搜档网
当前位置:搜档网 › 如何解决水泵的气蚀现象

如何解决水泵的气蚀现象

如何解决水泵的气蚀现象
如何解决水泵的气蚀现象

如何解决水泵的气蚀现象

摘要:离心泵以其转速高,体积小,重量轻,效率高,流量大,结构简单,性能平稳,容易操作和维修等优点,使其在输油生产中得到了广泛的应用,汽蚀现象也是离心泵在输油生产中常见的故障。

关键词:离心泵;汽蚀;汽蚀余量

一、气蚀现象含义

液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡,把这种产生气泡的现象称为汽蚀。离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的液体压力达到最低,此后由于叶轮对液体做功,液体压力很快上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就汽化。同时,使原来溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些气泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高,于是金属表面因冲击疲劳而剥裂。如若气泡内夹杂某种活性气体(如氧气等),它们借助气泡凝结时放出的热量,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为离心泵的汽蚀现象。

二、水泵运行中产生气蚀现象的原因

液体的汽化程度与压力的大小、温度高低有关。当液体内部压力下降,低于液体在该温度下的饱和蒸汽压时,便产生汽蚀故障。吸入压力降低;吸入高度过高;吸入管阻力增大;输送液体粘度增大;抽吸液体温度过高等影响液体饱和蒸气压增加的现象都会影响汽蚀的发生,通常的因素有:

(1)泵进口的结构参数,叶轮吸入口的形状、叶片入口边宽度及叶片进口边的位置和前盖板形状等。

(2)泵的操作条件,泵的流量、扬程及转速等。

(3)泵的安装位置,泵的吸入管路水力损失及安装高度。

(4)环境因素,泵安装地点的大气压力以及输送液体的温度等。

三、水泵气蚀现象所产生的危害

水泵汽蚀是水泵损坏的重要原因,水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。运行中使水泵抽水的效率降低,显著减少了水泵的扬程和流量,也减少了水泵的使用寿命。汽蚀时传递到叶轮及泵壳的冲击波,加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海面状逐步脱落;发生汽蚀时,还会发出噪声,进而使泵体震动;同时由于蒸汽的生成使得液体的表观密度下降,于是液体实际流量、出口压力和效率都下降,严重时可导致完全不能输出液体。通俗的讲,泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口

稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。

四、防止水泵气蚀现象的措施

1、提高离心泵本身抗汽蚀性能

可改进泵的吸入口至叶轮附近的结构设计,如增大过流面积和叶轮盖板进口段的曲率半径;减小液流急剧加速与降压,适当减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形;提高叶轮和叶片进口部分表面光洁度以减小阻力损失。

采用前置诱导轮,使液流在前置诱导轮中提前做功,以提高液流压力。采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增加一倍,进口流速可减少一倍。

设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口处的弯曲,减小叶片阻塞,以增大进口面积;改善大流量下的工作条

件,以减少流动损失,但正冲角不宜过大,否则影响效率。

采用强度和硬度高、韧性和化学稳定性好的抗汽蚀材料来制造叶轮,以及提高通流部分表面的光洁度,也是提高泵抗汽蚀性能的有效措施。

2、提高进液装置有效汽蚀余量

提高进液装置有效汽蚀余量的具体方法有:增加泵前贮液罐中液面的压力,以提高有效汽蚀余量;减小吸上装置泵的安装高度;减小泵前管路上的流动损失,如在输液要求范围尽量缩短管路,减小管路中的流速,减少弯管和阀门,尽量加大阀门开度等。

3、优化工艺操作条件在工艺条件允许的情况下,改变泵的流量、扬程、转速及介质的操作温度等操作参数,可以避免汽蚀的发生。但由于工艺条件的限制,优化工艺操作条件具有很大的局限性,大部分情况下效果并不显著。所以,可将该方法作为解决汽蚀问题的辅助方法。

以上措施可根据泵的选型、选材以及泵的使用现场等条件,进行综合分析,适当加以应用,加强对汽蚀现象的防范措施,使输油生产中的故障得以减少。

参考文献:[1]刘捷流体机械[M] 煤炭工业出版社, 2010.09.

[2]宋红英.浅谈离心式水泵启动时真空的重要性[J].江

西煤炭科技,2011,(第3期).

汽蚀的成因及危害

汽蚀的成因及危害 液体在一定温度下,降低压力,当压力达到该温度下的汽化压力时,液体便产生汽泡而汽化。这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,在其过流部分的局部区域,通常是叶轮叶片进口稍后的区域,因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力,液体便在该处开始汽化,产生大量蒸汽,形成气泡。 当含有大量气泡的液体向前流动,经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在这个及其短暂的瞬间,液滴质点将产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒数万次,严重时会将壁板击穿。 在水泵中产生气泡和气泡破裂,过流部件遭受到损坏乃至破坏的过程称之为水泵的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,同时导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 降低汽蚀现象的措施 一、增大装置的汽蚀余量 准确计算离心泵的安装高度选择合适的安装位置增大泵前贮液罐中液面的压力,降低被输送液体的温度以降低,的值减小吸入管路的阻力增加吸入管直径缩短吸入长度减少弯管阀门选用吸入良好的喇叭管,将调节阀安装在排出管线上在满足生产需要的前提下降低叶轮的转速,可适当降低离心泵工作时的流量,也可起到增大装置汽蚀余量的目的。将吸上装置改为倒灌装置。 二、1)提高泵本身的抗汽蚀性能 改进泵本身结构或结构形式使泵具有尽,可能小的允许汽蚀余量,改进泵的入口至叶轮附近的结构设计增大,过流面积,增大叶轮盖板进口段的曲率半

水泵的汽蚀

第五章水泵的汽蚀 主要内容 (一)水泵汽蚀的产生和危害 (二)水泵安装与产生汽蚀的关系 (三)水泵的汽蚀余量 (四)相似原理在汽蚀性能研究中的应用 (五)水泵抗汽蚀性能的改进 (一)水泵汽蚀的产生和危害 1、水泵汽蚀的产生过程 当水泵流道中的液体流动到某处的压力等于或低于相应的汽化压力P v时,液体会发生汽化产生大量汽泡,当汽泡流动到高压区,在高压作用下迅速凝结而破裂,对流道表面材料形成极大的、反复的冲击,造成疲劳侵蚀或剥蚀,即为水泵汽蚀的产生过程。 2水泵汽蚀的危害 ①噪声和振动 水泵发生汽蚀过程中,从水泵吸入口(低压区域)到出水口(高压区域),大量的汽泡将不断地产生、发展、凝结、破裂所带来的反复不断高速的冲击和极大的脉动力,会伴随着会引起严重的噪声和剧烈的振动。 ②对水泵材料产生破坏 由于大量汽泡不断地产生、破裂带来高速冲击,形成极大脉动冲击力,反复不断作用在水泵流道表面,所谓“滴水穿石”,金属材料常常由于经受不起这种严峻考验而产生破坏或失效(P94图4-2)③水力性能大幅下降(P94图4-3) 水泵发生汽蚀时由于大量汽泡堵塞流道的过流截面而使流量下降(流道越小越严重),同时改变了水流速度和方向,降低了流体从叶轮叶片所获能量,大大减小了水泵的扬程 (二) 水泵安装与产生汽蚀的关系 水泵是否产生汽蚀与水泵安装高度直接相关,如图中所示H g越大,泵入口S-S截面上的压力就会越低,则越容易发生汽蚀。显然,H g不可能任意增大,一般应有个限定值,但作为用户又应该如何来确定H g呢? 首先,以水面为基准列水面e–e至泵的进口s–s的“伯方”: e ≈0,得: 上式称为几何安装高度理论计算式,当右端第一项P e为大气压时,用户可知一般应Hg <10m,但还必须确定出其他变量,才能具体求解Hg,其中: V s──水泵进口流速,可由运行工况点的流量确定。 h w──吸入管道的流动损失,由用户管路设计所确定。 P s──水泵进口压力,与不同流量工况下的水泵自身的特性相关,用户难以确定。因此, h H V p V p w g s s e e g g g g + + + = + 2 2 2 2 ρ ρ

水泵七大常见故障及解决方法

水泵七大常见故障及解决方法 水泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 教您如何解决水泵故障。 1、无法启动 首先应检查电源供电情况:接头连接是否牢靠;开关接触是否紧密;保险丝是否熔断;三相供电的是否缺相等。如有断路、接触不良、保险丝熔断、缺相,应查明原因并及时进行修复。其次检查是否是自身的机械故障,常见的原因有:填料太紧或叶轮与泵体之间被杂物卡住而堵塞;泵轴、轴承、减漏环锈住;泵轴严重弯曲等。排除方法:放松填料,疏通引水槽;拆开泵体清除杂物、除锈;拆下泵轴校正或更换新的泵轴。 2、水泵发热 原因:损坏;滚动轴承或托架盖间隙过小;泵轴弯曲或两轴不同心;胶带太紧;缺油或油质不好;叶轮上的平衡孔堵塞,叶轮失去平衡,增大了向一边的推力。排除方法:更换轴承;拆除后盖,在托架与轴承座之间加装垫片;调查泵轴或调整两轴的同心度;适当调松胶带紧度;加注干净的黄油,黄油占轴承内空隙的60%左右;清除平衡孔内的堵塞物。 3、流量不足 这是因为:动力转速不配套或皮带打滑,使转速偏低;轴流泵叶片安装角太小;扬程不足,管路太长或管路有直角弯;吸程偏高;底阀、管路及叶轮局部堵塞或叶轮缺损;出水管漏水严重。排除方法:恢复额定转速,清除皮带油垢,调整好皮带紧度;调好叶片角,降低水泵安装位置,缩短管路或改变管路的弯曲度;密封水泵漏气处,压紧填料;清除堵塞物,更换叶轮;更换减漏环,堵塞漏水处。 4、吸不上水 原因是泵体内有空气或进水管积气,或是底阀关闭不严灌引水不满、真空泵填料严重漏气,闸阀或拍门关闭不严。排除方法:先把水压上来,再将泵体注满水,然后开机。同时检查逆止阀是否严密,管路、接头有无漏气现象,如发现漏气,拆卸后在接头处涂上润滑油或调合漆,并拧紧。检查水泵轴的油封环,如磨损严重应更换新件。管路漏水或漏气。可能安装时螺帽拧得不紧。若渗漏不严重,可在漏气或漏水的地方涂抹水泥,或涂用沥青油拌和的水泥浆。临时性的修理可涂些湿泥或软肥皂。若在接头处漏水,则可用扳手拧紧螺帽,如漏水严重则必须重新拆装,更换有裂纹的管子;降低扬程,将水泵的管口压入水下。 5、剧烈震动

离心泵产生气蚀现象的原因及防止措施

离心泵因其操作简易、运行平稳、性价比高及便于维修护理而受到多数使用客户的喜爱并广泛应用于工业领域和日常生活。但凡是机械设备,在经过长时间的持续工作状态下,难免会出现设备的损坏和故障问题,离心泵的气蚀现象就是离心泵的常见故障之一。泵一旦发生汽蚀,其流量和扬程性能不仅会下降,还会表现出噪声、振动明显偏高,严重时甚至会使泵中液流中断,不能正常工作。汽蚀还会对泵的过流部件产生破坏,甚至影响管路系统。产生气蚀现象的原因有很多,例如离心泵产品质量有问题,操作人员的使用不当等。产品在出厂前会经过多道程序的质量检测,所以人为因素的影响比例更大。在工作状态下,离心泵的工作环境及操作因素的影响,占到离心泵发生气蚀现象比例的绝大部分。下面深圳恒才具体为大家介绍下气蚀产生的原因。 气蚀原因: 离心泵在工作的时候,离心泵输送的液体压力,会随着泵内液体从入口到叶轮入口下降而下降。当叶片入口附近的液体压力达到最低的时候,叶轮开始对液体做功,液体压力开始上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就会发生汽化的现象。同时溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力突然增加。这样,不仅阻碍了离心泵输送的液体正常流动。而且当这些气泡在叶轮壁面附近破裂的时候,则液体就会连续不断地撞击离心泵的内壁表面。长期的撞击之下就会造成离心泵内壁的结构损坏和剥落。如果气泡内掺杂着一些化学气体例如氧气,这些气体就会借助气泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击

关于水泵气蚀

水泵气蚀 一般是无法完全避免的,因为离心泵在告诉旋转时,中心部分肯定会产生负压从而使气体分离成小气泡,而排出集液腔也就是叶轮的外周附近压力猛力增加,这样液体就把气泡压破,气泡形成的空穴由液体高速填充。 而接近叶轮外周表面的空穴填充过程就会伤及叶轮表面,除非液体不含任何气体成分也不会在一定负压下挥发。 如果涡壳结构合理,在一定程度上可以延缓气蚀引起的损伤时间。另外叶轮用比较硬的材料做成也有一定效果。如果能一定程度降低液体内气体含量就更好了,比如曝气。 气蚀是难以避免的,这是离心泵与生俱来的特性。 但是,我们可以在设计方面考虑。 比如: 1.加大泵的气蚀余量,尽量避免采用自吸的,让液面高于吸口; 2.采用比较好的叶轮,提高抗气蚀性能;

泵内气蚀现象 水泵在运行期间,若由于某种原因使泵内局部压力降低到水的汽化压力(vapor pressure)时,水就会产生汽化而形成气液流。从水中离析出来的大量气泡随着水流向前运动,到达高压区时受到周围液体的挤压而溃灭,气泡内的气体又重新凝结成水,同时产生很高的水锤压力,使材料的边壁遭受侵蚀和破坏。通常把这种现象,称为水 泵的气蚀(cavitation)现象。 气蚀过程中,由于泵内含有大量的气泡,叶轮与水流之间的能量转换规律遭到破坏,从而引起水泵性能变坏(流量、扬程和效率迅速下降),甚至达到断流状态,并伴随有强烈的振动和噪声。这种性能的变化,对于不同比转数的泵有着不同的特点。如低比转数的离心泵因叶槽狭长、出口宽度较小,当气蚀发生后,气泡区很容易扩展到叶槽的整个范围,引起水流断裂,水泵性能曲线呈急剧下降形状,如图4-1(a)所示。对于中、高比转数的离心泵和混流泵,由于叶槽较宽,气泡不容易堵塞通道,只有在脱流区继续发展时,气泡才会布满整个叶槽,因此在性能出现断裂之前,其性能曲线先是比较平缓地下降,然后迅速呈直线下降,如图4-1(b)所示。对高比转数的轴流泵,由于叶片之间的通道相当宽阔,故气蚀发生后气泡区不易扩展到整个叶槽,因此性能曲线下降缓慢,以至无明显的断裂点,如图4-1(c) 所示。

离心泵大流量工况汽蚀现象分析及运行优化

离心泵大流量工况汽蚀现象分析及运行优化 发表时间:2018-05-28T09:47:19.547Z 来源:《电力设备》2018年第1期作者:赵英淳毛伟峰刘攀 [导读] 摘要:本文针对大型离心泵大流量工况下出现的汽蚀现象,基于离心泵汽蚀机理,分析了两个典型案例中离心泵发生汽蚀的原因,提出了采用改变离心泵的运行方式、改变泵出口管道阻力特性以及优化泵的再循环调阀的热工控制逻辑等三个方面的措施,解决了工程实际问题,为有效避免和预防大型离心泵大流量工况下汽蚀现象的发生,实现泵的安全稳定运行,提供参考。 (中国能源建设集团西北电力试验研究院有限公司西安 710032) 摘要:本文针对大型离心泵大流量工况下出现的汽蚀现象,基于离心泵汽蚀机理,分析了两个典型案例中离心泵发生汽蚀的原因,提出了采用改变离心泵的运行方式、改变泵出口管道阻力特性以及优化泵的再循环调阀的热工控制逻辑等三个方面的措施,解决了工程实际问题,为有效避免和预防大型离心泵大流量工况下汽蚀现象的发生,实现泵的安全稳定运行,提供参考。 关键词:离心泵;汽蚀;运行方式及控制逻辑优化 1. 概述 大型发电厂的凝结水泵及锅炉给水泵均采用多级离心泵。在电厂启动至带满负荷过程中,凝结水泵和给水泵流量变化范围大,机组通常设计两台甚至多台离心泵并联运行,以满足不同负荷、不同流量的运行要求。当离心泵在大流量工况下运行时,易出现汽蚀现象,损害设备的同时,严重危害机组运行安全,导致机组停炉停机[1]~[3]。 本文在对离心泵大流量工况下汽蚀机理分析基础上,结合两个典型案例,提出了相应工况下的几点运行优化建议。 2. 离心式水泵大流量工况汽蚀机理分析 离心水泵在运转过程中,当其通流部分液体的绝对压力下降到小于或等于当时温度下的汽化压力时,液体就会汽化,大量蒸汽及溶解在液体中的气体逸出,形成气泡。当气泡随液体从低压区移动到高压区时,气泡在高压作用下迅速凝结而破裂,其所占有的空间就会形成具有高真空的空穴,附近的液体在高压差的作用下以极高的速度流向形成的空穴,形成冲击力。由于气泡中的蒸汽和气体来不及在瞬间全部凝结和溶解,因此,在冲击力作用下又分成小气泡,如此反复。当上述过程在叶轮或叶片等流通部件表面发生,将对金属材料产生机械剥蚀。同时,气泡中逸出的氧气等活性气体也会对金属材料产生化学腐蚀。汽蚀过程发生后将会严重影响设备运行状态,缩短泵的使用寿命,甚至由于附带产生的振动等问题引起设备或人身安全问题[4]。 离心泵内最易发生汽蚀的部位为其通流部分的压力最低点,位于叶片进口端偏后的某一界面k处。当k点绝对压强pk小于或等于汽化压强pv时,即发生汽蚀。根据汽蚀基本方程式: (1) 式中:p1和c1分别为流体在泵入口界面处压强和速度;c0为流体在叶片进口边前的绝对速度;m为考虑流体在泵入口截面到临界截面间水力损失和液体绝对速度的不均匀性后引入的压降系数;ω0为流体在叶片进口处的相对速度;λ为流体绕流叶片端部所产生的压降系数。 引入有效汽蚀余量NPSHa和必需汽蚀余量NPSHr两个量。NPSHa表示液体到达泵进口处的能量扣除汽化压头所富裕的能量: (2) 当液体温度、吸入液面压强和泵的安装高度均保持不变情况下,由于吸入管路的流动损失与流量的平方成正比,所以NPSHa随液体流量变化为一条下降的抛物线。 NPSHr表示液体进入泵后压头下降程度: (3) 由于c0和ω0均与流量的增大而增大,所以NPSHr随流量的变化程一条上升的曲线。 NPSHa的曲线和NPSHr的曲线相交于临界流量点Qk,当泵内流量大于Qk时,NPSHa<NPSHr,即有效汽蚀余量提供的富裕能量不足以克服泵体进口液体的压头降时,泵将发生汽蚀[5]。 由离心泵汽蚀机理可知,控制泵入口流量是避免汽蚀的关键,实际工程中可从改变泵的运行曲线或泵出口管路的阻力特性入手,改变泵的工作点,使离心泵工作在小于临界流量Qk的稳定区域,避免和预防汽蚀。 3. 案例分析 3.1 机组锅炉跳闸后凝结水泵汽蚀案例分析及运行优化建议 3.1.1 案例过程 某300MW机组采用的是上海凯士比泵有限公司生产的型号为“NLT350-400x5”的凝结水泵,水泵额定参数:流量为907.3m3/h,扬程250m,转速1480rpm,NPSHr≤3.2m,轴功率756.4kW。 2015年12月20日,锅炉跳闸后的机组恢复过程中,出现了凝结水泵B出力不正常的现象,具体过程如下: 15:45:18,机组在高负荷运行过程中锅炉跳闸,此时凝泵B稳定运行,电流83.2A,泵出口母管压力2.22MPa,凝结水流量859t/h,除氧器上水调阀开度74.3%,凝泵再循环开度11.5%且处于自动控制状态; 15:49:27,由于给水流量迅速下降,除氧器上水调阀快速关至18.4%,凝泵B电流降至48.9A,泵出口母管压力升至2.84MPa,凝结水流量降至121t/h,凝泵再循环调阀超弛开至98.1%,该调阀切至手动控制; 15:50:32,手动打开除氧器上水调门至81.0%,凝泵B电流81.1A,出口母管压力1.29MPa,凝结水流量855t/h,再循环调阀开度98.1%; 15:51:22,除氧器上水调阀再度关小至4.1%,凝泵B电流74.9A,出口母管压力2.48MPa,凝结水流量677t/h,再循环调阀开度98.2%;该工况运行约7min,15:56:07,除氧器上水调阀再度关小至2.2%,凝泵B电流85.3A,出口母管压力2.17MPa,凝结水流量

离心泵的汽蚀现象介绍

离心泵的汽蚀现象介绍 (一)、离心泵的汽蚀现象 离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。 (二)、离心泵的安装高度Hg 1允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度 而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。 (1) 输送清水,但操作条件与实验条件不同,可依下式换算 Hs1=Hs+(Ha-10.33) - (Hυ-0.24) (2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H?s 2 汽蚀余量Δh 对于油泵,计算安装高度时用汽蚀余量Δh来计算,即 用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。若输送其它液体,亦需进行校正,详查有关书籍。 从安全角度考虑,泵的实际安装高度值应小于计算值。又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。 例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。试计算: (1) 输送20℃清水时泵的安装; (2) 改为输送80℃水时泵的安装高度。

第三部分气蚀机理及其危害

2005年三月份设备职教培训内容 离心泵的气蚀机理及其危害 气蚀机理 液体在泵叶轮中流动时,由于叶片的形状和液流在其中突然改变方向等流动特点,决定了液道中液流的压力分布。在叶片入口附近的非工作面上存在着某些局部低压区。当处于低压区的液流压力降到对应液体温度的饱和蒸汽压时,液体便开始汽化而形成气泡;气泡随液流在流道中流动到压力较高之处时又瞬时消失。在气泡凝失的瞬间,气泡周围的液体迅速冲入气泡凝失形成的空穴,并伴有局部的高温、高压水击现象,这就是产生气蚀的机理。 二、气蚀的危害 气蚀对泵的危害很大,主要表现在以下几个方面: 性能突然下降。泵发生气蚀时,叶轮与液体之间的能量传递受到干扰,流道不但受到气泡的阻塞,而且流动损失大,这时H-Q曲线,N-Q曲线等都下降,严重时,泵中液流中断,泵不能工作。 泵产生振动和噪音。发生气蚀时,气泡在压力较高处不断的溃灭,产生强烈的水击,使泵产生强烈的振动和噪音。 泵的过流部件表面受到机械性质的破坏以外,如果液体汽化时放出的气体有腐蚀作用,还会产生一定的化学性质的破坏(但前者的破坏是主要的)。严重时,叶轮的表面(尤其在叶片入口附近)呈蜂窝状或海面状。 三、形成气蚀的条件 在液体介质已定的条件下,泵发生气蚀的条件是由泵本身和吸入装置两个方面决定的,故研究气蚀发生的条件应从这两方面考虑。吸入装置(即吸液管路)就是指从吸液面到泵进口(指进口法兰)之前的部分;而从泵进口到出口法兰则为泵本身部分。 当低压区的压力等于或小于该液体所处温度下的饱和蒸汽压时,离心泵就会出现气蚀。 四、泵防止气蚀的措施 1、结构措施 1)、采用双吸泵,以减小经过叶轮的流速,从而减小泵的气蚀余量; 2)、在大型高扬程泵的面前,设增压前置泵,以提高进液压力; 3)、叶轮特殊设计,例如增大叶轮的进口宽度,将叶片进口边向吸入口外延,采用长短叶片,把叶片进口边部分做的薄一些,以次改善叶片入口处的液流情况; 4)、叶轮前面设诱导轮,以提高进入叶轮的液流压力,诱导轮基本上是一个低叶片负荷的轴流式叶轮。 2、安装和运行措施 使泵的安装高度小于允许的安装高度,或灌注高度大于最小灌注高度。 3、其他措施 1)、采用耐气蚀破坏的材料制造泵的过流部分元件; 2)、降低泵的转数。

水泵的气蚀余量

从上述表述可知,气蚀现象是由于流场中出现的最小绝对压力引起,哪里的绝对压力小,哪里就容易发生气蚀。因而,控制最小绝对压力即可控制空化作用,有效地减少气蚀现象的发生。 水泵是一种给流体增加能量的机器。流体经叶轮向外流出,其压力一般而言是增加的,因而在水泵中流体出现最小压力的地方只能是叶轮叶片进口处附近。这样一来,确保流体在叶轮叶片进口处具有足够的绝对压力,便成为避免水泵发生气蚀的关键。 2 水泵的气蚀余量NPSH 由于叶轮机械中流体运动的复杂性,很难从理论上计算出流场中何处可能出现气蚀,再加上气蚀现象不仅仅取决于流体的流动特性,还取决于流体本身的热力学性质,所以,更难于从理论上提出气蚀发生的判据。因此,在实践中往往是采用经验加实验的办法来提出气蚀判据。水泵的气蚀余量概念即是其中的重要判据之一,它既具有一定的理论意义,又是产品验收的标准之一。 水泵气蚀余量有两个概念:其一是与安装方式有关,称有效的气蚀余量NPSH A,它是指水流经吸入管路到达泵吸入口后所余的高出临界压力能头的那部分能量,是可利用的气蚀余量,属于“用户参数”;其二是与泵结本身有关,称必需的气蚀余量NPSH R,它是流体由泵吸入口至压力最低处的压力降低值,是临界的气蚀余量,属于“厂方参数”。要确保水泵在运行中不气蚀,必须在安装上保证NPSH A≥K×NPSH R,(K为安全裕量),而后者由制造厂所保证。从这个意义上看,降低水泵气蚀余量的意义在于保证水泵的绝对提水高度,满足使用要求。 如图2所示,一般采用下列公式来计算气蚀余量 式中:P0为下游压力;P v为临界压力;H SZ为安装高度;∑h s为吸入管路流动损失,包括阀门、弯头等处的损失。 图2 泵气蚀余量的计算 由上式可以看出,NPSH A 是一种能量储备,较小的NPSH A 可使得安装高度H SZ 较大,这是有 利的。 式中:V 1为叶片进口绝对速度;λ 1 为绝对速度变化及流动损失引起的压降系数,称绝对速度 的不均匀系数;W 1为叶片进口相对速度;λ 2 为流体绕流叶片头部引起的压降系数,称叶片的 气蚀系数。 由上式可以看出,NPSH R 仅与泵本身的运动特性有关。对设计者而言,要求NPSH R 尽可能小, 以使得泵在安装上有较充裕的气蚀储备。

泵的汽蚀现象分析及防止汽蚀措施

泵的汽蚀现象分析及防止汽蚀措施 一、汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHa NPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施 欲防止发生汽蚀必须提高NPSHa,使NPSHa>NPSHr可防止发生汽蚀的措施如下: 1.减小几何吸上高度hg(或增加几何倒灌高度); 2.减小吸入损失hc,为此可以设法增加管径,尽量减小管路长度,弯头和附件等; 3.防止长时间在大流量下运行; 4.在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀; 5.泵发生汽蚀时,应把流量调小或降速运行; 6.泵吸水池的情况对泵汽蚀有重要影响; 7.对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料

如何解决水泵的气蚀现象

毕业论文 课程名称如何解决水泵的气蚀现象 学生姓名X X X 年级X X 专业X X X X 指导教师X X X

如何解决水泵的气蚀现象 摘要:离心泵以其转速高,体积小,重量轻,效率高,流量大,结构简单,性能平稳,容易操作和维修等优点,使其在输油生产中得到了广泛的应用,汽蚀现象也是离心泵在输油生产中常见的故障。 关键词:离心泵;汽蚀;汽蚀余量 一、气蚀现象含义 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡,把这种产生气泡的现象称为汽蚀。离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的液体压力达到最低,此后由于叶轮对液体做功,液体压力很快上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就汽化。同时,使原来溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些气泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高,于是金属表面因冲击疲劳而剥裂。如若气泡内夹杂某种活性气体(如氧气等),它们借助气泡凝结时放出的热量,产生电

解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为离心泵的汽蚀现象。 二、水泵运行中产生气蚀现象的原因 液体的汽化程度与压力的大小、温度高低有关。当液体内部压力下降,低于液体在该温度下的饱和蒸汽压时,便产生汽蚀故障。吸入压力降低;吸入高度过高;吸入管阻力增大;输送液体粘度增大;抽吸液体温度过高等影响液体饱和蒸气压增加的现象都会影响汽蚀的发生,通常的因素有: (1)泵进口的结构参数,叶轮吸入口的形状、叶片入口边宽度及叶片进口边的位置和前盖板形状等。 (2)泵的操作条件,泵的流量、扬程及转速等。 (3)泵的安装位置,泵的吸入管路水力损失及安装高度。 (4)环境因素,泵安装地点的大气压力以及输送液体的温度等。 三、水泵气蚀现象所产生的危害 水泵汽蚀是水泵损坏的重要原因,水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。运行中使水泵抽水的效率降低,显著减少了水泵的扬程和流量,也减少了水泵的使用寿命。汽蚀时传递到叶轮及泵壳的冲击波,加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海面状逐步脱落;发生汽蚀时,还会发出噪声,进而使泵体震动;

水泵七大常见故障及解决方法

水泵七大常见故障及解决方法 /Detail_289475_102102_%E4%BA%94%E9%87%91%E5%B8%B8%E8%AF%86.shtml 水泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 教您如何解决水泵故障。 1、无法启动 首先应检查电源供电情况:接头连接是否牢靠;开关接触是否紧密;保险丝是否熔断;三相供电的是否缺相等。如有断路、接触不良、保险丝熔断、缺相,应查明原因并及时进行修复。其次检查是否是水泵自身的机械故障,常见的原因有:填料太紧或叶轮与泵体之间被杂物卡住而堵塞;泵轴、轴承、减漏环锈住;泵轴严重弯曲等。排除方法:放松填料,疏通引水槽;拆开泵体清除杂物、除锈;拆下泵轴校正或更换新的泵轴。 2、水泵发热 原因:轴承损坏;滚动轴承或托架盖间隙过小;泵轴弯曲或两轴不同心;胶带太紧;缺油或油质不好;叶轮上的平衡孔堵塞,叶轮失去平衡,增大了向一边的推力。排除方法:更换轴承;拆除后盖,在托架与轴承座之间加装垫片;调查泵轴或调整两轴的同心度;适当调松胶带紧度;加注干净的黄油,黄油占轴承内空隙的60%左右;清除平衡孔内的堵塞物。 3、流量不足 这是因为:动力转速不配套或皮带打滑,使转速偏低;轴流泵叶片安装角太小;扬程不足,管路太长或管路有直角弯;吸程偏高;底阀、管路及叶轮局部堵塞或叶轮缺损;出水管漏水严重。排除方法:恢复额定转速,清除皮带油垢,调整好皮带紧度;调好叶片角,降低水泵安装位置,缩短管路或改变管路的弯曲度;密封水泵漏气处,压紧填料;清除堵塞物,更换叶轮;更换减漏环,堵塞漏水处。 4、吸不上水 原因是泵体内有空气或进水管积气,或是底阀关闭不严灌引水不满、真空泵填料严重漏气,闸阀或拍门关闭不严。排除方法:先把水压上来,再将泵体注满水,然后开机。同时检查逆止阀是否严密,管路、接头有无漏气现象,如发现漏气,拆卸后在接头处涂上润滑油或调合漆,并拧紧螺丝。检查水泵轴的油封环,如磨损严重应更换新件。管路漏水或漏气。可能安装时螺帽拧得不紧。若渗漏不严重,可在漏气或漏水的地方涂抹水泥,或涂用沥青油拌和的水泥浆。临时性的修理可涂些湿泥或软肥皂。若在接头处漏水,则可用扳手拧紧螺帽,如漏水严重则必须重新拆装,更换有裂纹的管子;降低扬程,将水泵的管口压入水下0.5m。 5、剧烈震动 主要有以下几个原因:电动转子不平衡;联轴器结合不良;轴承磨损弯曲;转动部分的

泵的汽蚀现象以及其产生原因

泵的汽蚀现象以及其产生原因 1、汽蚀 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。苏华泵业 2、汽蚀溃灭 汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。苏华泵业 3、产生汽蚀的原因及危害 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。苏华泵业 4、汽蚀过程 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。苏华泵业 什么是泵的特性曲线? 通常把表示主要性能参数之间关系的曲线称为离心泵的性能曲线或特性曲线,实质上,离心泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。特性曲线包括:流量-扬程曲线(Q-H),流量-效率曲线(Q-η),流量、功率曲线(Q-N),流量-汽蚀余量曲线(Q-(NPSH)r),性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点。一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。在实践选效率区间运行,即节能,又能保证泵正常工作,因此了解泵的性能参数相当重要。苏华泵业

如何防止泵发生汽蚀现象

如何防止泵发生汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHaNPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好; NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施

怎么预防水泵的气蚀

https://www.sodocs.net/doc/ac9286411.html,/ 怎么预防水泵的气蚀 一般水泵在使用过程中都有产生汽蚀的可能,但是汽蚀的现象是我们不愿意发生的,它将直接影响水泵的使用寿命。那么,我们要如何防止水泵汽蚀呢?教你如何防止水泵汽蚀! 防止气蚀产生的办法: 使用方方面:1.降低泵的安装高度;2.减少吸入管路阻力;3.降低输送液体温度,以降低汽化压力;4.避免在进口管路上采用阀门节流; 制造方方面:1.提高泵流道的关洁度;2.加大叶轮进口直径;3.降低泵的转速,以降低泵内部压力; 一、水泵中的气蚀现象 水泵内的压力低于抽送液体在该温度下的饱和蒸汽压力时,液体中就会产生气泡,发生气蚀现象。要认识气蚀现象,首先从我们日常生活的水变化谈起。 平常我们在一个大气压下,将水从20℃加热到100℃时,就有大量气泡从水中溢出,形成沸腾现象。如果在20℃下,将压力降低到0.024个大气压,水也能沸腾起来。所以,水和汽是可以相互转化的,转化的条件就是温度和压力。不但是水,其他液体也有这样的性质。 在一定温度下,液体开始气化的临界压力叫液体的汽化压力,以PV表示。知道了液体本身所具有的这种物理性质后,我们再来分析泵发生气蚀的原因。 通常,水泵的叶轮进口是压力最低的地方。如果这个地方液体的压力等于或低于在该温度下的液体的汽化压力Pv,就会有蒸汽及溶解在液体的气体从液体中大量溢出,形成许多蒸汽与气体混合的小气泡。这些小气泡随液体流到高压区时,气泡周围的压力高于气泡内的压力,气泡受压破裂(凝结)。则液体质点就象无数的小子弹连续打击金属表面,使金属表面产生破坏。这就是泵的气蚀。水泵在严重气蚀状态下运转时,发生气蚀的部位很快就会变成蜂窝状或海绵状。 水泵刚开始气蚀时,气蚀区域较小,对泵正常工作没有明显影响,但当气蚀发展到一定程度时,气蚀气泡大量产生,影响液体的正常流动,甚至造成液流间断,同时伴有噪声、震动,而且泵的流量、扬程、效率都明显下降。因此要尽量避免气蚀产生。

如何预防和减轻水泵汽蚀

如何预防和减轻水泵汽蚀 一、提高水泵的抗汽蚀性能 1、降低必需汽蚀余量 (1)采用双吸式叶轮的水泵。由于双吸泵的汽蚀余量Δhc比单级单吸泵的汽蚀余量Δhc小,对于转速n和流量Q相同的泵,尽量采用双吸式叶轮。 (2)叶轮前加设诱导轮。在离心泵叶轮前设置诱导轮。诱导轮与泵的叶运转,其产生的压力轮同轴组装后一起运转,其产生的压力对叶轮入口增压,提高泵的抗汽蚀性能。但加设诱导轮,会使水泵性能不稳定,因此,尚需对其进行进一步的探索和研究。 (3)适当加大叶轮进口直径及增大叶片入口宽度。当叶轮进口直径和叶片入口宽度增大时,其叶轮进口绝对速度和相对速度均减小,可知泵的临界汽蚀余量降低。但此时叶轮进口处的减漏环面积增大,泄露量增加,泵的容积效率会降低。 2、提高过流部件材料的抗汽蚀能力为了减轻汽蚀对水泵过流部件的损坏,延长其使用寿命,往往选用抗汽蚀性能较强的材料。如采用铸锰、青铜、不锈钢及合金钢等材料铸造叶轮;或用聚合物涂复或激光喷镀过流部件表面以抵抗汽蚀破坏。另外,对过流部件表面进行精加工,提高其光洁度,也可减轻汽蚀的危害。 减轻水泵汽蚀的办法二、提高进水装置的防汽蚀能力 汽蚀余量是与进水装置和管路系统有密切关系,因此应设计良好的进水装置,尽可能地提高泵进口的汽蚀余量,以满足泵内动压降的要求。 (1)设计良好的进水池。良好的进水池不仅可以减小池中水位的降落,减小进水管口的阻力系数,而且池中水面平稳不产生漩涡。可避免空气进入泵内,防止汽蚀过早地发生。 (2)合理确定水泵的吸水高度。由于水泵一般都在非设计工况下运行,因此应充分考虑水泵工作中可能遇到的各种工况,所确定的吸水高度在任何工况下都应满足水泵吸水性能的要求。 (3)选配合理的进水管道。尽可能减少进水管道长度及不必要的管道附件,适当加

离心泵的汽蚀原因及措施

离心泵的气蚀原因及采取措施 【摘要】:通过掌握离心泵的气蚀原因,我们在设计、安装、和生产中应如何预防与消除气蚀现象。 【关键词】:离心泵气蚀原因消除措施 离心泵的气蚀原理: 离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的K点上,液体压力p K最低。此后由于叶轮对液体作功,液体压力很快上升。当叶轮叶片入口附近的压力p K小于液体输送温度下的饱和蒸汽压力p v时,液体就汽化。同时,使溶解在液体内的气体逸出。它们形成许多汽泡。当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加(有的可达数百个大气压)。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高(有的可达2000~3000Hz),于是金属表面因冲击疲劳而剥裂。如若汽泡内夹杂某种活性气体(如氧气等),它们借助汽泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。上述这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的

综合现象称为气蚀。 离心泵最易发生气蚀的部位有: 1.叶轮曲率最大的前盖板处,靠近叶片进口边缘的低压侧; 2.压出室中蜗壳隔舌和导叶的靠近进口边缘低压侧; 3.无前盖板的高比转数叶轮的叶梢外圆与壳体之间的密封间 隙以及叶梢的低压侧; 4.多级泵中第一级叶轮。 提高离心泵本身抗气蚀性能的措施 (1)改进泵的吸入口至叶轮附近的结构设计。增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加速与降压;适当减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以减少绕流叶片头部的加速与降压;提高叶轮和叶片进口部分表面光洁度以减小阻力损失;将叶片进口边向叶轮进口延伸,使液流提前接受作功,提高压力。 (2)采用前置诱导轮,使液流在前置诱导轮中提前作功,以提高液流压力。 (3)采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增加一倍,进口流速可减少一倍。 (4)设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口处的弯曲,减小叶片阻塞,以增大进口面积;改善大流量下的工作条件,以减少流动损失。但正冲角不宜过大,否则影响效率。 (5)采用抗气蚀的材料。实践表明,材料的强度、硬度、韧性

离心式水泵气蚀的解决方法

离心式水泵气蚀的解决方法 离心式水泵如果安装或使用不当,就有可能发生气蚀。一旦出现气蚀,性能就会下降,出水量减少、叶轮损坏加速,还会伴随有振动和噪声等,严重时,甚至使泵无法工作。所以,应避免泵发生气蚀。浙北一家水利疏浚工程公司的3#吹泥船(俗称吸泥船)上使用的用于冲碎泥块的冲水泵,由于管路与泵不匹配,使泵工作于大流量区,不仅电机超载,而且泵内发生气蚀,影响了正常的工作,后经改小了出水管并降低了泵安装高度解决了这个问题。 一.气蚀情况 泥船上使用的冲水泵型号为8Sh-13,额定流量Qn=288m3/h;额定扬程Hn=41.3m;电机功率Pn=55kw。船建成后,根据实测得到的泵参数为:HA=24.4m;QA=400m3/h。冲水泵在试运转中,发现每当启动后运行不太长的时间,出水量就不稳定,而且随着时间的持续,情况越来越糟。这一情况表明泵内已发生气蚀并逐步加重。此时,操作人员不得不打开泵的放气阀,只有不时地间断放气才能使冲水稳定。 二.气蚀原因 在冲水泵管路系统中,尽管泵的安装位置不高(泵轴线安装高度hg=0.6m)、吸水管路也不长(管段长L1=8.5m),但由于出水管较短,水力损失小,加之冲水高度较低(出水口距水面高度h=2m),使泵处于大流量区工作,泵进口处的相对真空度低于了当时当地的汽化压力,因此引起了气蚀。 三.改进措施要改变现有的这种运行状况,通常可采用的处理办法有三种即更换新泵、变频降速和改变管路。通过对比,决定采用第三更改方案较为简单经济。 具体做法是将原来的出水管径由Dg=200mm改为150mm,管长不变;冲水头出口直径由原来的Dg=120mm改为100mm;泵组安装高度由原来的hg=0.6m改为0.4m,其余不变。这一改造工作只花费了两天时间。 改完后,进行了实船试验。先测得泵的扬程值HAˊ,再查泵的特性曲线,得此时泵的流量QAˊ=340m3/h,经计算得知泵在此流量的吸人真空度小于允许值。故泵不发生气蚀。 在后来工作中,冲水头出水情况正常,并在每次更换密封盘根时,均没发现叶轮有气蚀迹象。

水泵发生气缚和气蚀的原因

水泵发生气缚和气蚀的原因 ”气缚”:由于泵内存气,启动泵后吸不上液的现象,称“气缚”现象。“气缚”现象发生后,泵无液体排出,无噪音,振动。为防止“气缚”现象发生,启动前应灌满液体。“气蚀”:由于泵的吸上高度过高,使泵内压力等于或低于输送液体温度下的饱和蒸汽压时,液体气化,气泡形成,破裂等过程中引起的剥蚀现象,称“气蚀”现象,“气蚀”发生时液体因冲击而产生噪音、振动、使流量减少,甚者无液体排出。为防止“气蚀”现象发生;泵的实际安装高度应不高于允许吸上高度。 1、离心泵气缚现象1)气缚发生原因离心泵在启动前没有灌满被输送的液体,或者是在运转过程中泵内渗入了空气,因为气体的密度小于液体的密度,产生的离心力小,无法把空气甩出去,泵壳内的流体在随电机作离心运动产生负压不足以吸入液体至泵壳内,泵象被“气体”缚住一样,失去了自吸能力而无法输送液体,称作离心泵的气缚现象。

2)产生危害情况泵打不出液体来,机组产生剧烈振动,同时伴有强烈刺耳的噪音,电机空转,容易烧坏电机。影响输送液体的效率和离心泵的正常工作。 3)预防措施集锦启动前要灌泵并使泵壳内充满待输送的液体,启动时关闭出口阀。为防止灌入泵壳内的液体因重力流入低位槽内,在泵吸入管路的入口处装有止逆阀(底阀);如果泵的位置低于槽内液面,则启动时无需灌泵。做好壳体的密封工作,灌水的阀门不能漏水,密封性要好。

2、离心泵气蚀现象1)气蚀发生原因当泵壳内吸入的液体在泵的吸入口处因压强减小恰好气化时,给泵壳内壁带来巨大的水力冲击,使壳壁象被“气体”腐蚀一样,该现象称为汽蚀现象。 造成汽蚀的主要原因有:(1)进口管路阻力过大或者管路过细;(2)输送介质温度过高;(3)流量过大,也就是说出口阀门开的太大;(4)安装高度过高,影响泵的吸液量;(5)选型问题,包括泵的选型,泵材质的选型等。含气泡的液体挤入高压区后急剧凝结或破裂。因气泡的消失产生局部真空,周围的液体就以极高的速度流向气泡中心,瞬间产生了极大的高达几万kpa的高速冲击力,造成对叶轮和泵壳的冲击,使材料受到侵蚀和破坏。

相关主题