………………………( ) (A )(x +2)(x –2)=x 2-4(B )x 2-4+3x =(x +2)(x –2)+3x (C )x 2-3x -4=(x -4)(x +1)(D )x 2+2x -3=(x +1)2-4 6.分解多项式 bc c b a 2222+--时,分组正确的是……………………………( ) (A )()2()222bc c b a --- (B )bc c b a 2)(222+-- (C ))2()(222bc b c a --- (D ))2(222bc c b a -+- 7.当二次三项式 4x 2 +kx +25=0是完全平方式时,k 的值是…………………( ) (A )20 (B ) 10 (C )-20 (D )绝对值是20的数 8.二项式15++-n n x x 作因式分解的结果,合于要求的选项是………………………( ) (A ))(4n n x x x -+ (B )n x )(5x x - (C ))1)(1)(1(21-+++x x x x n (D ))1(41-+x x n 9.若 a =-4b ,则对a 的任何值多项式 a 2+3ab -4b 2 +2 的值………………( ) (A )总是2 (B )总是0 (C )总是1 (D )是不确定的值

初中数学因式分解难题汇编及答案

初中数学因式分解难题汇编及答案 一、选择题 1.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( ) A .-2 B .2 C .-50 D .50 【答案】A 【解析】 试题分析:先提取公因式ab ,整理后再把a+b 的值代入计算即可. 当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2. 考点:因式分解的应用. 2.若()()21553x kx x x --=-+,则k 的值为( ) A .-2 B .2 C .8 D .-8 【答案】B 【解析】 【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值. 【详解】 ∵()()253215x x x x -+=-- ∴2k -=- 解得2k = 故答案为:B . 【点睛】 本题考查了因式分解的问题,掌握十字相乘法是解题的关键. 3.已知12,23x y xy -==,则43342x y x y -的值为( ) A .23 B .2 C .83 D .163 【答案】C 【解析】 【分析】 利用因式分解以及积的乘方的逆用将43342x y x y -变形为(xy)3(2x-y),然后代入相关数值进 行计算即可. 【详解】 ∵12,23 x y xy -==, ∴43342x y x y - =x 3y 3(2x-y)

=(xy)3(2x-y) =23×1 3 =8 3 , 故选C. 【点睛】 本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键. 4.下列等式从左到右的变形属于因式分解的是() A.a2﹣2a+1=(a﹣1)2B.a(a+1)(a﹣1)=a3﹣a C.6x2y3=2x2?3y3D.mx﹣my+1=m(x﹣y)+1 【答案】A 【解析】 【分析】 直接利用因式分解的定义分析得出答案. 【详解】 解:A、a2﹣2a+1=(a﹣1)2,从左到右的变形属于因式分解,符合题意; B、a(a+1)(a﹣1)=a3﹣a,从左到右的变形是整式乘法,不合题意; C、6x2y3=2x2?3y3,不符合因式分解的定义,不合题意; D、mx﹣my+1=m(x﹣y)+1不符合因式分解的定义,不合题意; 故选:A. 【点睛】 本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别. 5.下列各式中不能用平方差公式进行计算的是( ) A.(m-n)(m+n) B.(-x-y)(-x-y) C.(x4-y4)(x4+y4) D.(a3-b3)(b3+a3) 【答案】B 【解析】 A.(m-n)(m+n),能用平方差公式计算; B.(-x-y)(-x-y),不能用平方差公式计算; C.(x4-y4)(x4+y4),能用平方差公式计算; D. (a3-b3)(b3+a3),能用平方差公式计算. 故选B. 6.下列各式中,从左到右的变形是因式分解的是()

经典的因式分解练习题有答案

因式分解练习题 一、填空题: 2.(a-3)(3-2a)=_______(3-a)(3-2a); 12.若m2-3m+2=(m+a)(m+b),则a=______,b=______; 15.当m=______时,x2+2(m-3)x+25是完全平方式. 二、选择题: 1.下列各式的因式分解结果中,正确的是( ) A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1) C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c)

A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n-2)(m-1) 3.在下列等式中,属于因式分解的是( ) A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1 C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-8 4.下列各式中,能用平方差公式分解因式的是( ) A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b2 5.若9x2+mxy+16y2是一个完全平方式,那么m的值是( ) A.-12 B.±24C.12 D.±12 6.把多项式a n+4-a n+1分解得( ) A.a n(a4-a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+1) D.a n+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为( ) A.8 B.7 C.10 D.12 8.已知x2+y2+2x-6y+10=0,那么x,y的值分别为( ) A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-3 9.把(m2+3m)4-8(m2+3m)2+16分解因式得( ) A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2) C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)2 10.把x2-7x-60分解因式,得( ) A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x-5)(x+12) 11.把3x2-2xy-8y2分解因式,得( ) A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y) 12.把a2+8ab-33b2分解因式,得( ) A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b) 13.把x4-3x2+2分解因式,得( )

因式分解练习题(超经典)

因式分解习题 一、填空: 1、若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。 2、22)(n x m x x -=++则m =____n =____ 3、232y x 与y x 612的公因式是__________. 4、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。 5、在多项式4224222294,4,,t s y x b a n m +-+--+中,可以用平方差公式分解因式的 有___________________________ ,其结果是 _______________________________________。 6、若16)3(22+-+x m x 是完全平方式,则m=_______。 7、_____))(2(2(_____)2++=++x x x x 8、已知,01200520042=+++++x x x x Λ则.________2006=x 9、若25)(162++-M b a 是完全平方式M=________。 10、()22)3(__6+=++x x x , ()22)3(9___-=++x x 11、若229y k x ++是完全平方式,则k=_______。 12、若442-+x x 的值为0,则51232-+x x 的值是________。 13、若)15)(1(152-+=--x x ax x 则a =_________。 14、若6,422=+=+y x y x 则=xy ________。 15、方程042=+x x ,的解是________。 二、选择题:(8分) 1、多项式))(())((x b x a ab b x x a a --+---的公因式是( ) A 、-a B 、))((b x x a a --- C 、)(x a a - D 、)(a x a -- 2、若22)32(9-=++x kx mx ,则m ,k 的值分别是( ) A 、m=—2,k=6 B 、m=2,k=12 C 、m=—4,k=—12 D m=4,k=12 3、下列名式:4422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公式分解因式的有( ) A 、1个 B 、2个 C 、3个 D 、4个 三、分解因式: 1、234352x x x -- 2、2633x x - 3、22)2(4)2(25x y y x --- 4、x x -5 5、24369y x - 6、811824+-x x 四、代数式求值

初二数学因式分解精选100题

初二数学因式分解精选100题

提升课堂托辅中心 初二数学因式分解精选100题 2013年1月25日 一、选择题 1.下列各式中从左到右的变形,是因式分解的是( ) A (a +3)(a -3)=a 2-9 B x 2+x -5=(x -2)(x +3)+1 C a 2 b +ab 2=ab (a +b ) (D)x 2+1=x (x +x 1) 2.下列各式的因式分解中正确的是( ) A -a 2+ab -ac = -a (a +b -c ) B 9xyz -6x 2y 2=3xyz (3-2xy ) C 3a 2x -6bx +3x =3x (a 2-2b ) D 21xy 2+21x 2y =2 1xy (x +y ) 3.把多项式m 2(a -2)+m (2-a )分解因式等于( ) (A)(a -2)(m 2+m ) (B)(a -2)(m 2-m ) (C)m (a -2)(m -1) (D)m (a -2)(m+1) 4.下列多项式能分解因式的是( ) (A)x 2-y (B)x 2+1 (C)x 2+y +y 2 (D)x 2-4x +4 5.下列多项式中,不能用完全平方公式分解因式的是 ( ) (A) 412m m ++ (B)222y xy x -+- (C)224914b ab a ++- (D) 13292+-n n

6.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是() (A)4x(B)-4x(C)4x4(D)-4x4 7.下列分解因式错误的是() (A)15a2+5a=5a(3a+1) (B)-x2-y2= -(x2-y2)= -(x+y)(x-y)(C)k(x+y)+x+y=(k+1)(x+y) (D)a3-2a2+a=a(a-1)2 8.下列多项式中不能用平方差公式分解的是() (A)-a2+b2(B)-x2-y2(C)49x2y2-z2 (D)16m4-25n2p2 9.下列多项式:①16x5-x;②(x-1)2-4(x-1)+4;③(x+1)4-4x(x+1)+4x2;④-4x2-1+4x,分解因式后,结果含有相同因式的是()(A)①②(B)②④ (C)③④(D)②③ 10.两个连续的奇数的平方差总可以被k整除,则k等于() (A)4 (B)8 (C)4或-4 (D)8的倍数 11下列各式中从左到右的变形属于分解因式的是() A a(a+b-1)=a2+ab-a B a2 –a-2=a(a-1)-2C- 4 a2+9b2=(-2a+3b)(2a+3b) D.2x+1=x(2+1/x) 12下列各式分解因是正确的是()

因式分解经典题与解析

2013组卷 1.在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x﹣3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法: x2+2x﹣3=x2+2×x×1+12﹣1﹣3﹣﹣﹣﹣﹣﹣① =(x+1)2﹣22﹣﹣﹣﹣﹣﹣② =… 解决下列问题: (1)填空:在上述材料中,运用了_________的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法; (2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x﹣3; (3)请用上述方法因式分解x2﹣4x﹣5. 2.请看下面的问题:把x4+4分解因式 分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢 19世纪的法国数学家菲?热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2) 人们为了纪念菲?热门给出这一解法,就把它叫做“热门定理”,请你依照菲?热门的做法,将下列各式因式分解. (1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab. 3.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程. 解:设x2﹣4x=y 原式=(y+2)(y+6)+4(第一步) =y2+8y+16(第二步) =(y+4)2(第三步) =(x2﹣4x+4)2(第四步) 回答下列问题: (1)该同学第二步到第三步运用了因式分解的_________. A、提取公因式B.平方差公式 C、两数和的完全平方公式D.两数差的完全平方公式 (2)该同学因式分解的结果是否彻底_________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果_________. (3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解. 4.找出能使二次三项式x2+ax﹣6可以因式分解(在整数围)的整数值a,并且将其进行因式分解. 5.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.

人教版初中数学因式分解真题汇编含答案

人教版初中数学因式分解真题汇编含答案 一、选择题 1.下列分解因式正确的是( ) A .24(4)x x x x -+=-+ B .2()x xy x x x y ++=+ C .2()()()x x y y y x x y -+-=- D .244(2)(2)x x x x -+=+- 【答案】C 【解析】 【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底. 【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()2 1x xy x x x y ++=++,故B 选项错误; C. ()()()2 x x y y y x x y -+-=- ,故C 选项正确; D. 244x x -+=(x-2)2,故D 选项错误, 故选C. 【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底. 2.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形 B .钝角三角形 C .等腰三角形 D .等边三角形 【答案】C 【解析】 【分析】 已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状. 【详解】 已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0, ∵a+b-c ≠0, ∴a-b=0,即a=b , 则△ABC 为等腰三角形. 故选C . 【点睛】 此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键. 3.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( )

因式分解--典型例题及经典习题

14.3 因式分解 典型例题 【例1】 下列各式由左边到右边的变形中,是因式分解的是( ). A .a (x +y )=ax +ay B .y 2-4y +4=y (y -4)+4 C .10a 2-5a =5a (2a -1) D .y 2-16+y =(y +4)(y -4)+y 【例2】 把多项式6a 3b 2-3a 2b 2-12a 2b 3分解因式时,应提取的公因式是( ). A .3a 2b B .3ab 2 C .3a 3b 3 D .3a 2b 2 【例3】 用提公因式法分解因式: (1)12x 2y -18xy 2-24x 3y 3; (2)5x 2-15x +5; (3)-27a 2b +9ab 2-18ab ; (4)2x (a -2b )-3y (2b -a )-4z (a -2b ). 用平方差公式分解因式 两个数的平方差,等于这两个数的和与这两个数的差的积.即a 2-b 2=(a +b )(a -b ). 【例4】 把下列多项式分解因式: (1)4x 2-9; (2)16m 2-9n 2; (3)a 3b -ab ; (4)(x +p )2-(x +q )2. 用完全平方公式分解因式 a 2+2a b +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2. 【例5】 把下列多项式分解因式: (1)x 2+14x +49; (2)(m +n )2-6(m +n )+9; (3)3ax 2+6axy +3ay 2; (4)-x 2-4y 2+4xy . 因式分解的一般步骤 一般步骤可概括为:一提、二套、三查. 【例6】 把下列各式分解因式: (1)18x 2y -50y 3; (2)ax 3y +axy 3-2ax 2y 2. 【例7】 下列各式能用完全平方公式分解因式的是( ). ①4x 2-4xy -y 2;②x 2+25x +125;③-1-a -a 24 ;④m 2n 2+4-4mn ;⑤a 2-2ab +4b 2;⑥x 2-8x +9. A .1个 B .2个 C .3个 D .4个

初中数学因式分解习题

数学因式分解习题: 1、提公因式法因式分解 () 2226m n mn -= (4)9123y 23--y =___________________ (6)x n x m 221624-- 2、利用平方差公式因式分解 29a - = (6)22814y x -=____________________ 3、利用完全平方公式因式分解 (4)24129m m -+= (5) ________________102522=+-n mn m 4、利用十字相乘法因式分解 (8)256x x -+= (9)2412x x +-= 5、将下列多项式因式分解 (1)2510a b abc - (2)81182+-a a (5)245a a -- (6)2441a a -+ (7)220m m -- (三)把下列各式分解因式: 3、2244y xy x -+- 4、212x x -- 7、-x x 253+ 8、 322344x y x y xy ++

9、2()10()25x y x y +-++ 10、22(2)(2)x y x y +-+ (四)用适当的方法计算: (3)22300600297297-?+ (4)22231019923?-? (五)把下列各式因式分解 2、 ()()224a b a b +-- 解:原式= 3、 323412x x x +-- 解:原式=

分式练习题 7.若关于x 的方程01 11=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-1 8.若方程,) 4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-1 9.如果,0,1≠≠= b b a x 那么=+-b a b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.1 1+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10 二、填空题(每小题3分,共30分) 11. 满足方程:2 211-=-x x 的x 的值是________. 12. 当x =________时,分式x x ++51的值等于2 1. 13.分式方程02 22=--x x x 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时. 15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余

初中因式分解典型例题汇总(附答案)

初中因式分解典型例题汇总 例 1 多项式x +ax+b因式分解为(x+1)(x-2),求a+b的值. 分析 根据因式分解的概念可知因式分解是一种恒等变形,而恒等式 中的对应项系数是相等的,从而可以求出 a 和 b,于是问题便得到解 决. 解
2 2
由题意得:x +ax+b=(x+1)(x-2),所以
2
2
x +ax+b=x -x-2, 从而得出 a=-1,b=-2, 所以 a+b=(-1)+(-2)=-3. 点评 “恒等式中的对应项系数相等”这一知识是求待定系数的一种 重要方法. 例2 分析 解 点评 因式分解 6a b+4ab -2ab. 此多项式的各项都有因式 2ab,提取 2ab 即可. 6a b+4ab -2ab=2ab(3a+2b-1). 用“提公因式法”分解因式,操作时应注意这样几个问题:首
2 2 2 2
先, 所提公因式应是各项系数的最大公约数与相同字母最低次幂的乘 积,即提取的公因式应是多项式各项的最高公因式,否则达不到因式 分解的要求;其次,用“提公因式法”分解因式,所得结果应是:最 高公因式与原多项式各项分别除以最高公因式所得商式的乘积. 如果 原多项式中的某一项恰是最高公因式,则商式为 1,这个 1 千万不能

丢掉. 本例题中,各项的公因式有 2,a,b,2a,2b,ab,2ab等.其中 2ab 是它们的最高公因式,故提取 2ab.作为因式分解后的一个因式,另 一个因式则是分别用 6a b,4ab 和-2ab除以 2ab所得的商式代数和, 其中-2ab÷2ab=-1,这个-1 不能丢. 例3 分析 因式分解 m(x+y)+n(x+y)-x-y. 将-x-y 变形为-(x+y),于是多项式中各项都有公因式 x+y,提
2 2
取 x+y 即可. 解 m(x+y)+n(x+y)-x-y
=m(x+y)+n(x+y)-(x+y) =(x+y)(m+n-1). 点评 例4 分析
3
注意添、去括号法则. 因式分解 64x -1. 64x 可变形为(8x ) ,或变形为(4x ) ,而 1 既可看作 1 ,也可
6 3 2 2 3 2 6
看作 1 ,这样,本题可先用平方差公式分解,也可先用立方差公式分 解. 解
6
方法一
3 2
64x -1=(8x ) -1 =(8x +1)(8x -1) =[(2x) +1][(2x) -1] =(2x+1)(4x -2x+1)(2x-1)(4x +2x+1) 方法二
2 2 3 3 3 3

初二数学因式分解讲解

十字相乘法 一、导入 二、前一节课我们学习了关于x2+(p+q)x+pq这类二次三项式的因式分解,这类式子的特点是:二次项系数为1,常数项是两个数之积,一次项系数是常数项的两个因数之和。 因此,我们得到x2+(p+q)x+pq=(x+p)(x+q). 课前练习:下列各式因式分解 1.- x2+2 x+15 2.(x+y)2-8(x+y)+48; 3.x4-7x2+18;4.x2-5xy+6y2。 答:1.-(x+3)(x-5);2.(x+y-12)(x+y+4); 3.(x+3)(x-3)(x2+2);4.(x-2y)(x-3y)。 我们已经学习了把形如x2+px+q的某些二次三项式因式分解,也学习了通过设辅助元的方法把能转化为形如x2+px+q型的某些多项式因式分解。 对于二次项系数不是1的二次三项式如何因式分解呢?这节课就来讨论这个问题,即把某些形如ax2+bx+c的二次三项式因式分解。 二、新课 例1 把2x2-7x+3因式分解。 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3)。 用画十字交叉线方法表示下列四种情况: 1 1 1 3 1 -1 1 -3 2 × 3 2 ×1 2 ×-3 2 ×-1 1×3+2×1 1×1+2×3 1×(-3)+2×(-1)1×(-1)+2×(-3) =5 =7 = -5 =-7 经过观察,第四种情况是正确有。这是因为交叉相乘后,两项代数和恰等于一次项系数-7。 解2x2-7x+3=(x-3)(2x-1)。 一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2排列如下: a1c1 a2×c2 a1c2 + a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即 ax2+bx+c=(a1x+c1)(a2x+c2)。 像这种借助开十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。 例2把6x2-7x-5分解因式。 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其

较复杂的因式分解习题

较复杂的因式分解习题. 1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项

式(ax+bxy+cy+dx+ey+f),我们也可以用22十字相乘法分解因式.例如,分解因式 2x-7xy-22y-5x+35y-3.我们将上式按x降22幂排列,并把y当作常数,于是上式可变形为2x-(5+7y)x-(22y-35y+3),可以看作是关 22于x的二次三项式. 对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为

即-22y+35y-3=(2y-3)(-11y+1).再2利用十字相乘法对关于x的二次三项式分解 所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).

上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图: 它表示的是下面三个关系式: (x+2y)(2x-11y)=2x-7xy-22y;22 (x-3)(2x+1)=2x-5x-3;

-3)(-11y+1)=-22y+35y-3.2. 2(2y 这就是所谓的双十字相乘法. 用双十字相乘法对多项式 ax+bxy+cy+dx+ey+f进行因式分解的步22骤是: (1)用十字相乘法分解ax+bxy+cy,得22到一个十字相乘图(有两列);

(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式: (1)x-3xy-10y+x+9y-2;22 (2)x-y+5x+3y+4;22. (3)xy+y+x-y-2;2 (4)6x-7xy-3y-xz+7yz-2z.

因式分解典型例题

学习好资料 欢迎下载 典型例题一 选择题:对2m +mp +np +2n 运用分组分解法分解因式,分组正确的是() 2 2 2 7x -3y + xy-21x ; (2)1 -x + 4xy-4y . 本题所给多项式为四项多项式,属于分组分解法的基本题型,通过分组后提公因式或分组 后运 解 ⑴ 7x 2 -3y +xy -21x = (7x 2 -21x)+(—3y+xy)(合理分组) = 7x(x-3) +y(x-3)(组内提公因式) = (x-3)(7x + y)(组间提公因式) ⑵ 1 -X 2 +4xy -4y 2 =1 -(x 2 -4xy +4y 2 )(注意符号) = 1-(x —2y )2 (组内运用公式) =1 +(x —2y ) ]1 -(X —2y )】(组间运用公式) =(1 + X -2y)(1 -X +2y) 说明 分组分解法应用较为灵活,分组时要有预见性,可根据分组后“求同”一一有公因式或可运用 公式的原则来合理分组,达到分解的目的 . 另外在应用分组分解法时还应注意:①运用分组分解法时,可灵活选择分组方法,通常一个多项式分 组方法不只一种,只要能达到分解法时,殊途同归 . ②分组时要添加带“―”的括号时,各项要注意改变符号,如⑵的第一步 . 例01 (C ) (2m +2n +np) +mp (B ) (2m + np) + (2n + mp) (2m +2n) +(mp +nm) (D ) (2m +2n + mp) +np 分析 的两组,每一组第一次就没有公因式可提,故( 确. 本组题目用来判断分组是否适当 .(A )的两组之间没有公因式可以提取, 因而(A )不正确;(B ) B )不正确;(D )中两组也无公因式可提,故( D )不正 (C )中第一组可提取公因式 2,剩下因式(m+n );第二组可提取 P ,剩下因式(m + n ),这样组间 可提公因式(m + n ),故(C )正确. 典型例题二 例02 用分组分解法分解因式: (1) 分析 用公式可以达到分解的目的

人教版初中数学因式分解知识点复习

人教版初中数学因式分解知识点复习 一、选择题 1.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰或直角三角形 【答案】D 【解析】 试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3, ∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0, ∴(b ﹣c )(a 2+b 2﹣c 2)=0, ∴b ﹣c=0,a 2+b 2﹣c 2=0, ∴b=c 或a 2+b 2=c 2, ∴△ABC 是等腰三角形或直角三角形. 故选D . 2.下列各式从左到右的变形中,是因式分解的为( ). A .()x a b ax bx -=- B .()()222111x y x x y -+=-++ C .()()2111x x x -=+- D .()ax bx c x a b c ++=+ 【答案】C 【解析】 【分析】 根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式. 【详解】 解:A 、是整式的乘法运算,故选项错误; B 、右边不是积的形式,故选项错误; C 、x 2-1=(x+1)(x-1),正确; D 、等式不成立,故选项错误. 故选:C . 【点睛】 熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式. 3.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为( ) A .21x x -+ B .21x x ++ C .21x x -- D .21x x +- 【答案】B 【解析】 解:x 2y (a -b )-xy (b -a )+y (a -b )= y (a -b )(x 2+x +1).故选B .

八年级上册因式分解分类练习题(经典全面)

因式分解练习题(提取公因式) 专项训练一:确定下列各多项式的公因式。 1、ay ax + 2、36mx my - 3、2410a ab + 4、2 155a a + 5、2 2 x y xy - 6、2 2 129xyz x y - 7、()()m x y n x y -+- 8、()()2 x m n y m n +++ 9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。 1、22____()R r R r ππ+=+ 2、222(______)R r πππ+= 3、2222121211 ___()22 gt gt t t +=+ 4、2215255(_______)a ab a += 专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。 1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()2 2___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=- 7、22()___()()n n a b b a n -=-为自然数 8、2121 () ___() ()n n a b b a n ++-=-为自然数 9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把下列各式分解因式。 1、nx ny - 2、2a ab + 3、3246x x - 4、282m n mn + 5、23222515x y x y - 6、22129xyz x y - 7、2336a y ay y -+ 8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+ 11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +- 13、3222315520x y x y x y +- 14、432163256x x x --+ 专项训练五:把下列各式分解因式。 1、()()x a b y a b +-+ 2、5()2()x x y y x y -+- 3、6()4()q p q p p q +-+ 4、()()()()m n P q m n p q ++-+- 5、2()()a a b a b -+- 6、2()()x x y y x y --- 7、(2)(23)3(2)a b a b a a b +--+ 8、2()()()x x y x y x x y +--+ 9、()()p x y q y x --- 10、(3)2(3)m a a -+- 11、()()()a b a b b a +--+ 12、()()()a x a b a x c x a -+--- 13、333(1)(1)x y x z --- 14、22()()ab a b a b a --+-

相关主题