搜档网
当前位置:搜档网 › 空气中激光烧蚀Cu产生等离子体发射光谱的研究

空气中激光烧蚀Cu产生等离子体发射光谱的研究

空气中激光烧蚀Cu产生等离子体发射光谱的研究
空气中激光烧蚀Cu产生等离子体发射光谱的研究

电感耦合等离子体发射光谱仪技术参数

电感耦合等离子体发射光谱仪技术参数 设备名称:电感耦合等离子体发射光谱仪 数量:1套 1、工作条件: 1.1 适于在交流电源相电压为230V±10%,频率50/60Hz的中国电网条件下长期正常工作; 2、设备用途 主要应用于对用于对各类样品中主量、微量及痕量元素的定性、半定量和定量分析, 仪器以固体检测器为基础,由进样系统、高频发生器、等离子体炬、光路系统、检测器、分析软件和计算机系统组成,全自动控制,仪器监控仪表全部由计算机控制. 3、技术规格与要求: 3.1技术规格 ★1具备耐HF酸,分析1ppm的锰标准溶液,Mn 257nm谱线的强度大于990万cps。 2蠕动泵为四通道系统。具有智能快速冲洗功能,随时监测特定的谱线 3炬管、雾室和雾化器为一体式设计,雾室、雾化器和等离子体相互分隔。具有雾化器压力提示功能,随时监控雾化器是否堵塞。提供软件截屏作为证明资料。 ★4自激式射频发生器,频率40.00MHz以上。功率稳定性优于0.1%。射频发生器的功率传输效率优于80%。最大功率≥1500W。提供软件截屏作为证明资料 ★5等离子体为垂直式,轴向、轴向衰减和径向、径向衰减四种观测方式,具有实时全彩色摄像系统,在仪器的控制软件中可以实时全彩色看到等离子体的运行图形,并观察炬管、炬管中心管是否变脏需要清洗。至少可设置1/500秒、1/1000秒、1/2000秒摄像速度抓拍等离子体。提供软件截屏作为证明资料。6免维护的平板或线圈等离子体且无需循环冷却水或气体进行冷却。 ★7等离子体气、雾化器、辅助气全部采用质量流量计控制,连续可调。等离子体正常运行的氩气消耗总量小于11升/分钟。 ★8光学系统高性能二维(交叉)色散中阶梯光栅(或棱镜),波长范围包含170-900nm。 能测试Cs894.347、Cl894.806nm;提供光谱图及标准曲线作为证明资料并作为验收指标。 9固态检测器,其形状与中阶梯二维光谱图完全匹配且无紫外线转换荧光涂层。强光和弱光同时测量采用不同的积分时间,避免检测器的损坏。 10 计算机控制系统与数据工作站为主流品牌最新款高配置商务机型,配激光高速打印机。软件为全中文多任务操作。控制软件可以在中文版Windows 7下运行,可以脱离仪器安装在其它计算机上进行模

等离子体发射光谱

等离子体光谱是指等离子体从红外到VUV发射的电磁辐射光谱。 资源 它包含了大量关于等离子体复杂原子过程的信息。利用光谱原理、实验技术和等离子体理论模型对等离子体光谱进行测量和分析具有重要意义。 包括 等离子体光谱主要是线性的和连续的。当等离子体中的中性原子和离子从高能能级的激发态转移到低能能级时,会产生线性谱;②在电子从高能能级跃迁到低能能级逃逸出等离子体之前光子的再吸收量被重新吸收。然而,谱线的总强度与电子和离子的密度和温度有关,每一条谱线都有其强度分布规律。因此,结合光谱模型中的理论模型和原子数据,通过测量谱线的强度,可以得到电子和离子的密度和温度。根据多普勒效应,等离子体的宏观速度可以由谱线波长的偏移来确定。当电子在其他粒子的势场中加速或减速时,就会产生连续的谱。连续谱强度测量也可获得电子密度和温度的数据。 改变

随着等离子体温度的升高,当达到10℃以上时,原子的外部电子逐渐剥离形成各种离子态的离子,如C IV、CV、O VI、n V、Fe Xi x、Ti Xi x(I为中性原子,II,III,IV损失1,2,3)的一个电子外层。这些高电离离子的线性谱主要在远紫外波段。在连续谱情况下,当温度升高时,最大发射强度向短波方向移动;对于聚变高温等离子体,其工作物质为氢,同位素为氘和三种,但不可避免地会含有一些杂质,如C、O、Fe,Ti、Mo、W等元素的温度已达到10度以上。这些杂质离子的光谱大多在真空紫外和X射线波段。分析时间非常重要。比较了高阶重杂质电离线的位置和位置。他们的强度。研究等离子体参数的测量、传输过程和在如此高的温度下的辐射损耗是非常重要的。特别是分析氢离子和氦离子的线强度更为有用,因为这些离子的原子数据相对完整。 形状 等离子体光谱的另一个重要方面是光谱线的形状或轮廓。谱线不是“线”,而是具有一定宽度的等高线。在等离子体光谱中,线展宽的机理非常复杂。多普勒效应和斯塔克效应是影响多普勒效应的两个重要因素。等离子体中的各种粒子都处于随机热运动状

等离子体诊断技术作业题及答案

“等离子体诊断技术”课程作业题 1.试述光谱分析法对激光等离子体诊断的特点以及能进行定量测试的物理量,并举例说明; 答:不同波段对分析仪器及所用的分析技术的要求不相同。而且各种类型的高温等离子体的参数范围变化很大,不同的参数范围和不同的诊断方法对光谱的分析也有不同的要求。在此着重介绍可见光区光谱分析,稍微介绍下红外和紫外以及X射线光谱。在可见光区,光谱分析基本上都是用棱镜光谱仪、衍射光栅光谱仪和干涉光谱仪。光谱分析仪中最关键的元件是棱镜或衍射光栅等色散元件,它用以使不同波长的光在空间分离出来。 棱镜的分光原理是基于某些透光物质的色散作用,即某些透光介质对不同光波的光具有不同的折射率。棱镜光谱分析仪最大的优点是其没有光谱重叠问题。其显 著缺点是,在0.4m μ到1.0m μ,d n dλ 均下降约达一个数量级,使角色散率和分辨 率都随波长而有显著变化。棱镜光谱仪的工作光谱区,主要取决于棱镜及其它光学零件所用材料的光谱透射率。国产KCA-1型大型棱镜摄谱仪,光源出发的光通过三透镜系统照明狭缝,使得整个狭缝照明均匀,并使光线充满物镜,从而发挥仪器的最大分辨率。狭缝是光谱仪中十分精密的部件,其缝宽调节精度达微米量级,它的高度有光阑调节。 近代高级的光谱仪大多都采用光栅作为色散元件。从广义上讲,任何一种装置和结构,只要它能给入射光的振幅或相位、或者两者同时加以周期性的空间调制,都称为衍射光栅。它的分光作用是基于光的衍射和干涉现象。实际采用的光栅都不采用投射式,而采用反射式。由于振幅调制式光栅的大部分光强仍然都落在五色散的零级谱上,因而现代所有的光栅都采用相位调制式反射光栅。相位调制式反射光栅的主要优点是,可以选择一定形状的沟槽断面,是大部分的入射光集中于预定的方向上,这种光栅称为闪耀光栅。闪耀光栅在闪耀方向上,所集中地入射总光能可达80%~90%,这是闪耀光栅的最大优点。在光栅光谱仪中,不同波长的不同光谱级的光会发生重叠,这是其最严重的缺点之一。反射光栅除了上述的平面反射光栅外,还有一种所谓凹面反射光栅,它是在球面反射镜上沿弦刻画出等间隔且等宽的许多平行直刻痕二制成的。凹面光栅除了具有与平面光栅相同

电感耦合等离子体原子发射光谱法(ICP—AES)测定铝合金中其它金属元素的研究

电感耦合等离子体原子发射光谱法(ICP—AES)测定铝合金中其它 金属元素的研究 摘要:本文采用电感耦合全谱直读等离子体原子发射光谱法(ICP-AES)对未知元素组成和含量的铝合金中钛、铜、镁、锰、锌、铬、硅和铁的测定进行了研究,所测试的结果具有较好的精密度和准确度。 关键词:电感耦合等离子体原子发射光谱法元素组成和含量铝合金钛、铜、镁、锰、锌、铬、硅和铁 一、引言 铝合金具有较高的强度,良好的塑性成形能力和机械加工性能,在航空工业中具有重要的应用前景[1-3]。铝合金中其它金属的含量,如金属元素钛、铜、镁、锰、锌、铬、硅和铁等,对其性质和应用具有很大的影响[3-6]。所以,准确测定铝合金中其它金属的含量显得尤为重要。对金属材料的成分进行表征分析,可以深入了解材料的组成元素及其内部构造,可以为我们更好地去研发设计复杂的金属材料提供依据[7]。为此必需建立一个快速、准确的分析方法,以控制其化学成分,使该材料获得良好的物理性能。 国内外常用和新发展的分析方法包括[7-13]:分光光度法、滴定分析法、原子光谱分析法、X射线荧光光谱法、电化学分析法、电感耦合等离子体质谱法、激光诱导等离子体光谱法、电感耦合等离子原子发射光谱法(ICP-AES)和石墨炉原子吸收法。一般铝合金中元素的测定分析方法采用ICP-AES和石墨炉原子吸收法[9,14-18]。ICP-AES[19]作为一种新型的分析方法,较其它分析方法而言,具有灵敏度高、精密度好、线性范围宽、基体效应小、动态范围宽、快速简便并可同时进行多元素分析的优点,已成为铝合金常用的分析方法之一。 基于以上的背景调研,我们拟采用ICP-AES法对未知元素组成和含量的铝合金样品中其它金属元素的组成和含量进行研究,为铝合金材料的潜在应用和材料制备提供理论基础。通过查阅相关文献[3-5],可以知道铝合金材料中可能含有的金属元素;因此,本文主要研究并测定了铝合金中可能存在的金属元素,如钛、铜、镁、锰、锌、铬、硅和铁的含量。 二、实验部分 1.主要仪器及实验条件 铝合金样品(元素组成和含量未知),水(二次去离子),盐酸(优级纯),硝酸(优级纯)。 ICP 6300型电感耦合等离子体发射光谱仪。工作参数:射频功率1.15 kW,

浅谈激光烧蚀技术的应用及研究进展

龙源期刊网 https://www.sodocs.net/doc/af9873180.html, 浅谈激光烧蚀技术的应用及研究进展 作者:宫琳琳李爽 来源:《科技资讯》2014年第04期 摘要:随着激光技术的发展,当今社会激光烧蚀技术越来越受到了人们的关注。本文主 要介绍了几种激光烧蚀技术的不同应用,以及对激光烧蚀技术的进展做了简单的研究。 关键词:烧蚀等离子体聚合物 中图分类号:O657.3 文献标识码:A 文章编号:1672-3791(2014)02(a)-0019-01 激光烧蚀技术是通过飞秒-纳秒量级的脉冲激光来将材料表面烧蚀,已经被广泛应用于微加工、外科手术、X射线激光、生物分子质谱以及一些艺术品修复/清洁等领域;对激光烧蚀 产生的等离子体的光学/光谱诊断是研究等离子体动力学的主要方法之一。 1 激光烧蚀技术的应用 1.1 激光烧蚀光谱(LAS、LIBS)技术的应用 近年来光谱领域发展迅速,其中激光烧蚀光谱技术是其中一种比较崭新的分析手段。该技术主要是通过聚焦强激光束激发样品靶面,产生高温等离子体,通过测定等离子体冷却过程中发射光谱的波长与强度来进行定量分析、元素定性。激光烧蚀光谱技术虽然对于痕量元素的分析能力不足,但是该技术并不需要对样品进行繁琐的化学处理,具有破坏性小,具有快速、实时、可远程监测等特点,被广泛应用于地质、冶金、核工业、材料、燃料能源、生物医药等领域;电感耦合等离子体质谱(ICP2MS) 分析技术是一种公认的高灵敏度、强有力的、多元素及同位素分析技术。 1.2 激光烧蚀技术在微纳米材料制备中的应用 激光与靶材相互作用后,周围的物理空间便可粗略的分为高温高压等离子体聚集区、液相区和固相区三个区域,如图1所示。等离子体聚集区是由离子、电子以及未电离的中性粒子集合组成,整体呈现电中性,该区域对激光能量的传输障碍比较小。液相区是靠近等离子聚集区的熔融层,材料处于液态或固-液共存态。靠近液相区的是固相区,该区域虽然也吸收了激光能量,能使温度升高,但是能量强度不足以使该层进行熔化。基于激光烧蚀技术制备的各类材料的生长过程,如一维纳米线和零维纳米颗粒、二维薄膜等,几乎都是通过应用高温高压等离子体的成核、生长所完成。因此,激光烧蚀产生的高温高压等离子体在激光烧蚀技术制备微纳米材料中起着重要的作用。

电感耦合等离子体发射光谱仪

电感耦合等离子体发射光谱仪技术要求 1.设备名称 电感耦合等离子体发射光谱仪 2.总体要求 原装进口全谱直读型台式ICP光谱仪一台。主要适用于合金、钢、铁、炉渣等材料中Si、Mn、P、Cr、Ni、Cu、Al、Mo、Ti、Sn、As、Ca等元素主量及微量元素的快速定性、半定量和定量分析,要求制造商有良好的业绩。仪器应具有开机稳定时间短、长期稳定性好、使用成本低等特点。制造商应具有设计、制造本标书所规定设备的资格和能力,对设备的分析精度、质量、使用性能、供货的完整性、安装指导及调试负责。 3. 技术指标 *3.1 检测器:带高效半导体制冷的CID或CCD固体检测器,启动时间小于3 分钟;检测单元大于10万个,硬件上具有防溢出装置,能够实现高低含量元素同时测定。 3.2 光学系统:恒温驱气型中阶梯分光系统 3.3单色器:中阶梯光栅,石英棱镜二维色散系统,高能量。 3.4 光室:精密恒温,驱氩气或氮气。 3.5波长范围:166-770nm,全波长覆盖; *3.6光学分辨率(FHW):≤0.007nm 在200 nm处(分辨率和下面的检出限须在相同条件获得)。 3.7 焦距范围:350mm-510mm,以保证光学系统的稳定性。 3.8 等离子体 3.8.1等离子体观察方式:垂直观测 3.8.2高频发生器:功率27.12或40.68 MHZRF,自激式固态发生器,自动调谐, 功率稳定

性优于0.1%,最大RF功率: 1500W,连续可调。 3.8.3 冷却方式:水冷和风冷。 3.9 进样系统: 3.9.1全计算机自动控制的3或4通道滚轮蠕动泵,MFC质子流量计控制雾化器,范围从0-1.5L/min可调,所有气体都由软件控制,并进行安全连锁。 3.9.2进样系统:包括标准进样系统、高盐进样系统和耐HF酸进样系统。 3.10分析软件: 3.10.1软件操作方便、直观,具有定性、半定量、定量分析功能。 3.10.2具有同时记录所有元素谱线的“摄谱”功能,并能永久保存和自动检索操作软件,并可永久保存和日后再分析。 3.10.3具有多种干扰校正方法和实时背景扣除功能。 3.10.4 仪器诊断软件和网络通讯,数据再处理功能。 3.11 分析性能 3.11.1分析速度:≥每分钟60个元素或谱线,而且每条测量谱线的积分时间≤15秒。 3.11.2样品消耗量:< 2ml,测定60个元素。 3.11.3谱线灵活性:可对分析元素的任何一条谱线进行定性、半定量和定量分析,便于分析研究。 3.11.4 测定谱线的线性动态范围:≥105(以Mn257.6nm 来测定,相关系数≥0.9996)。 3.11.5内标校正:同时的内标校正,即内标元素和测量元素必须同时曝光。 3.11.6精密度:测定1ppm或10ppm多元素混合标准溶液,重复测定十次的RSD≤0.5%。 3.11.7稳定性:测定1ppm或10ppm多元素混合标准溶液,连续测定4小时的长时间稳定性RSD<2.0%。 4. 配置要求:

微波氢等离子体发射光谱分析实验讲义

微波氢等离子体发射光谱分析 实验背景 等离子体是一种由大量离化的粒子组成并呈现电中性的热力学体系。对等离子体性能的研究能够从纯科学的角度为研究自然空间和大气现象提供重要的依据,也为涉及等离子体发展应用中遇到的技术问题提供解答。等离子体的诊断可以分为接触式和非接触式,接触式诊断方法主要包括Langmuir探针法、阻抗测量法等,一般用于大范围均匀分布等离子体的诊断;非接触式诊断方法主要包括微波透射法、光谱法等,一般用于小尺寸等离子体的诊断。 微波氢等离子体由于采用无极放电方式,在高质量光学金刚石膜、金刚石同质外延等方面有广泛的应用。氢等离子体的原位在线检测对于研究等离子体中各基团的物理—化学过程、改进薄膜沉积工艺具有重要意义。 发射光谱诊断技术具有无干扰、灵敏度高等优点,其原理是基于电磁辐射与物质的相互作用,是研究等离子体状态和性能较为理想的诊断方法,如利用氢原子发射光谱的相对强度测量等离子体中的电子参数,利用氢原子发射光谱的展宽测量等离子体中的电场强度等。 在空间和实验室等离子体物理的研究中,氢等离子体Balmer线系是重要的研究对象。在实验室条件下,Balmer线系主要研究Hα、Hβ和Hγ三条谱线,他们分别是主量子数n=3、4、5向n=2的跃迁,表1为上述三条谱线的相关参数。 表1 Balmer线系的常数 Balmer series Wavelength (nm) Transition Coefficient(μs-1) Weighing of upper level Excitation energies(eV) Hα(3→2)656.28 44.10 18 12.0875 Hβ(4→2) 486.13 8.419 32 12.7485 Hγ(5→2) 434.05 2.530 50 13.0545 本实验利用压缩波导反应腔结构和热辅助激发的方式产生了可稳定运行于接近一个大气压下的微波辉光氢等离子体,研究在可见光区范围内的氢等离子体发射光谱中氢原子的Balmer线系的谱线以及谱线随实验条件的变化。 一实验目的 1.理解微波氢等离子体的激发原理和原子发射光谱的形成过程。 2.掌握微波等离子体及光栅光谱仪的工作原理与使用方法。 3.掌握使用Origin软件对数据作图的基本方法。 二实验仪器及原材料 微波等离子体化学气相沉积装置一台、WDS-8A多功能光栅光谱仪一台、光缆1根、计算机一台、高纯氢气一瓶。 三实验原理 1. 多功能光栅光谱仪 1.1 WDS-8A多功能光栅光谱仪 图1 光栅光谱仪装置示意图

激光诱导等离子体光谱分析

激光诱导等离子体光谱分析

激光光谱分析与联用技术 读书报告 日期:2011年5月25日 激光诱导等离子体光谱法

摘要:本文概述了激光诱导等离子光谱法的发展概况、基本原理、基本特性、仪器装置、应用方向和研究进展,并对该光谱法进行了展望。关键词:激光诱导等离子体光谱研究进展 前言: 激光诱导等离子体(LIP)近年来尤为受到关注,已经成为研究激光与物质相互作用的重要工具,在光谱分析,激光薄膜沉积和惯性约束核聚变等方面也有着广泛的应用。随着激光和阵列探测器的发展,激光诱导等离子体光谱技术(laser-induced plasma spectroscopy或者 laser-induced breakdown spectroscopy)在近30年内取得长足发展,成为原子光谱分析阵营中的一颗明星,犹如早些年的火焰原子吸收光谱法、光电直读光谱法和电感耦合等离子体发射光谱法,在很多领域得到广泛的应用。 1.发展概况 LIPS自1962年被报道以来,已被广泛地应用到多个领域,如钢铁成分在线分析、宇宙探索、

环境和废物的监测、文化遗产鉴定、工业过程控制、医药检测、地球化学分析,以及美国NASA 的火星探测计划CHEMCAM等,并且开发出了许多基于LIPS技术的小型化在线检测系统。 LIPS发展可以分为三个阶段:第一个阶段是至自1962年提出到70年代中期,主要是在于研发利用光电火花源产生等离子体的仪器。第二个阶段是从1980年开始,这种技术重新被人们重视,但实际应用仍然受到笨重的仪器阻碍。第三个阶段是1983年迄今,激光诱导等离子体光谱开始以缩写形式LIPS,开始被商业公司开发应用。这种趋势导致分析工作更加集中于发展坚固的、移动的仪器。此时光纤也被应用于LIPS系统中,主要用于将等离子体发射信息和激光脉冲耦合进光谱仪。 近20多年来,LIPS测量技术在各个行业都有不同程度的应用。通过改进实验LIPS装置来提高测量精度。到上个世纪90年代中期开始,一些商业公司便开发出便携式半定量的成品仪器,

电感耦合等离子体原子发射光谱法

电感耦合等离子体原子发射光谱法 电感耦合等离子体原子发射光谱法(ICP-AES)是以等离子体为激发光源的原子发射光谱分析方法,可进行多元素的同时测定。 样品由载气(氩气)引入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气氛中被充分蒸发、原子化、电离和激发,发射出所含元素的特征谱线。根据特征谱线的存在与否,鉴别样品中是否含有某种元素(定性分析);根据特征谱线强度确定样品中相应元素的含量(定量分析)。 本法适用于各类药品中从痕量到常量的元素分析,尤其是矿物类中药、营养补充剂等药品中的元素定性定量测定。 1、对仪器的一般要求 电感耦合等离子体原子发射光谱仪由样品引入系统、电感耦合等离子体(ICP)光源、分光系统、检测系统等构成,另有计算机控制及数据处理系统,冷却系统、气体控制系统等。 样品引入系统 按样品状态不同可以分为以液体、气体或固体进样,通常采用液体进样方式。样品引入系统由两个主要部分组成:样品提升部分和雾化部分。样品提升部分一般为蠕动泵,也可使用自提升雾化器。要求蠕动泵转速稳定,泵管弹性良好,使样品溶液匀速地泵入,废液顺畅地排出。雾化部分包括雾化器和雾化室。样品以泵入方式或自提升方式进入雾化器后,在载气作用下形成小雾滴并进入雾化室,大雾滴碰到雾化室壁后被排除,只有小雾滴可进入等离子体源。要求雾化器雾化效率高,雾化稳定性高,记忆效应小,耐腐蚀;雾化室应保持稳定的低温环境,并需经常清洗。常用的溶液型雾化器有同心雾化器、交叉型雾化器等;常见的雾化室有双通路型和旋流型。实际应用中宜根据样品基质,待测元素,灵敏度等因

素选择合适的雾化器和雾化室。 电感耦合等离子体(ICP)光源 电感耦合等离子体光源的“点燃”,需具备持续稳定的高纯氩气流,炬管、感应圈、高频发生器,冷却系统等条件。样品气溶胶被引入等离子体源后,在6,000K~10,000K的高温下,发生去溶剂、蒸发、离解、激发、电离、发射谱线。根据光路采光方向,可分为水平观察ICP源和垂直观察ICP源;双向观察ICP 光源可实现垂直/水平双向观察。实际应用中宜根据样品基质、待测元素、波长、灵敏度等因素选择合适的观察方式。 色散系统 电感耦合等离子体原子发射光谱的色散系统通常采用棱镜或光栅分光,光源发出的复合光经色散系统分解成按波长顺序排列的谱线,形成光谱。 检测系统 电感耦合等离子体原子发射光谱的检测系统为光电转换器,它是利用光电效应将不同波长光的辐射能转化成电信号。常见的光电转换器有光电倍增管和固态成像系统两类。固态成像系统是一类以半导体硅片为基材的光敏元件制成的多元阵列集成电路式的焦平面检测器,如电荷注入器件(CID)、电荷耦合器件(CCD)等,具有多谱线同时检测能力,检测速度快,动态线性范围宽,灵敏度高等特点。检测系统应保持性能稳定,具有良好的灵敏度、分辨率和光谱响应范围。 冷却和气体控制系统 冷却系统包括排风系统和循环水系统,其功能主要是有效地排出仪器内部的热量。循环水温度和排风口温度应控制在仪器要求范围内。气体控制系统须稳定正常地运行,氩气的纯度应不小于99.99%。 2、干扰和校正 电感耦合等离子体原子发射光谱法测定中通常存在的干扰大致可分为两类:

激光诱导土壤等离子体光谱辐射实验参数优化

1206011-1第47卷第12期 红外与激光工程2018年12月Vol.47No.12Infrared and Laser Engineering Dec.2018 收稿日期:2018-07-10;修订日期:2018-08-28 基金项目:重庆市基础科学与前沿技术研究专项项目重点项目(cstc2015jcyjBX0016);重庆市教委科学研究项目(KJ1500436);教育部 留学回国人员科研启动基金(教外司留[2015]1098号);重庆市基础科学与前沿技术研究专项项目一般项目 (cstc2016jcyjA0389);重庆邮电大学博士基金(A2016-113) 作者简介:王金梅(1981-),女,副教授,博士,主要从事光电检测技术方面的研究。Email:wangjm@https://www.sodocs.net/doc/af9873180.html, 通讯作者:郑培超(1980-),男,教授,博士,主要从事光谱测量技术方面的研究。Email:zhengpc@https://www.sodocs.net/doc/af9873180.html, Optimization of experimental parameters of laser induced soil plasma spectral radiation Wang Jinmei,Yan Haiying,Zheng Peichao *,Xue Shuwen (Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology,College of Optoelectronic Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China) Abstract:Laser induced breakdown spectroscopy (LIBS)was employed to investigate the soil.LIBS analyses were performed with Nd:YAG laser operating at 1064nm,5.82ns pulse duration.The spectral lines of Ca II 393.37nm and Ca II 396.85nm were selected as the analytical lines for optimizing the experimental parameters (ICCD delay,laser energy,ICCD gate width,repetition rate and cumulative number of spectrum)which had influence on spectral line.The experimental conditions were determined as follows.The ICCD delay was 1μs,the laser energy was 50mJ,the ICCD gate width was 3.5μs,the repetition rate was 1Hz and the cumulative number of spectrum was 100times.Under the optimal experimental conditions,the results of the electron temperatures T e and electron densities N e were 11604K and 5.155×1016cm -3,respectively.The local thermal equilibrium condition of the plasma was satisfied.The results are useful for the analysis and detection of elements in soil. Key words:laser induced breakdown spectroscopy; sequential test;soil;electron temperatures; electron densities CLC number:O433.4;TN249Document code:A DOI :10.3788/IRLA201847.1206011激光诱导土壤等离子体光谱辐射实验参数优化 王金梅,颜海英,郑培超*,薛淑文 (重庆邮电大学光电工程学院光电信息感测与传输技术重庆重点实验室,重庆400065) 摘要:采用激光诱导击穿光谱法(LIBS)对土壤进行了研究。激光器采用的是Nd:YAG 脉冲激光器,激光器的输出波长是1064nm ,脉宽是5.82ns ,激光聚焦在土壤表面产生激光诱导等离子体,通过优化实验参数(ICCD 延时、脉冲能量、ICCD 门宽、脉冲频率、谱图积累次数)对Ca II 393.37nm 和Ca II 396.37nm 两条特征谱线强度及信背比的影响,确定实验最佳条件是ICCD 延时1μs ,激光能量50mJ ,ICCD 门宽3.5μs ,脉冲频率1Hz ,谱图积累次数100次。在最优实验条件下计算等离子体参数,得出土壤中的等离子体电子温度是11604K ,土壤的等离子体电子密度是5.155×1016cm -3,经过万方数据

激光抛光技的研究

激光抛光技术的研究 摘要:激光抛光是一种非接触式抛光方法。本文介绍了激光抛光技术的发展历史, 论述了激光抛光的工艺特点和作用机理, 分析了影响激光抛光效率和抛光表面质量的因素及其影响规律。最后,阐明了激光抛光的应用现状及未来的发展前景。关键词:激光抛光作用机理热抛光 Abstract: Laser polishing is a kind of contact-less polishing technique. The developing procedure of laser polishing technology is presented in this paper .The emphasis is focused on the characteristics of laser polishing process and its interacting mechanism.The factors which influence the polishing efficiency and polished surface roughness are analyzed.At last the current situation of laser polishing and future perspective is clarified. Keywords: Laser polishing interacting mechanism thermal polishing 1. 背景及意义 随着材料表面技术的发展, 表面抛光技术成为了一个越来越重要的技术。抛光技术: 又称镜面加工技术, 是制造平坦而且加工变形层很小, 没有擦痕的面加工工艺。在工业应用中, 对材料表面粗糙度的要求越来越高, 已经从微米级--亚微级--纳米级--亚纳米级。为了满足应用的需要,人们不断探索新的抛光技术, 由于激光独特的性质, 激光抛光技术出现了。 图1 采用激光法抛光前后金刚石薄膜的S E M 形貌 从90 年代中期以来,在美国、俄罗斯、德国和日本等国家, 广泛开展了金刚石薄膜的激光抛光研究, 已经得到了纳米级的表面粗糙度; 近年来, 日本大阪大

Varian 715-ES等离子体发射光谱仪图文操作手册

Varian 715-ES等离子体发射光谱仪的 图文操作手册 一、V arian 715-ES等离子体发射光谱仪: V arian 715-ES等离子体发射光谱仪 二、功能和用途: 1、功能:本仪器可以全波段同时测量,所以可选择不同的波长轻易避免光谱 干扰,意味着具有更好的精度、更好的背景矫正和更高的效率;采用百万像素CCD检测器搭配Echelle二维分光器,可以使系统在一次观测就可完成高低浓度样品的检测,并具有更低的检出限和更宽的动态线性范围; CCI冷锥切割尾焰技术使水平观测检测限更低,并能分析较高TDS含量的样品;测定过程中没有任何移动部件的光学系统提高了仪器稳定性;直观、强大、易学易用的ICP Expert II全中文操作软件大大提高了工作效率。 2、用途:本仪器可以同时测定元素周期表中73中元素,每个元素的波长可 以任意选择,最大限度地减少了元素之间的相互干扰,液体进样适用于金属材料、食品、医药、环保等领域中低含量及中等含量的化学元素的快速定量或半定量分析。 三、操作步骤: 1、开机 a、冷开机(从仪器关闭状态开机) (1)、依次打开计算机主机、显示器和打印机,进入操作系统;

(2)、打开氩气气源阀,检查并调节减压阀在5.5MPa左右,气体纯度≥99.996%; (3)、打开循环水电源开关,检查压力指示在0.5~3.1MPa,温度设定在20℃±1℃; (4)、打开仪器后部高压电源开关(向上); (5)、打开仪器前部系统电源开关(绿色指示灯处于亮的状态); (6)、打开实验室排风系统; (7)、如有其它附件,依次打开。 b、热开机 (1)、依次打开计算机主机、显示器和打印机开关; (2)、打开循环水开关;

激光诱导击穿光谱技术要点

激光诱导击穿光谱的原理、装置 及在地质分析中的应用 摘要 激光诱导击穿光谱技术(LIBS)是一种目前正在发展中的对样品中元素成分进行快速、现场定量检测的分析技术。为了了解激光诱导击穿光谱技术(LIBS)技术和发展现况以及这项技术的应用情况,在课堂学习和相关基础实验的基础上,通过查阅相关文献和书籍进行了分析、整理、归纳。文章从LIBS的由来、基本原理和实验装置进行了综述,讨论了激光诱导击穿光谱技术在地质分析方面的应用。LIBS技术应用方便快捷,且应用前景广泛。 关键字:激光诱导击穿光谱;元素分析;地质分析

The Principle and Device of Laser Induced Breakdown Spectroscopy and its Application in Geological Analysis ABSTRACT Laser-induced breakdown spectroscopy(LIBS)is a kind of analysis technique currently in development ,which is applied for rapid and on-site quantitative detection of the elements of the sample.To comprehend the laser induced breakdown spectroscopy(LIBS)technology, the current development status of LIBS technology and the application of the technology, LIBS technology was analyzed, arranged, and summarized on the basis of classroom learning , the related basic experiments and consulting relevant literatures and books. The origin, basic principle and experimental apparatus of LIBS are reviewed in this paper and the applications of laser induced breakdown spectroscopy in geological analysis are discussed.The application of LIBS technology are fast and convenient and LIBS technology will have broad application prospects. Key words:Laser Induced Breakdown Spectroscopy;elemental analysis;geological analysis

飞秒激光烧蚀镍钛形状记忆合金的蚀除机理

第26卷第9期强激光与粒子束V o l.26,N o.9 2014年9月H I G H P OW E R L A S E R A N D P A R T I C L E B E AM S S e p.,2014 飞秒激光烧蚀镍钛形状记忆合金的蚀除机理* 唐一波1,陈冰2,陈志勇1,朱卫华1,李月华1,王新林1,2 (1.南华大学电气工程学院,湖南衡阳421001;2.南华大学机械工程学院,湖南衡阳421001) 摘要:结合双温模型的分子动力学模拟方法,研究了飞秒激光脉冲辐照B2结构镍钛合金时烧蚀阈值 附近的靶材蚀除机制,数值模拟了中心波长为800n m,脉宽为100f s,能量密度为25~50m J/c m2的激光与90 n m厚B2结构镍钛合金薄膜相互作用过程三确定了脉宽为100f s的脉冲激光与镍钛形状记忆合金相互作用 的烧蚀阈值,发现烧蚀阈值条件下,靶材的蚀除机制是单纯基于应力作用的机械破碎;烧蚀阈值附近,未蚀除靶 材受热影响发生无序化相变的区域较小,且随激光能量密度的降低而减小三提高激光功率密度,烧蚀同时呈现 热机械蚀除和机械破碎机制三 关键词:飞秒激光烧蚀; B2结构镍钛合金;双温模型;分子动力学模型 中图分类号:0437; T N249文献标志码: A d o i:10.11884/H P L P B201426.091025由功能材料制备的微纳器件及结构表现出来的优越性能及其诱人的应用前景,使得功能材料微纳器件制备成为近年来超快激光微细加工领域的研究热点[1-4]三镍钛合金因在不同温度下可实现不同微观相结构间的可逆性转换而具备形状记忆功能,被称为形状记忆功能材料,在国防二军事二航天航空二生物医学以及工业等领域有着广泛的应用,镍钛形状记忆合金制备的微纳器件在医学应用等领域更是起着无可替代的作用[5-6]三而镍钛形状记忆合金的加工具有其特殊性,传统的加工方法产生的热效应或应力易引起加工区域产生相变,从而会改变镍钛合金的特性,影响加工零件的性能三加工过程带来的性能改变在微细加工中的影响尤为重要三因此探索新的更实用的镍钛合金微细加工方法具有重要意义三飞秒激光加工的超高精度二超小热影响区域及加工材料范围广等特性,使得采用飞秒激光进行无相变二微纳加工具有不可替代的优势[7-8]三近年来,激光技术不断的取得进展,使得飞秒激光加工有望成为镍钛形状记忆合金微纳加工的有效且先进的手段[9-12]三开展飞秒激光烧蚀镍钛形状记忆合金的数值模拟工作,探索不同激光参数条件下靶材的相变行为以及蚀除机制,进而为飞秒激光微纳二无相变加工提供理论基础和参数依据,对拓展镍钛合金的应用具有重大意义三L e o n i dV.Z h i g i l e i 等开展的分子动力学模拟工作总结得出,超快激光烧蚀金属时,热效应及烧蚀压力波共同作用导致靶材发生了蚀除,并提出机械破碎二裂散二液相爆炸等一系列靶材蚀除机制[13-14]三然而,更为详细的靶材蚀除机理以及微观蚀除现象还需进一步探讨三本文数值模拟并分析了飞秒激光与B2结构镍钛形状记忆合金靶材相互作用时,烧蚀阈值附近的靶材蚀除机理,给出了飞秒激光微纳二无相变加工镍钛形状记忆合金的参数区间三 1数值模拟方法 超快激光与金属靶材相互作用时,激光能量首先沉积到靶材电子,靶材电子被迅速加热至极高的温度,而晶格却仍处于相对 冷 的状态,导致了靶材电子与晶格之间的非热平衡三双温模型将靶材分为电子和晶格两个体系,分别计算电子二晶格体系的热传导,突破了传统热传导方程的局限,较为准确地描述了超快激光辐照下,金属靶材的非热平衡能量弛豫过程三而分子动力学通过求解靶材原子体系的牛顿力学方程组,追踪了靶材每一个原子的运动,详细地描述了靶材去除二相变等微观过程三结合双温模型的分子动力学方法,具备了双温模型和分子动力学的所有优点,是研究超快激光与金属材料相互作用最为常用的方法三 描述双温模型的双温方程为 C e?T e?t=??z(k e?T e?z)-g(T e-T l)+S(z,t) (1) C l?T l?t=-??z(k l?T l?z)+g(T e-T l) S(z,t)=I(t)(1-R)αe x p(-αz) *收稿日期:2013-12-10;修订日期:2014-04-17 基金项目:国家自然科学基金项目(11174119);南华大学重点学科建设资助项目(N H X K04) 作者简介:唐一波(1988 ),男,硕士研究生,主要从事超快激光与金属相互作用方面的研究;t y b19880810@s i n a.c o m.c n三 通信作者:王新林(1970 ),男,博士二教授,主要从事激光与光电子技术及应用方面的研究;w x l_l y000@y a h o o.c o m.c n三 091025-1

ICP等离子体发射光谱仪

ICP等离子体发射光谱仪 仪器组成及工作原理 ICP等离子体单道扫描光谱仪,是多元素顺序测量的分析测试仪器。该仪器由扫描分光器、射频发生器、试样引入系统、光电转换、控制系统、数据处理系统、分析操作软件组成。等离子体是在三重同心石英炬管中产生。炬管内分别以切向通入氩气,炬管上部绕有紫铜负载线圈〈内通冷却水〉当高频发生器产生的高频电流(工作频率40MHz功率1KW左右)通过线圈时,其周围产生交变磁场,使少量氩气电离产生电子和离子,在磁场作用下加速运动与其它中性原子碰撞,产生更多的电子和离子,在炬管内形成涡流,在电火花作用下形成等离子炬(即等离子体),这种等离子体温度可达10000K以上。待测水溶液经喷雾器形成气溶胶进入石英炬管中心通道。原子在受到外界能量的作用下电离,但处于激发态的原子十分不稳定,从较高能级跃迁到基态时,将释放出巨大能量,这种能量是以一定波长的电磁波的形式辐射出去。不同元素产生不同的特征光谱。这些特征光谱通过透镜射到分光器中的光栅上,计算通过控制步进电机转动光栅,传动机构将分光后的待测元素特征谱线光强准确定位于出口狭缝处,光电倍增管将该谱线光强转变为电流,再经电路处理和V/F转换后,由计算机进行数据处理,最后由打印机打出分析结果。 仪器型号:HKYT-2000型 技术指标 整机技术指标 (1) 分析速度快 (2) 扫描范围:范围180~500nm、方式为正弦杆,由计算机控制的脉冲马达 驱动,最小扫描步距0.0005nm (3) 波长示值误差和重复性:波长示值误差:± 0.03nm 重复性≤0.005nm (4)相关系数≥0.9998% (5) 精密度高相对标准偏差RSD≤1.5%(HKYT-2000型RSD≤2.0%) (6) 稳定性:相对标准偏差RSD≤2.0%(HKYT-2000型RSD≤3.0%) (7) 测量范围:超微量到常量 (8) 检出限低 ppb(ug/L)级(部分元素检出限见附录一)_ (9) 分析元素多可对72种金属元素和部分非金属元素(如B、P、Si、Se、 Te)进行定量或定性分析 (10) 测量方式单、多元素顺序测量 (11) 功率 800W—1200W 可调 (12) 操作便捷全新WindowsXP下运行的第三代多窗口升级中文或英文 分析软件速度更快,功能更全,多窗口多任务同时执行(国 内独此一家) 射频发生器(RF) (1)电路类型:电感反馈自激式振荡电路、同轴电缆输出、匹配调谐、取功率

等离子体发射光谱

等离子体发射光谱 等离子体(Plasma)在近代物理学中是一个很普通的概念,是一种在一定程度上被电离(电离度大于0.1%)的气体,其中电子和阳离子的浓度处于平衡状态,宏观上呈电中性的物质。 1仪器介绍 电感耦合等离子体发射光谱仪原理 矩管外高频线圈产生高频电磁场,高纯氩气在高频电磁场中失去电子,该电子轰击待测样品,样品的各元素产生跃迁,发射出具有一定的特征谱线的光。通过检测器探测这种特征谱线并检测其强度,可以定性分析元素和定量计算该元素的浓度。 2性能特点 ICP-AES分析性能特点 电感耦合等离子体(ICP)是由高频电流经感应线圈产生高频电磁场,使工作气体形成等离子体,并呈现火焰状放电(等离子体焰炬),达到10000K的高温,是一个具有良好的蒸发-原子化-激发-电离性能的光谱光源。而且由于这种等离子体焰炬呈环状结构,有利于从等离子体中心通道进样并维持火焰的稳定;较低的载气流速(低于1L/min)便可穿透ICP,使样品在中心通道停留时间达2~3ms,可完全蒸发、原子化;ICP环状结构的中心通道的高温,高于任何火焰

或电弧火花的温度,是原子、离子的最佳激发温度,分析物在中心通道内被间接加热,对ICP放电性质影响小;ICP光源又是一种光薄的光源,自吸现象小,且系无电极放电,无电极沾污。这些特点使ICP 光源具有优异的分析性能,符合于一个理想分析方法的要求。 一个理想的分析方法,应该是:可以多组分同时测定;测定范围要宽(低含量与高含量成分能同测定);具有高的灵敏度和好的精确度;可以适用于不同状态的样品的分析;操作要简便与易于掌握。ICP-AES分析方法便具有这些优异的分析特性: ICP-AES法首先是一种发射光谱分析方法,可以多元素同时测定。

相关主题