搜档网
当前位置:搜档网 › 基板材料在车载毫米波雷达中应用的技术进展

基板材料在车载毫米波雷达中应用的技术进展

基板材料在车载毫米波雷达中应用的技术进展
基板材料在车载毫米波雷达中应用的技术进展

基板材料在车载毫米波雷达中应用及技术进展

中电材协覆铜板分会顾问祝大同

摘要:本文对应用于车载毫米波雷达中的高频基板材料在近年的技术发展作为了介绍与分析。

关键词:基板材料覆铜板毫米波雷达

Progress of technology and application of substrate material used in

automotive millimeter wave radar

ZHU DATONG

Copper clad laminate branch of Chinese Electronic Material Association

Abstract: In the paper, progress of technology and application of high frequency substrate material used in automotive millimeter wave radar in recent years were analyzed and introduced.

Key word: substrate material; copper clad laminate; millimeter wave radar.

1.毫米波及应用概述

1.1 毫米波及其特性

通常把频率高于300MHz的电磁波称为微波。二十世纪50年代创立了微波通信。微波通信是使用波长在1m至1.0mm之间的电磁波。该波长段电磁波所对应的频率范围是300 MHz(0.3 GHz)~300 GHz。微波按波长不同可分为分米波,厘米波、毫米波及亚毫米波,分别对应于特高频UHF、超高频SHF、极高频EHF及至

高频THF。其中在极高频EHF(30~300GHz)频段内,波长(λ)为1~10mm的电磁波称为毫米波(millimeter wave ,简称mm Wave)(见图1所示)。毫米波频段为26.5~300GHz,这频段,按照雷达业内习惯划分波段,由四个波段构成,即Ka段、U段、V段、W波段,各波段领域见图1。毫米波位于微波与远红外波相交叠的波长范围(毫米波频段:26.5~300GHz),因而它兼有两种波谱的特点:即是微波向它的高频段区的延伸,又是光波向低频的发展。

图1 在频率在300MHz~300GH的微波频段中的毫米波频段范围及与波长的对应图

毫米波与较低频段的微波相比,其优点是:①具有极宽的带宽(带宽高达273.5GHz),这在频率资源紧张、追求信息容量扩大的今天,无疑极具吸引力。

②易实现窄波束和高增益的天线,因而分辨率高,抗干扰性好,可分辨相距更近的小目标或者更为清晰地观察目标的细节,毫米波系统更容易实现小型化。③穿透等离子体的能力强。因此在远程导弹或航天器重返大气层时,可利用能顺利穿透等离子体的毫米波,去实现通信和制导。毫米波的缺点是:①电波在大气中传播衰减严重。②器件加工精度要求高。但是利用电波在大气中衰减较大,适宜于近距离地面保密通信(例如利用60GHz频波进行高度保密性的通信方式目前已得到采用)。

1.2毫米波应用潜力已日益显著

毫米波(mm Wave)在军事及商业的通信、雷达、制导;遥感技术;射电天文学;临床放射治癌;战场上的军用通信联络及监视侦察;小型无人机定位、采集和跟踪技术等各方面都有重大的应用意义。有关文献提出[1]:“就毫米波的应用历史来说,航天和国防应用一直是射频和毫米波技术发展的根基。但最近几年,它却

在商业射频应用领域得到了快速发展。随着无信通信的频谱扩展,商业射频应用迅猛增长,而且朝着更高的频率发展,比如汽车雷达,其工作频率正由K波段向w波段发展(参考图1)。V波段超宽带的室内无线通信、94GHz微波成像以及其它毫米波波段的应用,正得以充分发展。由于环境友好,V波段点对点微波链路比成为光纤到户技术的一种选择方案。”

在短距离通信和高速近场通信(NFC)应用中,近年毫米波波段正被广泛的使用。无论从搭载汽车上的自动转向和防撞等汽车电子系统应用,还是从第五代(5G)无线通信系统中为改善数据吞吐量和视频性能,都共同需求提供信号传输的带宽条件,因此毫米波设备的作用和潜力已日益显著[2]。利用毫米波段为互联网汽车通讯提供所需的更高信号传输速率与准确度,同时提供更精确的车载雷达作业的解析度,使得汽车防撞雷达得到迅速的发展。

2.汽车毫米波雷达及其市场的扩大

汽车防撞雷达和第五代(5G)无线通信系统。是未来发展更具亮点的毫米波两大应用领域。

汽车将不再是代步工具,而将逐渐演化为移动智能终端。这种智能汽车必须配备的高级驾驶辅助系统(Advanced Driver Assistant System,ADAS)是利用安装在车上的各式各样传感器,在汽车行驶过程中随时来感应周围的环境,收集数据,进行静态、动态物体的辨识、侦测与追踪,并结合导航仪地图数据,进行系统的运算与分析,从而预先让驾驶者察觉到可能发生的危险,有效的增加了汽车驾驶的舒适性和安全性。随着汽车智能化趋势加速和安全需求的提升,ADAS 未来市场将迎来广阔的增量空间。全球ADAS市场渗透率目前约为5%。其中欧美地区最高,市场渗透率为10%左右,其系统主要装配在奔驰、宝马等豪华品牌汽车上。2015年ADAS的全球市场规模约在33.2亿美元以上,到2020年预测会提高到75亿美元左右(据矢野经济研究所统计)。到2020年,全球ADAS渗透率将达到25 %,全球新车ADAS搭载率有望达到50%(据PR Newswire测算)[3][4]。

ADAS系统由三个模块构成:感知层、认知与判断层和执行层。感知层是实现ADAS系统功能的第一步,它的相关硬件包括雷达和摄像头等传感器。车载毫米波雷达是实现 ADAS功能的重要传感器设备,与普通车载传感器相比,毫米波雷

达具有探测性能稳定、探测距离长,以及环境适应性好等优点。它是能够在全天候场景下快速感知0~300米范围内周边环境物体距离、速度、方位角等信息的传感器件(见图1)。有关数据显示,2014年全球汽车毫米波雷达市场出货量为1900万件,预计到2020年,全球车载毫米波雷达将达到7200万件,未来5年的年复合增速将达到24%左右。毫米波雷达在汽车上应用,除汽车防撞雷达外,还正在向巡航控制、汽车无人驾驶等方面延伸。

图1 车载毫米波雷达应用原理示意图

3.车载毫米波雷达用基板材料技术的新发展

3.1车载毫米波雷达特性要求

一般在市场上崭露头角的汽车毫米波雷达,按采用的毫米波频段不同划分有24GHz和77GHz~79GHz两种。其中以77GHz~79GHz型更受青睐,未来市场的潜力更大。它一般安置在汽车前端的车头、前车灯下侧、以及两侧门等位置,每辆小轿车采用5~7件。

汽车毫米波雷达用PCB受到毫米波雷达系统的要求驱动。系统要求主要包括如系统工作频率、工作环境、功率处理、噪声、尺寸、元器件类型以及产品特性等。汽车毫米波雷达在选择合适PCB材料时,主要出于工作可靠性(耐高温高湿性、耐CAF性等)、介质传输损耗,介电特性(低损耗、可控介电常数等)、热稳定性、热管理要求、模量、基板层数及其加工性(尺寸稳定性等)等。其中基材对系统毫米波电路性能的插入损耗,色散,杂散波模式抑制,信号的有效过渡以及加工方式等诸多问题会带来的重要影响。

以77GHz毫米波雷达为例,它的设计过程中,主要以非常高的可靠性原则为主导,需要从系统、材料(包括电子电路基板及基板材料)、软硬件、结构、测

试验证、生产工艺、一致性、低成本性、小型化等多方面考虑。因此毫米波雷达远高于普通消费级电子产品,也高于电信级产品可靠性要求。由于工作温度范围在-40~125℃,它用几乎所有的物料可靠性都得达到汽车级标准要求。

3.2毫米波雷达用基板材料

当前,汽车防撞毫米波雷达的市场在迅速扩大,普及步伐在加快。这些都驱动着高频基板及其基材生产企业之间此市场争夺的加剧。在这个毫米波应用市场的竞争中,也凸显了世界众多覆铜板生产厂家在毫米波用高频基板材料制造技术上所得到的跨越性进步。

在2016年春召开的“EDI CNO China 2016”(“2016电子设计创新大会”)国际性大型高频/射频技术为主题的展览会上,笔者对生产高频基板材料参展厂商的汽车防撞毫米波雷达用基板材料产品的布局情况作了调查,所了解到的主要三家CCL厂家在24GHz、77~79Hz两类系统对应推出的覆铜板产品牌号及关键性能见表1所示。

表1 各CCL企业推出的适用于汽车防撞雷达用高频基材的牌号及性能

厂家产品

牌号树脂组成

类型

Dk

(@10GHz下)

Df

(@10GHz下)

Dk热变化率,

ppm/℃

对应

24GHz系统的高频基材Rogers RO4835 碳氢化合

3.48

±0.05

0.OO37 +50(-50~150℃)Taconic TLF-35A PTFE 3.50 0.0016

生益科技S7136H 碳氢化合

3.42

±0.05

0.OO30

对应

77GHz(或79GHz)系统的高频基材Rogers RO3003 PTFE+陶瓷

(无玻纤)

3.00

±0.04

0.OO10 -3(-50~150℃)

Taconic TSM-DS3 PTFE 3.00 0.0011 (Tk)5.4(-30~

120℃)

TAL-28 PTFE+纳米

填料

2.80 0.0012 (Tk)2.24

(-30~120℃)

生益科技GF77G PTFE 2.28

±0.04

0.OO12

注:本表中的内容分别逐一的取得厂方的文字回复性的确认

海外一家CCL企业近期在发表的文献中提出:“毫米波频率对PCB材料提出了独特的挑战。”[1] 笔者认为,就具体车载毫米波雷达来讲,对PCB基板材料提出的

技术性挑战包括三个方面:高频电路的可靠性与一致性的挑战;基板多层化的挑战;基材用树脂多样化的挑战。本文在以下分别对这三项挑战作以阐述与分析。

3.2毫米波雷达用基板材料可靠性与一致性的挑战

我国PCB业老前辈林金堵高工在国内较早的发表过对PCB用毫米波基材特性研究的文章[5]。文中特别强调了这种基材的介质层结构均匀性与介质层稳定性的严密要求。

车载毫米波雷达面临着宽温度范围的应用环境,它对所用PCB及其基板材料的要求十分重要一点,就是构成的高频电路的可靠性与一致性。而可靠性与一致性确保,主要来自基板材料的优异PCB加工性和低的且稳定可控的介电常数性。

所有高频电路都需要传输线来实现毫米波集成电路(IC)与供电电源、天线、输入和输出端口及其他电路的信号传输与连接。而在高频电路设计中,多选择微带线、带状线以及接地共面波导等传输线技术来构成高频电路。通常情况下,微带线和带状线技术只适用30GHz以内的高频电路,而接地共面波导可用30GHz 以上的电路。由于微带线电路性能受PCB加工误差的影响比接地共面波导电路更低。考虑到这点,目前77GHz车载雷达一般采用微带传输线结构。PCB加工误差对毫米波电路的性能影响,也是和频率有关的。当频率越提高,对PCB加工尺寸精度就要求高。

在近期Rogers公司研发者发表的文献中[6]提出了一个“有效介电常数”的新概念。文中提出:有效介电常数(指电磁场沿着基底介电材料和周边空气组成的混合空间传播时的介电常数)的差异,会影响电路中的信号相位,造成相位差异。77GHz车载雷达的电路特别注重传输线相位差异的影响,有效介电常数的差异,有效介电常数的差异会影响电路中的信号相位,进一步导致相位差异。

研究Rogers公司在车载毫米波雷达产品用基板材料性能认识与开发技术推进,存在有由低至高的递进变化过程。该公司在2013年左右发放的微波基板材料产品宣传资料中是这提出的[7]:现代汽车“防碰撞、倒车雷达所用频率在24GHz,为此,对于满足此要求的微波基板材料,必须接受长时间和高温氧化作用环境。对于传统微波基板材料而言,长时间的氧化会导致基板材料Dk和Df的微弱增长。为此罗杰斯公司研发了RO4835微波基板材料,相较于传统的RO4350B,该材料

的抗氧化性有了显著提升。”可看出,当时对毫米波雷达用基板材料Dk、Df的稳定一致性的认识重点及实现的着眼点,是主要解决基板材料的抗氧化性问题。而在2016年初Rogers公司公开发表的研究文献[2],则表现出在前者提及的认识上和产品性能上的飞跃。文献提出:“应用于毫米波设备的电路材料的另一个重要参数是TCDk, 该参数是衡量材料Dk随温度的变化特性。R03003材料的TCDk 为-3 pmm/℃。这意味着即使在许多汽车毫米波设备面临的恶劣工作环境下,如此低TCDk的电路材料其Dk值在设备工作温度范围内仍能保持非常稳定的电气性能。”可看出,它的此方面技术新亮点主要表现两方面:其一,近几年,Rogers 公司已将汽车毫米波设备用基材性能改进、提高的重点,由提高“抗氧化性”转到Dk适应“宽温度范围”性能上。随之还提出了考核Dk随温度变化特性的新指标项目(TCDk:Dk热变化率);其二,Rogers公司新推出的PTFE树脂型R03003。为了减少毫米波频段电路的阻抗和相位产生差异,这种新型层压基材采用了无玻纤布补强。在对应毫米波频段的宽温度范围的应用环境,基板材料实现高频电路的可靠性和一致性方面,Rogers公司(罗杰斯)又是高频基材技术一大新迈进。

3.4基板多层化的挑战

77GHz车载毫米波雷达多为多层板(4L-6L)结构设计,这给过去多用于单双面高频PCB上的高频基板材料来讲,带来了性能新需求的巨大挑战。它具体表现在:目前市场的主流基材——TPFE树脂类基板材料需要在多层板加工性上得到改善,本身在加工性表现好的非TPFE树脂型基板材料在此市场竞争中获得了更多的机遇。

世界第二大高频基板材料生产厂Taconic(泰康利)公司在近期的技术报告[5]中提出:对于mm Wave频段的PCB材料选择主要遵循三点:低并且稳定的介电常数,使用超光滑的铜箔,能够进行复杂结构PCB加工(多层和密集PTH孔)。”以此可见,车载毫米波雷达用基板材料的多层板PCB加工性是如此的重要。

车载毫米波雷达用PCB的多层化,具有如下几方面的特点:

(1)毫米波PCB通常是多层结构,微带线和接地共面波导电路通常位于多层结构的最外层。将越来越多的功能封装到集成电路(IC)中,搭载在一块基板上,以满足高速数字和射频两方面需求。这种混合RF/数字电路基板往往需要非常紧

凑节距的多层板分不同电路功能层来实现。在多层板的电路设计上,目前多采用SIW(Substrate Integrate Waveguide 基片集成波导)工艺技术[8]、[10]。

(2)毫米波在整个微波领域中属于极高频率(EHF)范围,高频率越高,要求的电路尺寸精度要越高。多层板各层的PCB加工误差,对不同电路的关键性能造成的差别影响就更严重。对PCB工艺流程(比如钻孔、电镀)有更为严密的检查,以确保产品的可靠性、一致性。

(3)毫米波雷达用多层板有其制造技术正朝着较高层数、混合电路设计、积成法叠层制作方式、薄形化、无铅化的方向发展。

鉴于以上的车载毫米波雷达用PCB的多层化特点,对所用高频基板材料的尺寸稳定性、耐CAF性、钻孔加工性、层压成型加工性、半固化片熔融态流动的电路间填充性、树脂基材与低轮廓铜箔(或表面光滑铜箔)的接合性、层间接合性、高模量等要求,比一般高频基板材料(如微波中低高频段区用高频基板材料)更加严格。

多层板的加工性,始终是PTFE树脂类高频基板材料的性能上“短板”。近几年兴起的毫米波雷达用PCB多层化发展大潮下,PTFE类CCL生产企业在技术上攻关的课题,主要着眼于提高多层加工性方面。由此在多层加工性有所改善的PTFE树脂类高频基板材料新品,在近年有了更多的不断涌现。

例如[8][4],2015年Taconic公司在世界上率先问世了纳米级填料的PTFE树脂-玻纤类覆铜板产品EZ-IO-28(即TAL-28)。它对应77GHz~79GHz车载毫米波雷达系统配套的高频基板材料(主要性能参见表1)。EZ-IO-28在制造技术上颠覆了原有的含填料的PTFE树脂-玻纤基覆铜板的填料填充量低于树脂量的传统惯例。此基材的纳米填料比例远大于树脂含量,并在PCB的钻孔等影响可靠性的加工性能上得到提高。另外,由于填料粒径微小,克服了因原填料粒径较大在压制成型中增大了铜箔表面粗糙度问题的出现。

再例如,Rogers公司在近一、两年中推出专为毫米波设备应用“量身定做”的R03003TM层压板。它是由陶瓷填充的PTFE材料、无玻纤布增强而制成。它在宣传词中宣称[2]:“因其卓越的高频性能和材料特性已经成为79GHz汽车传感器和雷达系统的首选电路材料。它在10 GHz时其Z向(厚度)介电常数(Dk )为3.00,偏差严格控制在±0.04之内。”宣传材料中特别强调其加工性的改进:“高的

CTE值意味着温度变化时,介电材料将产生更多的扩张和收缩,而如铜等金属产生的形变小,从而将导致介质材料上方和电镀通孔内的导体产生机械压力和形变。┄┄ R03003层压板的x、y、z向典型CTE值分别为17, 16和25,和铜的CTE值17pmm/℃非常接近,可实现高可靠的电镀通孔及其他性能。具有和铜接近的CTE值也是近年来多层板PCB(以及PTH内连接)广泛使用此层压板的一个重要原因。”

3.5基板材料树脂多样化的挑战

3.5.1毫米波用基板材料市场需求的两个演变

毫米波电子电路用基板材料市场“大门”的开启,并通过此“大门”展望到的一片光辉灿烂市场前景,吸引了更多基板材料制造厂商进门参与博弈。尽管这一新市场的门槛很高,但它却有别于一般高频电路的基板材料市场的是:它为非TPFE树脂型基板材料提供了更多的参与竞争的大好机会。总之,我们看到有这样一个市场需求的新趋势:以车载毫米波雷达为典型代表的毫米波基板市场,它的高频基材品种,不再会是TPFE型基板材料一统天下,其他树脂基板材料(目前主要是指碳氢化合物树脂、聚苯醚树脂等)将会在未来几年中会有更多的进入此毫米波电子电路的市场,市场占有率将会有明显的增加。

毫米波用基板材料树脂多样化的发展趋势,表现在混合树脂基材多层板运用与非PTFE树脂基材替代PTFE树脂基材两方面演变上。

(1)混合树脂基材多层板运用

日本PCB业信息报道量最多的媒体《电子设备产业新闻》副主编、从事PCB 业报道多年的资深记者野村和広氏近期发表著文[9][11]提出:“在毫米波雷达装置中,需要采用高频电路基板。目前,这种高频基板的基材,一般采用的是聚四氟乙烯类(PTFE)覆铜板。这种基材现今仍存在着价格偏高、PCB加工较难的问题,因此用此类基材设计、制造的高频基板,其主流是单面板。今后,ADAS中的高频基板技术发展之一,是在它的表面电路层部分采用PTFE类覆铜板的基材,而内层部分则采用FR-4型覆铜板等非PTFE树脂基材。两类不同树脂作为介质层构成的复合层结构的多层基板。这种基板的设计,不仅可降低基板的制作成本,而且电路层构成上还实现了四层等多层化,为实现基板的紧凑、高密度化电路设计

做出贡献。”上述的未来可能会流行的毫米波雷达装置用混合树脂基材多层板,不仅给非PTFE型基板材料作为内芯基材提供了应用机会,而且,由于存在着非PTFE类基板材料与PTFE类基板材料在混合一起的层压成型工程、层间接合、尺寸CTE等相不匹配的技术难题,也给非PTFE类基板材料多层板的全层“完全替代”创造了机会。

(2)被非PTFE树脂基材替代

近期海外CCL公司发表的一篇的长篇论文[1],值得研究、关注(尽管此文问世出于有商业利益驱动之嫌)。它用大量的理论及实验数据阐述了未来PTFE 型基板材料多项性能将不适应毫米波电子电路需求的观点。归纳此文提出“另类”的观点有以下几点:

① TPFE树脂原材料的结晶度随着温度提高变大,造成基板材料在加工、使用中的温度不同情况下发生树脂密度上的变化,因此“PTFE特性并不像平常描绘的那样稳定。”② PTFE非常容易出现机械特性方面的潜变现象,“它让人怀疑能否适应有环境要求(比如汽车业的应用,它要求的工作温度范围从零下到85℃)的应用。”在较高温度下“它会引起介电特性的变化”。③ PTFE的基板材料被认为不太希望用于多层PCB, 原因在于其较高的价格和加工成本、较高的CTE和高温成型处理的困难、极低的弹性模量,以及本身的较低Tg和较低抗屈强度,造成X和Y方向较高程度的永久性塑性变形严重。“这将是PTFE层压板用混合合电路或多层应用领域所遭到的最大挑战。”

另一方面,在毫米波用基板材料树脂多样化趋势的驱动下,全球的低Dk、低插损、高Tg的非PTFE树脂型基板材料新品(目前它采用的树脂,主要是碳氢化物树脂、聚苯醚树脂),在近一、两年其开发步伐及问世速度加快,多个品种亮相于毫米波用基板材料市场,特别有的已是直指车载毫米波雷达用基板材料市场。笔者对全球CCL厂家中宣传自家非PTFE树脂型基板材料新品可用于毫米波电子电路领域的产品品种及牌号作了统计,归纳于表2中。

表2 近年走入市场的毫米波用非PTFE树脂型基板材料品种牌号及主要性能

注:表中所列性能数据,引自各厂家公开宣传的说明书

3.5.2 对不同树脂型高频高速基板材料性能两个传统观念的打破

表2所列品种都无疑在结构多层化倾向的车载毫米波雷达基板材料选择中,与PTFE 树脂型基板材料相比,非PTFE 树脂型基板材料占据着加工性、成本性的优势,如何提高及稳定它的介电性能,是它当前及未来的重要课题。当前,在判断、预测非PTFE 树脂型基板材料在车载毫米波雷达基板材料市场上的竞争走向,在毫米波电子电路市场应用前景时,笔者认为,当前毫米波用非PTFE 树脂型基板材料技术发展的事实,需要我们首先破除两个技术认识上的传统观念。

在“EDI CNO China 2016”展会上,Rogers 公司特别突出宣传RO4700JXRTM 系列中的RO4725JXRTM 和RO4730JXRTM 两款覆铜板新品:“RO4700JXRTM 系列天线级层压板是一种可可靠的低成本材料,它可以用来替代传统的基于PTFE 的层压板。----它可以和传统的环氧树脂及高温无铅焊接工艺相兼容。该系列材料的Tg 超过280℃,因此Z 轴CTE 很低,而且镀通孔可靠性以及无铅焊接的可加工性更加出色。”这两品种碳氢化合物型覆铜板系列的Dk 、Df 很低。RO4725JXRTM 为(在10GHz 下):Dk=2.55±0.05, Df=0.0026;RO4730JXRTM 为(在10GHz 下):Dk=3.00±0.05, Df=0.0027。较长时期以来,在覆铜板的Dk 所达到的指标为界限,将PTFE 类CCL 与碳氢化合物类CCL 在低Dk 特性所能达到的“极限值”品种

牌号

生产厂家 主体 树脂 主要性能 Dk (10GHz ) Df (10GHz ) Tg (DMA ) (℃) Z 轴CTE (ppm/℃,α1) Rogers

RO 4725JXRTM 碳氢化合物 2.55±0.05 0.0026 >280 < 30 RO4730JXRTM 3.00±0.05 0.0027 >280 < 30 松下 R-5785(N )(MEG7) (Low-Dkglass 型) 聚苯醚 (PPE ) 3.3(10GHz) 3.4(1GHz) 0.002(10GHz) 0.001(1GHz) 210 < 42

R-5785(MEG7) 3.6(10GHz) 3.6(1GHz) 0.003(10GHz) 0.0015(1GHz) 210 <42

台燿科技 Thunderclad 3 (TU-933) 碳氢化合物 3.4 0.0025 220 < 35

台光电材 EM-888K 3.2 0.006 210 < 55

ISOLA Astra ?MT 3.00 <0.0017 200 44.7

生益科技 S7136H 3.42±0.05 0.OO3 >280 -

ANT300 非PTFE 3.15±0.05 0.0031

200 < 35

作了划分:即PTFE型基板材料可达到Dk为3.00(在10GHz下)以下,碳氢化合物类CCL的Dk无法达到3.00(在10GHz下)以下(不含3.00)。Rogers这两个碳氢类CCL品种中采用了“特殊配方的热固性树脂体系、采用低粗糙度铜箔,以及特殊的填料/中空无机球”(引自Rogers在此展会发放的产品宣传单页原文),在全球率先突破了这个不同高频树脂基材“低Dk类别的标准划分”的原观念。这一碳氢树脂型高频覆铜板的世界顶尖技术的发展及应用实例,启发我们对高频CCL不同品种在应用市场新布局,以及未来这类非PTFE覆铜板技术,以及在毫米波领域应用市场上的重要地位,产生新的认识与观念[11]。

近期的毫米波领域用覆铜板技术的进步,还破除了另外一个旧观念。美国Isola 公司在2015年初问世了高频高速型碳氢化合物树脂-玻纤布基覆铜板,其牌号为Astra? MT。它的应用市场锁定在毫米波(76-81GHz)的贴片天线设计和射频前端雷达系统。据美国“GLOBE NEWSWIR(全球通讯社)”报道[12]:“Isola Group (伊索拉集团)的无卤、超低损耗级(The ultralow-loss)类高速覆铜板Astra? MT,于2015年5月13日成功通过Freescale(飞思卡尔)半导体ICs雷达系统的性能评估。飞思卡尔公司是ADAS 77 GHz雷达用集成电路(IC)的全球制造厂商的领导者,它也担当了此次ADAS 77 GHz雷达中RFbeam微波用基板材料的评估的主持者(该公司具体从事该工作的评估机构为Freescale's Advanced Driver Assistance Systems Design Center——笔者注[12])。”Isola 执行副总裁兼首席技术官Tarun Amla在宣布这一消息时讲,“很高兴能提供给飞思卡尔我们的AstraMT的参考设计资料,并且通过了验证和确认结果。我们可向全球客户提供的Astra MT ,它是一个在汽车严厉工作环境下表现高可靠性的基材。并且它具有非常低的成本制造、热可靠性更高,更好的尺寸稳定性。可使RF-hybrid PCB(射频混合型PCB)制造业获得更高的收益率,降低生产成本。” 2015年,在美国亚利桑那(AZ)凤凰城召开的国际微波研讨会(IMS)上,Isola首次亮相了在ADAS 77 GHz雷达系统,以及在此毫米波雷达系统应用的、通过飞思卡尔评估的AstraMT 产品。

在此强调的是:Isola公司近年把它研制、生产的高速基板材料产品的市场“圈定”为六大领域,即汽车电子;通信和网络服务器;无线手持设备(手机、平板电脑等)及其基础设施;互联网基础设施;测试与测量;背板等。注意,这里它

包括了测试与测量、汽车电子等。Isola对高速基材应用领域范围的“划分”,是与日本、台湾等高速基材生产企业有所差异的[13]。它对“高速基板材料”应用领域的范畴,较早认识到汽车电子(主要指毫米波雷达)市场也包括之列。它在业界中较早打破了近年习惯将“高频”与“高速”性的基材“分家”成两类基材的观念。笔者认为,当今把“高频板”与高阶层次(Very Low Loss、Ultra Low Loss等级)的“高速板”又“绑”在一起,因是部分的应用市场的改变。这种不同树脂的高频基板材料市场格局的新变化,正是在毫米波领域的车载雷达用PCB,近一、两年出现了多层化、RF/数字电路混合PCB(有称为“RF-hybrid PCB”)风潮,以及非PTFE树脂类高速CCL技术获得新发展两方面条件下所创造的。

参考文献:

[1]Tarun Amla( Isola).适于毫米波应用的新型热固性PCB材料.Microwave Journal微波杂志.China.Mar/Apr2015.

[2]Chandler, Ariz(Rogers).新型电路板材料促进79GHz技术不断发展.Microwave Journal China微波杂志.Mar/Apr 2016.

[3]费天元.汽车智能化进程提速车载雷达将迎新机遇.上海证券报.2016年//5月12日第010版.

[4]祝大同.2016年以后PCB业将会有怎样变化——日媒资深记者谈PCB发展前景.电路板资讯.2016.4期

[5]林金堵,吴梅珠.PCB用高频(毫米波)材料与技术概述.印制电路信息.2010 No.6

[6]Rogers.电路板材料在毫米波波段的应用.Microwave Journal China微波杂志.Nov/Dec 2015.

[7]杨维生.微波介质基板材料及选用.覆铜板资讯.2015.5期

[8]Taconic.高频材料在毫米波频段应用解决方案.EDI CNO China 2016上的论文.2016.4.19

[9]野村和広氏.2016年以降の電子回路業界の動きを探る.JPCA NEWS.2016.3期

[10]肖丙刚;谢治毅;叶鹏基.片集成波导技术的研究现状和展望中国计量学院学报.2012年1期

[11]祝大同.高频基板材料行业新动向、新发展——EDI CNO China 2016展会纪实.覆铜板资讯.2016.4期

[12]https://https://www.sodocs.net/doc/a89274777.html,/news-release

[13]祝大同.高速基板材料技术发展现况与分析.第十六届中国覆铜板技术·市场研讨会论文集.2015年10月

24G毫米波雷达在机车测距及避撞应用的探索

24G毫米波雷达在机车测距及避撞应用的探索 最近接到一个项目,需要在机车上设计一款雷达产品,主要用于轨道交通 方面的机车测距和避撞。在网上搜寻了一段时间,可以选择的有激光雷达、超 声波雷达、红外雷达和毫米波雷达。对比了各个雷达的特点,激光雷达具有探 测距离远,探测精确的特点,但是容易受到雨雾,特别是下雪和粉尘的干扰, 这个在轨道交通行业中适应性不是很好。超声和红外雷达,具有价格低,设计 简单的优点,但是同样容易受到温度变化的影响,在南方和北方会有很大的差别,另外探测的距离也有限。毫米波雷达探测的介质是电磁波,具有探测距离远、穿透能力强、环境适应性强以及实时性好等优点,尤其是波长较短者。 俗话说万事开头难!在搜寻了各大厂商的方案之后,最终选择了UMS 的 24G 雷达方案,选择这个方案有几点好处: 1)方案比较灵活,可以选择集成度高、设计相对简单的单发双收的雷达芯片。也可利用分立器件自由组合出多个收发结合的方案,这样可以探测更加精 准和扩展更广阔的探测范围。 2)拥有业界唯一的GaAs 工艺,工作温度范围为-40 度125 度,适用于机车工作环境。 3)开发工具和参考资料比较齐全。 在笔者的项目中,选择的是集成度较高的单芯片方案CHC2442-QPG。从图1 CHC2442-QPG 的内部架构,可以看出其内部集成了低噪声的VCO、Tx PA、混频器、接收LNA 和中频放大器等核心功能。只需加上DSP 处理单元就可以 完成雷达的功能设计。如图2 UMS 机车24G 雷达模块原理框图所示,雷达模块支持单发双收和一路视频,与车载控制单元之间通过CAN 总线以及以太网 进行通讯。

【CN110082734A】汽车车载毫米波雷达外部标定的标定装置、标定系统及标定方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910349602.0 (22)申请日 2019.04.28 (71)申请人 安徽瑞泰智能装备有限公司 地址 243000 安徽省马鞍山市当涂县承接 产业转移示范园区北京大道嘉善科技 园内 (72)发明人 舒金林 邓书朝 童宝宏 晋入龙  孙晋军 孙畅 柳敏 秦然然  (74)专利代理机构 芜湖思诚知识产权代理有限 公司 34138 代理人 阮爱农 (51)Int.Cl. G01S 7/40(2006.01) G01S 13/93(2006.01) (54)发明名称汽车车载毫米波雷达外部标定的标定装置、标定系统及标定方法(57)摘要本发明公开了汽车车载毫米波雷达外部标定的标定装置、标定系统和标定方法。本发明汽车车载毫米波雷达外部标定的标定装置,它包括底板、吸波反射机构,吸波反射机构放置在底板上;吸波反射机构包括若干块吸波材料板、若干个雷达反射装置、上支撑底座,吸波材料板和雷达反射装置均固定在上支撑底座上,每个雷达反射装置的前面至少设置有一个吸波材料板,上支撑底座放置在底板上。在汽车生产线或汽车维修服务站中使用本发明外部标定的标定装置和标定系统,可以实现对雷达安装位置的标定,用于校正汽车车载毫米波雷达支架装置的安装位置,从而保证汽车所装的雷达位置正确,从而提高了 车辆的安全性能。权利要求书2页 说明书7页 附图3页CN 110082734 A 2019.08.02 C N 110082734 A

权 利 要 求 书1/2页CN 110082734 A 1.汽车车载毫米波雷达外部标定的标定装置,其特征是:它包括底板(9)、吸波反射机构,吸波反射机构放置在底板(9)上;吸波反射机构包括若干块吸波材料板(4)、若干个雷达反射装置(5)、上支撑底座(6),吸波材料板(4)和雷达反射装置(5)均固定在上支撑底座(6)上,每个雷达反射装置(5)的前面至少设置有一个吸波材料板(4),上支撑底座(6)放置在底板(9上。 2.根据权利要求1所述的标定装置,其特征是:雷达反射装置(5)优选为四个,每个雷达反射装置(5)包括上部的标准反射目标、下部的底座,两者固接,底座固定在上支撑底座(6)上;雷达反射装置(5)上部的标准反射目标是RCS(雷达散射截面积)为0dB的标准角反射器。 3.根据权利要求1所述的标定装置,其特征是:所述的吸波材料板(4)为雷达波专用吸波材料,其个数不少于雷达反射装置(5)的个数。 4.根据权利要求1所述的标定装置,其特征是:标定装置还包括左右移动机构,左右移动机构包括左右驱动电机(1)、横向传动齿轮(2)、横向传动齿条(3)、下支撑底座(7)、运动滚轮组(8),支撑块(11)、齿条支撑块(12);下支撑底座(7)位于上支撑底座(6)的下面、两者相接触,运动滚轮组(8)设置在下支撑底座(7)的下面,且与底板(9)相接触,左右驱动电机(1)的输出端连接横向传动齿轮(2),横向传动齿轮(2)与横向传动齿条(3)相啮合,左右驱动电机(1)通过支撑块(11)固定在底板(9)上,横向传动齿条(3)的左端从左边的齿条支撑块(12)中穿过、其右端固定在右边的支撑块(12)中,左边的齿条支撑块(12)固定在底板(9)上,右边的齿条支撑块(12)固定在下支撑底座(7)的底面上。 5.根据权利要求4所述的标定装置,其特征是:左右移动机构还包括左右移动辅助机构,左右移动辅助机构包括两个移动单元,两个移动单元相对于横向移动齿条(3)前后对称设置;每个移动单元均包括横向移动导杆(13)、左右两个小支撑块(14),横向移动导杆(13)的左端从左边的小支撑块(14)中穿过、其右端固定在右边的小支撑块(14)中,左边的小支撑块(14)固定在底板(9)上,右边的小支撑块(14)固定在下支撑底座(7)的底面上。 6.根据权利要求1或4所述的标定装置,其特征是:标定装置还包括上下移动机构,上下移动机构包括上下驱动电机(10)、纵向传动齿轮(15)、纵向传动齿条(16);上下驱动电机(10)的输出端连接纵向传动齿轮(15),纵向传动齿轮(15)与纵向传动齿条(16)相啮合,纵向传动齿条(16)一端为自由端,另一端与连接块(17)固接,连接块(17)固定在上支撑底座 (6)上,上下驱动电机(10)通过支撑座(21)固定在下支撑底座(7)上。 7.根据权利要求6所述的标定装置,其特征是:上下移动机构还包括导向板(20),导向板(20)固定在支撑座(21)上,其与纵向传动齿条(16)之间通过V形槽配合。 8.根据权利要求6所述的标定装置,其特征是:上下移动机构还包括上下移动辅助机构,上下移动辅助机构包括两个移动单元,两个移动单元相对于纵向移动齿条(16)前后对称设置;每个移动单元均包括纵向移动导杆(18)、导向套(19),纵向移动导杆(18)的下端固定在下支撑底座(7)上,导向套(19)套在纵向移动导杆(18)外、其下端固定在上支撑底座(6)上。 9.汽车车载毫米波雷达外部标定的标定系统,其特征是:它包括一套权利1-8任一所述的汽车车载毫米波雷达外部标定的标定装置,还包括一个实施标定毫米波雷达安装位置的雷达标定区域、已安装毫米波雷达传感器的待标定车辆、标定控制柜; 其中,雷达标定区域位于汽车总装车间检测线的前部或汽车维修服务站; 2

电磁场与微波技术

电磁场与微波技术 080904 (一级学科:电子科学与技术) 本学科是电子科学与技术一级学科下属的二级学科,是1990年由国务院学位办批准的博士学位授予点,同时承担接收博士后研究人员的任务,2003年被批准为国防科工委委级重点学科点。本学科专业内容涉及电磁场理论、微波毫米波技术及其应用,主要领域包括电磁波的产生、传播、辐射、散射的理论和技术,微波和毫米波电路系统的理论、分析、仿真、设计及应用,以及环境电磁学、光电子学、电磁兼容等交叉学科内容。多年来在多种军事和国民经济应用的推动下,本学科在天线理论与技术、电磁散射与逆散射、电磁隐身技术、微波毫米波理论与技术、光电子技术、电磁兼容、计算电磁学与电磁仿真技术、微波毫米波系统工程与集成应用等方面的研究形成了鲜明的特色,取得了显著成果。其主要研究方向有: 1.计算电磁学及其应用:设计、研究、开发高精度、高效率电磁计算算法;研究高效精确电磁计算算法在目标特性、微波成像及遥感、电磁环境预测、天线分析和设计等方面的应用。 2.微波/毫米波电路设计理论与技术:研究有源元器件与电路模型、与微电子、微机械工艺相关的材料器件等模型的建立及参数提取;研究低相噪频率源技术,微波/毫米波单片集成电路设计,基于微机械(MEMS)的微波/毫米波开关、移相器和滤波器设计。 3.电磁波与物质的相互作用:研究电磁散射和逆散射算法,军事装备目标特性测试技术,隐身目标测试技术,目标散射中心三维成像技术;研究轻质、宽频、自适应智能隐身材料。 4.微波/毫米波系统理论与集成应用技术:设计、研究、开发特殊环境下的微波/毫米波系统;研究微波/毫米波测试技术;研究天线设计理论与技术。 一、培养目标 掌握坚实的电磁场与微波技术以及相应学科的基础理论,具有系统的专门知识,熟练应用计算机,掌握相应的实验技术,掌握一门外国语,学风端正,具备独立从事科学研究工作和独立担负专门技术工作的能力,能胜任科研、生产单位和高等院校的研究、开发、教学或管理等工作。 二、课程设置

激光雷达测距原理与其应用

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1雷达与激光雷达系统 (2) 2激光雷达测距方程研究 (3) 2.1测距方程公式 (3) 2.2发射器特性 (4) 2.3大气传输 (5) 2.4激光目标截面 (5) 2.5接收器特性 (6) 2.6噪声中信号探测 (6) 3伪随机m序列在激光测距雷达中的应用 (7) 3.1测距原理 (7) 3.2 m序列相关积累增益 (8) 3.3 m序列测距精度 (8) 4脉冲激光测距机测距误差的理论分析 (9) 4.1脉冲激光测距机原理 (9) 4.2 测距误差简要分析 (10) 5激光雷达在移动机器人等其它方面中的应用 (10) 6结束语 (11) 致谢 (12) 参考文献 (12)

激光雷达测距原理与其应用 摘要:本文简单介绍激光雷达系统组成,激光雷达系统与普通雷达系统性能的对比,着重阐述激光雷达测距方程的研究。针对激光远程测距中的微弱信号检测,介绍一种基于m序列的激光测距方法,给出了基于高速数字信号处理器的激光测距雷达数字信号处理系统的实现方案,并理论分析了脉冲激光测距机的测距误差。了解并学习激光雷达在移动机器人等其它方面中的应用。 关键词:激光雷达;发射器和接收器特性; 伪随机序列; 脉冲激光;测距误差 Applications and Principles of laser radar ranging Student majoring in Optical Information Science and Technology Ren xiaonan Tutor Shang lianju Abstract:This paper briefly describes the composition of laser radar systems, laser radar system and radar system performance comparison of normal, focusing on the laser radar range equation. Laser Ranging for remote signal detection, presents a introduction of a sequence based on laser ranging method m, gives the high-speed digital signal processor-based laser ranging radar digital signal processing system implementations, and theoretical analysis of the pulse Laser rangefinder range error.We understand and learn application of Laser radar in the mobile robot and other aspects. Key words:Laser radar; Transmitter and receiver characteristics;Pseudo-random sequence;Pulsed laser;Ranging error. 引言:激光雷达是传统雷达技术与现代激光技术相结合的产物,激光具有亮度 高、单色性好、射束窄等优点,成为光雷达的理想光源,因而它是目前激光应用主要的研究领域之一。激光雷达是一项正在迅速发展的高新技术,激光雷达技术从最简单的激光测距技术开始,逐步发展了激光跟踪、激光测速、激光扫描成像、激光多普勒成像等技术,使激光雷达成为一类具有多种功能的系统。利用激光作为遥感设备可追溯到30多年以前,从20世纪60年代到70年代,人们进行了多项试验,结果都显示了利用激光进行遥感的巨大潜力,其中包括激光测月和卫星激光测距。激光雷达测量技术是一门新兴技术,在地球科学和行星科学领域有着广泛的应用.LiDAR(LightLaser Detection and Ranging)是激光探测及测距系统的简称,通常指机载对地激光测距技术,对地激光测距的主要目标是获取地质、地形、地貌以及土地利用状况等地表信息。相对于其他遥感技术,LIDAR的相关研究是一个非常新的领域,不论是在提高LIDAR数据精度及质量方面还是在丰富LIDAR数据应用技术方面的研究都相当活跃。随着LIDAR传感器的不断进步,地表采点密度的逐步提高,单束激光可收回波数目的增多,LIDAR数据将提供更为丰富的地表和地物信息。激光测距可分为星载(卫星搭载)、机载(飞机搭载)、车载(汽车搭载)以及定位(定点测量)四大类,目前激光测距仪已投入使用,激光雷达正处在试验阶段,某些激光雷达已付诸实用.本文对激光雷达的测距原理、发射器和接收器特性、束宽、大气传输以及目标截面、外差效率进行分析, 提出基于伪随机序列的激光测距技术 ,可将激光

车载激光雷达测距测速原理

车载激光雷达测距测速原理 陈雷1,岳迎春2,郑义3,陈丽丽3 1黑龙江大学物理科学与技术学院,哈尔滨 (150080) 2湖南农业大学国家油料作物改良中心,长沙 (410128) 3黑龙江大学后勤服务集团,哈尔滨(150080) E-mail:lei_chen86@https://www.sodocs.net/doc/a89274777.html, 摘要:本文在分析了激光雷达测距、测速原理的基础上,推导了连续激光脉冲数字测距、多普勒频移测速的方法,给出车载激光雷达基本原理图,为车载激光雷达系统测距测速提供了基本方法。 关键词:激光雷达,测距,测速 1.引言 “激光雷达”(Light Detection and Range,Lidar)是一种利用电磁波探测目标的位置的电子设备。其功能包含搜索和发现目标;测量其距离、速度、位置等运动参数;测量目标反射率,散射截面和形状等特征参数。激光雷达同传统的雷达一样,都由发射、接收和后置信号处理三部分和使此三部分协调工作的机构组成。但传统的雷达是以微波和毫米波段的电磁波作为载波的雷达。激光雷达以激光作为载波,激光是光波波段电磁辐射,波长比微波和毫米波短得多。具有以下优点[1]: (1)全天候工作,不受白天和黑夜的光照条件的限制。 (2)激光束发散角小,能量集中,有更好的分辨率和灵敏度。 (3)可以获得幅度、频率和相位等信息,且多普勒频移大,可以探测从低速到高速的目标。 (4)抗干扰能力强,隐蔽性好;激光不受无线电波干扰,能穿透等离子鞘,低仰角工作时,对地面的多路径效应不敏感。 (5)激光雷达的波长短,可以在分子量级上对目标探测且探测系统的结构尺寸可做的很小。当然激光雷达也有如下缺点: (1)激光受大气及气象影响大。 (2)激光束窄,难以搜索和捕获目标。 激光雷达以自己独特的优点,已经被广泛的应用于大气、海洋、陆地和其它目标的遥感探测中[14,15]。汽车激光雷达防撞系统就是基于激光雷达的优点,同时利用先进的数字技术克服其缺点而设计的。下面将简单介绍激光雷达测距、测速的原理,并在此基础上研究讨论汽车激光防撞雷达测距、测速的方法。 2. 目标距离的测量原理 汽车激光雷达防撞系统中发射机发射的是一串重复周期一定的激光窄脉冲,是典型的非相干测距雷达,对它的要求是测距精度高,测距精度与测程的远近无关;系统体积小、重量轻,测量迅速,可以数字显示;操作简单,培训容易,有通讯接口,可以连成测量网络,或与其他设备连机进行数字信息处理和传输。 2.1测距原理 激光雷达工作时,发射机向空间发射一串重复周期一定的高频窄脉冲。如果在电磁波传播的

电子科技大学物理电子学院团队介绍

电子科技大学物理电子学院团队介绍 目录 物电学院“超宽带电子学及应用”团队介绍 (2) 物理电子学院“大功率毫米波行波管研究”团队介绍 (3) 物理电子学院“高功率毫米波”团队介绍 (4) 物理电子学院“毫米波电路与系统”团队介绍 (5) 物理电子学院“计算电磁学及其应用”团队介绍 (6) 物理电子学院“理论物理”团队介绍 (8) 物理电子学院“理论与计算机模拟”团队介绍 (8) 物理电子学院“强辐射实验室”团队介绍 (10) 物理电子学院“太赫兹”团队介绍 (10) 物理电子学院“微波仿真”团队介绍 (12) 物理电子学院“微纳光学研究”团队介绍 (12) 物理电子学院“先进材料制备及其物理性质研究”团队介绍 (13) 物理电子学院“真空微电子及微波能应用研究”团队介绍 (15) 注:团队排列先后按照团队名称首字母。

物电学院“超宽带电子学及应用”团队介绍 一、团队简介 超宽带电子学及应用现有教师机工程技术人员8名,其中,教授1名,副教授3名,讲师3名,工程技术人员1名;有博士学位的教师3名,正在攻读博士学位的教师2名;50-60岁教师2名,40-50岁教师3名,30-40岁教师2名。 超宽带电子学团队的主要研究方向包括: (1) 新型光控光电导器件 研究激光与半导体相互作用理论与技术,新型光控光电导器件工作机理、研制工艺及应用。 (2) 电波传输与天线 研究瞬态电磁脉冲传输理论与技术,超宽带天线理论与技术。 (3) 生物电磁学 研究肿瘤电穿孔疗法的机理及应用,电穿孔效应在污水治理等领域的应用。(4) 微波电路与系统 研究高功率微波电路与系统在冲击雷达、探地雷达等领域中的应用。 二、团队导师介绍 三、毕业学生就业去向 团队培养的硕士研究生就业情况较好,主要去向包括国内一些研究所(如南京14所、成都29所、中国工程物理研究院等)和一些知名公司、企业(贝尔、华为、中兴等)。

激光雷达应用

光电传感技术与应用 课程作业 学院 专业 姓名 学号

课程论文题目激光雷达技术 评审意见 演示文稿张数14 评审意见

激光雷达 林无穷 江南大学理学院光电信息科学与工程系江苏无锡 214122 摘要:本文介绍了激光雷达技术的原理、发展与历程,还有它在当今时代的多方面应用。我们把工作在红外和可见光波段的,以激光为工作光束的雷达称为激光雷达,它由激光发射机、光学接收机、转台和信息处理系统等组成。它在地形检测,导航,测距,追踪以及军事方面有着显著作用。 关键词:激光,雷达,环境检测 引言 激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。从工作原理上讲,与微波雷达没有根本的区别:向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别。 激光雷达是激光技术与现代光电探测技术结合的先进探测方式。由发射系统、接收系统、信息处理等部分组成。发射系统是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器以及光学扩束单元等组成;接收系统采用望远镜和各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等组合。 原理 激光雷达探测大气的基本原理即是上述几种激光与大气相互作用的机制。激光器产生的激光束经光束准直(有的情况下需要扩束)后发射到大气中,激光在大气中传输遇到空气分子、气溶胶等成分便会发生散射、吸收等作用。散射中的小部分能量——后向散射光落入接收望远镜视场被接收。被接收到的后向散射光传输到光电探测器(通常为PMT)被转换成电信号(一般为电流信号),实现光-

车载激光雷达标定的方法与制作流程

一种车载激光雷达标定的方法,属于汽车自动驾驶领域。汽车自动驾驶技术中涉及的多传感器之间的融合技术不足。一种车载激光雷达标定的方法,设置一块标定板,配合安装在车辆上的激光雷达提取标定板的四个角点的步骤;测量四个角点在车体坐标系的物理坐标,结合由激光雷达提取的四个角点计算得到旋转平移矩阵的步骤;对两个激光雷达数据之间的进行坐标转换,拼接多台激光雷达,对激光雷达的标定的步骤。本技术具有精确将自动驾驶车辆之间的多传感器融合的优点。 权利要求书 1.一种车载激光雷达标定的方法,其特征是:所述方法包括: 在自动驾驶车辆前设置一块标定板,配合安装在车辆上的激光雷达提取标定板的四个角点的步骤; 测量四个角点在车体坐标系的物理坐标,结合由激光雷达提取的四个角点计算得到旋转平移矩阵的步骤; 对两个激光雷达数据之间的进行坐标转换,拼接多台激光雷达,实现对激光雷达的标定的步骤。 2.根据权利要求1所述一种车载激光雷达标定的方法,其特征在于:所述的提取标定板的四个角点是指提取激光雷达数据中标定板的四个角点,具体包括以下步骤:

步骤一一、获取点云数据: 将标定板设置于激光雷达前方6~10m的距离处,标定板的板面垂直于地面,用于承接激光雷达的发射信号;所述的标定板为一块2米×2米的正方形木板; 之后,在6~10m的距离之间选取4个距离值分别测量角点数据,得到4组角点数据;所述的角点数据是指在车体坐标系下的XYZ三维数据; 步骤一二、切割标定板所在的点云区域: 首先,将激光雷达向前的方向定义为X轴,将获取的点云数据记录的每个点的三维坐标表示为p(x, y, z); 然后,通过下式计算每个点偏离X轴的角度α和距离激光雷达的距离d; 最后,设定距离X轴的最大角度和最小角度,以及距离激光雷达前方的最大距离和最小距离,在此范围内计算包含标定板在内的点,并对该区域进行筛选,将筛选出的符合条件的点存入新的指针中; 步骤一三、提取标定板: 在切割后的区域内,利用PCL中的RANSAC算法,使用平面参数模型并设置迭代阀值提取标定板的平面; 之后,在提取标定板后,使用参数化方程将标定板投影到其所在平面上;参数化方程为:AX+BY+CZ+D=0,式中,A、B、C表示系数,D为常数,来自RANSAC提取平面后的参

毫米波雷达技术及其发展趋势

1.引言 毫米波的工作频率介于微波和光之间,因此兼有两者的优点。它具有以下主要特点: 1)极宽的带宽。通常认为毫米波频率范围为26.5~300GHz,带 宽高达273.5GHz。超过从直流到微波全部带宽的10倍。即使考虑大气吸收,在大气中传播时只能使用四个主要窗口,但这四个窗口的总带宽也可达 135GHz,为微波以下各波段带宽之和的5 倍。这在频率资源紧张的今天无疑极具吸引力。 2)波束窄。在相同天线尺寸下毫米波的波束要比微波的波束 窄得多。例如一个 12cm的天线,在9.4GHz时波束宽度为18度,而94GHz时波速宽度仅1.8度。因此可以分辨相距更近的小目标或者更为清晰 地观察目标的细节。 3)与激光相比,毫米波的传播受气候的影响要小得多,可以认为具有全天候特性。 4)和微波相比,毫米波元器件的尺寸要小得多。因 此毫米波系统更容易小型化。由于毫米波的这些特点,加上在电子对抗中扩展频段是取得成功的重要手段。毫米波技术和应用得到了迅速的发展。 2.毫米波技术的应用 表面上看来毫米波系统和微波系统的应用范围大致是一样的。但实际上两者的性能有很大的差异,优缺点正好相反。因此毫米波系统经常和微波系统一起组成性能 互补的系统。下面分述各种应用的进展情况。 2.1毫米波雷达 毫米波雷达的优点是角分辨率高、频带宽因而有利于采用脉冲压缩技术、多普勒颇移大和系统的体积小。缺点是由于大气吸收较大,当需要大作用距离时所需的发 射功率及天线增益都比微波系统高。下面是一些典型的应用实例。 2.1.1 空间目标识别雷达它们的特点是使用大型天线以得到成像所需的角分辨率和足够高的天线增益,使用大功率发射机以保证作用距离。例如一部工作 于35GHz的空间目标识别雷达其天线直径达36m。用行波管提供10kw的发射功率,可以拍摄远在16,000km处的卫星的照片。一部工作于 94GHz的空间目标识别雷达的天线直径为13.5m。当用回族管提供20kw的发射功率时,可以对14400km 远处的目标进行高分辨率摄像。 2.1.2汽车防撞雷达因其作用距离不需要很远,故发射机的输出功率不需要很高,但要求有很高的距离分辨率(达到米级),同时要能测速,且雷达的体积 要尽可能小。所以采用以固态振荡器作为发射机的毫米波脉冲多普勒雷达。采用脉冲压缩技术将脉宽压缩到纳秒级,大大提高了距离分辨率。利用毫米波多普勒颇 移大的特点得到精确的速度值。 2.1.3直升飞机防控雷达现代直升飞机的空难事故中,飞机与高压架空电缆相撞造成的事故占了相当高的比率。因此直升飞机防控雷达必须能发现线径较细 的高压架空电缆,需要采用分辨率较高的短波长雷达,实际多用3mm雷达。 2.1.4精密跟踪雷达实际的精密跟踪雷达多是双频系统,即一部雷达可同时工作于微波频段(作用距离远而跟踪精度较差)和毫米波频段(跟踪精度高而作

8分钟就懂的毫米波雷达系统及毫米波技术发展趋势

8 分钟就懂的毫米波雷达系统及毫米波技 术发展趋势 随着ADAS 普及率的提升,要能够全方位覆盖汽车周围环境的感测,一辆汽车会装载“长+ 中+ 短”多颗毫米波雷达,到了最终L5 级自动驾驶阶段甚至超过10 颗,预计2021 年全球毫米波雷达的出货量将达到8400 万个。 在上一篇《毫米波雷达在ADAS 中的应用》中,麦姆斯咨询提到随着ADAS 普及率的提升,要能够全方位覆盖汽车周围环境的感测,一辆汽车会装载“长+ 中+ 短”多颗毫米波雷达,到了最终L5 级自动驾驶阶段甚至超过10 颗,预计2021 年全球毫米波雷达的出货量将达到8400 万个。这是一个可预见的庞大市场,所以无论是传统的汽车Tier 1 厂商,还是新兴的初创企业,都纷纷加入到汽车雷达产业中来,希望能分一杯羹! 不过现实的竞争又是很残忍的。首先,汽车的空间容量有限,特别是现在汽车主流是向轻便、节能方向发展,别说增加零部件了;其次,精明的消费者只接受加量不加价,性能提高了,价格还得降低。所以,能不能抢到市场先机,摆在各家毫米波雷达厂商面前的主要问题是如何实现“更小巧、更便宜、更智能”的毫米波雷达!带着这些疑问,今天我们来了解一下车载毫米波雷达系统及其核心元器件,探一探毫米波雷达技术的发展趋势。 毫米波雷达系统基本结构在《认识毫米波雷达》文章中,我们

知道了毫米波雷达是基于多普勒原理,根据回波和发射波之间的时间差和频率差来实现对目标物体距离、速度以及方位的测量。根据辐射电磁波方式不同,毫米波雷达主要有脉冲和连续波两种工作方式(图1)。其中连续波又可以分为FSK(频移键控)、PSK(相移键控)、CW(恒频连续波)、FMCW(调频连续波)等方式。 图 1 、毫米波雷达工作方式 FMCW 雷达具有可同时测量多个目标、分辨率较高、信号处理复杂度低、成本低廉、技术成熟等优点,成为目前最常用的车载毫米波雷达,德尔福(Delphi)、电装(Denso)、博世(Bosch)等Tier 1 供应商均采用FMCW 调制方式。 以FMCW 为例(图2),毫米波雷达系统主要包括天线、前端收发组件、数字信号处理器(DSP)和控制电路,其中天线和前端收发组件是毫米波雷达的最核心的硬件部分。以下将分别详细介绍。

汽车毫米波雷达项目可行性研究报告

汽车毫米波雷达项目可行性研究报告 xxx有限责任公司

摘要 本文件内容所承托的权益全部为项目承办单位所有,本文件仅提供给项目承办单位并按项目承办单位的意愿提供给有关审查机构为投资项目的审批和建设而使用,持有人对文件中的技术信息、商务信息等应做出保密性承诺,未经项目承办单位书面允诺和许可,不得复制、披露或提供给第三方,对发现非合法持有本文件者,项目承办单位有权保留追偿的权利。 该汽车毫米波雷达项目计划总投资19124.63万元,其中:固定资产投资15243.33万元,占项目总投资的79.71%;流动资金3881.30万元,占项目总投资的20.29%。 达产年营业收入28234.00万元,总成本费用22190.78万元,税金及附加339.43万元,利润总额6043.22万元,利税总额7216.20万元,税后净利润4532.41万元,达产年纳税总额2683.79万元;达产年投资利润率31.60%,投资利税率37.73%,投资回报率23.70%,全部投资回收期5.72年,提供就业职位576个。 项目总论、建设必要性分析、市场前景分析、建设规模、项目选址科学性分析、土建工程设计、工艺先进性分析、环境影响概况、安全经营规范、风险应对说明、项目节能评估、项目实施计划、投资方案分析、经济效益可行性、项目评价结论等。

汽车毫米波雷达项目可行性研究报告目录 第一章项目总论 第二章项目承办单位基本情况 第三章建设必要性分析 第四章项目选址科学性分析 第五章土建工程设计 第六章工艺先进性分析 第七章环境影响概况 第八章风险应对说明 第九章项目节能评估 第十章实施进度及招标方案 第十一章人力资源 第十二章投资方案分析 第十三章经济效益可行性 第十四章项目评价结论

激光雷达原理、关键技术及应用的深度解析

激光雷达原理、关键技术及应用的深度解析 “雷达”是一种利用电磁波探测目标位置的电子设备.电磁波其功能包括搜索目标和发现目标;测量其距离,速度,角位置等运动参数;测量目标反射率,散射截面和形状等 特征参数。 传统的雷达是微波和毫米波波段的电磁波为载波的雷达。激光雷达以激光作为载波.可以用 振幅、频率、相位和振幅来搭载信息,作为信息载体。 激光雷达利用激光光波来完成上述任务。可以采用非相干的能量接收方式,这主要是一脉冲计数为基础的测距雷达。还可以采用相干接收方式接收信号,通过后置信号处理实现探测。激光雷达和微波雷达并无本质区别,在原理框图上也十分类似,见下图激光雷达是工作在光频波段的雷达。与微波雷达的原理相似,它利用光频波段的电磁波先向目标发射探测信号,然后将其接收到的同波信号与发射信号相比较,从而获得目标的位置(距离、方位和高度)、运动状态(速度、姿态)等信息,实现对目标的探测、跟踪和识别。激光雷达由发射,接收和后置信号处理三部分和使此三部分协调工作的机构组成。激光光速发散角小,能量集中,探测灵敏度和分辨率高。多普勒频移大,可以探测从低速到高速的目标。天线和系统的尺寸可以作得很小。利用不同分子对特定波长得激光吸收、散射或荧光特性,可以探测不同的物质成分,这是激光雷达独有的特性。 激光雷达的种类目前,激光雷达的种类很多,但是按照现代的激光雷达的概念,常分为以下几种: 按激光波段分:有紫外激光雷达、可见激光雷达和红外激光雷达。 按激光介质分:有气体激光雷达、固体激光雷达、半导体激光雷达和二极管激光泵浦固体激光雷达等。 按激光发射波形分:有脉冲激光雷达、连续波激光雷达和混合型激光雷达等。按显示方式分:有模拟或数字显示激光雷达和成像激光雷达。 按运载平台分:有地基固定式激光雷达、车载激光雷达、机载激光雷达、船载激光雷达、

毫米波相控阵雷达及其应用发展_石星

文章编号:1001-893X(2008)01-0006-07 毫米波相控阵雷达及其应用发展* 石星 (中国西南电子技术研究所,成都610036) 摘要:概述了毫米波相控阵雷达的特点,介绍了电扫原理和主要毫米波电扫技术,以及相位控制扫描和多种移相器技术。针对毫米波相控阵雷达的特点,叙述了其主要应用领域,结合雷达和半导体技术对毫米波相控阵雷达的发展进行了展望。 关键词:毫米波雷达;相控阵雷达;电扫天线;移相器;数字波束形成 中图分类号:TN958.92文献标识码:A M illi m eter-W ave Phased-Array Radar and its Application Progress S H I X i ng (Southw est China I nstitute o f E lectron ic Techno l o gy,Chengdu610036,Ch i n a) Abstract:The characteristics ofM illi m eter-W ave(MMW)Phased-A rray R adar(P AR)are descri b ed, t h e pr i n ciple of electron ica ll y scanned array(ESA)and pri m ary e l e ctronically scanned techn i q ues for MMW array are presented,as w ell as phase-con tro lled scan and phase shifter techn iques.M a i n app lication fields ofMMW P AR are ill u m i n ated and its progress is antici p ated on the basis o f radar and se m iconductor techniques. Key w ords:MMW radar;phased-array radar(PAR);electr onically scanned array(ESA);phase sh ifter; dig ita l bea m for m i n g(DBF) 1概述 随着雷达技术的发展以及不同应用领域日益提高的需要,远距离和高数据率、宽带和高分辨、多目标跟踪和识别、低截获和抗干扰、多功能和高可靠已经成为现代侦察、监视以及火控等雷达的基本要求。毫米波同相控阵雷达的发展和结合应用,在多个方面适应了现代雷达发展的这些需求。 毫米波段(1~10mm)相对应的频率为30~ 300GH z,其低端毗邻厘米波段,具有厘米波段全天候的特点,高端邻接红外波段,具有红外波的高分辨力特点。毫米波雷达波束窄,角分辨力高,频带宽,隐蔽性好,抗干扰能力强,体积小,重量轻。与红外、激光设备相比较,它具有很好的穿透烟、尘、雨、雾的传播特性,具备良好的抗干扰、反隐身、反低空突防和对抗反辐射导弹(/四抗0)的能力。由于受器件功率和大气条件的影响,毫米波雷达的作用距离受到了一定限制,但这并没有妨碍毫米波雷达的广泛应用。 相控阵雷达,特别是有源相控阵雷达,具有波束扫描快、波形变化灵活、功率孔径积大、易于全固态化和轻小型化、可靠性高等特点,容易实现天线共形设计并具备低截获概率和抗干扰的优良性能。自20世纪50年代末问世以来,相控阵雷达在地基、空基、海基和天基雷达中得到广泛的应用。特别是80年代后,砷化镓(Ga A s)等半导体器件的出现极大促进了有源相控阵雷达的迅速发展,有源相控阵雷达大量取代现役的机械扫描雷达,代表了现代雷达的 #6 # *收稿日期:2007-10-18;修回日期:2007-12-28

毫米波雷达在安防上的应用

毫米波雷达在安防上的应用 一、安防系统划分 安防系统按照其作用范围划分可以分为周界安防和区域安防。周界安防主要作用于围界,为‘线’式安防。而区域安防主要作用于一个平面,为‘面’式安防。随着社会的发展,人们对安全防护的等级的要求也越来越高。迫切希望通过一种技术实现围界安防和区域安防,做到前期能提前预警,后期又能形成持续有效的追踪。这时毫米波雷达安防技术手段完美解决了上述问题。 目前,国内外应用较多的周界安防系统可以分为以下几种类型:视频监控;红外对射、激光对射;振动电缆、振动光纤、泄漏电缆;毫米波雷达。 视频监控系统是一种重要的安全防范系统,主要由摄像机、监视器、控制平台、录像/回放设备等组成。视频监控系统通常不是作为实时监控手段,而是事后调取录像,追查线索时使用。不能及时有效的处理警报。并且受天气(雨、雪、雾)、光线(夜间)影响较大。监控的范围会大大降低,并且很容易产生漏警。造成严重的安防防护隐患。 红外对射的工作原理是:利用红外发光二极管发射的红外射线,再经过光学透镜做聚焦处理,使光线传至很远距离,最后光线由接收端的光敏晶体管接收。当有物体挡住发射端发射的红外射线时,由于接收端无法接收到红外线,所以会发出警报。红外对射安防系统缺陷较大,飞鸟、动物、温度、光线、空气流动、雾气、雨雪等等环境因素以及安装方式、角度、位置等因素都很容易引发误报。 线缆型防护系统主要有震动电缆、泄漏电缆、振动光缆。震动电缆和振动光缆都安装在金属护栏上。而泄漏电缆通常需要埋入地下1米。 震动电缆主要缺点是在大风天气条件时,无法正常工作,会产生非常多的误警。 振动电缆对振动敏感,并随温度变化而变化,因此误报率高,维护成本高。

24GHz汽车毫米波雷达实验报告

24GHz汽车毫米波雷达实验报告 是德科技射频应用工程师王创业1. 前言 汽车毫米波雷达越来越多的被应用在汽车上面,主要作为近距离和远距离探测,起到防撞、辅助变道、盲点检测等作用。随着器件工艺和微波技术的发展,毫米波雷达产品越来越小。俗话说:“麻雀虽小,五脏俱全”,同样汽车毫米波雷达作为典型的雷达产品,也包含收发天线、发射部分、接收部分、DSP部分。典型原理框图如图1所示。汽车毫米波雷达的性能指标主要体现在测速精度、定位精度、距离分辨率、多目标识别等方面,要实现这些性能和功能,首先要做好整体系统的设计和仿真,其次对于各功能部分的性能指标要严格把控测试,最后要在实际现场环境完成测试考核。 汽车毫米波雷达体制上面主要有线性调频连续波FMCW体制雷达、频移键控FSK体制雷达、步进调频连续SFCW体制雷达。不同体制雷达在产品实现复杂程度和应用上都是有区别的。FMCW体制雷达可以同时探测到运动目标和静止目标,但是不可以同时探测多个运动目标。电路需要比较大的带宽。

FSK体制雷达,可以同时探测并且正确区分开来多个运动目标,但是不可以正确测量静止目标。电路带宽比窄,系统响应捕获比较慢,成本比FMCW体制要低很多。SFCW体制雷达,可以同时探测多个静止和运动的目标,并且将各个目标正确区分开来。SFCW体制雷达具有更为复杂的调制波形,信号处理也更为复杂,产品实现成本高。 2.实验目的 在汽车毫米波雷达系统研制过程中,经常会碰到各式各样的问题,譬如系统波形的选择和设计、系统链路的设计、信号处理算法的选择、微波电路的设计调试、天线的设计。主要的问题主要体现在系统方案、处理算法模拟、微波电路指标调试及对系统性能的影响上。典型的例子,在FMCW雷达系统,雷达探测距离分辨率不仅与信号的调制带宽有关,还与FMCW调制的线性度有关。 利用是德科技平台化解决方案,即软件+硬件+工程师,可以很容易的实现雷达系统设计仿真、处理算法验证、微波电路设计测试、天线设计测试。基于以上的问题,该实验主要实现以下三个目的: 1)软件硬件结合,SystemVue+仪表实现各类信号的产生; 2)系统设计仿真、算法验证 3)VCO线性调制度分析 4)场景信号录制回放和信号分析 3.实验要求 该实验采用FMCW雷达体制,结合SystemVue软件和仪表实现以下功能: 1)汽车雷达信号产生 a.24GHz标准雷达信号产生:Triangle调制信号、Sawtooth调 制信号

1.微波毫米波及光波理论、2.微波毫米波技术及应用、3.光

培养方案——电磁场与微波技术(学科代码:080904) 一、培养目标 本学科培养德、智、体全面发展,在电磁信号(高频、微波、光波等)的产生、交换、发射、传输、传播、散射及接收等有关的理论与技术和信息(图象、语音、数 据等)的获取、处理及传输的理论与技术两大方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研究工作能力的高层次人 才。学位获得者应能承担高等院校、科研院所及高科技企业的教学、科研及开发管理等工作。 二、研究方向 1.微波毫米波及光波理论、2.微波毫米波技术及应用、3.光纤光电子技术及应用、4.微波、光通信与雷达信号处理技术、5.计算电磁学及应用、6.微波电路与系统、7.雷达技术与雷达信息处理 三、学制及学分 1. 对于按硕—博一体化课程体系培养的研究生,获得硕士学位一般需要3年。研究生在申请硕士学位前,必须取得总学分不低于35分(含开题报告2学分)。获得博 士学位一般需要5年,最长学习年限不超过7年。研究生在申请博士学位前,必须取得总学分不低于45分(含开题报告2学分、专业综合知识答辩2学分;博士层 次课程不低于8学分)。 2. 对于通过我校博士生入学考试的普通博士生,获得博士学位一般需要3年,最长学习年限不超过6年。研究生在申请博士学位前,

必须取得总学分不低于10分(含开题报告2学 分;博士层次课程不低于8学分)。 四、课程设置 英语、政治等公共必修课和必修环节按研究生院统一要求。 学科基础课和专业课如下所列。 基础课: ES45201 高等电磁场理论(3) ES45202 介质导波结构及应用(3.5) ES45203 电磁场数值解法(3.5) ES45204 微波系统与工程(3) 专业课: ES44201 微波电路原理与设计(3) ES44202 天线技术基础(3) ES44203 光电子学(2) ES45211 固态电子学基础(3) ES45213 光波导技术(2) ES45215 毫米波通信技术(2) ES45221 现代微波测量(2) ES45222 耦合模理论(2) ES45223 现代天线设计(2) ES45224 电波接收技术(3) ES14202 快电子学(3) IN05102 数字信号处理(II)(3) IN05121 移动通信工程(3) CN05112 实变与泛函▲(4) ES46201 电磁场与微波技术专题(2) 备注: 1. 带▲号课程为博士层次必修课,硕士层次选修课。对于硕博连读生,该课程只能按博士层次必修课记录学分; 2. 博士研究生或硕博连读研究生除必修编号为CN05112的课程外,还必须至少选修编号为ES46201的课程或一门经学科点认可的其它博士层次课程。电磁 场与微波技术专题可以由导师指定某专题的参考书(资料),由研究生作读书报告,并提交书面报告。 五、科研能力要求 按照研究生院有关规定。 六、学位论文要求

(完整版)关于车载激光雷达的知识清单

关于车载激光雷达的知识清单 ?2017年6月28日 ? ?国际电子商情 本篇知识清单分享给你,助你快速了解车载激光雷达产业。 在无人驾驶架构中,传感层被比作为汽车的“眼睛”,包括车载摄像头等视觉系传感器和车载毫米波雷达、车载激光雷达和车载超声波雷达等雷达系传感器。其中激光雷达已经被大部分人认为是实现自动驾驶的必要基础,毕竟传统雷达无法识别物体细节,而摄像头在暗光或逆光条件下识别效率明显降低。 也正得益于无人驾驶汽车市场规模的爆发,预计2030年全球激光雷达市场可达到360亿美元的规模,将成为新的蓝海。本篇知识清单分享给你,助你快速了解车载激光雷达产业。 内容导读: 1.车载激光雷达的技术原理 2.激光雷达在自动驾驶应用中有何优缺点? 3.车载激光雷达有哪些应用? 4.如何降低自激光雷达的成本? 5.国内外最全激光雷达企业介绍 一、车载激光雷达的技术原理 激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统,最初是军事用途。其工作原理是向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别。 这里详细介绍一下车载激光雷达的工作原理及实现方式。第一种是较为传统的扫描式激光雷达,这种设备被架在汽车的车顶上,能够用多束激光脉冲绕轴旋转360°对周围环境进行距离检测,并结合软件绘制3D图,从而为自动驾驶汽车提供足够多的环境信息。 这种激光雷达最初是在11年前的Darpa无人车挑战赛上,由美国Velodyne公司开发并被参赛团队使用(当时采用的是64线的激光雷达方案)。由于那时的成本

相关主题