搜档网
当前位置:搜档网 › 数列专题复习

数列专题复习

数列专题复习
数列专题复习

数列专题复习

一、 知识梳理

1. 数列的概念;等差、等比数列的定义、通项公式、前n 项和公式、常用性质;

2. 数列求通项的常用方法有哪些?

3.数列求和的常用方法有哪些? 二、

习题

1. 已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )

(A )

172 (B )19

2

(C )10 (D )12 2. 已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = .

3.数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .

4.已知数列}{n a 中,11=a ,2

1

1+=-n n a a (2≥n ),则数列}{n a 的前9项和等于 .

5.已知等差数列{}n a ,若0,031110119

n S 取得最小正值时,n=( )

A .20 B. 17 C. 19 D. 21

6.已知数列{}n a 的前n 项和为n S ,并满足35124,2a a a a a n n n -=-=++,则=7S ( ) A .7 B. 12 C. 14 D. 21

7.已知正项等差数列{}n a 的前20项和为100,那么156a a ?的最大值是( ) A .25 B. 50 C. 100 D. 不存在

8.已知两个等差数列}{n a 和}{n b 的前 项和分别为

和 ,且3

457++=

n n B A n

n

,则使得 =5

5

b a ( ) A.5 B.11 C. 9 D.10 9. 已知等差数列{}n a 的前n 项和为n S ,且30,102010==S S ,则=

30S

10. 已知数列{}n a 的前n 项和为n S 且满足2

1),2(0211=

≥=+-a n S S a n n n .

(1)求证: ?

???

??n

S 1是等差数列; (2)求n a 的表达式.

11.数列{}n a 满足22,2,11221+-===++n n n a a a a a . (1) 设n n n a a b -=+1,证明{}n b 是等差数列; (2)求数列

{}n a 的通项公式.

12.各项均为正数的数列{}n a 满足)(1242

*∈--=N n a S a n n n ,其中n S 为{}n a 的前n 项和.

B(1)求数列{}n a 的通项公式;

C(2)是否存在正整数m,n,使得向量),2(2m a a n +=

与向量)3,(5n n a a b +-=+ 垂直?说明理

由.

13.等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设2

2n a n b n -=+,求12310b b b b +++???+的值.

14.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 为数列{}n a 的前n 项和,1

1

n n n n a b S S ++=,求数列{}n b 的前n 项和n T .

15.设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,35

4

a =,且当2n ≥ 时,211458n n n n S S S S ++-+=+. (1)求4a 的值;(2)证明:112n n a a +?

?

-

????

为等比数列;

(3)求数列{}n a 的通项公式.

16.设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.

(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记n

n n

a c

b =,求数列{}n

c 的前n 项和n T .

17.设数列{}n a 的前n 项和为n S ,已知121,2a a ==,且13n n a S +=*13,()n S n N +-+∈, (I )证明:23n n a a +=;(II )求n S 。

18.已知数列{}n a 是首项为正数的等差数列,数列11n n a a +?

??

????

的前n 项和为

21n

n +. (I )求数列{}n a 的通项公式;(II )设()12n a

n n b a =+?,求数列{}n b 的前n 项和n T .

19.设数列{a n }(n =1,2,3…)的前n 项和S n 满足S n =2a n -a 3,且a 1,a 2+1,a 3成等差数列. (Ⅰ)求数列的通项公式;(Ⅱ)设数列1

{}n

a 的前n 项和为T n ,求T n .

20.已知

{}

n a 是各项均为正数的等比数列,

{}

n b 是等差数列,且

112331,2a b b b a ==+=,5237a b -=.

(I )求{}n a 和{}n b 的通项公式;(II )设*,n n n c a b n N =?,求数列{}n c 的前n 项和.

21.已知数列{}n a 和{}n b 满足,*

1112,1,2(n N ),n n a b a a +===∈

*1231111

1(n N )23n n b b b b b n

+++++=-∈ .

(1)求n a 与n b ;(2)记数列{}n n a b 的前n 项和为n T ,求n T .

22.已知等差数列{}n a 满足3a =2,前3项和3S =92

. (Ⅰ)求{}n a 的通项公式,

(Ⅱ)设等比数列{}n b 满足1b =1a ,4b =15a ,求{}n b 前n 项和n T .

23.已知数列}{n a 与}{n b 满足)(211n n n n b b a a -=-++,*∈N n . (1)若53+=n b n ,且11=a ,求数列}{n a 的通项公式;

(2)设}{n a 的第0n 项是最大项,即)N (0*

∈≥n a a n n ,求证:数列}{n b 的第0n 项是最大项;

高考理科数学专题复习题型数列

第8讲数列 [考情分析]数列为每年高考必考内容之一,考查热点主要有三个方面:(1)对等差、等比数列基本量和性质的考查,常以客观题的形式出现,考查利用通项公式、前n项和公式建立方程(组)求解,利用性质解决有关计算问题,属于中、低档题;(2)对数列通项公式的考查;(3)对数列求和及其简单应用的考查,主、客观题均会出现,常以等差、等比数列为载体,考查数列的通项、求和,难度中等. 热点题型分析 热点1等差、等比数列的基本运算及性质 1.等差(比)数列基本运算的解题策略 (1)设基本量a1和公差d(公比q); (2)列、解方程(组):把条件转化为关于a1和d(q)的方程(组),然后求解,注意整体计算,以减少运算量. 2.等差(比)数列性质问题的求解策略 (1)解题关键:抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解; (2)牢固掌握等差(比)数列的性质,可分为三类:①通项公式的变形;②等差(比)中项的变形;③前n项和公式的变形.比如:等差数列中,“若m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*)”;等比数列中,“若m+n=p+q,则a m·a n=a p·a q(m,n,p,q∈N*)”.

1.已知在公比不为1的等比数列{a n }中,a 2a 4=9,且2a 3为3a 2和a 4的等差中项,设数列{a n }的前n 项积为T n ,则T 8=( ) A.12×37-16 B .310 C.318 D .320 答案 D 解析 由题意得a 2a 4=a 23=9.设等比数列{a n }的公比为q ,由2a 3为3a 2和a 4 的等差中项可得4a 3=3a 2+a 4,即4a 3=3a 3 q +a 3q ,整理得q 2-4q +3=0,由公比 不为1,解得q =3.所以T 8=a 1·a 2·…·a 8=a 81q 28=(a 81q 16 )·q 12=(a 1q 2)8·q 12=a 83· q 12=94×312=320.故选D. 2.(2019·江苏高考)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5 +a 8=0,S 9=27,则S 8的值是________. 答案 16 解析 解法一:由S 9=27?9(a 1+a 9) 2=27?a 1+a 9=6?2a 5=6?2a 1+8d =6 且a 5=3.又a 2a 5+a 8=0?2a 1+5d =0, 解得a 1=-5,d =2.故S 8=8a 1+8×(8-1) 2d =16. 解法二:同解法一得a 5=3. 又a 2a 5+a 8=0?3a 2+a 8=0?2a 2+2a 5=0?a 2=-3. ∴d =a 5-a 2 3=2,a 1=a 2-d =-5. 故S 8=8a 1+8×(8-1) 2 d =16.

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高考数列专题总结(全是精华)

数列专题复习(0929) 一、证明等差等比数列 1. 等差数列的证明方法: (1)定义法:1n n a a d +-=(常数) (2)等差中项法:112(2)n n n a a a n +-+=≥ 2.等比数列的证明方法: (1)定义法: 1 n n a q a +=(常数) (2)等比中项法:211(2)n n n a a a n +-=≥ 例1.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75, T n 为数列{ n S n }的前n 项和,求T n . 解:设等差数列{a n }的公差为d ,则 S n =na 1+21 n (n -1)d .∴S 7=7,S 15=75,∴???=+=+,7510515,721711d a d a 即???=+=+,57,131 1d a d a 解得a 1=-2,d =1.∴ n S n =a 1+21(n -1)d =-2+21 (n -1). ∵ 2111=-++n S n S n n ,∴数列{n S n }是等差数列,其首项为-2,公差为21 , ∴T n = 41n 2-4 9 n . 例2.设数列{a n }的首项a 1=1,前n 项和S n 满足关系式: 3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4,…) 求证:数列{a n }是等比数列; 解:(1)由a 1=S 1=1,S 2=1+a 2,得a 2=t t a a t t 323,32312+= + 又3tS n -(2t +3)S n -1=3t ① 3tS n -1-(2t +3)S n -2=3t ② ①-②得3ta n -(2t +3)a n -1=0 ∴ t t a a n n 33 21+= -,(n =2,3,…) 所以{a n }是一个首项为1,公比为t t 33 2+的等比数列. 练习:已知a 1=2,点(a n ,a n+1)在函数f (x )=x 2+2x 的图象上,其中=1,2,3,… (1) 证明数列{lg(1+a n )}是等比数列; (2) 设T n =(1+a 1) (1+a 2) …(1+a n ),求T n 及数列{a n }的通项; 答案 .(2) 2 1 3n n T -=,2 1 31n n a -=-; 二.通项的求法 (1)利用等差等比的通项公式 (2)累加法:1()n n a a f n +-= 例3.已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 解:由条件知:1 1 1)1(112 1+-=+=+= -+n n n n n n a a n n 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,即 )()()()(1342312--+??????+-+-+-n n a a a a a a a a )111()4131()3121()211(n n --+??????+-+-+-=所以n a a n 1 11-=- 211=a ,n n a n 1231121-=-+=∴ (3)构造等差或等比 1n n a pa q +=+或1()n n a pa f n +=+ 例4.已知数列{}n a 满足*111,21().n n a a a n N +==+∈ 求数列{}n a 的通项公式; 解:* 121(),n n a a n N +=+∈ 112(1),n n a a +∴+=+ {}1n a ∴+是以112a +=为首项,2为公比的等比数列。 12.n n a ∴+= 即 *21().n n a n N =-∈ 例5.已知数列{}n a 中,11a =,1111 ()22 n n n a a ++=+,求n a . 解:在1111 ()22 n n n a a ++= +两边乘以12+n 得:112(2)1n n n n a a ++?=?+ 令2n n n b a =?,则11n n b b +-=,解之得:111n b b n n =+-=-,所以1 22 n n n n b n a -= =.

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

最全高考复习数列专题及练习答案详解

高考复习数列专题: 数 列(参考答案附后) 第一节 数列的概念与数列的简单表示 一、选择题 1.已知数列{}a n 对任意的p ,q ∈N * 满足a p +q =a p +a q ,且a 2=- 6,那么a 10=( ) A .-165 B .-33 C .-30 D .-21 2.在数列{a n }中,a 1=2,a n +1=a n +ln(1+1 n ),则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 3.若数列{a n }的前n 项积为n 2 ,那么当n ≥2时,{a n }的通项公式为( ) A .a n =2n -1 B .a n =n 2 C .a n = n +12 n 2 D .a n = n 2n -1 2 4.在数列{a n }中,a n +1=a n +2+a n ,a 1=2,a 2=5,则a 6的值是( ) A .-3 B .-11 C .-5 D .19 5.已知数列{a n }中,a n =n -79n -80 (n ∈N *),则在数列{a n }的前50 项中最小项和最大项分别是( ) A .a 1,a 50 B .a 1,a 8 C .a 8,a 9 D .a 9, a 50 二、填空题 6.若数列{}a n 的前n 项和S n =n 2 -10n (n =1,2,3,…),则此数

列的通项公式为________;数列{}na n 中数值最小的项是第__________项. 7.数列35,12,511,37,7 17,…的一个通项公式是 ___________________________. 8.设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =__________. 三、解答题 9.如果数列{}a n 的前n 项和为S n =3 2a n -3,求这个数列的通项 公式. 10.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N + )在函数y =x 2 +1的图象上. (1)求数列{a n }的通项公式; (2)若列数{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b 2 n +1.

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

高三理科数列专题训练

高三数列专题复习 题型一:等差等比的基本计算、裂项相消与错位相减求和 例1. 已知等差数列}{n a 满足:}.{26,7753n a a a a =+=的前n 项和为.n S (Ⅰ)求4a 及n S ; (Ⅱ)令1 1 2 -=n n a b )(*N n ∈,求数列}{n b 的前n 项和.n T 能力训练: 1.已知数列{}n a 满足111,3n n a a a +==,数列{}n b 的前n 项和2 21n S n n =++. (1)求数列{}n a ,{}n b 的通项公式; (2)设n n n c a b =?,求数列{}n c 的前n 项和n T . 题型二:已知n a 与n S 的递推关系,求n a (或n S ) 例2.已知数列{}n a 的各项均为正数,其前n 项和为n S ,满足4n n a S += (1)求数列{}n a 的通项公式; (2)设221()2log n n b a =-,数列{}n b 的前n 项和为n T ,求证:当2n ≥时,21 n n T n -<. 能力训练: 1.已知数列{}n a 各项均为正数,其前n 项和为n S ,点(,)n n a S 在曲线2 (1)4x y +=上. (1)求{}n a 的通项公式; (2)设数列{}n b 满足11112 3,,11 n n n n b n n n b b b b a c b b +++-=== +--,求数列{}n c 的前n 项和n T . 题型三:可转换为等差或等比的递推关系 例3.已知各项均为正数的数列{}n a 满足22 112320n n n n a a a a +++?-=,n 为正整数, 且31 32 a +是24,a a 的等差中项. (1)求数列{}n a 的通项公式; (2)若12 log n n n a c a =-,12n n T c c c =+++,求使12125n n T n ++?>成立的正整数n 的最小值. 能力训练: 1.设数列{}n a 的前n 项和为n S ,已知11a =,142n n S a +=+. (1)若12n n n b a a +=-,证明数列{}n b 是等比数列; (2)求数列{}n a 的通项公式; (3)若2(32) n n n c a n =+,n T 为数列{}n c 的前n 项和,求证:23n T < 题型四:分组求和,分奇偶项的讨论. 例4等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

三年高考(2016-2018)数学(理)真题分类解析:专题14-与数列相关的综合问题

专题14 与数列相关的综合问题 考纲解读明方向 分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等. 2018年高考全景展示 1.【2018年浙江卷】已知成等比数列,且 .若 , 则 A. B. C. D. 【答案】B 【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则 ,令 得,所以当时, ,当 时, ,因此 , 若公比 ,则 ,不合题意;若公比 ,则

但,即 ,不合题意;因此, ,选B. 点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________. 【答案】27 【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.

(I)求和的通项公式; (II)设数列的前n项和为, (i)求; (ii)证明. 【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析. 【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则. (ii)因为,裂项求和可得. 详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得 从而故所以数列的通项公式为,数列的通项公式为 (II)(i)由(I),有,故 . (ii)因为, 所以. 点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.

数列专项练习及答案

(二)数列专项练习 1. (本小题满分12分)已知数列{}n a 满足() 12111,3,32,2n n n a a a a a n N n *+-===-∈≥, (I )证明:数列{}1n n a a +-是等比数列,并求出{}n a 的通项公式; (II )设数列{}n b 满足()2 42log 1n n b a =+,证明:对一切正整数222 121111 ,1112 n n b b b ++???+<---有 . 2.(本小题满分12分)已知数列{}n a 是等差数列,n S 为{}n a 的前n 项和,且1019a =,10100S =;数列 {}n b 对任意N n *∈,总有123 12n n n b b b b b a -???=+成立. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)记2 4(1)(21)n n n n b c n ?=-+,求数列{}n c 的前n 项和n T .

3.(本小题满分12分)已知数列{} n a 是递增的等比数列,149a a +=,238a a =. (Ⅰ)求数列{} n a 的通项公式; (Ⅱ)若2log n n n b a a =? ,求数列{} n b 的前n 项和n T . 4.已知双曲线=1的一个焦点为,一条渐近线方程为y=x ,其中{a n }是以4 为首项的正数数列. (Ⅰ)求数列{c n }的通项公式; (Ⅱ)若不等式对一切正常整数n 恒成立,求实数x 的取 值范围.

5.已知正项数列{a n },其前n 项和Sn 满足,且a 2是a 1和a 7的等比中项. (Ⅰ)求数列 的通项公式; (Ⅱ)符号[x]表示不超过实数x 的最大整数,记,求. 6.(本小题满分12分)单调递增数列{}n a 的前行项和为 n S ,且满足 2 44n n S a n =+. (I)求数列{}n a 的通项公式; (Ⅱ)数列 {}n b 满足: 1221 log log 2 n n n a b a ++=。求数列{}n b 的前n 项和 n T 。

数列大题专题训练)

数列大题专题训练 1.已知数列{a n}、{b n}满足:a^- ,a n b n = 1,b n d. 4 1 -a. (1) 求b-,b2,b3,b4; (2) 求数列{b n}的通项公式; (3) 设S n = a£2 ■玄2玄3 ■玄3玄4 ' ... ' a.a n 1 ,求实数a为何值时4aS n

(t 0,n -2,3, ) (1) 求证:数列{a n }是等比数列; 1 (2) 设数列{a n }得公比为 f(t),作数列{b n },使 b i =1,b n 二 f( ),n =(2,3-),求 b b n_1 (3) 求 b i b 2 - b 2b 3 ' b 3b 4 - b 4 b 5 b 2nJ b 2n b 2n b 2n 1 的值。 5 ?设数列{a n }的前n 项和为S n ,且S n =(1 ) - a,其中,=-1,0 ; (1 )证明:数列{a n }是等比数列; 1 水 (2)设数列{a n }的公比 q = f ('),数列{b n }满足b 1 二?,b n 二 f (b nj )(n ? N *,n _ 2) 求数列{b n }的通项公式; 6. 已知定义在 R 上的单调函数 y=f(x),当x<0时,f(x)>1,且对任意的实数 x 、y € R ,有 f(x+y)= f(x)f(y), (I)求f(0),并写出适合条件的函数 f(x )的一个解析式; 1 (n)数列{a n }满足 a 1=f(0)且f(a n 1) (n ? N *), f(-2-a .) ①求通项公式a n 的表达式; 试比较S 与4Tn 的大小,并加以证明 1 a ②令 b n=(?)n ,S n ^b 1 b 2 b n , T n a 〔 a 2 a 2 a 3 1 a n a n 1

高三数列专题练习30道带答案

高三数列专题训练二 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列. (1)求数列{}n a 的通项公式; (2)设数列{}n a 的前n 项和为n S ,记,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; 1,公比为3的等比数列,求数列{}n b 的前n 项和n T . 3.设等比数列{}n a 的前n 项和为n S ,,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式; (2)设n n n c a b =?,若对任意*n N ∈,求λ的取值范围. 4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =, 24b a =,313b a =. (Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列的前n 项和为n T ,求n T . 5.设数列{}n a 的前n 项和为n S ,且满足()21,2,3,n n S a n =-=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T .

高二数学数列专题练习题含答案)

高中数学《数列》专题练习 1.n S 与n a 的关系:1 1(1)(1) n n n S n a S S n -=??=? ->?? ,已知n S 求n a ,应分1=n 时1a =1S ; 2≥n 时,n a =1--n n S S 两步,最后考虑1a 是否满足后面的n a . 2.等差等比数列

3.数列通项公式求法:(1)定义法(利用等差、等比数列的定义);(2)累加法;(3)累乘法( n n n c a a =+1 型);(4)利用公式1 1(1)(1) n n n S n a S S n -=??=?->??;(5)构造法(b ka a n n +=+1型);(6)倒数法等 4.数列求和 (1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。 5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解: (1)当0,01<>d a 时,满足?? ?≤≥+001 m m a a 的项数m 使得m S 取最大值. (2)当 0,01>

2019年高考专题:数列试题及答案

2019年高考专题:数列 1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16 B .8 C .4 D .2 【解析】设正数的等比数列{a n }的公比为q ,则23111142 1111534a a q a q a q a q a q a ?+++=?=+?, 解得11,2 a q =??=?,2 314a a q ∴==,故选C . 2.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若133 14 a S ==,,则S 4=___________. 【解析】设等比数列的公比为q ,由已知22 3111314S a a q a q q q =++=++= ,即2 104 q q ++=. 解得12q =-,所以4 4 1411()(1)521181()2 a q S q -- -= ==---. 3.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = ___________. 【解析】设等差数列{}n a 的公差为d ,根据题意可得 317 125,613a a d a a d =+=??=+=?得11,2a d =??=? 101 109109 101012100.22S a d ??∴=+=?+?= 4.【2019年高考江苏卷】已知数列* {}()n a n ∈N 是等差数列, n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________. 【解析】由题意可得:()()()25811191470 98 9272a a a a d a d a d S a d ?+=++++=? ??=+=?? , 解得:152 a d =-??=?,则8187 840282162S a d ?=+=-+?=.

2020年高考数学 大题专项练习 数列 三(15题含答案解析)

2020年高考数学 大题专项练习 数列 三 1.已知数列{a n }满足a n+1=λa n +2n (n ∈N *,λ∈R),且a 1=2. (1)若λ=1,求数列{a n }的通项公式; (2)若λ=2,证明数列{n n a 2 }是等差数列,并求数列{a n }的前n 项和S n . 2.设数列{}的前项和为 .已知=4,=2+1,.(1)求通项公式 ;(2)求数列{}的前项和. 3.已知数列{a n }是等差数列,a 2=6,前n 项和为S n ,数列{b n }是等比数列,b 2=2,a 1b 3=12,S 3+b 1=19. (1)求{a n },{b n }的通项公式; (2)求数列{b n cos(a n π)}的前n 项和T n .

4.设等差数列{a n }的前n 项和为S n ,且a 5+a 13=34,S 3=9. (1)求数列{a n }的通项公式及前n 项和公式; (2)设数列{b n }的通项公式为b n =,问:是否存在正整数t ,使得b 1,b 2,b m (m≥3,m an an +t ∈N)成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由. 5.已知数列满足:,。数列的前n 项和为,且 .⑴求数列、的通项公式;⑵令数列满足,求其前n 项和为 6.已知{a n }是递增数列,其前n 项和为S n ,a 1>1,且10S n =(2a n +1)(a n +2),n ∈N *. (1)求数列{a n }的通项a n ; (2)是否存在m ,n ,k ∈N *,使得2(a m +a n )=a k 成立?若存在,写出一组符合条件的m ,n ,k 的值;若不存在,请说明理由.

数列应用题专题训练

数列应用题专题训练 高三数学备课组 以数列知识作为背景的应用题是高中应用题中的常见题型,要正确快速地求解这类问题,需要在理解题意的基础上,正确处理数列中的递推关系。 一、储蓄问题 对于这类问题的求解,关键是要搞清:(1)是单利还是复利;(2)存几年。 单利是指本金到期后的利息不再加入本金计算。设本金为P元,每期利率为r,经过n期,按单利计算的本利和公式为Sn=P(1+nr)。 复利是一种计算利率的方法,即把前一期的利息和本金加在一起做本金,再计算下一期的利息。设本金为P,每期利率为r,设本利和为y,存期为x,则复利函数式为y=P(1+r)x。 例1、(储蓄问题)某家庭为准备孩子上大学的学费,每年6月30日在银行中存入2000元,连续5年,有以下两种存款的方式: (1)如果按五年期零存整取计,即每存入a元按a(1+n·6.5%)计本利(n为年数); (2)如果按每年转存计,即每存入a元,按(1+5.7%)n·a计算本利(n为年数)。 问用哪种存款的方式在第六年的7月1日到期的全部本利较高? 分析:这两种存款的方式区别在于计复利与不计复利,但由于利率不同,因此最后的本利也不同。 解:若不计复利,5年的零存整取本利是 2000(1+5×0.065)+2000(1+4×0.065)+…+2000(1+0.065)=11950; 若计复利,则 2000(1+5%)5+2000(1+5%)4+…+2000(1+5%)≈11860元。 所以,第一种存款方式到期的全部本利较高。 二、等差、等比数列问题 等差、等比数列是数列中的基础,若能转化成一个等差、等比数列问题,则可以利用等差、等比数列的有关性质求解。 例2、(分期付款问题)用分期付款的方式购买家用电器一件,价格为1150元。购买当天先付150元,以后每月这一天都交付50元,并加付欠款的利息,月利率为1%。若交付150元以后的第

(完整版)高中数学数列专题练习(精编版)

高中数学数列专题练习(精编版) 1. 已知数列{}()n a n N * ∈是等比数列,且1 3 0,2,8.n a a a >== (1)求数列{}n a 的通项公式; (2)求证: 11111321<++++n a a a a Λ; (3)设1log 22+=n n a b ,求数列{}n b 的前100项和. 2.数列(1)(2)设 (3) n T 3. ? 4 .已知数列{}n a 的相邻两项1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,且

11=a . (1) 求证: 数列? ?? ????-n n a 231是等比数列; (2) 求数列{}n b 的前n 项和n S . 5. 6. 划,万元,(1)b n 的表达式; (2) 7. 在等比数列{a n }(n ∈N*)中,已知a 1>1,q >0.设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0. (1)求数列{a n }、{b n }的通项公式a n 、b n ; (2)若数列{b n }的前n 项和为S n ,试比较S n 与a n 的大小.

8. 已知数列{a n }的前n 项和为S n ,且a n 是S n 与2的等差中项,数列{b n }中,b 1=1, 点P (b n ,b n+1)在直线x -y +2=0上。 (1)求a 1和a 2的值; (2)求数列{a n },{b n }的通项a n 和b n ; (3)设c n =a n ·b n ,求数列{c n }的前n 项和T n 。 9. 已知119 4-且 13n n b b -- 10. 已知等差数列{}a n 的前9项和为153. (1)求5a ; (2)若,82=a ,从数列{}a n 中,依次取出第二项、第四项、第八项,……,第2n 项,按原来的顺序组成一个新的数列{}c n ,求数列{}c n 的前n 项和S n .

(完整)高考数列大题专题

高考中的数列—最后一讲 (内部资料勿外传) 1.已知数列{a n}、{b n}、{c n}满足. (1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n项和为S n,且,,成等比数列.(Ⅰ)求数列{a n}的通项公式及S n; (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 4.已知等差数列{a n}满足a2=0,a6+a8=﹣10 (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 5.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(I)求数列{b n}的通项公式; (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 6.在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作T n,再令a n=lgT n,n≥1. (I)求数列{a n}的通项公式; (Ⅱ)设b n=tana n?tana n+1,求数列{b n}的前n项和S n.

7.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0. (Ⅰ)若S 5=5,求S 6及a 1; (Ⅱ)求d 的取值范围. 8.已知等差数列{a n }的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设b n =(4﹣a n )q n ﹣ 1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n . 9.已知数列{a n }满足a 1=0,a 2=2,且对任意m 、n ∈N *都有a 2m ﹣1+a 2n ﹣1=2a m+n ﹣1+2(m ﹣n )2 (1)求a 3,a 5; (2)设b n =a 2n+1﹣a 2n ﹣1(n ∈N *),证明:{b n }是等差数列; (3)设c n =(a n+1﹣a n )q n ﹣ 1(q ≠0,n ∈N *),求数列{c n }的前n 项和S n . 10.已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列. (Ⅰ)求数列{a n }的通项; (Ⅱ)求数列{2an }的前n 项和S n . 11.已知数列{a n }满足, ,n ∈N ×. (1)令b n =a n+1﹣a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 12.等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n ),均在函数y=b x +r (b >0)且b ≠1,b ,r 均为常数)的图象上. (1)求r 的值; (2)当b=2时,记b n =n ∈N *求数列{b n }的前n 项和T n . 13.(本小题满分12分) 已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n =2 1 1 n a -(n ∈N *),求数列{}n b 的前n 项和n T .

相关主题