搜档网
当前位置:搜档网 › 光发射机指标测试 光纤实验

光发射机指标测试 光纤实验

光发射机指标测试  光纤实验
光发射机指标测试  光纤实验

计算机与信息技术学院实验报告

专业:通信工程年级/班级:2009级 2011—2012学年第二学期课程名称光纤通信指导教师李新源

组员姓名XXX

实验地点计算机楼504 实验时间2012年4月6 日

项目名称光发射机指标测试实验类型实践性

一、实验目的

1.了解数字光发射机平均输出光功率的指标要求。

2.掌握数字光发射机平均输出光功率的测试方法。

3.了解数字光发射机的消光比的指标要求。

4.掌握数字光发射机的消光比的测试方法。

二、实验内容

1.测试数字光发射机的平均光功率。

2.测试数字光发射机的消光比。

3.绘制数字光发射机的P-I特性曲线。

三、实验仪器

1.光纤通信实验系统1台。

2.示波器1台。

3.光功率计1台。

4.万用表1部。

5.FC/PC光纤跳线1根。

四、实验原理

光发射机的指标包括:半导体光源的P-I特性曲线测试、消光比(EXT)测试和平均光功率的测试。下面对这三个方面进行详细的说明:

1.半导体光源的P-I特性曲线测试

半导体激光器的输出光功率与驱动电流的关系如下图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用Ith表示。在门限电流

以下,激光器工作于自发发射,输出荧光功率很小,通常小于100pW ;在门限电流以上,激光器工作于受激发射,输出激光,功率随电流迅速上升,基本上成直线关系。激光器的电流与电压的关系相似于正向二极管的特性。

P-I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流Ith 尽可能小,Ith 对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比大,而且不易产生光信号失真。且要求P-I 曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带米麻烦:斜率太大,则会山现光反射噪声及使自动光功率控制环路调整困难。

半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放人机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。将开始出现净增益的条什称为阈值条件。一般用注入电流值来标定阈值条件,也即阈值电流Ith ,当输入电流小于Ith 时,其输出光为非相干的荧光,类似于LED 发出光,当电流大于Ith 时 ,则输出光为激光,且输入电流和输出光功率成线性关系,该实验就是对该线性关系进行测量,以验证P-I 的线性关系.

I(mA)

P(mW)

th

I

图11-1 LD 半导体激光器P-I 曲线示意图

2.消光比(EXT )的测试 消光比定义为:0011

10lg

P EXT P ,式中P00是光发射机输入全“0”时输出的平

均光功率即无输入信号时的输出光功率。P11是光发射机输入全“1”时输出的平均光功率。从激光器的注入电流(I )和输出功率(P )的关系,即P-I 特性可以

清楚地看出消光比的物理概念,如下图所示。由图可知,当输入信号为“0”时,光源的输出光功率为P00,它将由直流偏置电流Ib 来确定。无信号时光源输出的光功率对接收机来说是一种噪声,将降低光接收机的灵敏度。因此,从接收机角度考虑,希望消光比越小越好。但是,应该指出,当Ib 减小时,光源的输出功率将降低,光源的谱线宽度增加,同时,还会对光源的其他特性产生不良影响,因此,必须全面考虑Ib 的影响,一般取Ib=(0.7~0.9)Ith(Ith 为激光器的阈值电流)。在此范围内,能比较好地处理消光比与其他指标之间的矛盾。考虑各种因素的影响,一般要求发送机的消光比不超过0.1。消光比对光接收机灵敏度的影响如下图。在光源为LED 的条件下,一般不考虑消光比,因为它不加直流偏置电流Ib ,电信号直接加到LED 上,无输入信号时的输出功率为零。因此,只有以LD 作光源的光发射机才要求测试消光比。

3.平均光功率

光发送机的平均输出光功率被定义为当发送机送伪随机序列时,发送端输出的光功率值。ITU-U 在规范标准光接口时,为使成本最佳,同时适应运行条件变化,并考虑了活动连接器的磨损、制造和测量容差以及老化因素的影响后,给出了一个允许的范围。其中比较重要的激光器劣化机理是有源层的劣化和横向漏电流的增加所导致的激励电流增加以及光谱特性随时间的变化。通常,光发送机的发送功率需要有1~1.5 dB 的富余度。 五、实验步骤:

A. 测量光发射机P-I 特性曲线

1.关闭系统电源。按以下方式用连信号连接导线连接:

ΔP

EXT

ADP

PIN

图11-2消光比对灵敏度的影响

数字信号模块 (数字信号输出一)

P300—P100

1310数字光发模块 (数字光发信号输入)

2.用光纤跳线连接1310nm 光发模块和光功率计。

3.将1310nm 数字光发模块的拨码开关J100第一位拨到ON 状态,第二位拨到OFF 状态。

4.将1310nm 光发模块的J101设置为“数字”

5.开系统电源。将数字信号源第一路的拨码开关U311全拨到“OFF”状态,即输入到1310nm 数字光发模块的信号始终为“1”。

6.用表测量R101两端的电压(测量方法:先将万用表打到电压档,然后将红表笔插入TP101,黑表笔插入TP100)。读出万用表读数U ,代入公式I=U/R ,其中R=51Ω, 读出光功率记读数P 。

7.调节RP100(激光器注入电流调节)然后,重复步骤5,将测得的参数填入下表:

P(uw) u(v)

B. 消光比的测量

1.关闭系统电源。按以下方式用连信号连接导线连接: 数字信号模块 (数字信号输出一)

P300—P100

1310数字光发模块 (数字光发信号输入)

2.用光纤跳线连接1310nm 光发模块和光功率计。

3.将1310nm 光发模块的J100第一位拨到ON ,第二位拨到OFF 。将J101设置为“数字”。

4.将1310nm 光发体模块的RP100逆时针旋转到最大。.

5.打开系统电源。

6.将数字信号源输第一路的拨码开关U311全拨到“OFF”状态,使输入到1310nm 数字光发模块的信号始终为“1”测得此时光发端机输出的光功率为P 11。

7.将拨码开关U311全部拨向ON 端(发光二极管全灭),使输入到1310nm 数字发光模块的信号始终为“0”,测得此时光发端机输出的光功率为P00。

8.代入公式0011

10lg

P EXT P ,即得光发端机消光比。

C. 平均光功率测量

1.关闭系统电源。按以下方式用连信号连接导线连接: 光端FPGA (PN 序列二信号输出)

P718—P100

1310数字光发模块

(数字光发信号输

入)

2.用光纤跳线连接1310nm 光发模块和光功率计。

3.将1310nm 光发模块的J100第一位拨为ON ,第二位拨为OFF 。将J101设置为“数字”。

4.将1310nm 光发模块的RP100逆时针旋到最大。

5.打开系统电源。此时光功率计的读数,即为光发端机的平均光功率。

6.做完实验后关掉系统电源,拆除实验导线。

7.将各实验仪器摆放整齐。 六、实验结果

1.记录下实验过程中的参数,并算出消光比和平均光功率。 μω

00.2011=P

μω

000≈P

-∞

≈=11

00lg

10P P EXT 平均光功率:μω15.11

2.通过公式I=U/R 计算出电流U 。然后,绘制P-I 特性曲线。

1 2 3 4 5 6 7 P(uw) 687.0 736.0 474.0 291.0 104.0 29.20 0.8500 u(v)

1.19

1.26

0.91

0.67

0.43

0.34

0.25

I (A ) 0.0233 0.0247 0.0178 0.0131 0.0084 0.0067 0.0049

七、实验心得

通过本次实验,了解数字光发射机平均输出光功率和消光比的指标要求,通过动手操作,掌握了数字光发射机平均输出光功率和消光比的测试方法,为以后的学习奠定了基础。

2012年4月6日

220kV线路光纤通道测试作业指导书

贵州华电毕节热电有限公司 220kV线路专用光纤通道定检测试 作业指导书 批准: 审核: 编制: 2014年09月

一、适用范围: 本作业指导书适用于220kV线路保护光纤通道定检测试作业。 二、引用标准: 1、《电力安全动作规程》(发电厂和变电站电气部分)DL 408-1991 2、《继电保护和电网安全自动装置检验规程》GB/T 14285—2006 3、《继电保护和电网安全自动装置检验规程》DL/T 995—2006 4、《中国南方电网通信管理暂行规定》(南方电网调【2003】10号) 5、《中国南方电网安全自动装置管理规定》(南方电网调【2004】7号) 6、《南方电网电力调度数据网络管理办法》(调通【2005】2号) 7、《南方电网通信网络生产应用接口技术规范》(调通【2007】18号) 三、作业条件及作业现场要求 1、工作区间与带电设备的安全距离应符合《国家电网公司电力安全工作规程(变电部分)》(国家电网安监【2009】664号)的要求。 2、作业现场应有可靠的试验电源,且满足试验要求。 3、检验对象处于停运状态,现场安全措施完整、可靠。 4、保持现场工作环境整洁。 四、作业人员要求 1、所有作业人员必须身体健康,精神状态良好。 2、所有作业人员必须掌握《国家电网公司电力安全工作规程(变电部分)》(国家电网安监【2009】664号)的相关知识,并经考试合格。 3、所有作业人员应有触电急救及现场紧急救火的常识。 4、本项检验工作需要作业人员2—3人。其中工作负责人1人,工作班成员1—2人。 5、工作负责人应由从事继电保护现场检验工作3年以上的专业人员担任,必须具备工作负责人资格,熟练掌握本作业程序和质量标准,熟悉工作班成员的技术水平,组织并合理分配工作,并对整个检验工作的安全、技术等负责。 6、工作班成员应由从事继电保护现场检验工作半年以上的专业人员担任,必须具备必要的继电保护知识,熟悉本作业指导书,能掌握有关试验设备、仪器仪表的使用。 五、作业前准备工作: 1、开始工作前一天,准备好作业所需设备、仪器、仪表和工器具。主要仪器设备和工器具见下表。 主要仪器设备和工器具 序号名称数量规格备注 1 继电保护光纤通道测试仪1台ZY64520 有效期内 2 尾纤适量 3 数字万用表1只4位半有效期内 4 工具箱1套0.2级,0.5—2A 各种检修工具齐全 2、开始作业前一天,准备好图纸及资料,且图纸及资料应符合现场实际情况。具体图纸、资料见下表。 检验所需图纸资料 序号资料名称单位数量

光缆测试方案

光缆测试方案 1.作业准备 1.1内业技术准备 在开工前组织技术人员认真学习实施性施工组织设计,阅读、审核施工图纸,澄清有关技术问题,熟悉规范和技术标准。制定施工安全保证措施,提出应急预案。对施工人员进行技术交底,对参加施工人员进行上岗前技术培训。 1.2外业技术准备 确认中继段光缆接续完成并全部符合接续测试指标。 2.技术要求 2.1光缆中继段光纤线路的测试值应小于光缆中继段光纤线路衰减计算值。其计 算值为 αl=α0L+αn+αc m(dB) 式中α ——光纤衰减标称值(dB/km) α——光缆中继段每根光纤接头平均损耗(dB) 单模光纤α≤0.08dB(1310mm、1550mm) 多模光纤α≤0.2dB αc——光纤活动连接器平均损耗(dB) 单模光纤α多模光纤αc c ≤0.7dB ≤ 1.0dB L——光中继段长度(km) n——光缆中继段内每根光纤接头数 m——光缆中继段内每根光纤活动连接器数 2.2在一个光缆中继段内,每一根光纤接续损耗平均值应符合下列指标:单模光纤α≤0.08dB(1310mm、1550mm) 多模光纤α≤0.2dB

2.3对传输STM-4、STM-16的1310nm、1550nm波长光纤和传输STM-1的1550nm 波长光纤,应进行最大离散反射系数和S点最小回波损耗的测试,测试值应满足下列要求: 2.3.1光缆中继段S、R点间的最大离散反射系数: STM-11550nm,不大于-25dB STM-41310nm,不大于-25dB STM-41550nm,不大于-27dB STM-161310nm、1550nm,不大于-27dB 2.3.2光缆中继段在S点的最小回波损耗(包括连接器): STM-11550nm,不小于20dB STM-41310nm,不小于20dB STM-41550nm,不小于24dB STM-161310nm、1550nm,不小于24dB 2.4对用于高速率密集波分复用(DWDM)系统的光纤需要进行偏振模色散(PMD)的测量: 偏振膜色散(PMD)的值应小于0.2ps/km。 2.5同一中继段光缆必须采用同一厂家光缆,且光缆的电气指数必须一致 2.6电性能测试 1.电性能测试应包括下列内容: 1)直埋光缆线路对地绝缘电阻; 2)防护接地装置地线电阻。 2.为保证光缆金属外护层免遭腐蚀,埋设接续后的单盘直埋光缆,其金属外护层对地绝缘电阻竣工验收指标应不低于10MΩ·km。目前暂允许10%的单盘光缆不低于 2MΩ·km。直埋光缆线路对地绝缘的测试方法应符合原邮电部《光缆线路对地绝缘指标及测试方法》的要求。 3.防护接地装置地线的接地电阻应小于2欧姆。 3.指标测试 1.光缆具体测试比例与要求如下:

分析介绍光纤基本参数和测量方法

分析介绍光纤基本参数和测量方法 本文来源于:工控商务网 光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。 1.单模光纤模场直径的测量 从理论上讲单模光纤中只有基模(LP0l)传输,基模场强在光纤横截面的存在与光纤的结构有关,而模场直径就是衡量光纤模截面上一定场强范围的物理量。对于均匀单模光纤,基模场强在光纤横截面上近似为高斯分布,通常将纤芯中场强分布曲线最大值1/e处所对应的宽度定义为模场直径。简单说来它是描述光纤中光功率沿光纤半径的分布状态,或者说是描述光纤所传输的光能的集中程度的参量。因此测量单模光纤模场直径的核心就是要测出这种分布。 测量单模光纤模场直径的方法有:横向位移法和传输功率法。下面介绍传输功率法。测量系统的原理方框示意如图1所示。 取一段2米长的被测光纤,将端面处理后放入测量系统中,测量系统主要由光源和角度可以转动的光电检测器构成。光纤的输入端应与光源对准。另外为了保证只测主模(LP01)而没有高次模,在系统中加了一只滤模器,最简单的办法是将光纤打一个直径60mm的小圆圈。当光源所发的光通过被测光纤,在光纤末端得到远场辐射图,用检测器沿极坐标作测量,即可测得输出光功率与扫描角度间的关系,P—θ线如图2所示。然后,按模场直径的定义公式输入P和θ值,由计算机按计算程序算出模场直径。

2.光纤损耗的测量 光纤损耗是光纤的一个重要传输参数。由于光纤有衰减,光纤中光功率随距离是按指数的规律减小的。但是,对于单模光纤或近似稳态的模式分布的多模光纤衰减系数a是一个与位置无关的常数。若设P(Z1)为Z=Z1处的光功率,即输入光功率。若设P(Z2)为Z2处的光功率,即这段光纤的输出功率。因此,光纤的衰减系数a定义为 因此,只要知道了光纤长度Z2-Z1和Z2、Z1处的光功率P(Z1)、P(Z2),就可算出这段光纤的衰减系数a。测量光纤的损耗有很多种办法,下面只介绍其中的两种办法。 1)截断法 截断法是一种测量精度最好的办法,但是其缺点是要截断光纤。这种测量方法的测量方框如图3所示。 取一条被测的长光纤接入测量系统中,并在图中的“2”点位置用光功率计测出该点的光功率P(Z2)。然后,保持光源的输入状态不变,在被测量光纤靠近输入端处“1”点将光纤截断,测量“l”点处的光功率P(Z1)。这个测量过程等于测了1~2两点间这段光纤的输入光功率P(Z1)和输出光功率P(Z2),又知道“1”、“2”点间的距离Z2-2l,因此,将这些值代入 即可算出这段光纤的平均衰减系数。 在测量方框图中斩波器(又称截光器)是一种能周期断续光束的器件。例如是一个有径向开缝的转盘。它将直流光信号变为交变光信号,作为参考光信号送到锁相放大器中,与通过了被测光纤的光信号锁定,以克服直流漂移和暗电流等影响,以确保测量精度。

继电保护光纤通道管理规定

500kV系统继电保护光纤通道管理规定 一.总则 1.为加强继电保护光纤通道管理,进一步提高继电保护光纤通道可靠性,制定本规定。 2.本规定主要依据《继电保护和安全自动装置技术规程》(GB/T 14285-2006)、《线路保护及辅助装置标准化设计规范》(Q/GDW 161-2007)、《继电保护和电网安全自动装置检验规程》(DL/T 995—2006)和《光纤通道传输继电保护信息通用技术条件》等制定。 3.本规定适用于500kV继电保护光纤通道的调度、设计、基建、运行维护等。220千伏及以下系统可参照执行。 二.专业管理职责划分 1.专用纤芯方式 1.1保护用光纤直接由龙门架接续盒引出到线路保护装置的,接续盒至保护装置的光缆由继电保护专业负责维护。通信专业协助进行光纤的测试及熔接工作。 1.2保护用光纤由通信机房光配线架(ODF)引出到线路保护装置的,通信专业与继电保护专业以光配线架为分工界面。龙门架接续盒至通信机房光配线架的光缆及光配线架由通信专业负责维护。光配线架至保护装置的光缆由继电保护专业负责维护,通信专业协助进行光纤的测试及熔接工作。 2.复用接口方式 保护装置复用通道以配线架(数字配线架或音频配线架)作为继电保护专业和通信专业的分工界面。继电保护接口设备(保护用光电转换器)至配线架间的电

缆由保护专业维护,配线架和复用通信设备及其连接线由通信专业负责维护,继电保护接口设备由继电保护专业负责维护。 3.传输保护信号的光缆、数字电缆、音频电缆在通信侧各配线架的接线或改线方案由通信专业、继电保护专业的双方负责人签字确认,接线由通信专业人员负责。接线时,继电保护专业人员应到场配合。 三.管理规定和技术要求 1.对于配置双套光纤差动保护的线路,要求至少一套光纤差动保护使用双通道。 2.线路两套光纤纵联保护通道应使用两条完全独立的路由。 3.采用复用光纤通道的线路两侧继电保护设备,其使用的继电保护接口设备应采用同型号、同版本的产品。 4.采用2M方式传输的继电保护业务通道不得设置通道保护方式。 5.对于主干线光纤网络长度小于30km且建设有OPGW光缆的线路,宜优先采用专用纤芯作为保护通道。 6.对于传输继电保护信息的迂回光纤通道,迂回路由的站点应在500kV、220kV系统OPGW光纤通信骨干环网上。 7.传输保护的迂回光纤通道,通道传输收发延时应相同,且单向传输延时不得超过10ms,所经过的站点不宜超过6个站点,迂回所经线路长度不宜超过 1000km。 8.继电保护通道中任一设备故障,不应造成多于6条线路的一套主保护信号同时中断。

保护光纤通道测试报告.

附件2 保护光纤通道测试报告 线路名称: 电压等级: 测试地点: 测试单位:单位盖章 测试日期:

编写人: 参与测试人员: 审查: 核定: - I -

一、测试条件 阴大雾大雨 二、设备情况 1、现场运行设备 64kbps2Mbps专用光纤 注:1、继电保护光电转换装置指将接点电信号转换为光信号的装置,如FOX-41A、GXC-01、CSY-102A等,有的可设展宽时间;继电保护信号数字复用接口装置指将光纤差动保护装置等出来的光信号转换为G.703规约2M电信号的装置,如MUX-2M、GXC-64/2M、CSY-186A等。 2、保护装置使用的64kbps采用G.703同向数字接口或2Mbps透明传输接口,SDH的2Mbps 通道再定时功能不用,此项工作由通信人员负责。 2、试验仪器

三、保护通道构成 备注:以罗平变滇罗Ⅰ线为例,主一保护通道一通信通道编号为如“罗平变2M29”,通道路由为点对点,罗平——滇东。通道路由通常指:专用、点对点、迂回,当为迂回时应说明迂回通道经过的站点。 四、差动保护光纤通道测试 4.1专用光纤方式

(A)配有光纤接线盒的专用光纤通道连接图 (B)未有光纤接线盒的专用光纤通道连接图 图1 差动保护专用光纤通道连接示意图 4.1、保护装置及保护通信接口装置发光功率和接收功率测试 测试目的:测试保护装置和光纤接口的发光功率以及接收功率。 测试方法:分别用光功率计测量保护装置发信端(FX)尾纤的光功率——保护装置的发光功率和保护装置收信端(RX)尾纤的光功率——保护装置接收到的光功 率。 测试地点:保护装置光纤端口和光纤接线盒光纤端口及ODF架处。 测试分工:测试点1处由继保人员负责,测试点2处由保护人员和通信人员共同负责。注意事项:1、了解保护装置和保护通信接口装置的发光功率是否在厂家的给定范围内,同时测试尾纤及接头的损耗是否满足要求。 2、新安装试验、全检及部检时测试点1和测试点2都应进行测试,并建立

电信光缆验收报告

电信光缆验收报告 1 2020年4月19日

电信光纤施工验收报告 工作概况 对集团原有光纤结构进行整改。 1、废除原有主干双模光纤,改换单模光纤线。 2、改变原有光纤结构走向,重新布局光纤网络结构。 示意图 改造前改造后 3、更换光纤终端设备(改用高速单模光纤猫)验收报告 施工单位:电信施工工程队 工程于 5月15日完成,预计施工期2天,实际施工期为4天。共铺设光纤线缆1.2公里、高速光纤猫6对、熔光纤接头16蕊.并应行政部要求对原有光纤线缆以及电话线缆规整。施工过程由集团行政部网管全程监督。验收单位:集团行政部 施工单位: 验收单位:篇二:电信光缆线路工程验收 电信光缆线路工程验收 1、随工检验 (1)按国家机关规定,光缆线路工程均应实行监理制。由监理人员采取巡视、旁站等方式进行随工检验。对隐蔽工程项目,应由监理和施工双方签署《隐蔽工程检验签证》。 2 2020年4月19日

(2)光缆线路工程的随工检验,应按下表的项目及内容进行 光缆线路工程随工检验项目内容 2、光缆线路工程初步验收 (1)干线光缆线路工程初步验收(简称工程初验),应在施工完毕并经工程监理单位预检合格后进行。业主(省级)在收到监理单位“关于工程初验申请报告”后一周内组织工程初步验收。初验工作,一般可分档案、安装工艺、传输特性测试和财务、物资等四个组,分别对工程质量进行全面检查和评议。初验组认为有必要时可对隐蔽工程质量进行复查。 (2)光缆线路的安装工艺、传输特性应按下表的项目内容进行检查和抽测。安装工艺和测试数据应符合设计和规范的相关标准,测试数据还应与施工单位提供的竣工测试记录相符或吻合。 光缆线路工程初步验收项目内容 (3)初步验收会议应在全面检查和抽测后对施工质量进行评议,工程质量达到设计和规范标准的为合格。 (4)初步验收会议还应对施工图设计能否指导施工进行评议。施工图设计应达到的深度要求按相关规范或规定。 3、光缆线路工程竣工验收 (1)干线光缆线路工程的竣工验收,应由业主的主管单位(集团公司)组织进行。 3 2020年4月19日

光纤测试方案

光纤测试方案 一.布线系统测试概述 为确保综合布线系统性能,确认布线系统的元器件性能及安装质量,工程完工后需按综合布线系统测试说明进行有关的测试。 综合布线系统测试包括: ·>水平铜缆链路测试; ·>垂直干线铜缆链测试; >垂直干线光缆链测试; >·端对端信道联合测试 系统测试完毕后,即组织有关技术及管理人员对整个系统进行验收。 千兆比水平铜缆的测试说明: 千兆比水平铜缆系统采用专用测试仪器进行测试,测试指标包括: 1.极性、连续性、短路、断路测试及长度 2.信号全程衰减测试 3.信号近、远串音衰耗测试 4.结构回转衰耗SRL 5.特性阻抗 6.传输延时 本方案中,采用下列布线测试仪表进行测试: Microtest QmniScanner FLUKE 国际标准组织(ISO)及Lucent推荐下列布线测试仪表: 1、fluke (Fluke Corporation) 2、PenaScanner (Microtest Inc) 本方案中,我公司建意采用以下铜缆测试仪器:

Microtest Lucent KS23763L1 (连接性测试) 3、FLUKE (特性指标测试) STPl 六类100-150双绞线,250 MHz FTP;阻燃特性NFC32070 2.1标准 4、用网络测试仪,测试线路是否安装完好,将测线报告整理,归档。 二.系统测试所用工具 测试所用工具主要是: FLUCK DSP FLUCK 网络测试仪操作规程: 根据测量的种类是通道还是链路,选择相对的适配器; 测量前将仪器校准; 测量时,将主机和智能远端的旋钮打开; 输入测量时间、地点、测试姓名; 在AUTOTEST项开始测试,储存结果; 将测试结果转换成电子文档; 将主机和智能远端关机; 将仪器收好,检查是否有遗漏配件。 注意事项:插接时一定要将插头和插口对齐,将线路接通;注意轻拔轻 插,一定要将头弹起按下再拔出;注意仪器和线路远离电力线和强电场。 其他工具如下表: 仪器名称数量产地说明 接地摇表 1 进口 万用表 2 国产 水平尺 6 国产 FULKE 1 美国

光纤损耗测试方法及其注意事项(1)

光纤损耗测试方法及其注意事项1 引言 由于应用和用户对带宽需求的进一步增加和光纤链路对满足高带宽方面的巨大优势,光纤的使用越来越多。无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/ TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier 1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier 2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。? 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A 和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,我们分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 那么这三种方法各有什么特点,怎么操作,应该在什么场合下使用呢?这正是本文要阐述的问题。另外,光纤链路的测试,不同于双绞线链路的测试,又有什么地方需要注意或者有什么原则可以遵循呢?这也是本文想与读者分享的内容。 2 如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 下面我们具体介绍一下标准中定义的三种测试损耗的方法(以双向测试为例)。 2.1 测试方法A

室内外热环境参数测定实验指导书

【实验名称】室内外热环境测试 【实验性质】综合性实验 【实验任务】测试不同类型建筑、不同建筑空间的热环境,对室外气象因素对室内热环境的影响进行分析,并根据分析结果针对建筑热工设计提出结论性意见。 【实验目的】 通过实验,使学生了解室内外热环境参数测定的基本内容,初步掌握仪器仪表的性能和使用方法,进一步感受和了解室外气象因素对建筑热环境的影响。 【实验内容】 建筑室内外热环境参数的测定主要分为室内热环境测定和室外热环境测定两部分。其中:室内热环境参数的测量主要包括2个方面的内容: ■温度的测定 ■空气相对湿度的测定 室外热环境参数的测试同样主要包括2个方面的内容: ■温度的测定 ■空气相对湿度的测定 ■风环境的测定 【实验仪器设备】 1、室内热环境的测定主要使用TESTO174H温湿度记录仪。 2、室外热环境参数的测定主要使用温湿度记录仪及8910便携气象站。 【实验方法和步骤】 1、室内热环境参数的测定 (1)将记录仪与计算机连接,设置记录仪时间及存储间隔等信息; (2)选择测点,注意避免测点受到日照等因素的影响; (3)选择完整时间段对选定测点和室外温湿度进行测试; (4)上传数据,进行数据整理和处理; (5)结合测点房间的特点(建筑形式、外环境、布局、朝向、围护结构等等)对实测数据的差异进行分析,提出建筑热工设计的改进型意见及设计原则; 测点A 位于建艺馆地下一层综合实验室西侧,有西向外墙外窗,有采暖; 测点B位于建艺馆地下一层综合实验室西侧,无外墙外窗,有采暖,暖气配置较少; 测点C 位于建艺馆地下一层综合实验室构造展室,无外墙外窗,无采暖;

【数据整理】 根据提供的数据图表选择所研究的时间段(周期10个小时),将对应的时刻、数据参数填入表格。 【分析】 根据数据结果分析同样外扰作用下不同室内环境的原因。 【结论及建议】 根据分析结果,归纳建筑热环境影响因素及其影响机理,提出通过建筑设计和设备等多种措施改善室内热环境的建议。

光纤收发器测试方案

北京瑞斯康达科技发展有限公司RC系列光纤收发器设备 测试方案建议书 日期:2005年 4 月 26日 北京瑞斯康达科技发展有限公司

RC系列光纤收发器测试报告 此测试报告是关于10/100M自适应收发器的性能、功能测试以及对网管软件平台的功能。其中RC513/514-FE-XX具有N*32kbps带宽可控,支持远端网管功能单纤收发器。测试分四部分。 一、常规性能测试 二、收发器与交换机、路由器配合实现交换机、路由器链路备份功能 三、带宽限制与FTP测试 四、结合网管功能的测试 一、常规性能测试 1、测试内容及目的 本测试方案的主要目的是测试10/100M自适应以太网光纤收发器的稳定性、灵活性及恶劣环境下的传输能力。 ◆稳定性测试:在标准传输环境及恶劣传输环境下系统运行的稳定性。实现 方式是在系统测试时,100Base-T 的RJ-45接口使用60米~100米长的标准五类双绞线,100Base-FX的光接口在光路上模拟15dB~20dB的衰减,在此环境下测试系统运行效果。 ◆灵活性测试:测试系统对各种不同应用环境及不同网络设备联接的互联能 力。实现方式是测试时将网络设备的端口模拟成100Mbps全双工、自适应等各种模式,在此环境下测试系统的运行效果。 ◆传输能力:测试系统的有效传输能力。实现方式是在光纤收发器两端设备上模拟80% 的双向数据流量,在此负载下测试系统的丢包率。 2、测试环境

测试设备连接图: 3、测试过程 固定流程: ?PC机A:向B最大限度发出数量流量。使用Sinffer/Netxray中的Packets generate 工具,数据流间隔0ms,数据包大小1500Byte,连续发送。从仪表盘上统计每秒 钟综合数据流量。 ?PC机B:向A最大限度发出数量流量。使用Sinffer/Netxray中的Packets generate 工具,数据流间隔0ms,数据包大小1500Byte,连续发送。从仪表盘上统计每秒 钟综合数据流量。 ?PC机A:进入DOS环境,ping B的IP地址,64K字节,500次,统计丢包率。 ?PC机B:进入DOS环境,ping A的IP地址,64K字节,500次,统计丢包率。 ?填写测试记录表,如表1 1)、将PC机A的网卡配置为100Mbps,全双工;将PC机B的网卡配置为100Mbps,

保护光纤通道测试报告

v1.0 可编辑可修改附件2 保护光纤通道测试报告 线路名称: 电压等级: 测试地点: 测试单位:单位盖章 测试日期:

v1.0 可编辑可修改 编写人: 参与测试人员: 审查: 核定: - I -

一、测试条件 阴大雾大雨 二、设备情况 1、现场运行设备 64kbps2Mbps专用光纤 注:1、继电保护光电转换装置指将接点电信号转换为光信号的装置,如FOX-41A、GXC-01、CSY-102A 等,有的可设展宽时间;继电保护信号数字复用接口装置指将光纤差动保护装置等出来的光信号转换为规约2M电信号的装置,如MUX-2M、GXC-64/2M、CSY-186A等。 2、保护装置使用的64kbps采用同向数字接口或2Mbps透明传输接口,SDH的2Mbps通道再定 时功能不用,此项工作由通信人员负责。 2、试验仪器 三、保护通道构成

备注:以罗平变滇罗Ⅰ线为例,主一保护通道一通信通道编号为如“罗平变2M29”,通道路由为点对点,罗平——滇东。通道路由通常指:专用、点对点、迂回,当为迂回时应说明迂回通道经过的站点。 四、差动保护光纤通道测试 专用光纤方式 (A)配有光纤接线盒的专用光纤通道连接图

(B)未有光纤接线盒的专用光纤通道连接图 图1 差动保护专用光纤通道连接示意图 、保护装置及保护通信接口装置发光功率和接收功率测试 测试目的:测试保护装置和光纤接口的发光功率以及接收功率。 测试方法:分别用光功率计测量保护装置发信端(FX)尾纤的光功率——保护装置的发光功率和保护装置收信端(RX)尾纤的光功率——保护装置接收到的光功率。测试地点:保护装置光纤端口和光纤接线盒光纤端口及ODF架处。 测试分工:测试点1处由继保人员负责,测试点2处由保护人员和通信人员共同负责。注意事项:1、了解保护装置和保护通信接口装置的发光功率是否在厂家的给定范围内,同时测试尾纤及接头的损耗是否满足要求。 2、新安装试验、全检及部检时测试点1和测试点2都应进行测试,并建立 技术档案,在继保专业存档。部检时若收信功率与投产时相比不低于 5 dBm即可,发信功率若变化超过±3dBm,请于厂家联系。 3、由于保护装置及保护接口装置的发光功率通常无法直接测量,需要借助 尾纤,测量到的发光功率实为经过尾纤后的光功率。有光纤接线盒时, 由于尾纤较短,尾纤的光衰耗较小,就将发信端口尾纤测量得到的光功 率看作装置的发光功率;无光纤接线盒时,由于尾纤较长,光衰耗较大, 测量得到的保护装置的发光功率与装置的标称发光功率就有一定的差 距,若测得的发光功率与装置的标称发光功率有较大的差距,就需要向 厂家询问,以确保装置及尾纤是否正常。 4、无光纤接线盒时,测试点1仅可以测量到保护装置的接收到的光功率,

光纤测试方案

OTDR:光纤测试方案(短光纤测试)及OM4光纤介绍 首先来看一下当前数据中心的情况,10G已经不是什么新鲜事物了,而介质这块,铜缆双绞线也开始6A化,光纤也逐步升级,而数据中心里的大部分光纤链路都小于200米,这使得基于VCSEL的850nm光收发器可以被大量使用,配合OM3光纤,光纤方案的成本更为降低,也使OM3成为万兆速率数据中心的首选。 如表格1表格2所示,OM3光纤(MM50 um MBW=2000),在同样插入损耗的情况下,与OM2 和OM1光纤相比,OM3光纤的传输距离可以更远。而通道最大距离与模式带宽和通道最大插入损耗相关。例如,对于一个使用850nm OM3光纤的300米10GBase-SR链路而言,所能被允许的最大插入损耗是2.6分贝,而在1000BASE-SX网络中则为3.56分贝,可以预见随着速率不断提升,损耗这块的要求也越来越高了。而即使是在这2.6分贝的最大允许损耗中,也被分为光纤本身所固有的损耗,以及光纤连接和连接器损耗。 伴随数据中心TIA-942推行的结构化光布线系统的发展,在带来灵活易用的同时,也对光纤测试带来了新的内容,引入的结构化布线,增加了连接器件,对接头连接器的插入损耗有了更高的要求。 那么下面先来谈一下数据中心短光纤的测试面临的新的问题: 从目前光纤链路的测试来看,主要分成两个等级,第一等级为OLTS测试,第二等级为OTDR测试;从实际验收来看更多的采用的是OLTS测试,即光源和光表的测试方式,其原因除了测试设备相对价格低廉有关外,也和其使用简易程度有关,相对来说,使用第二级别的OTDR测试仪需要更专业的知识,需要读懂OTDR的曲线图,并且判定故障原因,这绝非简单培训就可以上手的工作。 另外,不论部署结构化光布线网络,还是模块化高密度MPO方案时,多模光纤都被大量运用,此时用光纤元件标准测试通过,而用应用标准测试则不一定过,两类标准门限值有所不同,测试时选标准不当,也会给后续网络运行埋下故障隐患。 不仅如此,在选用OTDR(Optical Time Domain Reflectometer,简称OTDR)测试仪时,死区的问题也是不能忽略的一大问题,OTDR的死区分为事件死区和衰减死区,事件死区代表OTDR所能检测到的光缆的最短长度。死区越短,可检测到的光缆长度就越短。如果事件死区比被测的光缆长度要短,那么就可以使用OTDR来测试这条链路。而衰减死区一般要大于事件死区,它的定义是可以测得的连续两个事件插入损耗数值的最小距离。 数据中心内网络的光缆链路通常都非常短,同时通道里还会有多个连接器和短的跳线。在进行光缆测试时,应该使用具有短事件死区和衰减死区的OTDR测试仪。

光纤熔接步骤及OTDR测试曲线分析方法

光纤熔接步骤及OTDR测试曲线分析方法 随着网络的飞速发展,传统的10M,100M速度已经越来越满足不了人们日常学习工作的需要了。用户迫切希望提高网络速度,1000M是目标,但对于双绞线来说虽然可以使用六类线满足1G的传输需要,但六类线制作起来非常麻烦,而且对两端连接设备要求也很高,各项衰减参数也不能降低要求。因此目前最有效的突破1G传输速度的介质仍然是光纤。本文将为读者介绍如何使用工具将断纤尾纤进行熔接,满足实际需求。 1,熔接工作何时进行 大家都应该知道光纤是非常长的,但任何线缆都会遇到长度不合适的问题,光纤也是如此,这时候就需要对光纤进行裁剪了。并且光纤在户外传输时都是一股的,而连接到局端就需要将里头的线芯分开连接,这时也需要对光纤进行熔接。因此可以说熔接工作用到的地方还是不少的,使用了光纤就必定会有熔接问题。 2,如何进行光纤的熔接 光纤熔接在以前是一个技术含量很高的工作,以前熔接一个纤芯的工作能拿到500元的报酬,而如今恐怕只有1/10了。下面我们将一步步的为大家介绍如何将分离的光纤熔接到一起。不过看完后理论的东西了解很多,真正掌握还需要大家亲自去动手。 第一步:准备工作 光纤熔接工作不仅需要专业的熔接工具还需要很多普通的工具辅助完成这项任务,如剪刀,竖刀等。(如下图)IT 辅助工具第二步:安装工作 一般我们都是通过光纤收容箱(如下图)来固定光纤的,将户外接来的用黑色保护外皮包裹的光纤从收容箱的后方接口放入光纤收容箱中。在光纤收容箱中将光纤环绕并固定好防止日常使用松动。

光纤收容箱 第三步:去皮工作 首先将黑色光纤外表去皮,(如下图)大概去掉1米长左右。 去黑皮接着使用美工刀将光纤内的保护层去掉。(如下图)要特别注意的是由于光纤线芯是用玻璃丝制作的,很容易被弄断,一旦弄断就不能正常传输数据了。

光纤验收测试方法简介

光纤验收测试方法简介 前言 在光纤工程项目中必须执行一系列的测试以便确保其完整性,一根光缆从出厂到工程安装完毕,需要进行机械测试、几何测试、光测以及传输测试。前3个测试一般都是在工厂进行,传输测试则是光缆布线系统工程验收的必要步骤。 国家标准《GB 50312-2007综合布线工程验收规范(含条文说明)》中明确要求对综合布线工程进行验收测试:“综合布线工程电气测试包括电缆系统电气性能测试及光纤系统性能测试。电缆系统电气性能测试项目应根据布线信道或链路的设计等级和布线系统的类别要求制定。各项测试结果应有详细记录,作为竣工资料的一部分。” 布线系统测试可以从多个万面考虑,设备的连通性是最基本的要求;跳线系统是否有效可以很方便地测试出来;通信线路的指标数据测试相对比较困难,一般都借助专业工具进行。 但国标中对光纤链路测试方法的描述非常简单,未给出详细的测试方法,对于目前在工程中常用的光时域反射损耗测试(OTDR),国标中并未阐述。本文从光纤测试标准、测试参数、测试设备、测试方法等几个方面进行简单的介绍,希望能对工程验收提供帮助。 一、参照标准 在国际标准IEC 61746、TIA/EIA TSB-107等标准中对光纤测试如光功率,OTDR等做了明确的规定,布线系统测试可以参照这些标准进行: 《GB 50312-2007综合布线工程验收规范(含条文说明)》 《IEC 61350 功率计校准》 《IEC 61746 OTDR校准》 《G.650.1 单模光纤与光缆的线性、确定性属性的定义与测试方法》 《G.650.2 单模光纤与光缆的统计与非线性属性的定义与测试方法》 《IEC 60793》 《TIA/EIA TSB-107》 《TIA/EIA FOTP-169》 … 二、测试参数 光缆测试一般应执行以下几个重要参数: 端到端光纤链路损耗 每单位长度的衰减速率 熔接点、连接器与耦合器各个事件 光缆长度或者事件的距离 每单位长度光纤损耗的线性(衰减不连续性) 反射或者光回损(ORL) 色散(CD) 极化模式色散(PMD)

光纤配线架验收测试报告

光纤配线架测试报告 检验记录 检验清单 主检人: 校核人: 批准人: 日期:光纤配线架测试 一、认可项目、检验类别及检验依据、流程图 1.认可项目及检验标准 产品名称:光纤配线架 检验标准:YD/T 778-2006 光纤配线架 2.检验类别 (1)产品认证型式检验 (2)产品认证复评型式检验 (3)产品认证监督检验 (4)产品认证监督检验+产品认证变更检验

(5)委托检验 上述(1)-(4)类别的检验依据除了对应产品的检验标准以外,还应依据泰尔发布的最新配线设备认证实施规则来执行。 3.检验流程图 按 委 托 方 要 求 , 不 符 合 标 准 要 求 数据处理,评判试验结果 评判、编制报告 样品检后处理 常温检验 1.外观与结构 2.材料

二、检验项目及检验方法 1、外观与结构检查 1.1用卡尺或卷尺检测机架外形尺寸。 1.2用手实际操作转动、插拔、锁定部位应感觉适度,用万能角尺,检测机架门开启角;用塞规检测其间隙的上、中、下三处。 1.3用装配工具手工检查紧固件,用裸手触摸外露和操作部位。 1.4用R量规检测光缆尾纤的弯曲半径。 1.5其它用目视方法检查。 2、功能检查 测试步骤:采用视察法和操作法检查各功能装置安装的完整齐备性及其达到的功能性。 3、光电性能测试 3.1插入损耗 3.1.1测试连接框图 3.1.2 按测试连接图连接测试光纤测试,光回波损耗测试仪 S1 光源,此时,图中S 2 回波损耗测试仪 启光源开关,预热15 3.2回波损耗 3.2.1测试连接框图 3.2.2测试步骤

反射测试尾纤末端暴露。光回损仪开机预热15min之后,将标准反射测试尾纤暴露端环绕直径为7mm左右的圆柱体8圈,对光回损仪保存设置初始值。再将标准反射测试尾纤暴露端按图4所示接上被测尾纤,在被测尾纤暴露端环绕8圈,此时光回损仪所显示的值即为被测尾纤暴露端R2的实际回波损耗值;同理,将被测尾纤暴露端R2与标准反射测试尾纤连接,另一端R1环绕8圈,即可得到R1端的实际回波损耗值。 3.3高压防护接地装置与机架间绝缘测试 用CY2679A绝缘电阻测试仪进行测试,测试前仪表应预热1h,然后校准,选择500V 测试电压×105MΩ电阻档,将被测部位接至仪表的R 端,旋钮依次从放电、充电、测试位 X 置转动,待表头指针稳定后读取绝缘电阻值,如表头指针摆动不定,则读取1min时的绝缘电阻值,然后旋钮恢复至放电状态,准备下次测试。 3.4高压防护接地装置与机架间耐电压测试 用CY2661耐压测试仪进行测试,测试前仪表应预热并可靠接地,漏电流设置为2mA,电压量程为5kV,输出电压选择直流,按启动按钮,然后旋转升压旋钮使电压升至规定的值(DC 3000V),加压时间为1min,电压撤消(复原)后,将旋钮反时针旋至零位。 4、机械耐久性试验 在对方插头插入的情况下,以通常使用的方法插入和拔出,共插拔500次,最后50次时每10次记录一次光学性能数据,同时对插针及适配器的弹性套筒进行清洁,记录5次数据,取5次数据的平均值。 5、塑料燃烧性能试验 测试步骤:先调整燃烧器的供给量和空气入口,使之产生高度为(20±2)mm蓝色火焰,然后再增加空气量直到火焰的黄尖消失,对样品施加火焰30s,试样离火后持续有焰燃烧时间应小于10s。如右图所示。 6、机械和环境试验

施工方案-光缆施工组织方案

5.3.4熔纤 5.3.4.1端面的制备 光纤端面的制备包括剥覆、清洁和切割这几个环节。合格的光纤端面是熔接的必要条件,端面质量直接影响到熔接质量. 光纤涂面层的剥除 纤涂面层的剥除,要掌握平、稳、快三字剥纤法。“平”,即持纤要平。左手拇指和食指捏紧光纤,使之成水平状,所露长度以5cm为准,余纤在无名指、小拇指之间自然打弯,以增加力度,防止打滑。“稳”,即剥纤钳要握得稳。“快”即剥纤要快,剥纤钳应与光纤垂直,上方向内倾斜一定角度,然后用钳口轻轻卡住光纤右手,随之用力,顺光纤轴向平推出去,整个过程要自然流畅,一气呵成。 裸纤的清洁 观察光纤剥除部分的涂覆层是否全部剥除,若有残留,应重新剥除。如有极少量不易剥除的涂覆层,可用绵球沾适量酒精,一边浸渍,一边逐步擦除。 将棉花撕成层面平整的扇形小块,沾少许酒精(以两指相捏无溢出为宜),折成“V” 形,夹住以剥覆的光纤,顺光纤轴向擦拭,力争一次成功,一块棉花使用2~3次后要及时更换,每次要使用棉花的不同部位和层面,这样即可提高棉花利用率,又防止了探纤的两次污染。 裸纤的切割 裸纤的切割是光纤端面制备中最为关键的部分,精密、优良的切刀是基础,而严格、科学的操作规范是保证。 切刀的选择 切刀有手动(如日本CT—07切刀)和电动(如爱立信FSU—925)两种。前者操作简单,性能可靠,随着操作者水平的提高,切割效率和质量可大幅度提高,且要求裸纤较短,但该切刀对环境温差要求较高。后者切割质量较高,适宜在野外寒冷条件下作业,但操作较复杂,工作速度恒定,要求裸纤较长。熟练的操作者在常温下进行快速光缆接续或抢险,采用手动切刀为宜;反之初学者或在野外较寒冷条件下作业时,采用电动切刀。 操作规范 操作人员应经过专门训练掌握动作要领和操作规范。首先要清洁切刀和调整切刀位置,切刀的摆放要平稳,切割时,动作要自然、平稳、勿重、勿急,避免断纤、斜角、毛刺及裂痕等不良端面的产生。另外学会“弹钢琴”,合理分配和使用自己的右手手指,使之与切口的具体部件相对应、协调,提高切割速度和质量。 谨防端面污染 热缩套管应在剥覆前穿入,严禁在端面制备后穿入。裸纤的清洁、切割和熔接的时间应紧密衔接,不可间隔过长,特别是以制备的端面,切勿放在空气中。移动时要轻拿轻放,防止与其他物件擦碰。在接续中应根据环境,对切刀“V”形槽、压板、刀刃进行清洁,谨防端面污染。 5.3.4.2光纤熔接 光纤熔接是接续工作的中心环节,因此高性能熔接机和熔接过程中科学操作是十分必要的。 熔接机的选择 应根据光缆工程要求,配备蓄电池容量和精密度合适的熔接设备。按照经验,日本FSM—30S 电弧熔接机性能优良、运行稳定、熔接质量高,且配有防尘防风罩、大容量电池,适宜于各

光纤损耗测试方法及其注意事项

1引言 由于应用和用户对带宽需求的进一步增加和光纤链路对满足高带宽方面的巨大优势,光纤的使用越来越多。无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。? 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,我们分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 那么这三种方法各有什么特点,怎么操作,应该在什么场合下使用呢?这正是本文要阐述的问题。另外,光纤链路的测试,不同于双绞线链路的测试,又有什么地方需要注意或者有什么原则可以遵循呢?这也是本文想与读者分享的内容。 2如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 下面我们具体介绍一下标准中定义的三种测试损耗的方法(以双向测试为例)。 2.1测试方法A 方法A设置参考值时,采用两条光纤跳线和一个连接器(考虑一个方向,如下图上半部分)。设置参考值后,将被测链路接进来(如下图下半部分),进行测试。

环境监测系统实验报告

信息与通信工程学院 单片机系统课程设计报告完成日期:2012年 11 月 16 日

目录 目录 (1) 一、设计任务和要求 (1) 1.1设计任务 (1) 1.2性能指标 (1) 二、设计方案 (2) 2.1.方案设计 (2) 2.1.1单片机控制模块的选择论证 (2) 2.1.2温度湿度检测模块的选择与论证 (2) 2.1.3显示模块的选择与论证 (2) 2.2本设计采用方案及原理 (3) 三、系统硬件设计 (4) 3.1单片机最小系统设计 (4) 3.2温湿度采集电路 (5) 3.3电源电路 (6) 3.4光敏电阻接入电路 (7) 3.5键盘电路 (8) 3.6LCD显示电路 (8) 3.7报警电路 (9) 3.8串行接口电路 (10) 四.系统软件设计 (10) 4.1主程序设计 (10) 4.2LCD12864模块程序 (11) 4.3DHT11模块程序 (12) 4.4光敏电阻模块程序 (14) 五.调试及性能分析 (15) 5.1调试过程中出现的问题 (15) 5.2性能分析 (15) 六.心得体会 (16) 参考文献 (17)

附录1 程序清单 (18) 附录2 电路原理图 (24) 附录3 PCB图 (25) 附录4 硬件电路板图 (26)

一、设计任务和要求 1.1 设计任务 基本要求: (1)利用单片机控制传感器采集环境温湿度,光照强度等参数,并在液晶屏上显示环境参数值。 (2)系统设有键盘,可实现系统参数的设置。 提高部分: (1)将上述环境数据记录在SD或TF卡上; (2)采集并显示三轴加速度值; (3)无线传输所测环境参数。 1.2 性能指标 (1)温度湿度光照强度显示:用LCD12864进行显示。 (2)环境温度:单位/℃。 (3)环境湿度:单位/%RH。 (4)环境光强:单位/lux (5)键盘 (6)报警

光纤测试方案

1.Power灯不亮 电源故障 2.LOS灯亮必有以下故障: (a)从机房到用户端的光缆已经断了; (b) SC尾纤与光纤收发器的插槽没有插好或者已经断开。 3.Link灯不亮可能有如下情况: (a)检查光纤线路是否断路 (b) 检查光纤线路是否损耗过大,超过设备接收范围 (c) 检查光纤接口是否连接正确,本地的TX 与远方的RX 连接,远方的TX 与本地的RX连接。 (d)检查光纤连接器是否完好插入设备接口,跳线类型是否与设备接口匹配,设备类型是否与光纤匹配,设备传输长度是否与距离匹配。 4.电路Link灯不亮故障可能有如下情况: (a)检查网线是否断路 (b) 检查连接类型是否匹配:网卡与路由器等设备使用交叉线,交换机,集线器等设备使用直通线。 (c) 检查设备传输速率是否匹配 5.网络丢包严重可能故障如下: (a)收发器的电端口与网络设备接口,或两端设备接口的双工模式不匹配。 (b)双绞线与RJ-45头有问题,进行检测 (c)光纤连接问题,跳线是否对准设备接口,尾纤与跳线及耦合器类型是否匹配等。 6. 光纤收发器连接后两端不能通信 (a)光纤接反了,TX和RX所接光纤对调 (b)RJ45接口与外接设备连接不正确(注意直通与绞接)光纤接口(陶瓷插芯)不匹配,此故障主要体现在100M带光电互控功能的收发器上,如APC插芯的尾纤接到PC插芯的收发器上将不能正常通信,但接非光电互控收发器没有影响。 7. 时通时断现象 (a)可能为光路衰减太大,此时可用光功率计测量接收端的光功率,如果在接收灵敏度范围附近,1-2dB范围之内可基本判断为光路故障 (b)可能为与收发器连接的交换机故障,此时把交换机换成PC,即两台收发器直接与PC连接,两端对PING,如未出现时通时断现象可基本判断为交换机故障

相关主题